WorldWideScience

Sample records for metallic gold particles

  1. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury

    DEFF Research Database (Denmark)

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne

    2008-01-01

    neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents......Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do...... a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue....

  2. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  3. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  4. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  5. Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule

    Science.gov (United States)

    Pal, Anjali

    2004-02-01

    Synthesis of nanometer-sized particles with new physical properties is an area of tremendous interest. In metal particles, the changes in size modify the electron density in the particles, which shifts the plasmon band. The most significant size effects occur when the particles are ultrafine (size is synthesis of ultrafine metal particles is enormously important to exploit their unique and selective application. Here we report a novel method for the synthesis of ultrafine gold particles in the size range of 0.5-3 nm using dopamine hydrochloride (dhc), an important neurotransmitter. This is the first time where such an important bioactive molecule like dhc has been used as a reagent for the transformation of Au(III) to Au(0). The synthesis is carried out, for the first time, either in simple aqueous or in a nonionic micellar (for example Triton X-100 (TX-100)) medium. The gold sol has a beautiful yellow-brown color showing λmax at 470 nm. The appearance of the absorption peak at substantially shorter wavelength (usually gold sol absorbs at ˜520 nm) indicates that the particles are very small. The method discussed here is very simple, reproducible and does not involve any reagent, which contains 'P' or 'S' atoms. Also in this case no polymer or dendrimer or thiol-related stabilizer is used. The effects of different parameters (such as the presence or absence of O2, temperature, TX-100 concentration and dhc concentration) on the formation of ultrafine gold particles are discussed. The effects of 3-mercapto propionic acid and pyridine on the ultrafine gold sol are also studied and compared with those on photochemically prepared gold sol. It is observed that 3-mercapto propionic acid dampens the plasmon absorption at 470 nm of ultrafine gold particles. Pyridine, on the other hand, has no effect on the particles.

  6. Quantification of particle sizes with metal replication under standard freeze-etching conditions: a gold ball standard for calibrating shadow widths was used to measure freeze-etched globular proteins.

    Science.gov (United States)

    Ruben, G C

    1995-11-01

    The real size of platinum-carbon (Pt-C) replicated particles is not directly equivalent to either its metal-coated diameter or its shadow width. This paper describes two indirect methods, shadow widths and coated particle diameters, for determining a particle's actual size beneath a Pt-C replication film. Both produce equivalent measurements using the same standardized conditions: 2.3 nm Pt-C films deposited at a 45 degree angle on an approximately -100 degrees C surface in a 10(-6) torr vacuum. For the first method, gold balls nucleated in a partial pressure of helium and deposited on flat indirect carbon films (root mean square roughness of 0.8 nm) on 400 mesh grids were used as test particles for calibrating shadow widths as a function of particle size. The gold ball test specimens were replicated, and a distribution of Pt-C shadow widths orthogonal to the Pt-C deposition direction was measured and averaged for gold balls 1.5 +/- 0.25 nm, 2.0 +/- 0.25 nm, etc. The diameter of each gold ball was measured within the Pt-C film along with its shadow width because the Pt-C did not obscure or adhere well to the gold. The shadow width distributions for each gold size do not differ significantly from log normal. Two proteins, the lactose repressor and the mitochondrial ATPase, F1, were also used as replication test objects. Negative staining of both proteins was conducted to measure their average diameters. In the second method, a distribution of Pt-C-coated lac repressor diameters perpendicular to the shadow direction was measured. The Pt-C film thickness measured on the quartz crystal monitor was subtracted from the average metal-coated protein diameter to obtain the lac repressor's diameter. The Pt-C-coated particle diameter distributions also did not differ significantly from log normal. While doing this work it was discovered that outgassing the Pt-C electron gun greatly affected Pt-C film granularity: 19 sec produced a high contrast, granular Pt-C film, whereas

  7. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  8. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease caused by recurring attacks of neuroinflammation leading to neuronal death. Immune-suppressing gold salts are used for treating connective tissue diseases; however, side effects occur from systemic spread of gold ions. This is limited...... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  9. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  10. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  11. Metallization of Kevlar fibers with gold.

    Science.gov (United States)

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  12. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    Science.gov (United States)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  13. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    -45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment......Brain injury represents a major health problem and may result in chronic inflammation and neurodegeneration. Due to antiinflammatory effects of gold, we have investigated the cerebral effects of metallic gold particles following a focal brain injury (freeze-lesion) in mice. Gold particles 20...

  14. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  15. Special Issue: Coinage Metal (Copper, Silver, and Gold Catalysis

    Directory of Open Access Journals (Sweden)

    Sónia Alexandra Correia Carabineiro

    2016-06-01

    Full Text Available The subject of catalysis by coinage metals (copper, silver, and gold comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  16. Special Issue: Coinage Metal (Copper, Silver, and Gold) Catalysis.

