WorldWideScience

Sample records for metallic high-temperature materials

  1. Modelling of the high temperature behaviour of metallic materials

    International Nuclear Information System (INIS)

    Mohr, R.

    1999-01-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of a chromium steel and an intermetallic titanium aluminide alloy. (orig.)

  2. High temperature metallic materials for gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The Specialists' Meeting was organized in conjunction with an earlier meeting on this topic held in Vienna, Austria, 1981, which provided for a comprehensive review of the status of materials development and testing at that time and for a description of test facilities. This meeting provided an opportunity (1) to review and discuss the progress made since 1981 in the development, testing and qualification of high temperature metallic materials, (2) to critically assess results achieved, and (3) to give directions for future research and development programmes. In particular, the meeting provided a form for a close interaction between component designers and materials specialists. The meeting was attended by 48 participants from France, People's Republic of China, Federal Republic of Germany, Japan, Poland, Switzerland, United Kingdom, USSR and USA presenting 22 papers. The technical part of the meeting was subdivided into four technical sessions: Components Design and Testing - Implications for Materials (4 papers); Microstructure and Environmental Compatibility (4 papers); Mechanical Properties (9 papers); New Alloys and Developments (6 papers). At the end of the meeting a round table discussion was organized in order to summarize the meeting and to make recommendations for future activities. This volume contains all papers presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. Pressure Resistance Welding of High Temperature Metallic Materials

    International Nuclear Information System (INIS)

    Jerred, N.; Zirker, L.; Charit, I.; Cole, J.; Frary, M.; Butt, D.; Meyer, M.; Murty, K.L.

    2010-01-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400 C has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  4. Some metallic materials and fluoride salts for high temperature applications

    International Nuclear Information System (INIS)

    Hosnedl, P.; Hron, M.; Matal, O.

    2009-01-01

    There has been a special Ni base alloy MONICR for high temperature applications in fluoride salt environments developed in the framework of the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic. Selected results of MONICR alloy tests and results of semi products fabrication from this alloy are discussed in the paper. The results of the structural materials tests are applied on semi-products and for the design of the testing devices as the autoclave in loop arrangement for high temperature fluoride salts applications. Material properties other Ni base alloys are compared to those of MONICR. Corrosion test results of the alloy A686 in the LiF - NaF - ZrF 4 molten salt are provided and compared to the measured values of the polarizing resistance. (author)

  5. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  6. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  7. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  8. Microstructure and mechanical properties of metallic high-temperature materials. Research report

    International Nuclear Information System (INIS)

    Mughrabi, H.; Gottstein, G.; Mecking, H.; Riedel, H.; Toboloski, J.

    1999-01-01

    This volume contains 38 lectures of research studies performed in the course of the Priority Programme 'Microstructure and Mechanical Properties of Metallic High-Temperature Materials' supported by the Deutsche Forschungsgemeinschaft (DFG) over a period of six years from 1991 to 1997. The four materials selected were: 1. light metal PM-aluminium and titanium base alloys; 2. ferritic chromium and austenitic alloy 800 steels; 3. (monocrystalline) nickel-base superalloys; and 4. nickel- and iron-base oxide-dispersion-strengthened superalloys. All papers have been abstracted separately for the ENERGY database

  9. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  10. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  11. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  12. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  13. Specialists' meeting on high temperature metallic materials for application in gas-cooled reactors

    International Nuclear Information System (INIS)

    At the meeting overviews of current programmes for the development of high temperature materials in Japan, F.R. Germany and the United States of America were presented. Some papers were presented dealing with various aspects of microstructural studies, surface reactions and the changes of microstructure and dimensions due mainly to the associated interfacial material transports, protective surface coatings for HTGR and AGR applications. Other topics presented were mechanical properties of materials and also the influence of materials' properties data on design at temperatures in the creep region where time dependent behaviour must be considered

  14. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  15. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  16. A simple method for the investigation of the high temperature plasticity of metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chinh, N.Q. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary))

    1993-11-01

    The indentation creep test is a powerful and quick method for the investigation of the high temperature plasticity of various materials. During creep test a small cylindrical punch is pressed at constant loads into the surface of the sample and the penetration depth is registered as a function of testing time. On the basis of the creep curves taken at various temperatures and loads the strain rate sensitivity and the activation energy of the steady-state creep process can be determined. The main advantage of this test is that it needs only a small amount of testing material. In this paper the usefullness of this method illustrated by some results obtained on superplastic and non superplastic Al alloys. The indentation results are compared with tensile data obtained on the same materials. (orig.).

  17. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  18. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  19. Composite metal-ceramic material for high temperature energy conversion applications

    NARCIS (Netherlands)

    Wolff, L.R.

    1988-01-01

    At Eindhoven Universitu of technology a composite metal-ceramic material is being developed. It will serve as a protective confinement for a combustion heated Thermionic Energy Converter (TEC). This protective confinement of 'hot shell' consists of a composite W-TiN-SiC layer structure. The outer

  20. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  1. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  2. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  3. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  4. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  5. Refractiry metal monocrystals in high temperature thermometry

    International Nuclear Information System (INIS)

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  6. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  7. Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments

    International Nuclear Information System (INIS)

    Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

    1984-01-01

    In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700 0 C, but the creep tests at 800 0 C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X

  8. High-temperature levitated materials

    National Research Council Canada - National Science Library

    Price, David L

    2010-01-01

    .... This can be avoided by suspending the sample through levitation. This technique also makes metastable states of matter accessible, opening up new avenues of scientific enquiry, as well as possible new materials for technological applications...

  9. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  10. Papers about coated particles, graphitic and metallic materials for progressive high-temperature reactors at the Reactor Meeting 1978

    International Nuclear Information System (INIS)

    Rottmann, J.

    1978-09-01

    In the contributions, questions on the development, the radiation and the high-temperature behaviour and the characterization of fuel element particles are treated. Furthermore the resistance and radiation behaviour of graphitic materials are discussed. Finally, questions on the choice of high-temperature alloys for nuclear process heat facilities are discussed and the testing-equipment of the Nuclear Research Centre as well as first results of the long-time experiments are presented. The work was performed within the frame of the projects 'HTR-Fuel Element Cycle' and 'Prototype Nuclear Process Heat', which are sponsored by the Federal Ministry of Research and Technology of the Federal Republic of Germany and of the state of North-Rhine-Westfalia. Partner firms, who participate in the two projects are Gelsenberg AG, Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperaturreaktor-Brennelement GmbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH, NUKEM GmbH, SIGRI Elektrographit GmbH/Ringsdorff-Werke GmbH, Bergbauforschung GmbH und Rheinische Braunkohlenwerke AG. (orig./UA) [de

  11. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  12. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  13. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  14. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  15. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  16. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  17. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  18. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  19. Materials for high temperature reactor vessels

    International Nuclear Information System (INIS)

    Buenaventura Pouyfaucon, A.

    2004-01-01

    Within the 5th Euraton Framework Programme, a big effort is being made to promote and consolidate the development of the High Temperature Reactor (HTR). Empresarios Agrupados is participating in this project and among others, also forms part of the HTR-M project Materials for HTRs. This paper summarises the work carried out by Empresarios Agrupados regarding the material selection of the HTR Reactor Pressure Vessel (RPV). The possible candidate materials and the most promising ones are discussed. Design aspects such as the RPV sensitive zones and material damage mechanisms are considered. Finally, the applicability of the existing design Codes and Standards for the design of the HTR RPV is also discussed. (Author)

  20. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  1. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  2. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  3. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  4. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  5. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  6. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  7. Development and evaluation of high temperature materials for power plant

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1992-01-01

    The development of high temperature materials requires the evaluation of the interaction of microstructure and mechanical properties, the implementation of the microstructural aspects in the constitutive equations for the analysis of loads in a high temperature component and verification of the materials reactions. In this way the full potential of materials properties can be better used. This fundamental method is the basis for the formulation of the structural design code KTA 3221 'Metallic HTR Components'. The method of 'design by analysis' is also activated for large internally cooled turbine blades for stationary gas turbines in combined cycle power plants. This kind of exploratory analysis during the dimensioning procedure are discussed with two examples: He/He-heat exchanger produced of NiCr23Co12Mo (Alloy 617) and turbine blades made of superalloys (e.g. IN 738 LC). (author)

  8. Metallic substrates for high temperature superconductors

    Science.gov (United States)

    Truchan, Thomas G.; Miller, Dean J.; Goretta, Kenneth C.; Balachandran, Uthamalingam; Foley, Robert

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  9. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  10. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  11. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  12. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  13. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  14. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  15. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  16. Ductility of brazing assemblies with high-temperature materials

    International Nuclear Information System (INIS)

    Colbus, J.; De Paoli, A.

    1977-01-01

    Brazing assemblies with the high temperature materials X8CrNiNb1613, X12CrNiMo12 and X8NiCrAlTiMo7020 have been produced using different solder metals. These brazing assemblies have been studied with the emphasis on the interrelation between microstructure and ductility. Besides the ordinary impact bend tests of notched and unnotched brazed joints, the impact bend tests of unnotched brazed joints with drawing of a Strength-Way-Diagram have been added for better results. (GSC) [de

  17. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963); Corrosion de materiaux metalliques par l'hexafluorure d'uranium a haute temperature (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The corrosion of the following metals or alloys by UF{sub 6}: nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [French] La corrosion par l'UF{sub 6} des metaux ou alliages suivants: lickel, monel, inconel, or, platine, acier inoxydable, est etudiee dans le un domaine de temperature compris entre 300 et 1000 deg. C. La methode d'essai, destinee a eviter le chauffage de l'enceinte contenant le fluide corrosif a temperature elevee, consiste a utiliser des eprouvettes filiformes, echauffees par effet Joule, le reste de l'appareillage etant maintenu a une temperature proche de l'ambiance. Cette technique permet en outre de determiner en continu la penetration de la corrosion, par mesure de la resistance electrique de l'eprouvette, au moyen d'un pont double de Thomson. Une serie d'essais comparatifs, assez sommaires, montre que l'acier inoxydable, les metaux precieux et l'inconel sont attaques beaucoup

  18. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963); Corrosion de materiaux metalliques par l'hexafluorure d'uranium a haute temperature (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The corrosion of the following metals or alloys by UF{sub 6}: nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [French] La corrosion par l'UF{sub 6} des metaux ou alliages suivants: lickel, monel, inconel, or, platine, acier inoxydable, est etudiee dans le un domaine de temperature compris entre 300 et 1000 deg. C. La methode d'essai, destinee a eviter le chauffage de l'enceinte contenant le fluide corrosif a temperature elevee, consiste a utiliser des eprouvettes filiformes, echauffees par effet Joule, le reste de l'appareillage etant maintenu a une temperature proche de l'ambiance. Cette technique permet en outre de determiner en continu la penetration de la corrosion, par mesure de la resistance electrique de l'eprouvette, au moyen d'un pont double de Thomson. Une serie d'essais comparatifs, assez sommaires, montre que l'acier inoxydable, les metaux

  19. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  20. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Nickel, H.

    1992-01-01

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  1. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  2. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  3. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  4. Brazing refractory metals used in high-temperature nuclear instrumentation

    International Nuclear Information System (INIS)

    Palmer, A. J.; Woolstenhulme, C. J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  5. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Palmer, A.J.; Woolstenhulme, C.J.

    2009-01-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed

  6. Brazing refractory metals used in high-temperature nuclear instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Woolstenhulme, C. J. [EG and G Services, Inc., (United States)

    2009-07-01

    As part of the U. S. Department of Energy (DOE)-sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL's Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR-1) TRISO fuel experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed. (authors)

  7. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  8. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  9. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  10. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1976-01-01

    The results recently obtained from the Dragon program are presented to illustrate materials behavior: (a) effect of temperature on oxidation and carburisation in HTR helium (variation in oxide depth and in C content of AISI 321 after 5000 hours in HTR helium; effect of temperature on surface scale formation in the γ' strengthened alloys Nimonic 80A and 713LC); (b) effect of alloy composition on oxidation and carburisation behavior (influence of Nb and Ti on the corrosion of austenitic steels; influence of Ti and Al in IN-102; weight gain of cast high Ni alloys); (c) effect of environment on creep strength (results of tests for hastelloy X, grade I inconel 625, grade II inconel 625 and inconel 617 in He and air between 750 and 800 0 C)

  11. Plasma induced material defects and threshold values for thermal loads in high temperature resistant alloys and in refractory metals for first wall application in fusion reactors

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Kny, E.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1986-10-01

    Materials for the application in the first wall of fusion reactors of the tokamak type are subjected to pulsed heat fluxes which range from some 0.5 MW m -2 to 10 MW m -2 during normal plasma operation, and which can exceed 1000 MW m -2 during total plasma disruptions. The structural defects and material fatigue caused by this types of plasma wall interaction are investigated and the results are plotted in threshold loading curves. Additionally, the results are, as far as possible, compared with quantitative, theoretical calculations. These procedures allow a semiquantitative evaluation of the applicability of the mentioned metals in the first wall of fusion reactors. (orig.) [de

  12. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  13. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  14. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  15. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  16. Platform for high temperature materials (PHiTEM)

    International Nuclear Information System (INIS)

    Baluc, N.; Hoffelner, W.; Michler, J.

    2007-01-01

    Advanced energy power systems like Generation IV fission reactors, thermonuclear fusion reactors, solar thermal/solar chemical reactors, gas turbines and coal gasification systems require materials that can operate at high temperatures in extreme environments: irradiation, corrosion, unidirectional and cyclic loads. On the path to development of new and adequate high temperature materials, understanding of damage formation and evolution and of damage effects is indispensable. Damage of materials in components takes place on different time and length scales. Component failure is usually a macroscopic event. Macroscopic material properties and their changes with time (e.g., hardening, creep embrittlement, corrosion) are determined by the micro- to nano-properties of the material. The multi scale is an ambitious and challenging attempt to take these facts into consideration by developing an unified model of the material behaviour. This requires, however, dedicated tools to test and analyse materials on different scales. The platform for high temperatures materials is being set up within the framework of collaboration between the EPFL, the PSI and the EMPA. It has three main goals: 1) Establish a platform that allows the multi scale characterization of relationships between microstructure and mechanical properties of advanced, high temperature materials, with a focus on irradiated, i.e. radioactive, materials, by combining the use of a focused ion beam and a nano indentation device with multi scale modelling and simulations. 2) Use the methods developed and the results gained for existing materials for developing improved high temperature materials to be used in advanced and sustainable future energy power plants. 3) Become an attractive partner for industry by providing a wide knowledge base, flexibility in answering technical questions and skills to better understand damage in already existing plants and to support development of new products at the industrial scale

  17. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  18. Creep behavior of materials for high-temperature reactor application

    International Nuclear Information System (INIS)

    Schneider, K.; Hartnagel, W.; Iischner, B.; Schepp, P.

    1984-01-01

    Materials for high-temperature gas-cooled reactor (HTGR) application are selected according to their creep behavior. For two alloys--Incoloy-800 used for the live steam tubing of the thorium high-temperature reactor and Inconel-617 evaluated for tubings in advanced HTGRs--creep curves are measured and described by equations. A microstructural interpretation is given. An essential result is that nonstable microstructures determine the creep behavior

  19. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  20. Development of Environment and Irradiation Effects of High Temperature Materials

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.

    2009-11-01

    Proposed materials, Mod.9Cr-1Mo steel (32 mm thickness) and 9Cr-1Mo-1W (100 mm thickness), for the reactor vessel were procured, and welded by the qualified welding technologies. Welding soundness was conformed by NDT, and mechanical testings were done along to weld depth. Two new irradiation capsules for use in the OR test hole of HANARO were designed and fabricated. specimens was irradiated in the OR5 test hole of HANARO with a 30MW thermal power at 390±10 .deg. C up to a fast neutron fluence of 4.4x10 19 (n/cm 2 ) (E>1.0 MeV). The dpa was evaluated to be 0.034∼0.07. Base metals and weldments of both Mod.9Cr-1Mo and 9Cr-1Mo-1W steels were tested tensile and impact properties in order to evaluate the irradiation hardening effects due to neutron irradiation. DBTT of base metal and weldment of Mod.9Cr-1Mo steel were -16 .deg. C and 1 .deg. C, respectively. After neutron irradiation, DBTT of weldment of Mod.9Cr-1Mo steel increased to 25 . deg. C. Alloy 617 and several nickel-base superalloys were studied to evaluate high temperature degradation mechanisms. Helium loop was developed to evaluate the oxidation behaviors of materials in the VHTR environments. In addition, creep behaviors in air and He environments were compared, and oxidation layers formed outer surfaces were measured as a function of applied stress and these results were investigated to the creep life

  1. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  2. High temperature equation of state of metallic hydrogen

    International Nuclear Information System (INIS)

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  3. Recent Progress in Nanostructured Oxide TE Materials for Power Generation at High Temperatures

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    Thermoelectric (TE) materials, which can convert waste heat into electricity, could play an important role in a global sustainable energy solution and environmental problems. Metal oxides have been considered as potential TE materials for power generation that can operate at high temperatures...

  4. High Temperature Materials Interim Data Qualification Report FY 2011

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2011-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  5. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  6. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  7. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  8. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  9. Self-weldability of various materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Self-Weldability of Various Materials in High Temperature Sodium. The self-welding behavior of various materials was evaluated by measuring the tensile breakaway force of the specimen which had been self-welded in high temperature sodium. Experiments were carried out to investigate the influence of the sodium temperature and the contact stress on the self-welding behavior. The results obtained are as follows: (1) The self-welding behavior in sodium was recognized to initiate by the diffusion of the principal element through the real contact area. (2) Remarkable self-welding behavior was observed for SUS 316 material at 650 0 C, and for 2 1/4Cr-1Mo steel at a sodium temperature of 600 0 C. The self-welding force acting on the real contact area corresponds to the tensile strength of each material. (3) Hard chrome plating or hardfacing material showed good self-weld resistance, but the different combinations of SUS 316 with either of these materials were observed to easily cause self-welding. (4) The self-weldability of Cr 3 C 2 /Ni-Cr material varied with the preparing methods, especially, with the distribution of the binder composition contained in this material. (5) A derived equation was proposed to evaluate the self-welding force. It was found that the measured breakaway force was relatively equal to the self-welding force derived from this equation. (author)

  10. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  11. PETIs as High-Temperature Resin-Transfer-Molding Materials

    Science.gov (United States)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  12. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  13. Ultra light weight refractory material for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Finke, V.; Kern, H. [Rath GmbH, Meissen (Germany); Springer, M. [Aug. Rath jun. GmbH, Vienna (Austria)

    2007-07-01

    The requirements on companies running high temperature processes, i.e. at temperatures about 1000 C and above, have increased dramatically within the last few years. For technological, economical and ecological purposes each application has to be checked carefully. As well the political discussion regarding environmental pollution, greenhouse effect and emission trading and the guidelines for climate and environmental protection exert massive influence on thermal process technology and pose an appropriate challenge for the companies. Next to costs of labour and raw materials the costs for energy and environmental costs play a decisive role more and more. The pressure on the management thereby incurred may have a lasting effect on innovations regarding increase of energy efficiency, decrease of CO{sub 2}-emission and often on non negligible increase of productivity. Mainly against the background of the highly scheduled European aims for emission reduction and also in consideration of the still proceeding globalisation the usage of state-of-the-art refractory technics in thermal process technology is of particular importance for business success, for reducing of environmental impact and last but not least for conservation and safeguarding of jobs in Europe and Germany. The applications for products made from high-temperature insulation wool in high temperature applications have strongly increased during the last five years. Especially the production capacities of polycrystalline wool (aluminium oxide wool e.g. Altra B72) have been doubled within the last three years. Primarily ultra light weight products made from HTIW are used in industrial furnaces with application temperatures above 1000 C and / or with high thermo-mechanical (thermal shock) and chemical exposure. The outstanding and essential advantages of these materials are obviously: Ultra light weight material with high resilience and flexibility, Optimised energy consumption (energy saving up to 50% compared

  14. The precious metal effect in high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J.H.W. de (Lab. for Materials Science, Delft Univ. of Technology (Netherlands)); Manen, P.A. van (Lab. for Materials Science, Delft Univ. of Technology (Netherlands))

    1994-01-01

    Additions of platinum and to a smaller extent rhodium, to aluminium oxide forming alloys are known to improve the high temperature corrosion resistance of the alloys. This effect is known as the ''precious metal effect''. The expensive Pt-additions are used because of the increased lifetime of turbine-vanes especially in marine environments. Only a limited number of coating systems is commercially available, as JML-1, LDC-2 and RT22. Normally Pt is deposited electrochemically or by a fused salt method. After deposition the high or low activity pack-cementation-process is applied to obtain a PtNiAl-coating. In this paper the effect of platinum on the oxidation mechanism is discussed by comparing the oxidation mechanism of [beta]-NiAl and Pt20Ni30Al50. This composition agrees with the average composition of a platinum modified aluminide coating. The alloys were oxidized at temperatures from 1000 to 1200 C. The growth of the oxide scale on the NiAl alloy proceeds both by aluminium and by oxygen diffusion through the scale resulting in growth within the scale. On Pt20Ni30Al50 the growth of the scale is limited to the oxide/gas interface due to a predominant aluminium transport through the scale. The morphology of the oxide scales did not show large differences. However, the extensive void formation at the [beta]-NiAl/oxide interface was not observed on the Pt20Ni30Al50 samples. The absence of voids at the interface and the reduction of growth stresses, as a result of the outward growth of the scale, are the two likely reasons for the improved oxide scale adherence and can thus be considered, to be two elements of the ''precious metal effect''. (orig.)

  15. Characterization of sapphire: For its material properties at high temperatures

    Science.gov (United States)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  16. Screening of High Temperature Organic Materials for Future Stirling Convertors

    Science.gov (United States)

    Shin, Euy-sik E.; Scheiman, Daniel A.

    2017-01-01

    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection

  17. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  18. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  19. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  20. Modeling of helium effects in metals: High temperature embrittlement

    International Nuclear Information System (INIS)

    Trinkaus, H.

    1985-01-01

    The effects of helium on swelling, creep rupture and fatigue properties of fusion reactor materials subjected to (n,α)-reactions and/or direct α-injection, are controlled by bubble formation. The understanding of such effects requires therefore the modeling of (1) diffusional reactions of He atoms with other defects; (2) nucleation and growth of He bubbles; (3) transformation of such bubbles into cavities under continuous He generation and irradiation or creep stress. The present paper is focussed on the modeling of the (coupled) high temperature bubble nucleation and growth processes within and on grain boundaries. Two limiting cases are considered: di-atomic nucleation described by the simplest possible sets of rate equations, and multi-atomic nucleation described by classical nucleation theory. Scaling laws are derived which characterize the dependence of the bubble densities upon time (He-dose), He generation rate and temperature. Comparison with experimental data of AISI 316 SS α-implanted at temperatures around 1000 K indicates bubble nucleation of the multi-atomic type. The nucleation and growth models are applied to creep tests performed during α-implantation suggesting that in these cases gas driven bubble growth is the life time controlling mechanism. The narrow (creep stress/He generation rate) range of this mechanism in a mechanism map constructed from these tests indicates that in many reactor situations the time to rupture is probably controlled by stress driven cavity growth rather than by gas driven bubble growth. (orig.)

  1. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  2. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  3. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  4. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available load is carried by the g phase, which is a ductile material; at high temperatures the g phase is weak, and 0966-9795/00/$ - see front matter #2000 Elsevier Science Ltd. All rights reserved. PII: S0966-9795(00)00030-3 Intermetallics 8 (2000) 979?985 www...-temperature phase of ZrO2 containing 4.5 mol% per cent Y2O3 has the cubic ?uorite structure. A 980 F.R.N. Nabarro / Intermetallics 8 (2000) 979?985 face-centred cube of Zr atoms, with 4 Zr atoms in the unit cell, contains a simple cube of 8 O-atoms. On cooling...

  5. Development of materials for high temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Houlton, R.J.; Reagor, D.W.; Hawley, M.E.; Springer, K.N.; Jia, Q.X.; Mombourquette, C.B.; Garzon, F.H.; Wu, X.D.

    1994-01-01

    We have conducted a systematic optimization of deposition parameters for fabrication of multilayered oxide films to be used in the development of high temperature superconducting SNS Functions. These films were deposited by off-axis sputtering using a custom fabricated multi-gun planar magnetron system. Each material and the various combinations of materials were optimized for epitaxial lattice match, crystal quality, film uniformity, electrical properties, and surface microstructure. In addition to the standard procedures commonly used to sputter deposit epitaxial oxide films, a variety of insitu and exsitu procedures were used to produce high quality multilayer devices, including varying the nucleation temperature from the actual film growth temperature, location of the substrate during the deposition process, constant rotation of the substrate, and timing of the oxygen anneal. The unprocessed films and devices in process were characterized with Atomic Force Microscopy and Scanning Tunneling Microscopy as well as other common materials characterization techniques. Completed multilayer devices were patterned and packaged for electrical characterization. Relation between material properties and electrical characteristics is discussed

  6. Development of materials for high temperature superconductor Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Houlton, R.J.; Reagor, D.W.; Hawley, M.E.; Springer, K.N.; Jia, Q.X.; Mombourquette, C.B.; Garzon, F.H.; Wu, X.D.

    1994-10-01

    We have conducted a systematic optimization of deposition parameters for fabrication of multilayered oxide films to be used in the development of high temperature superconducting SNS Functions. These films were deposited by off-axis sputtering using a custom fabricated multi-gun planar magnetron system. Each material and the various combinations of materials were optimized for epitaxial lattice match, crystal quality, film uniformity, electrical properties, and surface microstructure. In addition to the standard procedures commonly used to sputter deposit epitaxial oxide films, a variety of insitu and exsitu procedures were used to produce high quality multilayer devices, including varying the nucleation temperature from the actual film growth temperature, location of the substrate during the deposition process, constant rotation of the substrate, and timing of the oxygen anneal. The unprocessed films and devices in process were characterized with Atomic Force Microscopy and Scanning Tunneling Microscopy as well as other common materials characterization techniques. Completed multilayer devices were patterned and packaged for electrical characterization. Relation between material properties and electrical characteristics is discussed

  7. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    International Nuclear Information System (INIS)

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  8. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  9. Multiyear Program Plan for the High Temperature Materials Laboratory; FINAL

    International Nuclear Information System (INIS)

    Arvid E. Pasto

    2000-01-01

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO(sub x) and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required

  10. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  11. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  12. High temperature viscoplastic ratchetting: Material response or modeling artifact

    International Nuclear Information System (INIS)

    Freed, A.D.

    1991-01-01

    Ratchetting, the net accumulation of strain over a loading cycle, is a deformation mechanism that leads to distortions in shape, often resulting in a loss of function that culminates in structural failure. Viscoplastic ratchetting is prevalent at high homologous temperatures where viscous characteristics are prominent in material response. This deformation mechanism is accentuated by the presence of a mean stress; a consequence of interaction between thermal gradients and structural constraints. Favorable conditions for viscoplastic ratchetting exist in the Stirling engines being developed by the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) for space and terrestrial power applications. To assess the potential for ratchetting and its effect on durability of high temperature structures requires a viscoplastic analysis of the design. But ratchetting is a very difficult phenomenon to accurately model. One must therefore ask whether the results from such an analysis are indicative of actual material behavior, or if they are artifacts of the theory being used in the analysis. There are several subtle aspects in a viscoplastic model that must be dealt with in order to accurately model ratchetting behavior, and therefore obtain meaningful predictions from it. In this paper, some of these subtlties and the necessary ratchet experiments needed to obtain an accurate viscoplastic representation of a material are discussed

  13. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    of the dopants and dopant concentrations, a large power factor was obtainable. The sample with the composition of Zn0.9Cd0.1Sc0.01O obtained the highest zT ∼0.3 @1173 K, ~0.24 @1073K, and a good average zT which is better than the state-of-the-art n-type thermoelectric oxide materials. Meanwhile, Sc-doped Zn......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  14. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  15. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  16. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  17. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  18. High-temperature complementary metal oxide semiconductors (CMOS)

    International Nuclear Information System (INIS)

    McBrayer, J.D.

    1979-10-01

    Silicon CMOS devices were studied, tested, and evaluated at high temperatures to determine processing, geometric, operating characteristics, and stability parameters. After more than 1000 hours at 300 0 C, most devices showed good stability, reliability, and operating characteristics. Processing and geometric parameters were evaluated and optimization steps discussed

  19. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  20. Scanning and Transmission Electron Microscopy of High Temperature Materials

    Science.gov (United States)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  1. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  2. Improved Creep Measurements for Ultra-High Temperature Materials

    Science.gov (United States)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.

    2010-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  3. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel

  4. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel.

  5. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  6. New Oxide Materials for an Ultra High Temperature Environment

    Energy Technology Data Exchange (ETDEWEB)

    Perepezko, John H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering

    2017-11-13

    In this project, a new oxide material, Hf6Ta2O17 has been successfully synthesized by the controlled oxidization of Hf-Ta alloys. This oxide exhibits good oxidation resistance, high temperature phase stability up to more than 2000°C, low thermal conductivity and thus could serve as a component or a coating material in an ultrahigh temperature environment. We have examined the microstructure evolution and phase formation sequence during the oxidation exposure of Hf-Ta alloys at 1500°C and identified that the oxidation of a Hf-26.7atomic %Ta alloy leads to the formation of a single phase adherent Hf6Ta2O17 with a complex atomic structure i.e. superstructure. The overall reactive diffusion pathway is consistent with the calculated Hf-Ta-O ternary phase diagram. Besides the synthesis of Hf6Ta2O17 superstructure by oxidizing Hf-Ta alloys, we have also developed a synthesis method based upon the reactive sintering of the correct ratios of mixed powders of HfO2 and Ta2O5 and verified the low thermal conductivity of Hf6Ta2O17 superstructure on these samples. We have completed a preliminary analysis of the oxidation kinetics for Hf6Ta2O17, which shows an initial parabolic oxidation kinetics.

  7. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  8. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  9. Pumping liquid metal at high temperatures up to 1,673 kelvin

    Science.gov (United States)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  10. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  11. High temperature reactions between molybdenum and metal halides

    International Nuclear Information System (INIS)

    Boeroeczki, A.; Dobos, G.; Josepovits, V.K.; Hars, Gy.

    2006-01-01

    Good colour rendering properties, high intensity and efficacy are of vital importance for high-end lighting applications. These requirements can be achieved by high intensity discharge lamps doped with different metal halide additives (metal halide lamps). To improve their reliability, it is very important to understand the different failure processes of the lamps. In this paper, the corrosion reactions between different metal halides and the molybdenum electrical feed-through electrode are discussed. The reactions were studied in the feed-through of real lamps and on model samples too. X-ray photoelectron spectroscopy (XPS) was used to establish the chemical states. In case of the model samples we have also used atomic absorption spectroscopy (AAS) to measure the reaction product amounts. Based on the measurement results we were able to determine the most corrosive metal halide components and to understand the mechanism of the reactions

  12. Proceedings of Prof. Brahm Prakash birth centenary workshop on high temperature materials and hot structures: souvenir and book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    Traditionally, monolithic ceramics and refractory metals were identified for use at high temperatures. Considerations such as higher operating temperatures, increased thermostructural loads, lower density, etc. brought exotic materials such as ceramic matrix composites, carbon based composites, ODS alloy, intermetallics and thermal barrier coatings to the horizon. Advent of ultra high temperature ceramics and functionally graded materials further pushed the threshold of applicability of high temperature materials and hot structures. Impressive progress in this area has been possible because of the fact that characterization tools along with design and simulation techniques have constantly kept pace with advancement occurring in the processing methods of these materials. The workshop scope includes: Thermal Protection Systems and Materials, Hot Structures, Ceramic and Carbon Matrix Composites, Ultra High Temperature Ceramics, Coating Technology, Simulation and Characterization. Articles relevant to INIS are indexed separately

  13. High temperature microcalorimetry. Study of metal-oxygen systems

    International Nuclear Information System (INIS)

    Tetot, R.; Picard, C.; Boureau, G.; Gerdanian, P.

    1981-01-01

    Determination of partial molar enthalpy in metal-oxygen systems at 1050 0 C. Three representative systems are studied: the solution of oxygen in titanium, the titanium-oxygen system and the uranium-oxygen system from UOsub(2.00) to UOsub(2.60) [fr

  14. High Temperature Metallic Seal Development For Aero Propulsion and Gas Turbine Applications

    Science.gov (United States)

    More, Greg; Datta, Amit

    2006-01-01

    A viewgraph presentation on metallic high temperature static seal development at NASA for gas turbine applications is shown. The topics include: 1) High Temperature Static Seal Development; 2) Program Review; 3) Phase IV Innovative Seal with Blade Alloy Spring; 4) Spring Design; 5) Phase IV: Innovative Seal with Blade Alloy Spring; 6) PHase IV: Testing Results; 7) Seal Seating Load; 8) Spring Seal Manufacturing; and 9) Other Applications for HIgh Temperature Spring Design

  15. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  16. High Temperature Thermoelectric Materials for Waste Heat Regeneration

    Science.gov (United States)

    2013-01-01

    ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE High Temperature...National Aeronautics and Space Administration’s (NASA) deep space explorations, which use radioisotope thermoelectric generators (RTGs) to produce...their octahedral voids (shown in figure 10a) with large rare- earth atoms to reduce their lattice conductivity (20). Ions can also be inserted to

  17. High temperature mass spectrometry for thermodynamic study of radioactive materials

    International Nuclear Information System (INIS)

    Pattoret, Andre; Philippot, Joseph; Pesme, Olivier.

    1983-01-01

    Thermodynamic properties and evaporation kinetics are essential data to evaluate the nuclear fuel behaviour under accidental conditions. High temperature mass spectrometry appears as a valuable method to set up a such assessment. However, because of size, complexity and radioactivity of the irradiated samples, important improvements of the classical method are required. The device built in CEN/FAR to overcome these problems is described; performances and possible applications out of the nuclear safety field are presented [fr

  18. Combining Raman Microprobe and XPS to Study High Temperature Oxidation of Metals

    International Nuclear Information System (INIS)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2011-01-01

    Raman microprobe spectroscopy was applied in studies of high-temperature air oxidation of a ferritic alloy (HT-9) in the absence and presence of zirconia coatings with the objective of evaluating the technique as a way to quickly screen candidate cladding materials and actinide-based mixed oxide fuel mixtures for advanced nuclear reactors. When oxidation was relatively uniform, Raman spectra collected using microscope optics with low spatial resolution were found to be similar to those collected with conventional Raman spectroscopy. These spectra could be used to identify major oxide corrosion products and follow changes in the composition of the oxides due to heating. However, when the oxidation films were comprised of multiple layers of varying composition, or with layers containing metallic phases, techniques with higher depth resolution and sensitivity to zero-valence metals were necessary. The requirements were met by combining Raman microprobe using different optical configurations and x-ray photoelectron spectroscopy.

  19. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  20. High temperature behavior of metallic inclusions in uranium dioxide

    International Nuclear Information System (INIS)

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu 3 ) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured

  1. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  2. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  3. Elaboration of high-temperature friction polymer material and study of its wear aspects

    International Nuclear Information System (INIS)

    Gventsadze, L.

    2009-01-01

    High-temperature friction composite material is elaborated and its physical, mechanical and tribologic features are studied. It is shown, that addition to the friction material composition of filling material having nanopores -diatomite-and its modification with polyethilensilan leads to friction materials friction coefficient stability and wear resistance increase at high temperatures (400-600 ℃). (author)

  4. High temperature corrosion studies on friction-welded dissimilar metals

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2006-01-01

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na 2 SO 4 + V 2 O 5 (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound

  5. High temperature corrosion studies on friction-welded dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, N. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India)]. E-mail: arivadmt@iitr.ernet.in; Singh, Surendra [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Prakash, Satya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Reddy, G.M. [Defense Metallurgical and Research Laboratory, Hyderabad (India)

    2006-07-25

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na{sub 2}SO{sub 4} + V{sub 2}O{sub 5} (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound.

  6. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  7. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    International Nuclear Information System (INIS)

    Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)

  8. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  9. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  10. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  11. Erosion and mass transfer of Mo, W and Nb under neutron irradiation of high temperature materials

    International Nuclear Information System (INIS)

    Berzhatyj, V.I.; Luk'yanov, A.N.; Zavalishin, A.A.; Tkach, V.N.; Fedorenko, A.I.

    1980-01-01

    Studies have been made of the medium composition in thermionic fuel elements of two types during reactor tests; erosion and mass transfer of electrode materials have been investigated in the after-reactor analysis of the tested fuel elements. The studies of electrode material evaporation at the conditions approaching (in environment temperature and composition) those of reactor tests of thermionic fuel elements have shown that the process proceeds in the form of metal oxides. Evaporation rates are determined, the mechanism of evaporation is discussed, and the analytical dependences are obtained for calculating the evaporation rates of Mo and W at certain temperature and gaseous medium composition. It is found that the main contribution to the material transfer off the Mo and Nb surfaces under a high-temperature reactor irradiation comes through the thermal evaporation; in the case of tungsten at the same experimental conditions the rates of mass transfer due to thermal evaporation and neutron sputtering are nearly the same [ru

  12. Performance and stability of a liquid anode high-temperature metal-air battery

    Science.gov (United States)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  13. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  14. Friction characteristics of hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Friction and self-welding test were conducted on several materials used for the contacting and sliding components of a sodium cooled fast breeder reactor. In the present study, the friction and self-welding characteristics of each material were evaluated through measuring the kinetic and breakaway friction coefficients. The influence of oscillating rotation and vertical reciprocating motion on the friction mode was also investigated. The results obtained are as follows: (1) Colmonoy No.6, the nickel base hardfacing alloy, indicated the lowest kinetic friction coefficient of all the materials in the present study. Also, Cr 3 C 2 /Ni-Cr material prepared by a detonation gun showed the most stable friction behavior. (2) The breakaway friction coefficient of each material was dependent upon dwelling time in a sodium environment. (3) The friction behavior of Cr 3 C 2 /Ni-Cr material was obviously related with the finishing roughness of the friction surface. It was anticipated that nichrome material as the binder of the chrome carbide diffused and exuded to the friction surface by sliding in sodium. (4) The friction coefficient in sliding mode of vertical reciprocating was lower than that of oscillating rotation. (author)

  15. MICROWAVE MEASUREMENT OF REFRACTORY MATERIALS AT HIGH-TEMPERATURE

    International Nuclear Information System (INIS)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-01-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  16. Microwave Measurement of Refractory Materials at High-Temperature

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  17. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  18. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala

    2014-11-25

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  19. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2014-01-01

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  20. Interfacial stabilities of high-temperature composite materials

    International Nuclear Information System (INIS)

    Chang, Y.A.; DeKock, J.; Zhang, M.X.; Kieschke, R.

    1993-01-01

    The thermodynamic and kinetic principles necessary to control interfacial reactions between the matrix and reinforcement in composite materials are presented. The concept of interfacial control has been applied to Ti-based/Al 2 O 3 composite. Results are presented which include estimated diffusivities for the reaction in β-Ti/Al 2 O 3 composites, estimated phase relationships for the systems Ti-Al-O, Ti-Y-O, Nb-Y-O and Nb-Al-O at 1100 C, and a coating scheme for αAl 2 O 3 fibers. 71 refs

  1. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  2. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Nickel, H.

    1985-08-01

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  3. Oxidation performance of high temperature materials under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tuurna, Satu; Pohjanne, Pekka; Yli-Olli, Sanni; Kinnunen, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Oxyfuel combustion is widely seen as a major option to facilitate carbon capture and storage (CCS) from future boiler plants utilizing clean coal technologies. Oxyfuel combustion can be expected to differ from combustion in air by e.g. modified distribution of fireside temperatures, much reduced NOx but increased levels of fireside CO{sub 2}, SO{sub 2} and water levels due to extensive flue gas recirculation. Modified flue gas chemistry results in higher gas emissivity that can increase the thermal stresses at the heat transfer surfaces of waterwalls and superheaters. In addition, increased flue gas recirculation can increase the concentration of a number of contaminants in the deposited ash and promote fouling and corrosion. There is relatively little experimental information available about the effects of oxyfuel combustion on the performance of boiler material. In this work, the oxidation performance of steels X20CrMoV11-1 and TP347HFG has been determined at 580 C/650 C under simulated oxyfuel firing conditions. The results are presented and compared to corresponding results from simulated air firing conditions. (orig.)

  4. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  5. High temperature oxidation of metals: vacancy injection and consequences on the mechanical properties

    International Nuclear Information System (INIS)

    Perusin, S.

    2004-11-01

    The aim of this work is to account for the effects of the high temperature oxidation of metals on their microstructure and their mechanical properties. 'Model' materials like pure nickel, pure iron and the Ni-20Cr alloy are studied. Nickel foils have been oxidised at 1000 C on one side only in laboratory air, the other side being protected from oxidation by a reducing atmosphere. After the oxidation treatment, the unoxidized face was carefully examined by using an Atomic Force Microscope (AFM). Grain boundaries grooves were characterised and their depth were compared to the ones obtained on the same sample heat treated in the reducing atmosphere during the same time. They are found to be much deeper in the case of the single side oxidised samples. It is shown that this additional grooving is directly linked to the growth of the oxide scale on the opposite side and that it can be explained by the diffusion of the vacancies produced at the oxide scale - metal interface, across the entire sample through grain boundaries. Moreover, the comparison between single side oxidised samples and samples oxidised on both sides points out that voids in grain boundaries are only observed in this latter case proving the vacancies condensation in the metal when the two faces are oxidised. The role of the carbon content and the sample's geometry on this phenomenon is examined in detail. The diffusion of vacancies is coupled with the transport of oxygen so that a mechanism of oxygen transport by vacancies is suggested. The tensile tests realised at room temperature on nickel foils (bamboo microstructure) show that the oxide scale can constitute a barrier to the emergence of dislocations at the metal surface. Finally, the Ni-20Cr alloy is tested in tensile and creep tests between 25 and 825 C in oxidising or reducing atmospheres. (author)

  6. Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements

    International Nuclear Information System (INIS)

    Park, Seung Chul; Hwang, Tae Won; Moon, Chan Kook

    2008-01-01

    Metal filter elements were newly introduced to the high temperature filter (HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  7. Effect of alkali metal content of carbon on retention of iodine at high temperatures

    International Nuclear Information System (INIS)

    Evans, A.G.

    1975-01-01

    Activated carbon for filters in reactor confinement systems is intentionally impregnated with iodine salts to enhance the removal of radioiodine from air streams containing organic iodides. When a variety of commercial impregnated carbons were evaluated for iodine retention at elevated temperatures (4 hours at 180 0 C), wide variations in iodine penetration were observed. The alkali metal and iodine content of carbon samples was determined by neutron activation analysis, and a strong correlation was shown between the atom ratio of iodine to alkali metals in the carbons and the high-temperature retention performance. Carbons containing excess alkali (especially potassium) have iodine penetration values 10 to 100 times lower than carbons containing excess iodine. Both low I/K ratios and high pH values were shown essential to high efficiency iodine retention; therefore, conversion of elemental iodine to ionic iodine is the basic reaction mechanism. The natural high K + content and high pH coconut carbons make coconut the preferred natural base material for nuclear air cleaning applications. Studies show, however, that treatment of low potassium carbons with a mixture of KOH and I 2 may produce a product equal to or better than I 2 -impregnated coconut carbons at a lower cost. (U.S.)

  8. Finding high-temperature superconductors by metallizing the σ-bonding electrons

    International Nuclear Information System (INIS)

    Gao Miao; Lu Zhongyi; Xiang Tao

    2015-01-01

    Raising superconducting transition temperature (T_c) is an important task of fundamental research on superconductivity. It is also a prerequisite for the large scale application of superconductors. Since the microscopic mechanism of high-T_c superconductivity is unknown, the conventional approach for increasing T_c is either to apply high pressure to a material which has the potential to become superconducting, or to push it close to an antiferromagnetic or some other quantum instability point by chemical doping. In this article, the authors point out that another general approach for raising T_c is to lift the σ-bonding bands to the Fermi level, or to metallize the σ-bonding elections. This approach can increase the probability of finding a novel high-T_c superconductor because the coupling of σ-bonding electrons with phonons is generally strong and the superconducting transition induced by this interaction can occur at relatively high temperatures. After elucidating the underlying mechanism, the authors discuss a number of schemes to metallize σ-bonding electrons, and present their recent prediction for the crystalline and electronic structures of two potential high-T_c superconductors, Li_2B_3C and Li_3B_4C_2, with T_c higher than 50 K. (authors)

  9. Design and preliminary analysis of in-vessel core catcher made of high-temperature ceramics material in PWR

    International Nuclear Information System (INIS)

    Xu Hong; Ma Li; Wang Junrong; Zhou Zhiwei

    2011-01-01

    In order to protect the interior wall of pressure vessel from melting, as an additional way to external reactor vessel cooling (ERVC), a kind of in-vessel core catcher (IVCC) made of high-temperature ceramics material was designed. Through the high-temperature and thermal-resistance characteristic of IVCC, the distributing of heat flux was optimized. The results show that the downward average heat flux from melt in ceramic layer reduces obviously and the interior wall of pressure vessel doesn't melt, keeping its integrity perfectly. Increasing of upward heat flux from metallic layer makes the upper plenum structure's temperature ascend, but the temperature doesn't exceed its melting point. In conclusion, the results indicate the potential feasibility of IVCC made of high-temperature ceramics material. (authors)

  10. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  11. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2015-01-01

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  12. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, Arvid [ORNL

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  13. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  14. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    Science.gov (United States)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  15. Material development for gas-cooled high temperature reactors for the production of nuclear process heat

    International Nuclear Information System (INIS)

    Nickel, H.

    1977-04-01

    In the framework of the material development for gas-cooled high temperature reactors, considerable investigations of the materials for the reactor core and the primary cicuit are being conducted. Concerning the core components, the current state-of-the-art and the objectives of the development work on the spherical fuel elements, coated particles and structural graphite are discussed. As an example of the structural graphite, the non-replaceable reflector of the process heat reactor is discussed. The primary circuit will be constructed mainly from metallic materials, although some ceramics are also being considered. Components of interest are hot gas ducts, liners, methane reformer tubes and helium-helium intermediate heat exchangers. The gaseous impurities present in the helium coolant may cause oxidation and carburization of the nickel-base and iron-base alloys envisaged for use in these components, with a possible associated adverse effect on the mechanical properties such as creep and fatigue. Test capacity has therefore been installed to investigate materials behaviour in simulated reactor helium under both constant and alternating stress conditions. The first results on the creep behaviour of several alloys in impure helium are presented and discussed. (orig./GSC) [de

  16. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  17. Bulk ultrasonic NDE of metallic components at high temperature using magnetostrictive transducers

    Science.gov (United States)

    Ashish, Antony Jacob; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Kumar, Anish; Rao, B. Purnachandra; Jayakumar, Tammana

    2017-02-01

    Online ultrasonic NDE at high-temperature is of much interest to the power, process and automotive industries in view of possible savings in downtime. This paper describes a novel approach to developing ultrasonic transducers capable of high-temperature in-situ operation using the principle of magnetostriction. Preliminary design from previous research by the authors [1] is extended for operation at 1 MHz, and at elevated temperatures by amorphous metallic strips as the magnetostrictive core. Ultrasonic signals in pulse-echo mode are experimentally obtained from the ultrasonic transducer thus developed, in a simulated high-temperature environment of 350 °C for 10 hours. Advantages and challenges for practical deployment of this approach are discussed.

  18. Instrumented indentation for characterization of irradiated metals at room and high temperatures

    International Nuclear Information System (INIS)

    Sacksteder, Irene

    2011-01-01

    The reliability and sustainability of future fusion power plants will highly depend on the aptitude of materials to withstand severe irradiation conditions induced by the burning plasma in reactors. The so-called reduced-activation ferritic-martensitic (RAFM) steels are the current promising candidates for the structural applications considering the reactor's first wall. These steels exhibit irradiation embrittlement and hardening for defined irradiation conditions that are mainly characterized by the irradiation temperature and the irradiation dose. A proper characterization of such irradiated steels implies the use of adapted mechanical testing tools. In the present study, the instrumented indentation technique makes use of a post-processing tool based on neural networks. This technique has been selected for its ability to examine tensile properties by multistage indents on miniaturized irradiated metallic samples. The steel specimens studied in this project have been neutron-irradiated up to a dose of 15 dpa. They have been subsequently tested at room temperature in a Hot Cell by means of an adapted commercial indentation device. The significant irradiation-induced hardening effect present in the range of 250-350 deg C could be observed in the hardness and material's strength parameters. These two material parameters show a similar evolution with increasing irradiation temperatures. Post-irradiation annealing treatments of Eurofer97 have been realized and leads to a partial recovery of the irradiation damage. Considering the demands for characterization in irradiated steels at high temperature and for post-irradiation annealing experiments, the existing instrumented indentation device has been further developed during this work. A conceptual design has been proposed for an indentation testing machine, operating at up to 650 deg C, while remaining the critical temperature limit for tensile strength of the newly developed oxide dispersion strengthening ferritic

  19. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  20. High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam

    International Nuclear Information System (INIS)

    Hudson, M.L.

    1985-12-01

    When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign

  1. Modeling high-temperature superconductors and metallic alloys on the Intel IPSC/860

    Science.gov (United States)

    Geist, G. A.; Peyton, B. W.; Shelton, W. A.; Stocks, G. M.

    Oak Ridge National Laboratory has embarked on several computational Grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys from first principles and, in particular, the electronic structure of high-temperature superconductors. While the present focus of the project is on superconductivity, the approach is general enough to permit study of other properties of metallic alloys such as strength and magnetic properties. This paper describes the progress to date on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification. Performance of this code on the Intel iPSC/860 is also compared to a CRAY 2, CRAY YMP, and several workstations. Finally, some density of state calculations of two perovskite superconductors are given.

  2. Study of the corrosion of metallic coatings and alloys containing aluminum in a mixed atmosphere - sulphur, oxygen - at high temperatures

    International Nuclear Information System (INIS)

    Fellmann, Daniel

    1982-01-01

    The objective of this research thesis is the development of materials for a sulphur experimental loop allowing the thermodynamic properties of such an energy cycle to be checked. As solutions must comply with industrial methods, rare materials are excluded as they are too expensive or difficult to implement. Iron-based materials have been tested but could not have at the same time a good corrosion resistance and high temperature forming and mechanical toughness properties. Therefore, metallic coatings have been chosen, specifically alumina. After having reported a bibliographical study on corrosion by sulphur vapour and by oxygen and by sulphur-oxygen, the author presents the experimental materials and methods. Then, the author reports the study of mixed corrosion (by sulphur and oxygen together) of metallic alloys (ferritic and austeno-ferritic alloys, aluminium and titanium alloys), and of the corrosion of FeAlx coatings, of AlTix alloys [fr

  3. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    OpenAIRE

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  4. A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Jain, Mohit; Skandan, Ganesh; Khose, Gordon E.; Maro, Judith

    2008-01-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 C. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  5. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  6. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  7. Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

    Science.gov (United States)

    Pavel, Alexandru Cezar

    The initial goal of the research presented herein was to develop the very first synthetic metal---high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole---Bi2Sr2CaCu 2O8+delta nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-Mo-O ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that

  8. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  9. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  10. Literature review of thermal and radiation performance parameters for high-temperature, uranium dioxide fueled cermet materials

    International Nuclear Information System (INIS)

    Haertling, C.; Hanrahan, R.J.

    2007-01-01

    High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO 2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO 2 fuel particles, use of oxide stabilizers in the UO 2 , minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet

  11. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  12. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  13. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...... with other similar oxide modules reported in the literature. A maximum power density of 4.5 kW/m2 was obtained for an oxide module comprising of 8 p-n couples at a temperature difference of 496 K, an encouraging result in the context of the present high temperature oxide modules....

  14. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  15. Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials

    Science.gov (United States)

    Lee, Yu Seong; Kim, Suk Jun; Kim, Byeong Geun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2017-05-01

    Metallic glass (MG) can be a candidate for an alternative brazing material of high-temperature thermoelectric modules, since we can expect both a lower brazing temperature and a high operating temperature for the junction from the MG brazers. Another advantage of MG powders is their outstanding oxidation resistance, namely, high-temperature durability in atmosphere. We fabricated three compositions of Al-based MGs—Al-Y-Ni, Al-Y-Ni-Co, and Al-Y-Ni-Co-La—by using the melt spinning process, and their T gs were 273°C, 264°C, and 249°C, respectively. The electrical resistivity of the Al-Y-Ni MG ribbon dropped significantly after annealing at 300°C. The electrical resistivity of crystallized Al-Y-Ni reduced down to 0.03 mΩ cm, which is an order of magnitude lower than that of the amorphous one. After the MG ribbons were pulverized to sub-100 μm, the average particle size was about 400 μm.

  16. Comparison Of The MWCNTs-Rh And MWCNTs-Re Carbon-Metal Nanocomposites Obtained In High-Temperature

    Directory of Open Access Journals (Sweden)

    Dobrzańska-Danikiewicz A.D.

    2015-09-01

    Full Text Available Carbon-metal nanocomposites consisting of multiwalled carbon nanotubes coated with rhodium or rhenium nanoparticles by the high-temperature method were fabricated during the research undertaken. Multiwalled carbon nanotubes fabricated by Catalytic-Chemical Vapour Deposition (CCVD were used in the investigations. Multiwalled carbon nanotubes functionalisation in acid or in a mixture of acids was applied to deposit rhodium or rhenium nanoparticles onto the surface of carbon nanotubes, and then the material was placed in a solution being a precursor of metallic nanoparticles. The material prepared was next subjected to high-temperature reduction in the atmosphere of argon and/or hydrogen to deposit rhodium or rhenium nanoparticles onto the surface of multiwalled carbon nanotubes. The investigations performed include, respectively: fabrication of a CNT-NPs (Carbon NanoTube-NanoParticles nanocomposite material; the characterisation of the material produced including examination of the structure and morphology, and the assessment of rhodium and/or rhenium nanoparticles distribution on the surface of carbon nanotubes. Micro- and spectroscopy techniques were employed to characterise the structure of the nanocomposites obtained.

  17. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    Science.gov (United States)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  18. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  19. Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules

    Science.gov (United States)

    Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2018-06-01

    Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.

  20. Specific-heat measurement of single metallic, carbon, and ceramic fibers at very high temperature

    International Nuclear Information System (INIS)

    Pradere, C.; Goyheneche, J.M.; Batsale, J.C.; Dilhaire, S.; Pailler, R.

    2005-01-01

    The main objective of this work is to present a method for measuring the specific heat of single metallic, carbon, and ceramic fibers at very high temperature. The difficulty of the measurement is due to the microscale of the fiber (≅10 μm) and the important range of temperature (700-2700 K). An experimental device, a modelization of the thermal behavior, and an analytic model have been developed. A discussion on the measurement accuracy yields a global uncertainty lower than 10%. The characterization of a tungsten filament with thermal properties identical to those of the bulk allows the validation of the device and the thermal estimation method. Finally, measurements on carbon and ceramic fibers have been done at very high temperature

  1. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  2. Artificial crystals with 3d metal and palladium particles subjected to high-temperature heat treatment

    Science.gov (United States)

    Rinkevich, A. B.; Nemytova, O. V.; Perov, D. V.; Samoylovich, M. I.; Kuznetsov, E. A.

    2018-04-01

    High-temperature heat treatment has valuable impact on the structure and physical properties of artificial crystals with 3d metal and palladium particles. Artificial crystals are obtained by means of introduction of particles into the interspherical voids of opal matrices. The magnetic properties are studied at the temperatures ranging from 2 to 300 K and in fields up to 350 kOe. Microwave properties are investigated in the millimeter frequency range. The complex dielectric permittivity of several nanocomposites is measured. The influence of heat treatment up to 960 °C on the structure of artificial crystals is clarified.

  3. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    Science.gov (United States)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  4. Practical reasons for investigating ion transport in high temperature insulating materials

    International Nuclear Information System (INIS)

    Sonder, E.

    1976-01-01

    Practical problems encountered in a number of advanced technology appliations, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include: a) ceramic nuclear fuels for high temperature fission reactors, b) high temperature gas turbine blades, c) insulators in controlled thermonuclear reactors, and d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed

  5. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  6. Manufacturing And High Temperature Oxidation Properties Of Electro-Sprayed Fe-24.5% Cr-5%Al Powder Porous Metal

    Directory of Open Access Journals (Sweden)

    Lee Kee-Ahn

    2015-06-01

    Full Text Available Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°C and with different pore sizes (500 μm, 450 μm, and 200 μm. High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.

  7. THE INFLUENCE OF HIGH-TEMPERATURE BRAZING UPON INDICATORS OF MATERIAL BRAZEABILITY

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2010-03-01

    Full Text Available The effect of both common and extreme parameters of AISI 321stainless steel high-temperature brazing using the NI 102 brazing alloy upon material brazeability indicators. The ascertainment of the wetting angle, the area over which Ni brazing alloy spreads, the width of AISI 321 steel's dissolubility band, and the width of Ni brazing alloy’s diffusion band into the basic material.

  8. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  9. Mechanism of high-temperature background of internal friction in metals

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Arzhavitin, V.M.

    1988-01-01

    Data of theoretical and experimental studies on energy dissipation in vibrating metal at small amplitudes and elevated temperatures (high temperature background of internal friction) are generalized and systematized. Evolution of knowledge of the background as a phenomenon influenced mainly by crystal structure defects - their form, quantity, mobility and interaction is followed. Considered is a wide range of investigated metal states and measurement conditions, and interrelations with other characteristics, for instance, strength ones. On the basis of the data obtained by authors and other investigations a concept of an additional third stage of the background increase with the temperature - the stage of deviation from exponential dependence at premelting point, is introduced. 107 refs.; 32 figs.; 3 tabs

  10. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  11. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  12. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  13. High Temperature Materials Laboratory Thirteenth Annual Report: October 1999 Through September 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pasto, AE

    2001-01-01

    The High Temperature Materials Laboratory (HTML) is designed to assist American industries, universities, and governmental agencies develop advanced materials by providing a skilled staff and numerous sophisticated, often one-of-a-kind pieces of materials characterization equipment. It is a nationally designated user facility sponsored by the U.S. Department of Energy's (DOE's) office of Transportation Technologies, Energy Efficiency and Renewable Energy. Physically, it is a 64,500-ft(sup 2) building at the Oak Ridge National Laboratory (ORNL). The HTML houses six ''user centers,'' which are clusters of specialized equipment designed for specific types of properties measurements. The HTML was conceived and built in the mid-1980s in response to the oil embargoes of the 1970s. The concept was to build a facility that would allow direct work with American industry, academia, and government laboratories in providing advanced high-temperature materials such as structural ceramics for energy-efficient engines. The HTML's scope of work has since expanded to include other, non-high-temperature materials of interest to transportation and other industries

  14. Analysis and description of high temperature alloy data and their representation in the high temperature materials data bank of the Joint Research Centre

    International Nuclear Information System (INIS)

    Krefeld, R.; Kroeckel, H.; Fattori, G.; Maurandy, C.

    1985-01-01

    In the frame of the high temperature materials programme the JRC has set up a pilot data bank for mechanical and corrosion properties of materials for high temperature application in energy conversion and chemical systems. The scope of the data bank content embraces mechanical properties and corrosion tests with emphasis on 600 to 1000 0 C test temperature and C-O-H type test environments. The basic information on materials properties obtained by test is analysed and the data items and their structure are described. The logical structure of the 250 data items involved and their organization in the data bank by file and record using ADABAS dbms is presented. The design is discussed with respect to its adaptability to changes in the scope of data content and to its versatile data access resulting in easy handling of complex structured queries which represent the interest of materials scientists and engineers as well as those of non-specialist users. (orig.)

  15. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    International Nuclear Information System (INIS)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In

    2000-03-01

    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  16. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  17. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  18. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  19. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  20. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  1. Heat treated 9 Cr-1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  2. Pseudo-icosahedral Cr55Al232 -δ as a high-temperature protective material

    Science.gov (United States)

    Rosa, R.; Bhattacharya, S.; Pabla, J.; He, H.; Misuraca, J.; Nakajima, Y.; Bender, A. D.; Antonacci, A. K.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Tritt, T. M.; Aronson, M. C.; Simonson, J. W.

    2018-03-01

    We report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high-temperature protective coatings. Cr55Al232 -δ [ δ =2.70 (6 ) ] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. The origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  3. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  4. Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials

    Science.gov (United States)

    Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.

    1994-01-01

    The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.

  5. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    Science.gov (United States)

    Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)

    1991-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.

  6. Nano-Like Effects in Crystalline Thermoelectric Materials at High Temperatures

    Science.gov (United States)

    Korzhuev, M. A.; Katin, I. V.

    2013-05-01

    The mechanisms of improving the figure of merit Z and power parameter W of thermoelectric materials (TEMs) in the transitions λph→a and λe→a are considered (Here λph and λe are the mean free path of the phonons and electrons in the sample, and a is the inter atomic distance). It is shown that the same mechanisms are responsible for the growth of Z and W crystalline TEMs at high temperatures.

  7. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  8. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  9. Nonreactive spreading at high temperature: molten metals and oxides on molybdenum.

    Science.gov (United States)

    Saiz, E; Tomsia, A P; Rauch, N; Scheu, C; Ruehle, M; Benhassine, M; Seveno, D; de Coninck, J; Lopez-Esteban, S

    2007-10-01

    The spontaneous spreading of small liquid metal (Cu, Ag, Au) and oxide drops on Mo substrates has been studied using a drop transfer setup combined with high-speed video. Under the experimental conditions used in this work, spreading occurs in the absence of interfacial reactions or ridging. The analysis of the spreading data indicates that dissipation at the triple junction (that can be described in terms of a triple-line friction) is playing a dominant role in the movement of the liquid front. This is due, in part, to the much stronger atomic interactions in high-temperature systems when compared to organic liquids. As a result of this analysis, a comprehensive view of spreading emerges in which the strength of the atomic interactions (solid-liquid, liquid-liquid) determines the relative roles of viscous impedance and dissipation at the triple junction in spreading kinetics.

  10. A new technique for precise measurement of thermal conductivity of metals at normal and high temperatures

    International Nuclear Information System (INIS)

    Binkele, L.

    1990-09-01

    Theoretical and experimental investigations on a new measuring technique are described; a technique similar to the well known Kohlrausch measuring technique, which is characterized by direct electrical sample heating. Subject of the investigations is a cylindrical metallic sample, 5 mm thick and 200 mm in length, which is positioned vertically between water-cooled clamps in a vacuum container. The sample can be heated using two simultaneously operating current sources, a 50 Hz-source for axial flow (main heating) as well as a 200 kHz-induction source for generating eddy currents in two short regions above and below the sample centre (additional heating). By using two heating sources different symmetrical temperature profiles in a central eddy-current-free area of about ± 10mm can be produced for any given central sample temperature. The last chapter contains thermal conductivity and electrical resistivity measuring curves for Pt, W, Fe, Ni, Ag, Al, Mg, Ir, Ru, Re, Ho and Y in the temperature range 273 to 1500 K representative of all the metals and alloys investigated. In cases where comparisons with published precise conductivity data, established by other measuring techniques in restricted temperature ranges, were posible, the new measuring method is greatly supported (in the case of Pt, W, Ni, Ag, Al). For the Metals Ir, Ru, Re, Ho and Y high temperature thermal conductivity data are given for the first time. (orig./MM) [de

  11. SCC crack propagation behavior in 316L weld metal under high temperature water

    International Nuclear Information System (INIS)

    Nakade, Katsuyuki; Hirasaki, Toshifumi; Suzuki, Shunichi; Takamori, Kenro; Kumagai, Katsuhiko; Tanaka, Yoshihiko; Umeoka, Kuniyoshi

    2008-01-01

    Intergranular stress corrosion cracking (SCC) of 316L weld metal is of concern to the BWR plants. PLR pipes in commercial BWR plants have shown SCC in almost HAZ area in high temperature water, whereas, SCC has been arrested around fusion boundary for long time in the actual PLR pipe. The SCC behavior could be characterized in terms of dendrite direction, which was defined as the angle between dendrite growth direction and macro-SCC direction. In this study, the relationship between dendrite growth direction and macro-SCC direction was clearly showed on the fracture surface. The relative large difference of SCC susceptibility of 316L HAZ and weld metal was observed on the fracture surface. In the case of 0 degree, SCC has rapidly propagated into the weld metal parallel to the dendrite structure. In the case of more than 30 degree SCC direction, SCC was arrested around fusion area, and 60 degree SCC was drastically arrested around the fusion area. The large inclined dendrite structure for SCC is highly resistant to SCC. (author)

  12. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  13. Outward transport of high-temperature materials around the midplane of the solar nebula.

    Science.gov (United States)

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  14. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  15. Degradation evaluation of high temperature pipeline material for power plant using ultrasonic noise analysis

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Cho, Yong Sang; Lee, In Cheol

    2001-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial degradation test and ultrasonic measurement for their degraded specimens were carried out for the purpose of evaluation for creep and thermal fatigue damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep/thermal fatigue degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept and thermal fatigued specimens, we conformed that the ultrasonic noise linearly increased in proportion to the increase of degradation.

  16. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  17. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  18. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  19. ASM Inaugural Lecture 2009: High temperature superconductors: Materials, mechanisms and applications

    International Nuclear Information System (INIS)

    Roslan Abdul Shukor

    2009-01-01

    A surprising variety of new superconducting materials has been discovered in recent years. Many compounds with light elements such as fullerenes, oxides, borides, nitrides, some organic materials and also heavy fermions have been found to superconductor at various temperatures. Hitherto, superconductors have proven to be highly varied in composition but elusive and mysterious. The juxtaposition of superconductivity and magnetism at the nano scale in some of these new materials has paved the way to a rich and exciting new field in condensed matter and materials research. An overview of superconductor research in Malaysian institutions is presented in this paper. Some of the new superconducting materials and their possible mechanisms, conventional and exotic, are presented. The possible role of lattice vibrations in the mechanisms of high temperature superconductivity and the study of this via acoustic methods are discussed. Frozen flux superconductors in a nano magnet-superconductor hybrid system are also discussed. (author)

  20. Modeling high-temperature superconductors and metallic alloys on the Intel iPSC/860

    International Nuclear Information System (INIS)

    Geist, G.A.; Peyton, B.W.; Shelton, W.A.; Stocks, G.M.

    1990-01-01

    Oak Ridge National Laboratory has embarked on several computational grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys form first principles and, in particular, the electronic structure of high-temperature superconductors. The physical basis for high Tc superconductivity is not well understood. The design of materials with higher critical temperatures and the ability to carry higher current densities can be greatly facilitated by the modeling and detailed study of the electronic structure of existing superconductors. This paper describes the progress to data on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification

  1. Spectral emissivity measurements of candidate materials for very high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.; Weber, S.J.; Martin, S.O.; Anderson, M.H. [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, Madison, WI (United States); Sridharan, K., E-mail: kumars@cae.wisc.edu [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, Madison, WI (United States); Allen, T.R. [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, Madison, WI (United States)

    2012-10-15

    Heat dissipation by radiation is an important consideration in VHTR components, particularly the reactor pressure vessel (RPV), because of the fourth power temperature dependence of radiated heat. Since emissivity is the material property that dictates the ability to radiate heat, measurements of emissivities of materials that are being specifically considered for the construction of VHTR become important. Emissivity is a surface phenomenon and therefore compositional, structural, and topographical changes that occur at the surfaces of these materials as a result of their interactions with the environment at high temperatures will alter their emissivities. With this background, an experimental system for the measurement of spectral emissivity has been designed and constructed. The system has been calibrated in conformance with U.S. DoE quality assurance standards using inert ceramic materials, boron nitride, silicon carbide, and aluminum oxide. The results of high temperature emissivity measurements of potential VHTR materials such as ferritic steels SA 508, T22, T91 and austenitic alloys IN 800H, Haynes 230, IN 617, and 316 stainless steel have been presented.

  2. Influence of Cooling Rate in High-Temperature Area on Hardening of Deposited High-Cutting Chrome-Tungsten Metal

    International Nuclear Information System (INIS)

    Malushin, N N; Valuev, D V; Valueva, A V; Serikbol, A; Borovikov, I F

    2015-01-01

    The authors study the influence of cooling rate in high-temperature area for thermal cycle of high-cutting chrome-tungsten metal weld deposit on the processes of carbide phase merging and austenite grain growth for the purpose of providing high hardness of deposited metal (HRC 64-66). (paper)

  3. Influence of Cooling Rate in High-Temperature Area on Hardening of Deposited High-Cutting Chrome-Tungsten Metal

    OpenAIRE

    Malushin, N. N.; Valuev, Denis Viktorovich; Valueva, Anna Vladimirovna; Serikbol, A.; Borovikov, I. F.

    2015-01-01

    The authors study the influence of cooling rate in high-temperature area for thermal cycle of high-cutting chrome-tungsten metal weld deposit on the processes of carbide phase merging and austenite grain growth for the purpose of providing high hardness of deposited metal (HRC 64-66).

  4. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  5. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Akai, Tomohiro; Takemoto, Makoto; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Ikeda, Yoshio; Suzuki, Shuichi

    2010-01-01

    We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm 2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods. (cross-disciplinary physics and related areas of science and technology)

  6. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  7. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  8. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  9. Dynamics of a metal overlayer on metallic substrates: High temperature effects

    International Nuclear Information System (INIS)

    Rahman, T.S.; Black, J.E.; Tian, Zeng Ju

    1992-01-01

    We have explored the structure and the dynamics of a bimetallic system consisting of a hexagonal (almost) overlayer of Ag on a square lattice (Ni(100) and Cu(100)), as a function of the surface temperature. In each case the structure is ''nearly'' incommensurate giving rise to a low frequency Goldstone mode. Also, the overlayer atoms slosh back and forth over the substrate in a corrugated fashion. The calculated dispersion of the Ag/metal vertical mode, at room temperature, is in excellent agreement with experimental data. At higher temperatures floater atoms appear on top of the overlayer displaying a variety of cluster formations and also exchanges with the substrate atoms leading to surface disordering, interdiffusion and melting

  10. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  11. Effect of high temperatures on cement composite materials in concrete structures

    Czech Academy of Sciences Publication Activity Database

    Bodnárová, L.; Válek, J.; Sitek, Libor; Foldyna, Josef

    2013-01-01

    Roč. 10, č. 2 (2013), s. 173-180 ISSN 1214-9705 R&D Projects: GA MŠk ED2.1.00/03.0082; GA ČR GAP104/12/1988 Institutional support: RVO:68145535 Keywords : high temperature * load resistance * concrete * reinforcing of mine works * fiber reinforcement Subject RIV: JJ - Other Materials Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_06_Bodnirovi_173-180.pdf

  12. Evaluation of the high-temperature materials programme of the Joint Research Centre (1980-85)

    International Nuclear Information System (INIS)

    Glenny, R.J.E.; Boehm, H.; Gellings, P.J.; Gobin, P.; Lanzavecchia, G.; Nicholaides, C.

    1986-01-01

    This report covers the findings of the external panel of experts set up to evaluate the results of the Community's programme in the field of high-temperature materials (1980-85), carried out at the Petten establishment of the Joint Research Centre. The evaluation covers the quality and relevance of the research, the usefulness of the results and the role played by the JRC in this field at the European level. The report describes and gives comments on the content, structure and management of the five projects constituting the current programme, outlines the methods and procedures used during the evaluation and gives a number of recommendations pertinent to future activities

  13. High temperature superconductor bulk materials. Fundamentals - processing - properties control - application aspects

    International Nuclear Information System (INIS)

    Krabbes, G.; Fuchs, G.; Canders, W.R.; May, H.; Palka, R.

    2006-01-01

    This book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. The authors provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. This book contains the following chapters: 1. Fundamentals 2. Growth and melt processing of YBCO 3. Pinning-relevant defects in bulk YBCO 4. Properties of bulk YBCO 5. Trapped fields 6. Improved YBCO based bulk superconductors and functional elements 7. Alternative systems 8. Peak effect 9. Very high trapped fields in YBCO permanent magnets 10. Engineering aspects: Field distribution in bulk HTSC 11. Inherently stable superconducting magnetic bearings 12. Application of bulk HTSCs in electromagnetic energy converters 13. Applications in magnet technologies and power supplies

  14. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  15. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  16. Thermal diffusivity measurements of liquid materials at high temperature with the ''laser flash'' method

    International Nuclear Information System (INIS)

    Otter, Claude; Vandevelde, Jean

    1982-01-01

    Two solutions, one analytical and the other numerical are proposed to solve the thermokinetic problem encountered when measuring the thermal diffusivity of liquid materials at very high temperature (T>3123K). The liquid material is contained in a parallel faced vessel. This liquid is traversed by a short thermal pulse from a relaxed laser. The temperature response of the back face of the measurement cell is analysed. The first model proposed which does not take thermal losses into consideration, is a mathematical model derived from the ''two layer model'' (Larson and Koyama, 1968) extended to ''three layers''. In order to take the possibility of thermal losses to the external environment at high temperature into consideration, a Crank-Nicolson (1947) type numerical model utilizing finite differences is employed. These thermokinetic studies were performed in order to interpret temperature response curves obtained from the back face of a tungsten-liquid UO 2 -tungsten thermal wall, the purpose of the measurements made being to determine the thermal properties of liquid uranium oxide [fr

  17. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H

    2005-08-15

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  18. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  19. AB INITIO molecular orbital studies of some high temperature metal halide complexes

    International Nuclear Information System (INIS)

    Curtiss, L.A.

    1978-01-01

    The use of ab initio molecular orbital calculations to aid in the characterization, i.e., structures and energies, of metal halide complexes present in high temperature salt vapors has been investigated. Standard LCAO-SCF methods were used and calculations were carried out using the minimal STO-3G basis set. The complexes included in this study were Al 2 F 6 , Al 2 Cl 6 , AlF 3 NH 3 , AlCl 3 NH 3 , and AlF 3 N 2 . The Al 2 X 6 complexes are found to have D/sub 2h/ symmetry in agreement with most experimental results. A planar form was found to be considerably higher in energy. The AlX 3 NH 3 complexes are found to have C/sub 3v/ symmetry with a small barrier to rotation about the Al-N axis. The AlF 3 N 2 complex is found to be weakly bound together with a binding energy of -8.2 kcal/mole at the STO-3G level

  20. High-temperature, high-pressure bonding of nested tubular metallic components

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hotpress evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity

  1. High-temperature, high-pressure bonding of nested tubular metallic components

    Science.gov (United States)

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  2. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Science.gov (United States)

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  3. Ten years of high temperature materials research at PSI - An overview paper

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Chen Jiachao

    2014-01-01

    At the Paul Scherrer Institute high temperature materials research for advanced nuclear systems is performed since a decade, formerly by the HT-Mat group and today the advanced nuclear materials (ANM) group. In this paper the activities being conducted in this time are summarized. This includes the study of three major materials classes, intermetallics with a titanium alluminide, nanostructured steel with different ODS candidates, and ceramics with silicon carbide composites. The studies being performed include experimental work, studying the mechanical behavior as function of irradiation exposure and temperature, including also in situ studies such as the creep under ion beam irradiation plus miniaturized samples such as pillars. The microstructure changes as function of these exposures, using electron microscopy on one hand and advanced beamline techniques on the other hand. Part of the finding lead to the development of new damage mechanism models. Complementary to the experimental approach, modelling activities were conducted to understand the basics of the damage mechanisms. The research lead to a consolidation of the candidate materials to the most promising ones, namely the oxide dispersion strengthened steels (ODS) and the silicon carbide based composite materials. The research lead to new, relevant data such as the creep behavior of material under extreme reactor conditions, the embitterment mechanism in advanced materials, and much more. A sketch of the research philosophy and an outline of the main results will be given. (author)

  4. Development of a high temperature ceramic-to-metal seal for Air Force Weapons Laboratory Laser

    Science.gov (United States)

    Honnell, R. E.; Stoddard, S. D.

    1987-03-01

    Procedures were developed for fabricating vacuum tight metal-to-ceramic ring seals between Inconel 625 and MgO-3 wt % Y2O3 tubes metallized with a calcia-alumina-silica glass (CaO-29 wt % Al2O3-35 wt % SiO2) containing 50 vol % molybdenum filler. Palniro No. 1 (Au-25 wt % Pd-25 wt % Ni) was found to be the most reliable braze for joining Inconel to metallized MgO-3 wt % Y2O3 bodies. The reliabilities of the processing procedures and the material systems were demonstrated. A prototype electrical feedthrough was fabricated for 1173 K operation in air or vacuum.

  5. Feasibility study of electric motors constructed with high temperature superconducting materials

    International Nuclear Information System (INIS)

    Jordan, H.E.

    1989-01-01

    The potential application of high temperature superconducting (HTSC) materials to electric motors is discussed. The specific application area of motors in electric power generating stations has been selected and a feasible study has been initiated on the use of HTSC materials in the design of motors for this application. A progress report on this feasibility study is presented. Technical challenges in both the development of HTSC wire and the design of a motor to utilize this wire are discussed. Finally, the results of design calculations comparing a superconducting motor with one of conventional design are presented assuming that success can be achieved in overcoming the technical problems which must be resolved to produce a high performance HTSC wire

  6. Self-propagating high-temperature synthesis of TiC-WC composite materials

    International Nuclear Information System (INIS)

    Mas-Guindal, M.J.; Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2006-01-01

    TiC-WC composites have been obtained in situ by self-propagating high-temperature synthesis (SHS) from a mixture of compacted powders of elemental titanium, tungsten and graphite. The Rietveld method has proved to be a useful tool to quantify the different phases in the reaction and calculate the cell parameters of the solid solution found in the products. The reaction has also been followed in real time by X-ray diffraction at the European Synchrotron Radiation Facility (ESRF ID-11 Materials Science Beamline). The mechanism of the reaction is discussed in terms of the diffusion of liquid titanium to yield titanium carbide with a solid solution of tungsten. The microstructures of the materials obtained by this method are presented

  7. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  8. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  9. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    Science.gov (United States)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the

  10. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, the ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. (orig.)

  11. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2014-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., generating defects in materials of major components and fuel claddings, increasing shutdown radiation and increasing the volume of radwaste sources. Corrosion behaviors are much affected by water qualities and differ according to the values of water qualities and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of key issues that determine corrosion related problems but it is not the only issue. Most phenomena for corrosion related problems, e.g., flow-accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. In the paper, theoretical models based on electrochemistry to estimate wall thinning rate of carbon steel piping due to flow-accelerated corrosion and corrosive conditions determining IGSCC crack initiation and growth rate are introduced. (author)

  12. Application of self-propagation high-temperature synthesis for immobilization of hard radioactive wastes in ceramet materials

    International Nuclear Information System (INIS)

    Ilyin, E.; Pashkeev, I.; Senin, A.; Gerasimova, N.

    2001-01-01

    The possibility of self-propagating high-temperature synthesis (SPHTS) application for an immobilization of solid high level wastes (HLW) in cermet materials is considered. The schemes of multilayer cermet blocks formation are offered. Such blocks consist of a ceramet core with immobilized HLW and a protective cover - ceramet without HLW. The influence of the base components form (pure Ti and Si, ferrotitanium and ferrosilicon), metallic components (Ni, Cu, Cr, Fe, ferrochromium) and nonmetallic components (SiO 2 , Al 2 O 3 , TiO 2 ) on burning rate and cover ceramet structure is investigated in compositions on a basis of Ti+B, Ti+Si, Ti+C systems. Model samples of multilayer cermet blocks are manufactured using of HLW simulators. (authors)

  13. Study of surfaces and surface layers on high temperature materials after short-time thermal loads

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1985-11-01

    Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.) [de

  14. First demonstration report on the high temperature materials data Bank of JRC

    International Nuclear Information System (INIS)

    1983-01-01

    The High Temperature Materials Programme of the Joint Research Centre has among its activities a project which has the objective to develop a computerised data bank containing mechanical property data of alloys for high temperature applications. The pilot phase of this project during the multiannual programme 1980-1983 is restricted to a few alloys and properties. The present scope comprises tensile, creep and fatigue test results with emphasis on 600-1000 0 C test temperature and C-O-H environments for alloys covered by the specifications of the ''Alloy 800'' group. The data bank is now operational. This report is the first presentation of the data bank characteristics, contents and some output illustrations. It contains a descriptive part on the system and its structure and on the characteristics and quantity of the present data, and an illustrative part showing examples of data bank processed output. The selected print-outs are generated by interactive on-line searches and subsequent numerical or graphical processing in the data bank facilities at Petten and Ispra which are linked by EURONET

  15. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  16. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Bjornard, Trond; Hockert, John

    2011-01-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC and A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC and A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC and A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR (Pty) and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC and A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR and D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present

  17. High Temperature Materials Laboratory sixth annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1993-12-01

    The High Temperature Materials Laboratory has completed its sixth year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program is evidenced by the number of outside institutions executing user agreements since the facility began operation in 1987. A total of 172 nonproprietary agreements (88 university and 84 industry) and 35 proprietary agreements, (2 university, 33 industry) are now in effect. Six other government facilities have also participated in the User Program. Thirty-eight states are represented by these interactions. Ninety-four nonproprietary research proposals (44 from universities, 47 from industry, and 3 from other government facilities) and three proprietary proposals were considered during this reporting period. Nonproprietary research projects active in FY 1993 are summarized.

  18. High Temperature Materials Laboratory fourth annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1991-12-01

    The High Temperature Materials Laboratory has completed its fourth year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 118 nonproprietary agreements (62 university and 56 industry) and 28 proprietary agreements (2 university, 26 industry) are now in effect. Five other government facilities have also participated in the user program. Sixty-free nonproprietary research proposals (38 from university, 26 from industry, and 1 other government facility) and four proprietary proposals were considered during this reporting period. Research projects active in FY 1991 are summarized.

  19. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  20. Grain-boundary engineering applied to grain growth in a high temperature material

    International Nuclear Information System (INIS)

    Huda, Z.

    1993-01-01

    Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)

  1. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures.

    Science.gov (United States)

    Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei

    2010-09-01

    Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.

  2. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  3. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  5. Phase Stability in Ultra-High Temperature Refractory Metal Alloys and Coatings

    National Research Council Canada - National Science Library

    Perepezko, John

    2002-01-01

    ...) base alloys such as those in the Mo-Si-B system and the evaluation of thermal barrier and oxidation resistant coatings for these systems requires very high temperature annealing furnaces with long...

  6. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  7. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials

    International Nuclear Information System (INIS)

    Lorrette, Ch.

    2007-04-01

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  8. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  9. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    Science.gov (United States)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  11. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Directory of Open Access Journals (Sweden)

    Emília Satoshi Miyamaru Seo

    2004-03-01

    Full Text Available High temperature solid oxide fuel cells (SOFCs offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of NOx and SOx emissions. The high operating temperature (950-1000 °C used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute in São Paulo, have been presented.

  12. The analytical description of high temperature tensile creep for cavitating materials subjected to time variable loads

    International Nuclear Information System (INIS)

    Bocek, M.

    A phenomenological cavitation model is presented by means of which the life time as well as the creep curve equations can be calculated for cavitating materials subjected to time variable tensile loads. The model precludes the proportionality between the damage A and the damage rate (dA/dt) resp. Both are connected by the life time function tau. The latter is derived from static stress rupture tests and contains the loading conditions. From this model the life fraction rule (LFR) is derived. The model is used to calculate the creep curves of cavitating materials subjected at high temperatures to non-stationary tensile loading conditions. In the present paper the following loading procedures are considered: creep at constant load F and true stress s; creep at linear load increase ((dF/dt)=const) and creep at constant load amplitude cycling (CLAC). For these loading procedures the creep equations for cavitating and non-cavitating specimens are derived. Under comparable conditions the creep rate of cavitating materials are higher than for non-cavitating ones. (author)

  13. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  14. Optimization of the fiber laser parameters for local high-temperature impact on metal

    Science.gov (United States)

    Yatsko, Dmitrii S.; Polonik, Marina V.; Dudko, Olga V.

    2016-11-01

    This paper presents the local laser heating process of surface layer of the metal sample. The aim is to create the molten pool with the required depth by laser thermal treatment. During the heating the metal temperature at any point of the molten zone should not reach the boiling point of the main material. The laser power, exposure time and the spot size of a laser beam are selected as the variable parameters. The mathematical model for heat transfer in a semi-infinite body, applicable to finite slab, is used for preliminary theoretical estimation of acceptable parameters values of the laser thermal treatment. The optimization problem is solved by using an algorithm based on the scanning method of the search space (the zero-order method of conditional optimization). The calculated values of the parameters (the optimal set of "laser radiation power - exposure time - spot radius") are used to conduct a series of natural experiments to obtain a molten pool with the required depth. A two-stage experiment consists of: a local laser treatment of metal plate (steel) and then the examination of the microsection of the laser irradiated region. According to the experimental results, we can judge the adequacy of the ongoing calculations within the selected models.

  15. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    Energy Technology Data Exchange (ETDEWEB)

    Ashokkumar, Saranya, E-mail: saras@food.dtu.dk [Accoat A/S, Munkegardsvej 16, 3490 Kvistgard (Denmark); Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Adler-Nissen, Jens [Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Moller, Per [Department of Materials Science and Engineering, DTU Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2012-12-15

    Graphical abstract: Plot of cos {theta} versus temperature for metal and ceramic surfaces where cos {theta} rises linearly with increase in temperature. Highlights: Black-Right-Pointing-Pointer cos {theta} of olive oil on different surface materials rises linearly with increase in temperature. Black-Right-Pointing-Pointer Slopes are much higher for quasicrystalline and polymers than for ceramics. Black-Right-Pointing-Pointer Increase in surface roughness and surface flaws increases surface wettability. Black-Right-Pointing-Pointer Contact angle values gave information for grouping easy-clean polymers from other materials. Black-Right-Pointing-Pointer Contact angle measurements cannot directly estimate the cleanability of a surface. - Abstract: The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 Degree-Sign C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO{sub 2}), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos {theta} values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos {theta} values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between

  16. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  17. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  18. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    Science.gov (United States)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  19. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-12-01

    Full Text Available Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

    El uso de interconectores metálicos en pilas de combustible de óxido sólido (SOFC en sustitución de materiales cerámicos ha sido posible gracias a la investigación y desarrollo de nuevos materiales metálicos. Inicialmente, el uso de interconectores metálicos fue limitado, debido a la elevada temperatura de trabajo, ocasionando de forma rápida la degradación del material, lo que impedía que fuesen una alternativa. A medida que la temperatura de trabajo de las SOFC descendió, el uso de interconectores metálicos demostró ser una buena alternativa, dado que son más fáciles de fabricar y más baratos que los interconectores cerámicos. Sin embargo, los interconectores metálicos continúan degradándose a pesar de descender la temperatura a la que operan las SOFC y, asimismo, los productos de corrosión favorecen las pérdidas eléctricas de la pila de combustible. Recubrimientos de níquel, cromo, aluminio, zinc, manganeso, itrio y lantano entre el interconector y los electrodos reduce dichas pérdidas eléctricas.

  20. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  1. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  2. The Application of Non-Metallic Core Materials in a High-Temperature Reactor Experiment; Utilisation de materes non metalliques dans le coeur d'un reacteur experimental a haute temperature; Ispol'zovanie nemetallicheskikh materialov dlya aktivnoj zony vysokotemperaturnogo opytnogo reaktora; Empleo de materiales no metalicos en el nucleo de un reactor experimental de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Huddle, R. A.U.; Shepherd, L. R. [Organization for Economic Co-Operation and Development, Dragon Project, Atomic Energy Establishment, Winfrith, Dorset (United Kingdom)

    1963-11-15

    The OECD High-Temperature Reactor Project (DRAGON) was set up to develop the technology of high-temperature gas-cooled reactors and, as part of this development, to construct and operate a 20-MW(t) reactor experiment. The reactor, which is now nearing completion, is a helium-cooled system with a coreoutlet temperature of 750{sup o}C; it employs U{sup 235} fuel with thorium as a fertile material. A particular feature of this system is the absence of any metals in the core. Because of the high temperatures involved, namely, up to 1050{sup o}C at fuel element surfaces and above, 1500{sup o}C in-the hottest regions of the fuel, refractory nonmetallic materials are employed. All the core material is incorporated within the fuel element which leads to a high ratio of heat transfer surface area to core volume and hence permits a high average power density leading to a relatively compact system. Each fuel element consists of a cluster of graphite tubes, containing the fissile and fertile materials as carbides incorporated in graphite pellets. A purge flow of the helium coolant passing through the centre of each fuel rod is extracted from the base whence it passes into a helium processing plant to remove fission products and other impurities before being returned to the reactor. This procedure reduces the escape of fission products from the very hot ceramic fuel into the primary coolant stream. Problems associated with the development and production of ceramic fuel bodies and graphite for this reactor, and the behaviour of these materials under operating conditions are outlined. Some experience from irradiation and in-pile loop investigations are reported. The main emphasis in this programme is on the development of the high-temperature gas-cooled reactor for application as an economic power producing system. (author) [French] Les objectifs du Projet DRAGON de l'OCDE (reacteur a haute temperature) sont les suivants: ameliorer la technologie des reacteurs a haute temperature

  3. THE BEHAVIOR OF SOLUBLE METALS ELUTED FROM Ni/Fe-BASED ALLOY REACTORS AFTER HIGH-TEMPERATURE AND HIGH-PRESSURE WATER PROCESS

    Directory of Open Access Journals (Sweden)

    M. Faisal

    2012-05-01

    Full Text Available The behavior of heavy metals eluted from the wall of Ni/Fe-based alloy reactors after high-temperature and high-pressure water reaction were studied at temperatures ranging from 250 to 400oC. For this purpose, water and cysteic acid were heated in two reactor materials which are SUS 316 and Inconel 625. Under the tested conditions, the erratic behaviors of soluble metals eluted from the wall of Ni/Fe-based alloy in high temperature water were observed. Results showed that metals could be eluted even at a short contact time. The presence of air also promotes elution at sub-critical conditions. At sub-critical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. It was observed that eluted metals tend to increased under acidic conditions and most of those metals were over the limit of WHO guideline for drinking water. The results are significant both on the viewpoint of environmental regulation on disposal of wastes containing heavy metals, toxicity of resulting product and catalytic effect on a particular reaction.

  4. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  5. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  6. In-situ high temperature XRD of calcium phosphate biomaterial using DEHPA as the starting material

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslim

    2009-01-01

    A process to produce calcium phosphate biomaterial was done using an organic based phosphoric acid (DEHPA) as its starting material. The gel obtained from this reaction was used to study calcium phosphate transformation using in-situ XRD with temperature ranges from room temperature to 1300 degree C. The results obtained from this analysis show the following phase transformation: Gel β-Ca 2 P 2 O 7 β-TCP + HA α-TCP + HA, β-Ca 2 P 2 O 7 forms at 400 degree C and as we heat the sample at 1000 degree C peaks belonging to β- TCP and HA appears showing the transformation of the β-Ca 2 P 2 O 7 phase. When the sample is heated up further to 1200 degree C, β-TCP is transform into α-TCP. In the cold in-situ study, XRD analysis was performed on the sample from room temperature to -140 degree C. At room the XRD diffractogram shows the sample as an amorphous material and as the temperature was further lowered sharp peaks begins to form indicating that the material had becomes crystalline. The peaks were identified to be that calcium hydrogen phosphate (Ca(H 2 PO 4 ) 2 ) and this indicates that there is no hydroxyl group removal during the cooling process. The relative crystallinity values obtained for the different cooling temperatures show a slow exponential increase on the initial cooling of 0 to -100 degree C and at further cooling temperatures resulted fast and linear process. Also unlike the in-situ XRD analysis performs at high temperature no phase transformation occurred at this low temperature. (Author)

  7. Examples illustrating the effects of high-temperature corrosion and protective coatings on the creep-to-rupture behaviour of materials resistant to very high temperatures

    International Nuclear Information System (INIS)

    Sachova, E.; Hougardy, H.P.; Granacher, J.

    1989-01-01

    Assessing the creep stress, it is assumed in general that the sub-surface effects in a specimen correspond to those at the surface. Particularly in very high temperature environments, however, oxidation is an additional effect to be taken into account, and there are other operational stresses to be reckoned with, as e.g. hot gas corrosion of gas turbine blades. The reduction of the effective cross section due to corrosion for instance of the material affected by long-term creep leads to an increase in stresses and thus shortens the period up to rupture. Protective coatings will prevent or at least delay corrosion. The paper reports the performance of various protective coatings. Pt-Al coatings have have been found to remain intact even on specimens with the longest testing periods up to rupture, to an extent that there was no oxidation at the grain boundaries proceeding from the surface to the sub-surface material. The same applies to the plasma-sprayed coatings, although in some cases pores had developed in the coating. The chromium alitizations were used up irregularly over the surface of some specimens tested at 1000deg C. Chromizing layers have been found to be more strongly damaged than the other coatings tested under comparable conditions. (orig./RHM) [de

  8. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  9. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  10. High Temperature Materials Laboratory seventh annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Teague, P.A.

    1994-12-01

    The High Temperature Materials Laboratory (HTML) has completed its seventh year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program has been demonstrated by the number of institutions executing user agreements since the HTML began operation in 1987. A total of 193 nonproprietary agreements (91 industry and 102 university) and 41 proprietary agreements (39 industry and two university) are now in effect. This represents an increase of 21 nonproprietary user agreements during FY 1994. Forty-one states are represented by these users. During FY 1994, the HTML User Program evaluated 106 nonproprietary proposals (46 from industry, 52 from universities, and 8 from other government facilities) and 8 proprietary proposals. The HTML User Advisory Committee approved about ninety-five percent of those evaluated proposals, sometimes after the prospective user revised the proposal based on comments from the Committee. This annual report discusses FY 1994 activities in the individual user centers, as well as plans for the future. It also gives statistics about users and their proposals and FY 1994 publications, and summarizes nonproprietary research projects active in FY 1994.

  11. High Temperature Materials Laboratory, Eleventh Annual Report: October 1997 through September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, A.E.; Russell, B.J.

    2000-03-01

    The High Temperature Materials Laboratory (HTML) has completed its eleventh year of operation as a designated US Department of Energy User Facility at the Oak Ridge National Laboratory. This document profiles the historical growth of the HTML User and Fellowship Programs since their inception in 1987. Growth of the HTML programs has been demonstrated by the number of institutions executing user agreements and by the number of days of instrument use (user days) since the HTML began operation.A total of 522 agreements (351 industry,156 university,and 15 other federal agency) are now in effect (452 nonproprietary and 70 proprietary). This represents an increase of 75 user agreements since the last reporting period (for FY 1997). A state-by-state summary of the nonproprietary user agreements is given in Appendix A. Forty-six states are represented. During FY 1998, the HTML User Program evaluated 80 nonproprietary proposals (32 from industry, 45 from universities, and 3 from other government facilities) and several proprietary proposals. Appendix B provides a detailed breakdown of the nonproprietary proposals received during FY 1998. The HTML User Advisory Committee approved about 95% of those proposals, sometimes after the prospective user revised the proposal based on comments from the committee. This annual report discusses activities in the individual user centers as well as plans for the future. It also gives statistics about users, proposals, and publications as well as summaries of the nonproprietary research projects active during 1998.

  12. High Temperature Materials Laboratory Thirteenth Annual Report: October 1999 Through September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, AE

    2001-11-07

    The High Temperature Materials Laboratory (HTML) User Program continued to work with industrial, academic, and governmental users this year, accepting 86 new projects and developing 50 new user agreements. The table on the following page presents the breakdown of these statistics. The figure on page 2 depicts the continued growth in user agreements and user projects. You may note that our total number of proposals is nearing 1000, and we expect to achieve this number in our first proposal review meeting of FY 2001. The large number of new agreements bodes well for the future. A list of proposals to the HTML follows this section; at the end of the report, we present a list of agreements between HTML and universities and industries, broken down by state. Program highlights this year included several outstanding user projects (some of which are discussed in later sections), the annual meeting of the HTML Programs Senior Advisory Committee, the completion of a formal Multiyear Program Plan (MYPP), and finalization of a purchase agreement with JEOL for a new-generation electron microscope.

  13. High Temperature Materials Laboratory eight and ninth annual reports, October 1994 through September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, A.E.; Russell, B.J.

    1997-10-01

    The High Temperature Materials Laboratory (HTML) has completed its ninth year of operation as a designated US Department of Energy User Facility at the Oak Ridge National Laboratory. This document profiles the historical growth of the HTML User and Fellowship Programs since their inception in 1987. Growth of the HTML programs has been demonstrated by the number of institutions executing user agreements, and by the number of days of instrument use (user days) since the HTML began operation. A total of 276 nonproprietary agreements (135 industry, 135 university, and 6 other federal agency) and 56 proprietary agreements are now in effect. This represents an increase of 70 nonproprietary user agreements since the last reporting period (for FY 1994). A state-by-state summary of these nonproprietary user agreements is given in Appendix A, and an alphabetical listing is provided in Appendix B. Forty-four states are represented by these users. During FY 1995 and 1996, the HTML User Program evaluated 145 nonproprietary proposals (62 from industry, 82 from universities, and 1 from other government facilities) and several proprietary proposals. The HTML User Advisory Committee approved about 95% of those proposals, frequently after the prospective user revised the proposal based on comments from the committee. This annual report discusses activities in the individual user centers, as well as plans for the future. It also gives statistics about users, proposals, and publications as well as summaries of the nonproprietary research projects active during 1995 and 1996.

  14. Innovative anode materials and architectured cells for high temperature steam electrolysis operation

    International Nuclear Information System (INIS)

    Ogier, Tiphaine

    2012-01-01

    In order to improve the electrochemical performances of cells for high temperature steam electrolysis (HTSE), innovative oxygen electrode materials have been studied. The compounds Ln_2NiO_4_+_δ (Ln = La, Pr or Nd), Pr_4Ni_3O_1_0_±_δ and La_0_,_6S_r0_,_4Fe_0_,_8Co_0_,_2O_3_-_δ have been selected for their mixed electronic and ionic conductivity. First, their physical and chemical properties have been investigated. Then, the electrodes were shaped on symmetrical half cells,adding a thin ceria-based interlayer between the electrode and the yttria doped zirconia-based electrolyte. These architectured cells lead to low polarization resistances (RP≤ 0.1 Ω.cm"2 at 800 C) as well as reduced anodic over potentials. An electrochemical model has been developed in order to describe and analyze the experimental polarization curves.The electrode with the lower overpotential, i.e. Pr_2NiO_4_+δ, has been selected and characterized into complete cermet-supported cells. Under HTSE operation, at 800 C, a high current density was measured, close to i = -0.9 A.cm"-"2 for a cell voltage equals to 1.3 V, the conversion rate being about 60%. (author) [fr

  15. Graphical assessment of the linear contact steel on composite material at high temperature and pressure

    Science.gov (United States)

    Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca

    2018-01-01

    In this article we have tried to present a graphical assessment of the dry linear contact for composite materials reinforced with glass fibers as well as of the influence of the sliding speed, load and friction coefficient. Perpendicular loads, the contact temperature and the wear of the metal surface were recorded. The wear volume was calculated using the Archard relationship. Using the Archard relationship, the width of trace can be calculated in 3 locations. Numerous experimental trials were performed in connection to the wear of the metal surface, the contact temperature and the value of the friction coefficient. A connection between the evolution of the wear process and the dependency on the contact temperature and friction coefficient can be observed.

  16. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  17. Cathodic processes in high-temperature molten salts for the development of new materials processing methods

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2017-01-01

    Molten salts play an important role in the processing of a range of commodity materials. This includes the large-scale production of iron, aluminium, magnesium and alkali metals as well as the refining of nuclear fuel materials. This presentation focuses on two more recent concepts in which the cathodic reactions in molten salt electrolytic cells are used to prepare high-value-added materials. Both were developed and advanced at the Department of Materials Science and Metallurgy at the University of Cambridge and are still actively being pursued. One concept is now generally known as the FFC-Cambridge process. The presentation will highlight the optimisation of the process towards high selectivities for tubes or particles depict a modification of the method to synthesize tin-filled carbon nanomaterial, and illustrate the implementation of a novel type of process control to enable the preparation of gramme quantities of material within a few hours with simple laboratory equipment. Also discussed will be the testing of these materials in lithium ion batteries

  18. Total emissivity and spectral emissivity of high-temperature materials; Gesamtemissionsgrad und spektraler Emissionsgrad von Hochtemperaturmaterialien

    Energy Technology Data Exchange (ETDEWEB)

    Neuer, G.; Pohlmann, P.; Schreiber, E.

    1998-05-01

    A new emissivity measurement device with inductive sample heating is described. The disc shaped samples can be measured between 800 C and 2000 C in vacuum or in each available gas atmosphere. Two kinds of surface temperature measurement methods are described, one by measuring in a blackbody hole and one by measuring at the surface without additional measures to correct emissivity. Total normal and spectral emissivity at wavelengths between 0,5 {mu}m and 8,3 {mu}m of various high temperature materials like platinum and Pt-Rh-alloys, siliconcarbide and molybdenum disilicide have been measured. From the investigated materials a few have been selected as reference samples for comparative emissivity measurements fullfilling the requirement of stability on air up to 400 C to 1000 C in order to ensure reproducibility of the results at different measurement conditions in air and in vacuum. (orig.) [Deutsch] Der Aufbau einer neuen Messapparatur fuer Emissionsgradmessungen bei Temperaturen zwischen 1000 C und 2000 C wird beschrieben. Die scheibenfoermigen Proben werden induktiv beheizt, und die Messungen koennen entweder in Vakuum oder einer beliebigen Gasatmosphaere durchgefuehrt werden. Es werden zwei verschiedene Verfahren zur Bestimmung der Oberflaechentemperatur bechrieben, wobei entweder in einer oder direkt an der Oberflaeche ohne zusaetzliche Massnahmen zur Emissionsgradkorrektur gemessen wird. An verschiedenen Hochtemperaturwerkstoffen wie Platin und Platin-Rhodium-Legierungen, Siliziumkarbid mit unterschiedlichen Herstellungsarten und Molybdaen-Disilizid wurden der Gesamtemissionsgrad und der spektrale Emissionsgrad bei Wellenlaengen von 0,5 {mu}m bis 8,3 {mu}m senkrecht zur Oberflaeche gemessen. Aus den untersuchten Materialien wurden solche als Referenzmaterialien fuer vergleichende Emissionsgradmessungen ausgewaehlt, die sowohl im Vakuum als auch in Luft und bei Temperaturen von 1400 C bis 1600 C unter verschiedenen Messbedingungen reproduzierbare Ergebnisse

  19. Simulation of space radiation effects on polyimide film materials for high temperature applications. Final report

    International Nuclear Information System (INIS)

    Fogdall, L.B.; Cannaday, S.S.

    1977-11-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics

  20. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  1. Modeling the Mechanical Behavior of Aluminum Laminated Metal Composites During High Temperature Deformation

    National Research Council Canada - National Science Library

    Grishber, R

    1997-01-01

    A constitutive model for deformation of a novel laminated metal composite (LMC) which is comprised of 21 alternating layers of Al 5182 alloy and Al 6090/SiC/25p metal matrix composite (MMC) has been proposed...

  2. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  3. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations

    International Nuclear Information System (INIS)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Hong, Jie; Scarpa, Fabrizio; Liu, Baolong

    2014-01-01

    The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations. (paper)

  4. High-temperature thermal storage systems for advanced solar receivers materials selections

    Science.gov (United States)

    Wilson, D. F.; Devan, J. H.; Howell, M.

    1990-01-01

    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.

  5. Development of advanced metallic coatings resistant to corrosion in high temperature industrial atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T.; Bender, R.; Rosado, C.; Schuetze, M. [DECHEMA e.V., Frankfurt am Main (Germany)

    2004-07-01

    Following the experimental results that {gamma}-TiAl is highly resistant in reducing sulfidizing atmospheres the development of Ti-Al-co-diffusion coatings produced in a single step pack cementation process was started. The appropriate diffusion powder compositions were selected using thermodynamical calculations. Different Al-Ti-, Al-Si- and Al-Ti-Si-diffusion coatings were successfully applied on austenitic steels as well as Ni-base materials and showed excellent behaviour in reducing sulfidizing atmospheres with high carbon contents (CH{sub 4} - 1% CO - 1% CO{sub 2} - 10% H{sub 2} - 7% H{sub 2}S) up to 700 deg. C, under metal dusting conditions (H{sub 2} - 25 CO - 2% H{sub 2}O and CO - 2.4% CO{sub 2} - 1% CH{sub 4} - 9.4% N{sub 2} - 23.4% H{sub 2} - 0.2% H{sub 2}O - 1 ppm H{sub 2}S-0.3 ppm HCl) at temperatures of 620 deg. C and 700 deg. C. The application of diffusion coatings on ferritic materials has to be modified due to the specific requirements on the mechanical properties which are affected by the heat treatment during the diffusion process. TiAl was also applied by the HVOF thermal spray method on ferritic steels. Due to similarity of the thermal expansion coefficients this substrate-coating system proved to be mechanically very stable also under thermal cycling conditions. (authors)

  6. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  7. New graphite/salt materials for high temperature energy storage. Phase change properties study

    International Nuclear Information System (INIS)

    Lopez, J.

    2007-07-01

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage (≥200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed (∼ 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect (∼ 1 C, related to the size of the clusters crystals). (author)

  8. Corrosion Behaviors of Structural Materials in High Temperature S-CO{sub 2} Environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Hyunmyung; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2014-04-15

    The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and 650 .deg. C in SFR S-CO{sub 2} environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and 650 .deg. C. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at 650 .deg. C, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at 550 .deg. C, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-CO{sub 2} environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

  9. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  10. Direct high-temperature ohmic heating of metals as liquid pipes.

    Science.gov (United States)

    Grosse, A V; Cahill, J A; Liddell, W L; Murphy, W J; Stokes, C S

    1968-05-03

    When a sufficiently high electric current is passed through a liquid metal, the electromagnetic pressure pinches off the liquid metal and interrupts the flow of current. For the first time the pinch effect has been overcome by use of centrifugal acceleration. By rotation of a pipe of liquid metal, tin or bismuth or their alloys, at sufficiently high speed, it can be heated electrically without intermission of the electric current. One may now heat liquid metallic substances, by resistive (ohmic) heating, to 5000 degrees K and perhaps higher temperatures.

  11. 22. lecture meeting of the association for heat-resistant steels and the association for high temperature materials 'long-term performance of heat-resistant steels and high-temperature materials'. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The proceedings volume contains 14 full papers discussing the long-term performance of high-temperature resistant materials (creep, creep fatigue, crack growth). 13 papers have been analysed and processed for separate retrieval from the ENERGY database. (orig./CB) [de

  12. High temperature vitrification of surrogate Savannah River Site (SRS) mixed waste materials

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Schumacher, R.F.; Spatz, T.L.; Newsom, R.A.; Circeo, L.J.; Danjaji, M.B.

    1995-01-01

    The Savannah River Technology Center (SRTC) has been funded through the DOE Office of Technology Development (DOE-OTD) to investigate high-temperature vitrification technologies for the treatment of diverse low-level and mixed wastes. High temperature vitrification is a likely candidate for processing heterogeneous solid wastes containing low levels of activity. Many SRS wastes fit into this category. Plasma torch technology is one high temperature vitrification method. A trial demonstration of plasma torch processing is being performed at the Georgia Institute of Technology on surrogate SRS wastes. This effort is in cooperation with the Engineering Research and Development Association of Georgia Universities (ERDA) program. The results of phase 1 of these plasma torch trials will be presented

  13. Metallic materials for medical use

    OpenAIRE

    Illarionov Anatoly; Belikov Sergey; Grib Stella; Yurovskikh Artem

    2017-01-01

    This article provides a brief overview of the metallic materials used as implants in orthopedics, the alloying system and a complex of the physical-mechanical properties for metallic materials certified for medical use, as well as the advantages and drawbacks of using metallic materials as implants. Approaches to improve the quality of an implant made of metallic materials are noted.

  14. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  15. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material

    International Nuclear Information System (INIS)

    Qian, Tingting; Li, Jinhong; Min, Xin; Deng, Yong; Guan, Weimin; Ning, Lei

    2015-01-01

    Graphical abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCMs’ applications is not limited to low temperatures only. In the present study, three kinds of PCMs: polyethylene glycol (PEG), lithium nitrate, and sodium sulfate were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three kinds of PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. - Highlights: • Low-temperature PEG/diatomite was prepared. • Middle-temperature LiNO 3 /diatomite was prepared. • High-temperature Na 2 SO 4 /diatomite was prepared. - Abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCM’s application is not only limited to low temperatures. In this study, polyethylene glycol (PEG), lithium nitrate (LiNO 3 ), and sodium sulfate (Na 2 SO 4 ) were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. The maximum loads of PEG, LiNO 3 , and Na 2 SO 4 in diatomite powder could respectively reach 58%, 60%, and 65%, while PCM melts during the solid–liquid phase transformation. SEM, XRD, and FT-IR results indicated that PCMs were well dispersed into diatomite pores and no chemical changes took place during the heating and cooling process. The prepared fs-PCMs were quite stable in terms of thermal and chemical manner even after a 200-cycle of melting and freezing. The resulting composite fs-PCMs were promising candidates to

  16. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  17. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  18. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    Science.gov (United States)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  19. Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    D. Apelian

    2007-07-23

    The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

  20. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Science.gov (United States)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  1. Study of a chromia-forming alloy behavior as interconnect material for High Temperature Vapor Electrolysis

    International Nuclear Information System (INIS)

    Guillou, S.

    2011-01-01

    In High Temperature Vapor Electrolysis (HTVE) system, the materials chosen for the inter-connectors should have a good corrosion behaviour in air and in H 2 -H 2 O mixtures at 800 C, and keep a high electronic conductivity over long durations as well. In this context, the first goal of this study was to evaluate a commercial ferritic alloy (the K41X alloy) as interconnect for HTVE application. Oxidation tests in furnace and in microbalance have therefore been carried out in order to determine oxidation kinetics. Meanwhile, the Area Specific Resistance (ASR) was evaluated by Contact Resistance measurements performed at 800 C. The second objective was to improve our comprehension of chromia-forming alloys oxidation mechanism, in particular in H 2 /H 2 O mixtures. For that purpose, some specific tests have been conducted: tracer experiments, coupled with the characterization of the oxide scale by PEC (Photo-Electro-Chemistry). This approach has also been applied to the study of a LaCrO 3 perovskite oxide coating on the K41X alloy. This phase is indeed of high interest for HTVE applications due to its high conductivity properties. This latter study leads to further understanding on the role of lanthanum as reactive element, which effect is still under discussion in literature.In both media at 800 C, the scale is composed of a Cr 2 O 3 /(Mn,Cr) 3 O 4 duplex scale, covered in the case of H 2 -H 2 O mixture by a thin scale made of Mn 2 TiO 4 spinel. In air, the growth mechanism is found to be cationic, in agreement with literature. The LaCrO 3 coating does not modify the direction of scale growth but lowers the growth kinetics during the first hundreds hours. Moreover, with the coating, the scale adherence is favored and the conductivity appears to be slightly higher. In the H 2 -H 2 O mixture, the growth mechanism is found to be anionic. The LaCrO 3 coating diminishes the oxidation kinetics. Although the scale thickness is about the same in both media, the ASR parameter

  2. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  3. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron-transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS 4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2

  4. Thermophysical and transport properties of metals at high pressure and very high temperature

    International Nuclear Information System (INIS)

    Shaner, J.W.; Gathers, G.R.

    1977-01-01

    Simultaneous measurements of enthalpy, specific volume, temperature, and electrical resistivity for lead and uranium were measured. From the measured data, estimates of the bulk modulus and sound velocity in these metals are made

  5. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    Science.gov (United States)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  6. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  7. Segregation across the metal/oxide interface occurring during oxidation at high temperatures of diluted iron based alloys

    International Nuclear Information System (INIS)

    Geneve, D.; Rouxel, D.; Weber, B.; Confente, M.

    2006-01-01

    Industrial steels being elaborated in air at high temperature oxidize and cover with a complex oxide layer. The oxidation reaction drastically alters the surface composition. Such modifications have been investigated, in this work, by Auger Electron Spectroscopy (AES) using an original method to characterize the composition of the metal/oxide interfaces. Analysis of the concentration gradients across the interfaces allows to better understand how the alloy elements contribute to the oxidation process. The development of new alloy phases, the interdependencies between elements and the diffusion of different species are discussed considering thermodynamic properties of each element

  8. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  9. Thermodynamic properties of bcc crystals at high temperatures: The transition metals

    International Nuclear Information System (INIS)

    MacDonald, R.A.; Shukla, R.C.

    1985-01-01

    The second-neighbor central-force model of a bcc crystal, previously used in lowest-order anharmonic perturbation theory to calculate the thermodynamic properties of the alkali metals, is here applied to the transition metals V, Nb, Ta, Mo, and W. The limitations of the model are apparent in the thermal-expansion results, which fall away from the experimental trend above about 1800 K. The specific heat similarly fails to exhibit the sharp rise that is observed at higher temperatures. A static treatment of vacancies cannot account for the difference between theory and experiment. The electrons have been taken into account by using a model that specifically includes d-band effects in the electron ground-state energy. The results thus obtained for the bulk moduli are quite satisfactory. In the light of these results, we discuss the prerequisites for a better treatment of metals when the electrons play an important role in determining the thermodynamic properties

  10. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  11. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  12. Research on material of high temperature cable and wire insulation by γ-rays

    International Nuclear Information System (INIS)

    Jia Shaojin; Zhang Zhicheng; Xu Xiangling; Ge Xuewu; Ye qiang; Wang Feng

    2000-01-01

    Radiation-crosslinking improves a number of essential properties of polymers, so the high -temperature-resistance of polyethylene (PE) was increased by irradiation. The national products of High -density-polyethylene (HDPE), crosslinking promoters, flame-retardant, antioxidants, Si rubber, and Ethylene-propylene-monomer (EPDM) were used as cable insulation. After -irradiation, thermal-endurance can get above 135, and high flame retardance was firmed, Oxygen index can get above 32 by crosslinking

  13. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  14. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  15. Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Zhu, Ting; McDowell, David

    2013-11-17

    The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation

  16. Pumps of molten metal based on magnetohydrodynamicprinciple for cooling high-temperature nuclear reactors

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Donátová, M.; Karban, P.; Ulrych, B.

    2009-01-01

    Roč. 85, č. 4 (2009), s. 13-15 ISSN 0033-2097 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : pumps of molten metal * magnetohydrodynamic principle * nuclear reactors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.196, year: 2009

  17. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  18. High temperature superconductor based on thin strata reactively sputtered on metal targets. Final report

    International Nuclear Information System (INIS)

    Francke, C.; Meyer, B.; Wunderlich, R.; Mueller, J.

    1996-01-01

    SNS - Josephson contacts stable for a long period and dc SQUIDS working at 77 K were produced from the high temperature superconductor YBa 2 Cu 3 O 7-δ , where silver was used as the normal conductor. On MgO stages etched with ion beams, a defined section of the YBCO stratum can be produced and therefore a desired spacing can be set beteen the two YBCO electrodes. Structuring of the silver layer increases the normal conductive resistance of the Josephson contacts of the SQUIDs and therefore also the flux/voltage modulation stroke by up to 2 orders of mangitude. The dc SQUIDS in the so-called Ketchen design with 700 x 700 μm 2 square washers alone have a field sensitivity around 25 nT/Φ 0 . A multi-strata technology was developed from YBCO/STO/YBCO layer packages, which makes it possible to produce superconducting coils with corssovers and through contacts, which show critical currents of over 10 mA at 77 K. Using this multi-strata technology, flux transformers on 10 x 10 mm 2 STO substrates and on 20 x 20 mm 2 STO substrates were produced. Coupled to dc SQUIDs inductively in 'flip-chip' technique, such flux transformers supply a field sensitivity which is several times better than that of a flex transformer with a 10 x 10 mm 2 substrate. Field sensitivities around 0.2 nT/Φ 0 can be achieved. (orig./MM) [de

  19. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Norton, J.F. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Consultant in Corrosion Science and Technology, Hemel Hempstead, Herts HP1 1SR (United Kingdom); McColvin, G. [Siemens Industrial Turbines Ltd., Lincoln, LN5 7FD (United Kingdom)

    2005-11-01

    on their rear faces to produce a temperature gradient through the seals and the samples were thermally cycled by switching the natural gas off every three hours. The total exposure period for each test was {proportional_to} 1,000 h, with seal face temperatures of 1000-1180 C. The performance of the materials in these tests was evaluated using visual observations and cross-sectional examinations using optical and SEM/EDX techniques. The data gathered have included measurements of oxide thickness and metal-loss on the exposed samples. A wide range of materials performances has been observed in these studies from minimal damage through to total destruction of samples. Overall, this study has shown that there is still a lot of development work required in order to move to higher temperature sealing systems structures in gas turbine applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Rare earth permanent-magnet alloys’ high temperature phase transformation in situ and dynamic observation and its application in material design

    CERN Document Server

    Pan, Shuming

    2013-01-01

    The process of high temperature phase transition of rare earth permanent-magnet alloys is revealed by photographs taken by high voltage TEM. The relationship between the formation of nanocrystal and magnetic properties is discussed in detail, which effects alloys composition and preparation process. The experiment results verified some presumptions, and were valuable for subsequent scientific research and creating new permanent-magnet alloys. The publication is intended for researchers, engineers and managers in the field of material science, metallurgy, and physics. Prof. Shuming Pan is senior engineer of Beijing General Research Institute of Non-ferrous Metal.

  1. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Blandin, J.J.; Soubeyroux, J.L.

    2006-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses

  2. Nonreactive spreading at high-temperature revisited for metal systems via molecular dynamics.

    Science.gov (United States)

    Benhassine, M; Saiz, E; Tomsia, A P; De Coninck, J

    2009-10-06

    The spreading for Cu and Ag droplets on top of a rigid solid surface modeling Mo is herewith considered via molecular dynamics. The dynamics of the base radius and the contact angle are recorded and fitted using the molecular-kinetic theory. A method is described to determine for liquid metals at the microscopic level the parameters appearing in this theory. These microscopic parameters are calculated directly in the simulations and compared to the fitted values. The agreement between the fitted values and the calculated ones shows that the dissipation of energy within the drop is caused primarily by the friction of liquid atoms over the substrate. This validation supports the understanding of the mechanisms controlling the spreading of liquid metals which, up to now, were based on experimental data and fitting procedures.

  3. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  4. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  5. Systematic thermodynamic properties of actinide metal-oxygen systems at high temperatures: Emphasis on lower valence states

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Chandrasekharaiah, M.S.

    1975-01-01

    The thermodynamic data for the actinide metals and oxides (thorium to curium ) have been assessed, examined for consistency, and compared with the lanthanides. Correlations relating the enthalpies of formation of the solid oxides with the corresponding aquo ions make possible the estimation of the thermodynamic properties of AmO 2 (s) and Am 2 O 3 (s) which are in accordance with vaporization data. The known thermodynamic properties of the substoichiometric dioxides MOsub(2-x)(s) at high temperatures demonstrate the relative stabilities of valence states less than 4+ and lead to the examination of stability requirements for the sesquioxides M 2 O 3 (s) and the monoxides MO(s). Sequential trends in the gaseous metals, monoxides and dioxides are examined, compared, and contrasted with the lanthanides. (author)

  6. Epitaxial YBa2Cu3O7 films on rolled-textured metals for high temperature superconducting applications

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Prouteau, C.

    1998-04-01

    The epitaxial growth of high temperature superconducting (HTS) films on rolled-textured metal represents a viable approach for long-length superconducting tapes. Epitaxial, 0.5 microm thick YBa 2 Cu 3 O 7 (YBCO) films with critical current densities, J c , greater than 1 MA/cm 2 have been realized on rolled-textured (001) Ni tapes with yttria-stabilized zirconia (YSZ)/CeO 2 oxide buffer layers. This paper describes the synthesis using pulsed-laser deposition (PLD) of epitaxial oxide buffer layers on biaxially-textured metal that comprise the so-called rolling-assisted biaxially-textured substrates (RABiTs trademark). The properties of the buffer and YBa 2 Cu 3 O 7 films on rolled-textured Ni are discussed, with emphasis given to the crystallographic and microstructural properties that determine the superconducting properties of these multilayer structures

  7. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  8. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Cheng, Sirui; Wang, Chunju; Ma, Mingzhen; Shan, Debin; Guo, Bin

    2016-01-01

    In the Zr_4_1_._2Ti_1_3_._8Cu_1_2_._5Ni_1_0Be_2_2_._5 (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  9. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sirui [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandebin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  10. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  11. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials For Hypersonic Flight

    Science.gov (United States)

    2011-11-30

    Ridge, D. G. Fletcher, C. O. Asma , O. Chazot, and J. Thömel, “Oxidation of ZrB2-SiC Ultra-High Temperature Ceramic Composites in Dissociated Air...Fletcher, C. O. Asma , “Characterization of ZrB2-SiC Ceramics Tested by Plasma Stream Oxidation,” poster, 32 th International Conference...Fahrenholtz, W.G., Hilmas, G.E., Zhu, S.M., Ridge, J., Fletcher, D.G., Asma , C.O., and Thomel, J., "Oxidation of ZrB2-SiC Ultrahigh-Temperature

  12. Influences of Cr content and PWHT on microstructure and oxidation behavior of stainless steel weld overlay cladding materials in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y.; Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aramaki Aoba, Aoba-ku, Sendai City 980-8579 (Japan)

    2015-12-15

    Influences of Cr content and post weld heat treatment (PWHT) on microstructure and oxidation behavior of stainless steel cladding materials in high temperature water were investigated. The amounts of metal oxidized and dissolved were estimated to compare the oxidation behaviors of cladding materials with different Cr contents and PWHT. The results indicated that higher Cr content led to formation of more ferrite content, and carbides were found along δ/γ phase interface after PWHT. Higher Cr content enhanced the pitting resistance and compactness of the oxide film to reduce metal amount oxidized and dissolved, which mitigated the weight changes and the formation of Fe-rich oxides. PWHT promoted more and deeper pitting holes along the δ/γ phase interface due to formation of carbides, which resulted in an increase in metal amount oxidized and dissolved, and were also responsible for more Fe-rich oxides and higher weight changes. - Highlights: • The amounts of metal oxidized and metal dissolved were estimated. • Higher Cr content increased ferrite content and PWHT led to formation of carbides. • PWHT promoted more and deeper pitting holes along the δ/γ phase interface. • Lower Cr content and PWHT promoted the metal amounts oxidized and dissolved. • Lower Cr content and PWHT increased weight changes and Fe-rich film formation.

  13. Crystal structure and ionic conduction path of solid electrolytic materials by high temperature neutron diffraction method

    International Nuclear Information System (INIS)

    Yashima, Masatomo; Nomura, Katsuhiro

    2005-01-01

    Research of the distribution of oxide ions and the ionic conduction path of bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ) and lanthanum gallate ((La 0.8 Sr 0.2 )(Ga 0.8 Mg 0.15 Co 0.05 )O 3-δ ) is stated. The high temperature neutron diffraction method, analytical method such as Rietveld method, crystal structure analysis of ionic conductor and MEM (Maximum- Entropy Method) are explained. The nuclear density distribution of oxide ions in bismuth oxide showed so larger distribution in the direction of and than Bi ions that the oxide ions conducted these direction in the crystal. The nuclear density distribution of oxide ions of cerium oxide indicated larger distribution in the direction of than Ce ions and its tendency was remarkable at high temperature. Accordingly, the oxide ions conducted in the direction of and . The oxide ions distribution in lanthanum gallate compound was larger and complicated than positive ions. The oxide ions conducted to by describing an arc between the two stable positions. The nuclear density on the conduction path increased with increasing temperature. This above result corresponded to increase of oxide ion conductivity in the area. (S.Y.)

  14. High-temperature equilibrium vacancy formation in ceramic materials studied by positron annihilation

    International Nuclear Information System (INIS)

    Forster, M.; Claudy, W.; Hermes, H.; Major, J.; Schaefer, H.E.; Koch, M.; Maier, K.; Stoll, H.

    1992-01-01

    Positron lifetime measurements were used in order to study thermal vacancy formation in NiO, YBa 2 Cu 3 O 7-δ , α-Al 2 O 3 , MgO and 6H-SiC at high temperatures. In NiO two increases of the positron trapping rate at 450K and 1200K (po 2 =10 5 Pa) are attributed to the change of charge of neutral extrinsic Ni-vacancies (c ≅ 10 -4 ) into a negative charge state and to the nonstochiometric formation of charged Ni-vacancies at high temperatures. In YBa 2 Cu 3 O 7-δ the oxygen loss or uptake at T > 680K with an activation enthalpy of 1.03eV can be studied by the variation of the positron lifetime with temperature and oxygen partial pressure. In α-Al 2 O 3 the positrons are annihilated from the delocalized free state between 1000K and 2250K and no positron trapping of thermally formed vacancies was detected which may be understood in terms of the theoretically predicted low concentrations of thermal vacancies. In MgO and 6H-SiC positron lifetime measurements were performed up to temperatures of about 2000K

  15. Characterisation of material behaviour in high temperature aqueous environments by means of electrochemical techniques

    International Nuclear Information System (INIS)

    Bojinov, M.; Laitinen, T.; Maekelae, K.; Sirkiae, P.; Beverskog, B.

    1998-01-01

    Electrochemical measurements in solutions simulating power plant coolants are complicated by the low conductivity of the water, especially in the case of boiling water reactor (BWR) environments. To be able to obtain useful information also in BWR conditions, electrochemical techniques based on a thin-layer electrode arrangement are introduced. This arrangement makes it possible to perform voltammetric and electrochemical impedance measurements in high-temperature water with a room temperature conductivity (κ) as low as 0.1 μScm -1 . A combination of these results with those obtained by means of measuring the resistance of the surface film using the contact electric resistance (CER) technique facilitates versatile characterisation of oxide film behaviour. Examples are given on impedance and CER measurements of the oxide films formed on AISI 316 stainless steel in high temperature high purity (κ -1 ) water and on OX18H10T stainless steel in VVER water. Correlations between temperature, hydrogen and oxygen content of the solution and the oxide behaviour are discussed. (author)

  16. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  17. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    Science.gov (United States)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-03-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  18. Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development

    International Nuclear Information System (INIS)

    Basol, Mit; Kielb, John F.; MuHooly, John F.; Smit, Kobus

    2007-01-01

    On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate

  19. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO_2 to U metal in LiCl-1wt.% Li_2O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  20. Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

    International Nuclear Information System (INIS)

    Eck, J.; Sans, J.-L.; Balat-Pichelin, M.

    2011-01-01

    The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the probe. In this study, the physical and chemical behavior of carbon materials is experimentally investigated under high temperatures (1600-2100 K), high vacuum (10 -4 Pa) and VUV radiation in conditions near those at perihelion for SP+. Thanks to several in situ and ex situ characterizations, it was found that VUV radiation induced modification of outgassing and of mass loss rate together with alteration of microstructure and morphology.

  1. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay; Kara, Ayhan; Korkut, Hatun [Sinop Univ. (Turkey). Dept. of Nuclear Energy Engineering

    2016-12-15

    Ultra High Temperature Ceramics (UHTCs) have low density and high melting point. So they are useful materials in the nuclear industry especially reactor core design. Three UHTCs (silicon carbide, vanadium carbide, and zirconium carbide) were evaluated as the nuclear fuel cladding materials. The SERPENT Monte Carlo code was used to model CANDU, PWR, and VVER type reactor core and to calculate burnup parameters. Some changes were observed at the same burnup and neutronic parameters (keff, neutron flux, absorption rate, and fission rate, depletion of U-238, U-238, Xe-135, Sm-149) with the use of these UHTCs. Results were compared to conventional cladding material zircalloy.

  2. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  3. Transient regimes during high-temperature deformation of a bulk metallic glass: A free volume approach

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Brechet, Y.; Blandin, J.J.; Soubeyroux, J.L.

    2007-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition range. Compression and stress-relaxation tests have been conducted. The stress-strain curves are modeled in the framework of the free volume theory, including transient phenomena (overshoot and undershoot). This approach allows several physical parameters (activation volume, flow defect creation and relaxation coefficient) to be determined from a mechanical experiment. This model is able to rationalize the dependency of stress overshoot on relaxation time. It is shown that, due to the relationship between flow defect concentration and free volume model, it is impossible to determine the equilibrium flow defect concentration. However, the relative variation of flow defect is always the same, and all the model parameters depend on the equilibrium flow defect concentration. The methodology presented in this paper should, in the future, allow the consistency of the free volume model to be assessed

  4. The materials programme for the high-temperature gas-cooled reactor in the Federal Republic of Germany: Status of the development of high-temperature materials, integrity concept, and design codes

    International Nuclear Information System (INIS)

    Nickel, H.; Bodmann, E.; Seehafer, H.J.

    1990-01-01

    During the last 15 years, the research and development of materials for high temperature gas-cooled reactor (HTGR) applications in the Federal Republic of Germany have been concentrated on the qualification of high-temperature structural alloys. Such materials are required for heat exchanger components of advanced HTGRs supplying nuclear process heat in the temperature range between 750 deg. and 950 deg. C. The suitability of the candidate alloys for service in the HTGR has been established, and continuing research is aimed at verification of the integrity of components over the envisaged service lifetimes. The special features of the HTGR which provide a high degree of safety are the use of ceramics for the core construction and the low power density of the core. The reactor integrity concept which has been developed is based on these two characteristics. Previously, technical guidelines and design codes for nuclear plants were tailored exclusively to light water reactor systems. An extensive research project was therefore initiated which led to the formulation of the basic principles on which a high temperature design code can be based. (author)

  5. Positron annihilation in Si and Si-related materials in thermal equilibrium at high temperature

    International Nuclear Information System (INIS)

    Uedono, A.; Muramatsu, M.; Ubukata, T.; Tanino, H.; Shiraishi, T.; Tanigawa, S.; Takasu, S.

    2001-01-01

    Annihilation characteristics of positrons in the carbon/Si structure in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Doppler broadening spectra of the annihilation radiation were measured as a function of incident positron energy in the temperature range between 298 K and 1473 K. Above 1173 K, the value of S corresponding to the annihilation of positrons near the carbon/Si interface started to increase, which was attributed to the carbonization of Si and the introduction of open-space defects due to the diffusion of Si atoms toward the carbon layer. The behavior of Ps in a thermally grown SiO 2 film was also studied at 298-1523 K. (orig.)

  6. Fractal Dimension of Fracture Surface in Rock Material after High Temperature

    Directory of Open Access Journals (Sweden)

    Z. Z. Zhang

    2015-01-01

    Full Text Available Experiments on granite specimens after different high temperature under uniaxial compression were conducted and the fracture surfaces were observed by scanning electron microscope (SEM. The fractal dimensions of the fracture surfaces with increasing temperature were calculated, respectively. The fractal dimension of fracture surface is between 1.44 and 1.63. Its value approximately goes up exponentially with the increase of temperature. There is a quadratic polynomial relationship between the rockburst tendency and fractal dimension of fracture surface; namely, a fractal dimension threshold can be obtained. Below the threshold value, a positive correlativity shows between rockburst tendency and fractal dimension; when the fractal dimension is greater than the threshold value, it shows an inverse correlativity.

  7. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  8. High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors

    Science.gov (United States)

    2005-07-01

    Mn)As and Its Heterostructures,” Acta Physica Polonica A, 94 (2):155–164 (August 1998). 79. Ohno, Y., D. K. Young, B. Beschoten, F. Matsukura, H. Ohno...reactive molecular-beam epitaxy,” Physical Review B , 67 (16):16205 (April 2003). 26. Dietl, T. “From Magnetic Polarons to Ferromagnetism,” Acta Physica ...samples,” Physica B , 308-310 :985–988 (December 2001). 15. Bradley, F. N. Materials for Magnetic Functions (First Edition). New York: Hayden, 1971. 16

  9. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  10. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  11. Treatment of low strains and long hold times in high temperature metal fatigue by strainrange partitioning

    International Nuclear Information System (INIS)

    Manson, S.S.; Zab, R.

    1977-08-01

    A simple procedure for treating creep-fatigue for low strainranges and long hold times is outlined. A semi-experimental approach, wherein several cycles of the imposed loading is actually applied to a specimen in order to determine the stable hysteresis loop, can be very useful in the analysis. Since such tests require only a small fraction of the total failure time, they are not inherently prohibitive if experimental equipment is available. It is, in fact, a simple method of by-passing the need for accurate constitutive equations since the material itself acts to translate the imposed loading into the responsive hysteresis loops. When Strainrange Partitioning has been applied in such cases very good results have been obtained

  12. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  13. High pressure study of high temperatures superconductors: Material base, universal Tc-behavior, and charge transfer

    International Nuclear Information System (INIS)

    Chu, C.W.; Hor, P.H.; Lin, J.G.; Xiong, Q.; Huang, Z.J.; Meng, R.L.; Xue, Y.Y.; Jean, Y.C.

    1991-01-01

    The superconducting transition temperature (T c ) has been measured in YBa 2 Cu 3 O 6.7 , YBa 2 Cu 3 O 7 , Y 2 Ba 4 Cu 7 O 15 , YBa 2 Cu 4 O 8 , Tl 2 Ba 2 Ca n-1 Cu n O n+4-δ , La 2-x Sr x CuO 4 , and La 2-x Ba x CuO 4 under high pressures. The pressure effect on the positron lifetime (τ) has also been determined in the first four compounds. Based on these and other high pressure data, the authors suggest that (1) all known cuprate high temperature superconductors (HTS's) may be no more than mere modifications of either 214-T, 214-T', 123, or a combination of 214-T' and 123, (2) a nonmonotonic T c -behavior may govern the T c -variation of all hole cuprate HTS's and (3) pressure can induce charge transfer leading to a T c -change. The implications of these suggestions will also be discussed

  14. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  15. Thermodynamics of the Volatilization of Actinind metals in the High-Temperature Treatment of Radioactive Wastes

    International Nuclear Information System (INIS)

    Adamson, Martyn G.; Olander, Donald R.

    1999-01-01

    We are performing a detailed study of the volatilization behavior of U, Pu and possibly Am and Np under conditions relevant to the thermal treatment (destruction) of actinide containing organic-based mixed and radioactive wastes. The primary scientific goal of the work is to develop a basic thermochemical understanding of actinide volatilization and partitioning/speciation behavior in the thermal processes that are central to DOE/EM's mixed waste treatment program. This subject addresses at least two key technical needs/problem areas recently identified by DOE/EM's Office of Science and Technology: emission-free destruction of organic wastes, and interactions between actinides and organic residues in materials stabilization. A sound basis for designing safe and effective treatment systems, and the ability to allay public concerns about radioactive fugitive emissions, will be the principal benefits of the project. The proposed work is a combination of experimental studies and thermodynamic modeling. Vapor pressure measurements will be made to determine U, Pu and possibly Am volatile species and the extent of their volatilization when UO2/U3O8, PuO2 and AmO2 solids are heated to temperatures of 500 to1200 C under pyrolyzing (reducing) conditions or under oxidizing conditions in the presence of chlorine. Work on uranium volatilization under reducing conditions is being performed in a laboratory at UC Berkeley in a collaboration with Professor D.R. Olander. In parallel with the experimental effort, a complete thermodynamic database for expected actinide gaseous species will be developed from literature data, from the proposed measurements, and from data predictions using bond energy correlation and statistical thermodynamics estimation methods

  16. Long-term creep behavior of high-temperature gas turbine materials under constant and variable stress

    International Nuclear Information System (INIS)

    Granacher, J.; Preussler, T.

    1987-01-01

    Within the framework of the documented research project, extensive creep rupture tests were carried out with characteristic, high-temperature gas turbine materials for establishment of improved design data. In the range of the main application temperatures and in stress ranges down to application-relevant values the tests extended over a period of about 40,000 hours. In addition, long-term annealing tests were carried out in the most important temperature ranges for the measurement of the density-dependent straim, which almost always manifested itself as a material contraction. Furthermore, hot tensile tests were carried out for the description of the elastoplastic short-term behavior. Several creep curves were derived from the results of the different tests with a differentiated evaluation method. On the basis of these creep curves, creep equations were set up for a series of materials which are valid in the entire examined temperature range and stress range and up to the end of the secondary creep range. Also, equations for the time-temperature-dependent description of the material contraction behavior were derived. With these equations, the high-temperature deformation behavior of the examined materials under constant creep stress can be described simply and application-oriented. (orig.) With 109 figs., 19 tabs., 77 refs [de

  17. Investigation of Material Problems for High Temperature, High Power Space Energy-Conversion Systems.

    Science.gov (United States)

    1986-07-01

    Ednonds: Segregation to Interphase Boundaries in Liquid-Phase Sintered Tungsten Alloys, Metallurg. Trans. 14A, 667, 1983. 77. N. Adam : The Physics and...case dispersion-strengthening alloys are superior. Theories --’ of dispersion strengthening have been reviewed by Ansell 14]. . In general, the...metals and alloys, ASM, Cleverland, Ohio , 1, 29-37. 4. Ansel , G.S.(1970), Physical Metallurgy (2nd. ed.) (R. W.Cahned) pp.1083-1128, North-Holland

  18. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  19. High-Temperature Release of SO2 from Calcined Cement Raw Materials

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of alternative fuels in the material inlet end of cement rotary kilns, local reducing conditions may occur and cause reductive decomposition of sulfates from calcined cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2...... concentration, which may cause deposit formation in the kiln system. In this study, the release of sulfur from calcined cement raw materials under both oxidizing and reducing conditions is investigated. The investigations include thermodynamic equilibrium calculations in the temperature interval of 800–1500 °C...... and experiments in a tube furnace reactor in the temperature interval of 900–1100 °C. The investigated conditions resemble actual conditions in the material inlet end of cement rotary kilns. It was found that the sulfates CaSO4, K2SO4, and Na2SO4 were all stable under oxidizing conditions but began to decompose...

  20. International Conference: Computer-Aided Design of High-Temperature Materials

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1998-01-01

    .... The conference was attended by experimental and computational materials scientists, and experts in high performance computing and communications from universities, government laboratories, and industries in the U.S., Europe, and Japan...

  1. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  2. Thermal expansion and phase transformation studies on some materials by high temperature x-ray powder diffractometry

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Kutty, K.V.G.; Jajoo, H.K.; Ananthakrishnan, S.K.; Asurvatharaman, R.

    1988-01-01

    A high temperature chamber based on electrical resistance heating has been integrated to an existing x-ray powder diffractometer. The system is capable of going upto 2500degC at programmed rates of heating. Temperature measurement is carried out by means by Pt/Rh or W/Re thermocouples or by optical pyrometry depending upon the temperature range. Provision exists for performing high temperature x-ray diffractometry in vacuum or in a gaseous atmosphere of low x-ray absorption. The x-ray optical alignment has been ensured by accurately measuring the unit cell lengths of x-ray diffraction standards like silicon and tungsten. The thermocouples have been calibrated within the system by monitoring the melting points of gold and silver. The well characterized transformation of zirconia from the monoclinic to tetragonal structure occuring around 1100degC has been satisfactorily reproduced . The high temperature phase transitions in some rare earth oxides have been studi ed. lattice parameter measurements on a variety of materials as a function of temperature upto 1500degC have been carried out and the data found to be in agreement with the literature values. From the measured lattice parameter values, percentage thermal expansion and coefficients of thermal expansion have been calculated for many substances from room temperature to 15000degC. (author). 20 refs., 9 figs

  3. Cermet materials prepared by combustion synthesis and metal infiltration

    Science.gov (United States)

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  4. High temperature outgassing tests on materials used in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Holtrop, K.L.; Hansink, M.J.

    2006-01-01

    This article is a continuation of previous work on determining the outgassing characteristics of materials used in the DIII-D magnetic fusion tokamak [K. L. Holtrop, J. Vac. Sci. Technol. A 17, 2064 (1999)]. Achievement of high performance plasma discharges in the DIII-D tokamak requires careful control of impurity levels. Among the techniques used to control impurities are routine bakes of the vacuum vessel to an average temperature of 350 deg. C. Materials used in DIII-D must release only very small amounts of impurities (below 2x10 -6 mole) at this temperature that could be transferred to the first wall materials and later contaminate plasma discharges. To better study the behavior of materials proposed for use in DIII-D at elevated temperatures, the initial outgassing test chamber was improved to include an independent heating control of the sample and a simple load lock chamber. The goal was to determine not only the total degassing rate of the material during baking, but to also determine the gas species composition and to obtain a quantitative estimate of the degassing rate of each species by the use of a residual gas analyzer. Initial results for aluminum anodized using three different processes, stainless steel plated with black oxide and black chrome, and a commercially available fiber optic feedthrough will be presented

  5. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  6. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Hong, Sung Deok; Kim, Yong Wan; Kim, Seon Jin; Park, Jae Young; Ekaputra, I. M. W.

    2013-01-01

    This paper presents a comparative investigation on the high-temperature tensile and creep properties of Alloy 617 base metal (BM) and weld metal (WM) fabricated by a gas tungsten arc weld process. The WM had higher yield strength and lower ultimate tensile strength than the BM does; however, its elongation was significantly lower than that of the BM. The creep curve of the BM and WM was somewhat different from that of typical heat-resistance steel, and did not show a textbook creep. The WM exhibited a longer creep rupture life, lower creep rate, and lower rupture ductility than the BM. However, as the creep rupture time reached approximately 36,800 h, the creep life of the WM was expected to be almost similar to that of the BM; and after 36,800 h, its creep life was expected to be worse than the BM. Loner creep tests is needed to investigate the long-term creep life of the WM. The creep failure mode of the BM and WM was obviously an intergranular cracking of the cavity formation and growth mechanisms, although it was more evident in the WM. The BM had a more ductile fracture surface than the WM

  7. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  8. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  9. Material Solutions to Mitigate the Alkali Chloride-Induced High Temperature Corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed

    stainless steels like TP347HFG. For this purpose theoretical and experimental investigations were performed, which can be divided into three major parts: Part 1: Study of the reactivity between oxides and KCl Calculation of the metal-oxygen-chlorine phase stability diagrams was performed for a large number...... were observed. For ferritic stainless steels internal oxidation/nitridation together with the detection of potassium in the inner oxide was found. For the investigated Ni-base silica former (alloy HR160), the extent of attack was relatively small and no internal oxidation/nitridation was observed....... However, potassium enrichment was found in the inner oxide along with Si and Cr. In summary, the measurement of the depth of attack on all the investigated alloys indicated that stainless steels EN1.4057 and Sanicro 28 along with the Ni-base alloys 625 and HR160 performed slightly better than the current...

  10. High-temperature mechanical and material design for SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    Silicon Carbide (SiC) fiber reinforced composites (FRC's) are strong potential candidate structural and high heat flux materials for fusion reactors. During this past decade, they have been vigorously developed for use in aerospace and transportation applications. Recent fusion reactor systems studies, such as ARIES, have concluded that further development of SiC composites will result in significant safety, operational, and waste disposal advantages for fusion systems. A concise discussion of the main material and design issues related to the use of SiC FRC's as structural materials in future fusion systems is given in this paper. The status of material processing of SiC/SiC composites is first reviewed. The advantages and shortcomings of the leading processing technology, known as Chemical Vapor Infiltration are particularly highlighted. A brief outline of the design-relevant physical, mechanical, and radiation data base is then presented. SiC/SiC FRC's possess the advantage of increased apparent toughness under mechanical loading conditions. This increased toughness, however, is associated with the nucleation and propagation of small crack patterns in the structure. Design approaches and failure criteria under these conditions are discussed

  11. Computer-Aided Design of Materials for use under High Temperature Operating Condition

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K. R.; Rao, I. J.

    2010-01-31

    The procedures in place for producing materials in order to optimize their performance with respect to creep characteristics, oxidation resistance, elevation of melting point, thermal and electrical conductivity and other thermal and electrical properties are essentially trial and error experimentation that tend to be tremendously time consuming and expensive. A computational approach has been developed that can replace the trial and error procedures in order that one can efficiently design and engineer materials based on the application in question can lead to enhanced performance of the material, significant decrease in costs and cut down the time necessary to produce such materials. The work has relevance to the design and manufacture of turbine blades operating at high operating temperature, development of armor and missiles heads; corrosion resistant tanks and containers, better conductors of electricity, and the numerous other applications that are envisaged for specially structured nanocrystalline solids. A robust thermodynamic framework is developed within which the computational approach is developed. The procedure takes into account microstructural features such as the dislocation density, lattice mismatch, stacking faults, volume fractions of inclusions, interfacial area, etc. A robust model for single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model is developed. Having developed the model, we then implement in a computational scheme using the software ABAQUS/STANDARD. The results of the simulation are compared against experimental data in realistic geometries.

  12. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  13. A review of thermo-mechanical considerations of high temperature materials for synchrotron applications

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1993-01-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source (APS) generate x-ray beams with very high heat load and heat flux levels. Certain front end and beamline components will be required to sustain total heat loads of 3.8 to 15 kW and heat flux levels exceeding 400 W/MM 2 even during the first phase of this project. Grazing geometry and enhanced heat transfer techniques used in the design of such components reduce the heat flux levels below the 30 W/MM 2 level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures are sustainable, the structural stresses and the fatigue issues remain viable concerns. Cyclic thermal loads have a propensity to cause spallation and thermal striping concerns. As such, the steady-state part of the problem is much easier to understand and handle than the time- dependent part. Ease of bonding as well as ultrahigh vacuum and radiation compatibility are additional constraints on material selection for these components. The two copper materials are the traditional OFHC and the newer sintered copper, Glidcop (a trademark product of the SCM Corporation of North Carolina), which are very commonly used in synchrotron components. New materials are also appearing in the form of heat sinks or heat spreaders that are bonded to the base copper in some fashion. These are either partially transparent to x-rays and have engineered volumetric heating and/or very conductive thermally to spread the thermal load in a preferred way. These materials are reviewed critically for high-heat-load or high-heat-flux applications in synchrotrons

  14. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  15. Stability of test environments for performance evaluation of materials for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Wilson, D.F.; Bell, G.E.C.

    1993-01-01

    Stability of the primary helium-based coolant test gas for use in performance ests of materials for the Modular High-Temperature Gas-Cooled Reactor (MHTGR) was determined. Results of tests of the initial gas chemistry from General Atomics (GA) at elevated temperatures, and the associated results predicted by the SOLGASMIX trademark modelling package are presented. Results indicated that for this gas composition and at flow rates obtainable in the test loop, 466 ± 24C is the highest temperature that can be maintained without significantly altering the specified gas chemistry. Four additional gas chemistries were modelled using SOLGASMIX trademark

  16. Development of a structure-dependent materials model for complex high-temperature loads: Turbine blades of IN 738 LC

    International Nuclear Information System (INIS)

    1989-01-01

    In the framework of a material research programme of the Federal Ministry for Research and Technology a joint project of 10 institutes has started. It aims at developing new concepts for high-temperature components. A subtask is concerned with the internally cooled turbine blade of IN 738 LC for stationary gas turbines. The envisaged procedure for the development of the design conception and the level of knowledge concerning the influencing parameters of the structure and the mechanical behaviour at high operating temperatures are reported on. (orig.) [de

  17. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  18. Short-time, high temperature mechanical testing of electrically conductive materials

    International Nuclear Information System (INIS)

    Marion, R.H.; Karnes, C.H.

    1975-10-01

    Design and performance details are given for a facility which was developed to obtain the mechanical properties of materials under high heating rate or transient temperature conditions and medium strain rates. The system is shown to be applicable to materials possessing electrical resistivities ranging from that of aluminum to that of graphite without taxing the heating capability. Heating rates as high as 2000 0 K/s in graphite are attained under controlled conditions. Methods of measuring temperature and the effects of expected temperature distributions are discussed. A method for measuring strain valid for transient temperature conditions to 3000 0 K is described. Results are presented for the stress-strain behavior of 316 stainless steel and ATJ(S) graphite obtained for heating times of a few seconds. (auth)

  19. Effect of sheath material on critical current characteristics of MgB2 at high temperatures

    International Nuclear Information System (INIS)

    Kiuchi, M.; Yamauchi, K.; Kurokawa, T.; Otabe, E.S.; Matsushita, T.; Okada, M.; Tanaka, K.; Kumakura, H.; Kitaguchi, H.

    2004-01-01

    Critical current density and irreversibility field were measured at various temperatures and magnetic fields for MgB 2 PIT tape specimens with different sheaths materials. The experimental results were compared with theoretical estimations using the flux creep-flow model. It is found that the hardness of sheath material indirectly affects the pinning property only through the packing density of MgB 2 . It is considered that the critical current density is mainly determined by a low value of distributed local critical current density determined by grain connectivity. On the other hand, the irreversibility field which is approximately the same among the three tapes is mainly determined by the average pinning strength

  20. Investigation into mechanical properties of joints of heterogeneous materials brazed with high-temperature solders

    International Nuclear Information System (INIS)

    Lomenko, V.I.; Merkushev, V.P.; Borodina, L.M.; Sycheva, T.S.; Tokhtina, O.A.; Frolov, N.N.

    1988-01-01

    Mechanical properties of copper joints with copper, 12Kh18M10T steel and KhD50 composite obtained by vacuum brazing by copper-titanium solder as compared with properties of joints brazed by PSr 72 and PMFOTsr 6-4-0.03 solders in hydrogen are studied. Dependences of joints strength on temperature of contact - reactive vacuum brazing are obtained. Possible applications of joints of dissimilar materials in electrovacuum devices subjected to the effect of dynamic loadings are established

  1. Evaluation of cermet materials suitable for lithium lubricated thrust bearings for high temperature operation

    Science.gov (United States)

    Sinclair, J. H.; Hendrixson, W. H.

    1974-01-01

    Cerment materials (HfC - 10 wt% W; HfC - 10 wt% TaC - 10 wt%W; HfC - 2 wt% CbC - 8 wt% Mo;Hfn - 10 wt% W; Hfn - 10 wt% TaN - 10 wt% W; and ZrC - 17 wt% W) were evaluated for possible use as lithium-lubricated bearings in the control system of a nuclear reactor. Tests of compatibility with lithium were made in T-111 (Ta-8W-2Hf) capsules at temperatures up to 1090 C. The tendencies of HfC-TaC-W, HfC-CbC-Mo, and HfN-W to bond to themselves and to the refractory alloys T-111 and TZM when enclosed in lithium-filled capsules under a pressure of 2000 psi at 980 and 1200 C for 1933 hours were evaluated. Thermal expansion characteristics were determined for the same three materials from room temperature to 1200 C. On the basis of these tests, HfC-10 TaC-10W and HfN-10W were selected as the best and second best candidates, respectively, of the materials tested for the bearing application.

  2. ODS-materials for high temperature applications in advanced nuclear systems

    Directory of Open Access Journals (Sweden)

    C.C. Eiselt

    2016-12-01

    Full Text Available A ferritic ODS-alloy (Fe-14Cr-1W-0.25Ti has been manufactured by application of the powder metallurgical production route involving at first mechanical alloying of ∼10kg pre-alloyed steel powder together with an Y2O3 addition for 12h in a high energy industrial ball mill under hydrogen atmosphere at the company ZOZ GmbH. As a next step, one part of the alloyed powder was hot extruded into rods while another portion was hot isostatically pressed into plates. Both materials were then heat treated. A characterization program on these ODS-alloy production forms included microstructural and mechanical investigations: SANS and TEM assume the existence of Y2Ti2O7 nano clusters and show a bimodal distribution of ODS-particle sizes in both ODS variants. EBSD maps showed a strong 〈110〉 texture corresponding to the α fiber for the hot extruded ODS and a slight 〈001〉 texture for the hipped ODS material. Fracture toughness tests in different specimen orientations (extruded ODS with mini 0.2T C(T specimens together with Charpy impact tests revealed anisotropic mechanical properties: Promising (fracture toughness levels were obtained in the specimen orientation perpendicular to the extrusion direction, while the toughness levels remained low in extrusion direction and generally for the hipped ODS material at all test temperatures. The fracture toughness tests were performed according to ASTM E 1921 and 1820 standards.

  3. The European efforts in development of new high temperature rotor materials - COST536

    Energy Technology Data Exchange (ETDEWEB)

    Kern, T.U. [Siemens Energy, Muehlheim (Germany); Mayer, K.H. [Alstom Power, Nuernberg (Germany); Donth, B. [Saarschmiede, Voelklingen (Germany); Zeiler, G. [Boehler Schmiedetechnik, Kapfenberg (Austria); Di Gianfrancesco, A. [CSM, Roma (Italy)

    2010-07-01

    Despite the ongoing efforts to increase the amount of available alternative energy sources, fossil fuels such as lignite and hard coal will remain important for the energy mix and sustainability of energy supply. Fossil-fuelled Steam Power Plants (SSP's) or Combined Cycle power plants (CCPP's) will also continue to supply a significant portion of our energy needs. Within the frame of European COST536, a new project was installed with the aim of Alloy development for Critical Components of Environmentally friendly Power planTs (ACCEPT) aiming for material solutions for steam conditions up to 650 C. Martensitic materials should be used for thick-walled components to maintain high operational flexibility of such large plants. Rotors, casings, bolts, tubes, pipes, and water walls, are the critical components under current investigation. The class of the 9-12%Cr steels offers the highest potential to meet the required property levels for critical components such as rotor forgings. Therefore a significant effort to increase the application temperature of these steels was and is the focus of studies within Europe. Although there are 600 C materials already being successfully utilised in a number of advanced European power plants, further improvement in creep strength is being achieved by the addition of Boron and a well balanced Co content. Full-size prototype components are now being tested. New ideas to improve the behaviour and increase the application temperatures are under investigation. Results are reported here. (orig.)

  4. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-01-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25–200°C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface...... different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cosθ values. Studies of the effect of roughness and surface flaws on wettability...... contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability....

  5. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  6. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  7. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  8. Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Woisetschlaeger, Mischa, E-mail: Mischa.woisetschlager@lio.se [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Lussi, Adrian, E-mail: anders.persson@cmiv.lio.se [Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern (Switzerland); Persson, Anders, E-mail: adrian.lussi@zmk.unibe.ch [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Jackowski, Christian, E-mail: christian.jackowski@irm.uzh.ch [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Institute of Legal Medicine, University of Zuerich, Winterthurerstrasse 190/52, 8057 Zuerich (Switzerland)

    2011-11-15

    Objectives: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure. Methods: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale. Results: The majority of filling materials diminished in size at temperatures {>=}400 deg. C. HU values were stable for all materials up till 200 deg. C, and only slightly changed up to 600 deg. C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 deg. C. Conclusions: Over 600 deg. C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 deg. C and have to be optimized for bodies exposed to higher temperatures.

  9. Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures

    International Nuclear Information System (INIS)

    Woisetschlaeger, Mischa; Lussi, Adrian; Persson, Anders; Jackowski, Christian

    2011-01-01

    Objectives: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure. Methods: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale. Results: The majority of filling materials diminished in size at temperatures ≥400 deg. C. HU values were stable for all materials up till 200 deg. C, and only slightly changed up to 600 deg. C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 deg. C. Conclusions: Over 600 deg. C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 deg. C and have to be optimized for bodies exposed to higher temperatures.

  10. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  11. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    International Nuclear Information System (INIS)

    Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-01

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al 3 Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al 3 Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al 3 Zr crystals were completely dissolved in Al after 20 h. •Cubic Al 3 Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  12. Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft

    Science.gov (United States)

    Elefsiniotis, A.; Becker, Th.; Schmid, U.

    2014-06-01

    Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.

  13. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  14. Behaviour of neutron moderator materials at high temperatures in CASTOR registered -casks: qualification and assessment

    International Nuclear Information System (INIS)

    Krietsch, T.; Wolff, D.; Knopp, U.; Brocke, H.D.

    2004-01-01

    The Federal Institute for Materials Research and Testing (BAM) is the responsible German authority for the assessment of mechanical and thermal designs of transport and storage casks for radioactive materials. BAM checks up the proofs of the applicants in their safety reports and assesses the conformity to the Regulations for the Safe Transport of Radioactive Material. One applicant is the Gesellschaft fuer Nuklear-Behaelter mbH (GNB) with a new generation of transport and storage casks of CASTOR registered -design. GNB typically uses ultra high molecular weight Polyethylene (UHMW-PE) for the moderation of free neutrons. Rods made of UHMW-PE are positioned in axial bore holes in the wall of the cask and plates of UHMW-PE are in free spaces between primary and secondary lid and between the bottom of the cask and an outer plate (Figure 1). Because of the heat generated by the radioactive inventory and because of a strained spring at the bottom of every bore hole, UHMW-PE is subjected to permanent thermal and mechanical loads as well as loads from gamma and neutron radiation. UHMW-PE has been used under routine- and normal conditions of transport for maximum temperatures up to 130 C. For new generations of CASTOR registered -design maximum temperatures will be increased up to 160 C. That means a permanent use of UHMW-PE at temperatures within and above the melting region of the crystallites. In this paper, some results of special investigations for the proofs of usability of UHMW-PE at temperatures up to 160 C under real conditions of transport and storage in CASTOR registered -casks are given. For that, investigations on temperature dependent expansion behaviour under laboratory conditions as well as in large scale experiments, especially in the case of multiple heating and cooling, were done. Besides, geometrical creep strength for long-term loading by temperatures and pressures with regard to the chemical and physical stability properties of UHMW-PE above the

  15. Magnetic levitation/suspension system by high-temperature superconducting materials

    International Nuclear Information System (INIS)

    Chen, I.; Hsu, J.; Jamn, G.; Lin, C.E.; Wu, M.K.

    1997-01-01

    Recently, with the advance of materials processing techniques, such as top-seeding and melt-texturing (TSMT) method, very large single-grained Y-Ba-Cu-O (YBCO) samples up to several centimeters in diameter can be produced. Each sample is capable of levitating over kilograms of weight. A HTS magnetic levitation (MagLev) transportation prototype has been constructed at National Cheng-Kung University (NCKU) to validate the concept of HTS-MagLev system based on Meissner effect. This HTS-MagLev is an inherent stable levitation system, unlike traditional MagLev system that requires sensors and feedback circuits to dynamically adjust its unstable levitation position. In this report, the results of various magnetic levitation parameters, such as different permanent magnet configurations, relative levitation stability, levitation force, etc., as well as magnetic field intensity and distribution will be discussed. copyright 1997 American Institute of Physics

  16. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    International Nuclear Information System (INIS)

    Bickford, D.F.; Ondrejcin, R.S.; Salley, L.

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments

  17. Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas

    Science.gov (United States)

    Allen, Luke Daniel

    Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.

  18. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-15

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  19. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hwang, J. H.; Park, Y. S.; Kim, T. M.; Bae, D. H. [Sungkyunkwan University, Suwon (Korea, Republic of); Seo, W. B. [Institute of Mechanical Engineering, Yeungnam University, Daegu (Korea, Republic of); Han, J. W. [School of Mechanical Engineering, Hoseo University, Cheonan (Korea, Republic of)

    2016-10-15

    In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.

  20. Compatibility problems of canning materials with carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Darras, R.; Loriers, H.

    1964-01-01

    The adoption in France of carbon dioxide under pressure as a heat carrying fluid in advanced reactors of the gas-graphite and gas heavy water types has led to the necessity of finding a canning material capable of replacing magnesium alloys. Actually these latter can no longer be used above about 500 C, because of the proximity to their melting points and of their mechanical properties which become under these conditions insufficient, although their oxidation resistance in the presence of carbon dioxide is still acceptable. Beryllium which is particularly attractive because of its low neutron capture cross-section, has a very big disadvantage, amongst others: its use in the presence of carbon dioxide et 600 C is only possible if the gas is perfectly dry, the water-vapour partial pressure being the determining factor calling for a degree of drying which increases with increasing absolute pressure. In the opposite case after a short incubation period, the oxidation accelerates and leads to an intergranular corrosion which is rapidly destructive. Nevertheless, beryllium-calcium or beryllium-magnesium alloys containing 0,5 p 100 of the addition element make it possible to overcome this difficulty; they may be used in the presence of a few hundred vpm of water vapour up to at least 700 C. The metallurgical problems convected with the applicability of beryllium or its alloys have led however to the consideration of possibly using provisionally austenitic stainless steels These materials are intrinsically very resistant to oxidation, but, as only small thicknesses can be used because of their high capture cross-section, it is necessary to choose the grades which are least prone to oxidation. Above 300 C, the niobium stabilised grades, without addition of molybdenum are the most acceptable. Above 700 C, the 20 Cr - 25 Ni + Nb grade appears more suitable than the conventional 18 Cr - 10 Ni + Nb grade, especially as it is less liable to local oxide penetrations. Beryllium

  1. The problems of material pairs under the specific conditions of high-temperature reactors

    International Nuclear Information System (INIS)

    Schoening, J.

    1981-01-01

    This dissertation gives a detailed descirption of the problems of friction and solid lubrication of slide and ball bearings under HTR conditions. The first part is concerned with an analysis of established approaches for determining the friction factor and the development of a mathematical model on this basis, taking particular account of the following parameters. (1) Surface characteristics (peak-to-valley height, pressure angles of roughness elevations) and, (2) material properties of the friction partner (ductility, brittleness, crystal structure). The formula for friction factor thus arrived at incorporates the microscopic and sub-microscopic influence of the surface grain structure. In addition, the effects of elastic and plastic properties at the region of contact was studied. The derived equation is used to characterise frictional properties and enables a suitable and economic friction pair to be selected. The second part deals with the application of solid lubrication and the effect of the solid lubricant film on the mechanicsm and kinematics of ball bearings. In the final part of this investigation an evaluation of experimental results is carried out on the basis of the preceding theoretical studies in order to confirm the theoretical approach and to provide information of practical use on limits of application, cost details and aids to construction. (orig./IHOE) [de

  2. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  3. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature

    Science.gov (United States)

    Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming

    2017-06-01

    Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.

  4. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  5. High Temperature Steam Oxidation Testing of Candidate Accident Tolerant Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nelson, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkison, Adam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-23

    The Fuel Cycle Research and Development (FCRD) program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels in order to overcome the inherent shortcomings of light water reactor (LWR) fuels when exposed to beyond design basis accident conditions. The campaign has invested in development of experimental infrastructure within the Department of Energy complex capable of chronicling the performance of a wide range of concepts under prototypic accident conditions. This report summarizes progress made at Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL) in FY13 toward these goals. Alternative fuel cladding materials to Zircaloy for accident tolerance and a significantly extended safety margin requires oxidation resistance to steam or steam-H2 environments at ≥1200°C for short times. At ORNL, prior work focused attention on SiC, FeCr and FeCrAl as the most promising candidates for further development. Also, it was observed that elevated pressure and H2 additions had minor effects on alloy steam oxidation resistance, thus, 1 bar steam was adequate for screening potential candidates. Commercial Fe-20Cr-5Al alloys remain protective up to 1475°C in steam and CVD SiC up to 1700°C in steam. Alloy development has focused on Fe-Cr-Mn-Si-Y and Fe-Cr-Al-Y alloys with the aluminaforming alloys showing more promise. At 1200°C, ferritic binary Fe-Cr alloys required ≥25% Cr to be protective for this application. With minor alloy additions to Fe-Cr, more than 20%Cr was still required, which makes the alloy susceptible to α’ embrittlement. Based on current results, a Fe-15Cr-5Al-Y composition was selected for initial tube fabrication and welding for irradiation experiments in FY14. Evaluations of chemical vapor deposited (CVD) SiC were conducted up to 1700°C in steam. The reaction of H2O with the alumina reaction tube at 1700°C resulted in Al(OH)3

  6. TAOI B- Computational Microstructural Optimization Design Tool for High Temperature Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rajiv [Univ. Of North Texas, Denton, TX (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States)

    2015-02-28

    The objectives of this research were two-fold: (a) develop a methodology for microstructural optimization of alloys - genetic algorithm approach for alloy microstructural optimization using theoretical models based on fundamental micro-mechanisms, and (b) develop a new computationally designed Ni-Cr alloy for coal-fired power plant applications. The broader outcome of these objectives is expected to be creation of an integrated approach for ‘structural materials by microstructural design’. Three alloy systems were considered for computational optimization and validation, (i) Ni-20Cr (wt.%) base alloy using only solid solution strengthening, (ii) nano-Y2O3 containing Ni-20Cr-1.2Y2O3 (wt.%) alloy for dispersion strengthening and (iii) a sub-micron Al2O3 for composite strengthening, Ni-20Cr-1.2Y2O3-5.0Al2O3 (wt.%). The specimens were synthesized by mechanical alloying and consolidated using spark plasma sintering. Detailed microstructural characterization was done along with initial mechanical properties to validate the computational prediction. A key target property is to have creep rate of 1x10-9 s-1 at 100 MPa and 800oC. The initial results were quite promising and require additional quantification of strengthening contributions from dislocation-particle attractive interaction and load transfer. The observed creep rate was in order of 10-9 s-1 for longer time creep test of Ni-20Cr -1.2Y2O3-5Al2O3, lending support to the overall approach pursued in this project.

  7. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  8. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D. [Laboratoire PROMES-CNRS, Laboratoire Procedes, Materiaux et Energie Solaire, 7 rue du Four Solaire, 66120 Font-Romeu Odeillo (France)

    2007-07-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H{sup +} ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  9. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    International Nuclear Information System (INIS)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D.

    2007-01-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H + ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  10. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  11. Knowledge-based metals & materials

    OpenAIRE

    Sasson, Amir

    2011-01-01

    This study presents the Norwegian metal and material industry (defined as all metal and material related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, R&D and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.

  12. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  13. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  14. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  15. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.

    Science.gov (United States)

    Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E

    2012-09-01

    The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.

  16. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  17. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  18. Production of porous sintered materials using wastes of manufacturing engineering in self-propagating high-temperature synthesis

    Directory of Open Access Journals (Sweden)

    Y. S. Povstyana

    2016-06-01

    Full Text Available The increasing amount of wastes produced by the manufacturing engineering, as well as their physical and mechanical properties and restorability provide a search for sphere of their application. The actual problem of modern science is the utilization of wastes and using them in further production that will minimize their harmful impact on the environment and reduce the cost of expensive raw materials. Wastes are ideally suitable for the manufacture of porous permeable materials (filters. Powder metallurgy allows obtaining products with controlled filtration, physical and mechanical properties. Such materials are good filters for regeneration of technical liquids, oils, cooling fluids, sewage etc. The article analyzes the methods and technologies for the manufacture of porous ceramic materials and a new technology for their manufacture, which is based on use of mill scale and natural mineral – saponite as the main components. Compression technology provides products at low pressures and sintering by passing high-temperature synthesis. The proposed technology is characterized by low cost and good physical and mechanical properties of the product that gives a reason to use them for filtering and regeneration of technical liquids.

  19. Schottky junction interfacial properties at high temperature: A case of AgNWs embedded metal oxide/p-Si

    Science.gov (United States)

    Mahala, Pramila; Patel, Malkeshkumar; Gupta, Navneet; Kim, Joondong; Lee, Byung Ha

    2018-05-01

    Studying the performance limiting parameters of the Schottky device is an urgent issue, which are addressed herein by thermally stable silver nanowire (AgNW) embedded metal oxide/p-Si Schottky device. Temperature and bias dependent junction interfacial properties of AgNW-ITO/Si Schottky photoelectric device are reported. The current-voltage-temperature (I-V-T), capacitance-voltage-temperature (C-V-T) and impedance analysis have been carried out in the high-temperature region. The ideality factor and barrier height of Schottky junction are assessed using I-V-T characteristics and thermionic emission, to reveal the decrease of ideality factor and increase of barrier height by the increasing of temperature. The extracted values of laterally homogeneous Schottky (ϕb) and ideality factor (n) are approximately 0.73 eV and 1.58, respectively. Series resistance (Rs) assessed using Cheung's method and found that it decreases with the increase of temperature. A linear response of Rs of AgNW-ITO/Si Schottky junction is observed with respect to change in forward bias, i.e. dRS/dV from 0 to 0.7 V is in the range of 36.12-36.43 Ω with a rate of 1.44 Ω/V. Impedance spectroscopy is used to study the effect of bias voltage and temperature on intrinsic Schottky properties which are responsible for photoconversion efficiency. These systematic analyses are useful for the AgNWs-embedding Si solar cells or photoelectrochemical cells.

  20. Crack initiation and crack growth in high temperature materials under cyclic thermal stresses; Rissinitiierung und Risswachstum in Hochtemperaturwerkstoffen unter zyklisch thermischer Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, C.

    1996-12-01

    The high temperatures of use in drive units, such as the combustion chamber or the hot gas turbine, for example, usually cause high temperature changes. Great temperature differences occur for short periods in the components, and thermal shock is produced. In this work, theoretical and experimental investigations are introduced on crack initiation and crack growth in high temperature materials under cyclic thermal stresses. The experiments were carried out with the inter-metallic phase Ni{sub 3}Al, the nickel-based alloy Nimonic 80A and the iron-based alloy PM 2000 strengthened by oxide dispersion (ODS). A characteristic crack appearance picture was found for each material, which was examined more closely. The stresses occurring in the sample during one cycle were calculated with the aid of the finite element program ABAQUS, knowing the specific material parameters. Based on the linear-elastic fracture mechanics, stress intensity factors were calculated on the superimposition principle. Using the material data from isothermal crack propagation experiments, the prediction of fatigue crack spread with cyclic thermal stresses is compared with the experimental findings. (orig./AKF) [Deutsch] Die hohen Einsatztemperaturen in Antriebsaggregaten wie z.B. der Brennkammer oder der Heissgasturbine bedingen in der Regel hohe Temperaturwechsel. Dabei treten kurzzeitig grosse Temperaturunterschiede in den Bauteilen auf, ein Thermoschock wird erzeugt. In der vorliegenden Arbeit werden theoretische und experimentelle Untersuchungen zur Rissinitiierung und zum Risswachstum in Hochtemperaturwerkstoffen unter zyklisch thermischer Belastung vorgestellt. Die Experimente wurden mit der intermetallischen Phase Ni{sub 3}Al, der Nickelbasislegierung Nimonic 80A und der oxid-dispersionsverfestigten (ODS) Eisenbasislegierung PM2000 durchgefuehrt. Fuer jeden Werkstoff stellte sich ein charakteristisches Risserscheinungsbild dar, das naeher untersucht wurde. Die in der Probe auftretenden

  1. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  2. High-temperature distillation and consolidation of U–Zr cathode product from molten salt electrorefining of simulated metallic fuel

    International Nuclear Information System (INIS)

    Iizuka, Masatoshi; Akagi, Masaaki; Koyama, Tadafumi

    2014-01-01

    High-temperature distillation experiments were performed using U–Zr cathode products of various compositions to obtain knowledge on suitable operation conditions and equipment design such as the container material. The LiCl–KCl–UCl 3 electrolyte adhering to the U–Zr cathode products was almost completely vaporized at 1273–1573 K, under pressure of 10–300 Pa. Massive ingots were obtained from the remaining cathode products by heating them at 1573–1673 K. Three different phases were identified in a distillation product of a higher Zr content. A U-rich bulk (3.9 wt% Zr) and a deposit of a relatively low Zr content (17.2 wt% Zr) were considered to be formed during the cooling process of the distillation product. Another Zr-rich deposit (64.7 wt% Zr), which might cause the inhomogeneity of product ingots, was expected to result from Zr-rich spots that originally existed in the cathode product. The Cl content in the cathode product was decreased by distillation to less than 1/200 of that after electrorefining, while it was markedly larger at a higher Zr concentration. To limit the amount of Zr-rich deposit and the Cl content, the amount of Zr in the distillation product should be controlled to a sufficiently low level by optimization of the operating procedures and conditions in the electrorefining and distillation steps. The zirconia coating material developed in this study showed superior performance in inhibiting reaction between the melted U–Zr alloy melt and the graphite crucible and also in the easy release of the U–Zr ingot from the crucible

  3. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    Science.gov (United States)

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  4. Heterometallic and homometallic complexes containing bifunctional ligands and their application in high-temperature oxide superconductor materials

    Science.gov (United States)

    Breeze, Steven R.

    We have been interested in the development of soluble precursors for the production of YBasb2Cusb3Osb{7-delta} and Bisb2(Ca,Sr)sbn+1CusbnOsb(2n + 4) + delta, superconductor materials. Several heterometallic and homometallic complexes containing the constituent metals of these superconductors and bifunctional ligands such as aminoalcohols, acetates and thioethers have been isolated and structurally characterized. The thermal decomposition properties and magnetic properties of some of these compounds have been investigated. The first ligand system investigated involved 1,3-bis(dimethylamino)-2-propanol (bdmapH). By varying the ratio of bdmapH, Cu(OCHsb3)sb2, and M(Osb2CCFsb3)sb2 (M = Ca, Sr) several heterometallic complexes have been obtained, including Srsb2Cusb2(bdmap)sb4(Osb2CCFsb3)sb4, CaCu(bdmap)sb2(Osb2CCFsb3)sb3(Hsb2O), Srsb2Cusb4(bdmap)sb6-(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2 and SrCusb2(bdmap)sb3(Osb2CCFsb3)sb3(THF). With the exception of Srsb2Cusb4(bdmap)sb6(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2, these compounds thermally decompose to form mixtures of fluorides and oxides. An analogous acetate compound SrCusb2(bdmap)sb3(Osb2CCHsb3)sb3(THF) has been produced, which forms the corresponding oxide at high temperature. A bismuth dimer, Bisb2(bdmap)sb2(Osb2CCHsb3)sb4(Hsb2O), has also been obtained. Superconducting powder of the Bisb2Srsb2CaCusb2Osb{8 + delta} and epitaxial superconducting films of the YBasb2Cusb3Osb{7-delta} superconductor have been produced using the bdmap and acetate ligands as cross-linking reagents. The second ligand system investigated involved di-2-pyridylmethanediol. Only homonuclear complexes have been obtained by using this ligand, including the mononuclear compound Cu ((2-py)sb2CO(OH)) sb2(HOsb2CCH sb3)sb2*CHsb2Clsb2, the tetranuclear compound Cusb4 ((2-py)sb2CO(OH)) sb2(Osb2CCHsb 3)sb6(Hsb2O)sb2*CHsb2Clsb2, and the bismuth dimer Bisb2 ((2-py)sb2CO(OH)) sb2(Osb 2CCFsb3)sb4*(THF)sb2. The tetranuclear Cusb4 compound was found to be

  5. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  6. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    International Nuclear Information System (INIS)

    Phillpot, Simon; Tulenko, James

    2011-01-01

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  7. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  8. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  9. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  10. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  11. Two classes of superconductors discovered in our material research: Iron-based high temperature superconductor and electride superconductor

    International Nuclear Information System (INIS)

    Hosono, Hideo

    2009-01-01

    We discovered two new classes of superconductors in the course of material exploration for electronic-active oxides. One is 12CaO . 7Al 2 O 3 crystal in which electrons accomodate in the crystallographic sub-nanometer-sized cavities. This material exhibiting metal-superconductor transition at 0.2 K is the first electride superconductor. The other is iron oxypnicitides with a layered structure. This superconductor is rather different from high T c cuprates in several respects. The high T c is emerged by doping carriers to the metallic parent phases which undergo crystallographic transition (tetra to ortho) and Pauli para to antiferromagnetic transition at ∼150 K. The T c is robust to impurity doping to the Fe sites or is induced by partial substitution of the Fe 2+ sites with Co 2+ or Ni 2+ . This article gives a brief summary of these discoveries and recent advances.

  12. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  13. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  14. Characterization of liquid metal reactor materials

    International Nuclear Information System (INIS)

    Kuk, I. H.; Ryu, W. S.; Kim, H. H. and others

    1999-03-01

    The objectives of this report were to assess the material requirements for LMR environment, to select the optimum candidates for KALIMER components, to characterize the performance for establishing a database of the structural materials for KALIMER, and to develop the basic material technologies for the localization of the advanced materials. Stainless steel ingots were melted by VIM and hot-rolled to plate with the thickness of 15mm. The plate was solution-treated for 1 hr at 1100 deg C and then water-quenched. Specimens were taken parallel to the rolling direction of the plate. The effects of nitrogen and phosphorus were analyzed on the high temperature mechanical properties of 316MRP (Liquid Metal Reactor, Primary candidate material) stainless steels with the different nitrogen content from 0.04 to 0.15% and with the different phosphorus content from 0.002 to 0.02%. Heat treatment was performed to investigate the changes in microstructure and mechanical properties of Cr-Mo steels for LMR heat transfer tube materials and core materials. The Cr-Mo steels were normalized at the temperatures between 900 deg C and 1200 deg C for 1hrs and tempered at the temperatures between 500 deg C and 800 deg C for 2hrs. Conventional optical and electron micrographic studies were carried out to investigate the martensite lath structure, carbide indentification and carbide shape. Vickers microhardness was measured at room temperature using 10g load. Tensile properties were tested at high temperature. Charpy V-notch impact tests were also carried out at temperature between -120 deg C and +180 deg C. (author). 72 refs., 28 tabs., 244 figs

  15. Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials

    International Nuclear Information System (INIS)

    Ginley, D.S.; Barr, L.; Ashby, C.I.H.; Plut, T.A.; Urea, D.; Siegal, M.P.; Martens, J.S.; Johansson, M.E.

    1994-01-01

    The development of passive and active electronics from high-temperature superconducting thin films depends on the development of process technology capable of producing appropriate feature sizes without degrading the key superconducting properties. We present a new class of chelating etches based on di- and tri-carboxylic acids that are compatible with positive photoresists and can produce sub-micron feature sizes while typically producing increases the microwave surface resistance at 94 GHz by less than 10%. This simple etching process works well for both the Y--Ba--Cu--O and Tl--Ba--Ca--Cu--O systems. In addition, we demonstrate that the use of chelating etches with an activator such as HF allows the etching of related oxides such as LaAlO 3 , which is a key substrate material, and Pb(Zr 0.53 Ti 0.47 )O 3 (PZT) which is a key ferroelectric material for HTS and other applications such as nonvolatile memories

  16. Mineralizer-assisted high-pressure high-temperature synthesis and characterization of novel phosphorus nitride imides and luminescent alkaline earth metal (oxo)nitridophosphates

    International Nuclear Information System (INIS)

    Marchuk, Alexey

    2016-01-01

    The main objectives of this thesis were the synthesis, identification and structural characterization of new alkaline earth metal (oxo)nitridophopshates and phosphorus nitrides. Furthermore, luminescence properties of the resulting materials should be investigated and a connection between these properties and the respective structures should be established. For this purpose, a range of synthesis strategies was employed, including conventional solid-state syntheses in silica ampoules and high-pressure high-temperature syntheses using the multianvil technique. The emphasis of the synthetic part of this thesis lies on the development of new synthetic strategies in order to increase crystallinity of alkaline earth metal (oxo)nitridophosphates and thus accelerate their structure determination. This involves the selection of a suitable mineralizer and the investigation of its interaction with the respective starting materials. In addition, the analytical methods applied in this thesis in order to identify and characterize the compounds are just as essential as the synthesis strategies. X-ray diffraction on single crystals and on powders was carried out as the main analytical method while being supported by quantitative and qualitative 1 H and 31 P solid-state NMR measurements, FTIR and energy-dispersive X-ray (EDX) spectroscopy, as well as electron microscopy methods including both imaging and diffraction techniques. Implied by the large number of novel structures investigated, theoretical studies including topological analysis, calculations of lattice energies and bond-valence sums also played a major role in this thesis. Optical analysis methods such as reflectance spectroscopy, luminescence microscopy and photoluminescence measurements helped to determine the luminescence properties of some of the presented compounds.

  17. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  18. Biaxial stress driven tetragonal symmetry breaking and high-temperature ferromagnetic semiconductor from half-metallic CrO2

    Science.gov (United States)

    Xiao, Xiang-Bo; Liu, Bang-Gui

    2018-03-01

    It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.

  19. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  20. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials

    International Nuclear Information System (INIS)

    Damian, F.

    2001-01-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  1. Interactions of reactor helium and simulating gas mixtures with high-temperature metals with particular regard to simultaneous deformation

    International Nuclear Information System (INIS)

    Berchtold, L.

    1983-01-01

    For the observation of multicomponent alloys (Inconel 617 and 713LC, chroman (Ni20Cr), vacromium (Ni20Cr+Si), TZM) in multicomponent HTR atmospheres (HHT search gas), interaction between gases and metals was studied, both in theoretical descriptions and experimentally. From the experimental viewpoint, gradual simplification employs, on the one hand, tests effected in undiluted atmospheres with exclusively oxidizing or carburizing properties; on the other hand, more simple alloys and pure metals are applied specifically in the helium atmosphere. For an evaluation of the materials, it is maintained that in a strongly oxidizing (H 2 O-rich) atmosphere, e.g. in HHT search gas, materials with sufficient chrome content (e.g. 20% Cr in Ni alloys such as IN 617) offer favourable conditions for an almost complete interruption of carburizing reactions. In that case, the maintenance of the shielding effect of coating during rapid deformation and a tendency to planar delamination during deformation, which becomes stronger as the layer thickness increases, appear to be critical. Concentrations of oxide-forming agents stronger than chromium offer disadvantages rather than advantages. Owing to its tendency to flake off as the covering oxide SiO 2 or as part of a cover layer, silicon may more than destroy the light advantage of a slowed down process of carbon diffusion. The cast alloy IN 713LC shows a deep-reaching carburation in HHT search gas, both with and without deformation. No deep-reaching corrosive damage is noticeable on the molybdenum alloy TZM. (orig./MM) [de

  2. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin P. [Univ. of Pittsburgh, PA (United States)

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  3. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  4. Preparation of oxide materials from metal alkoxides

    International Nuclear Information System (INIS)

    Turevskaya, E.P.; Turova, N.Ya.; Yanovskaya, M.I.

    2000-01-01

    The results of studies on the sol-gel technologies on the basis of alkoxides are presented. The synthesis and properties of titanates zirconates, niobates, tantalates, vanadates and solid solutions on the basis of Mo, W and Bi oxides, iron oxides and high-temperature superconductors are presented. The most important aspects, determining the choice of optimal conditions for preparation of oxides of concrete compositions with required properties are pointed out. Accomplishment of the whole chain of studies made it possible to synthesize a broad range of metal alkoxides and study their properties and also carry out large-scale studies on preparation of various oxides and materials on the basis thereof, using the source base of the sol-gel method [ru

  5. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    Science.gov (United States)

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  6. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  7. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  8. Influence of hole transport material/metal contact interface on perovskite solar cells

    Science.gov (United States)

    Lei, Lei; Zhang, Shude; Yang, Songwang; Li, Xiaomin; Yu, Yu; Wei, Qingzhu; Ni, Zhichun; Li, Ming

    2018-06-01

    Interfaces have a significant impact on the performance of perovskite solar cells. This work investigated the influence of hole transport material/metal contact interface on photovoltaic behaviours of perovskite solar devices. Different hole material/metal contact interfaces were obtained by depositing the metal under different conditions. High incident kinetic energy metal particles were proved to penetrate and embed into the hole transport material. These isolated metal particles in hole transport materials capture holes and increase the apparent carrier transport resistance of the hole transport layer. Sample temperature was found to be of great significance in metal deposition. Since metal vapour has a high temperature, the deposition process accumulated a large amount of heat. The heat evaporated the additives in the hole transport layer and decreased the hole conductivity. On the other hand, high temperature may cause iodization of the metal contact.

  9. Creep properties of base metal and welded joint of Hastelloy XR produced for High-Temperature Engineering Test Reactor in simulated primary coolant helium

    International Nuclear Information System (INIS)

    Kurata, Yuji; Tsuji, Hirokazu; Shindo, Masami; Suzuki, Tomio; Tanabe, Tatsuhiko; Mutoh, Isao; Hiraga, Kenjiro

    1999-01-01

    Creep tests of base metal, weld metal and welded joint of Hastelloy XR, which had the same chemical composition as Hastelloy XR produced for an intermediate heat exchanger of the High-Temperature Engineering Test Reactor, were conducted in simulated primary coolant helium. The weld metal and welded joint showed almost equal to or longer rupture time than the base metal of Hastelloy XR at 850 and 900degC, although they gave shorter rupture time at 950degC under low stress and at 1,000degC. The welded joint of Hastelloy XR ruptured at the base metal region at 850 and 900degC. On the other hand, it ruptured at the weld metal region at 950 and 1,000degC. The steady-state creep rate of weld metal of Hastelloy XR was lower than that of base metal at 850, 900 and 950degC. The creep rupture strengths of base metal, weld metal and welded joint of Hastelloy XR obtained in this study were confirmed to be much higher than the design allowable creep-rupture stress (S R ) of the Design Allowable Limits below 950degC. (author)

  10. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  11. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  12. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  13. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  14. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  15. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    Science.gov (United States)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test f