    Science.gov (United States)

    Carabineiro, Sónia Alexandra Correia

    2016-06-08

    The subject of catalysis by coinage metals (copper, silver, and gold) comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  17. Leachability of metals from gold tailings by rainwater: an ...

    African Journals Online (AJOL)

    Mine leachates from gold tailings impoundments usually contain elevated concentrations of metals and sulphates that impact negatively on water quality. This study was aimed at assessing the leachability of such metals from tailings by rainwater. Oxidised and unoxidised tailings were leached experimentally and through ...

  18. Leachability of metals from gold tailings by rainwater: an ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... ABSTRACT. Mine leachates from gold tailings impoundments usually contain elevated concentrations of metals and sulphates that impact negatively on water quality. This study was aimed at assessing the leachability of such metals from tailings by rainwater. Oxidised and unoxidised tailings were leached ...

  19. Metal enhanced fluorescence with gold nanoparticles

    Science.gov (United States)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  20. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    Science.gov (United States)

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  1. The 'Invisible' Metal Particles in Catalysis

    NARCIS (Netherlands)

    Koningsberger, D.C.; Diaz-Moreno, S.; Muñoz-Paez, A.

    1997-01-01

    An easy, reliable and straightforward method to determine the sizes of small metal particles in supported metal catalyst which are invisible for most techniques (chemisorption, XRD, HRTEM) is presented. The technique we consider more appropriate is EXAFS, because it detects metal metal bonds even

  2. Nanostructured films of metal particles obtained by laser ablation

    International Nuclear Information System (INIS)

    Muniz-Miranda, M.; Gellini, C.; Giorgetti, E.; Margheri, G.; Marsili, P.; Lascialfari, L.; Becucci, L.; Trigari, S.; Giammanco, F.

    2013-01-01

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films

  3. Particle size effect on velocity of gold particle embedded laser driven plastic targets

    Directory of Open Access Journals (Sweden)

    Dhareshwar L.J.

    2013-11-01

    Full Text Available A scheme to enhance the target foil velocity has been investigated for a direct drive inertial fusion target. Polymer PVA (polyvinyl alcohol or (C2H4On target foils of thickness 15–20 μm were used in plain form and also embedded with gold in the nano-particle (Au-np or micro-particle (Au-mp form. Nano-particles were of 20–50 nm and micro-particles of 2–3 μm in size. 17% higher target velocity was measured for foils embedded with nano-particle gold (Au-np as compared to targets embedded with micro-particles gold (Au-mp. The weight of gold in both cases was in the range 40–55% of the full target weight (atomic percentage of about 22%. Experiments were performed with the single beam of the Prague Asterix Laser System (PALS at 0.43 μm wavelength (3ω of the fundamental wavelength, 120 Joule energy and 300 psec pulse duration. Laser intensity on the target was about 1015 W/cm2. A simple model has been proposed to explain the experimental results.

  4. 76 FR 67793 - Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold...

    Science.gov (United States)

    2011-11-02

    ... Metals Products Containing Platinum and Gold--Excluding Commemorative Gold Coins AGENCY: United States... products containing platinum and gold. Since that time, the price of platinum and gold has increased...: The United States Mint reserves the right to discontinue sale of gold numismatic products in the event...

  5. Gold-functionalized DNAzyme Nanosensors to Quantify Heavy Metal Gradients

    Science.gov (United States)

    Adriaens, P.; Vannela, R.

    2005-12-01

    species (e.g. Hg2+ and As5+) These specific and sensitive nanosensors will be embedded on gold particle arrays for enhanced signal amplification, rendering them amenable to detect metal concentration gradients in situ.

  6. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  7. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  8. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  9. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha

    2015-05-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  10. Microscopic Gold Particle-Based Fiducial Markers for Proton Therapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Lim, Young Kyung; Kwak, Jungwon; Kim, Dong Wook; Shin, Dongho; Yoon, Myonggeun; Park, Soah; Kim, Jin Sung; Ahn, Sung Hwan; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Pyo, Hong Ryeol; Kim, Dae Yong M.D.; Cho, Kwan Ho

    2009-01-01

    Purpose: We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. Methods and Materials: We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. Results: The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. Conclusion: Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.

  11. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  12. Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition.

    Science.gov (United States)

    Härtling, T; Alaverdyan, Y; Hille, A; Wenzel, M T; Käll, M; Eng, L M

    2008-08-04

    We report on the in-situ controlled tuning of the particle gap in single pairs of gold nanodisks by photochemical metal deposition. The optically induced growth of nanodisk dimers fabricated by electron beam lithography leads to a decrease of the interparticle gap width down to 0 nm. Due to the increasing particle size and stronger plasmonic coupling, a smooth redshift of the localized surface plasmon (LSP) resonances is observed in such particle pairs during the growth process. The interparticle gap width, and hence the LSP resonance, can be tuned to any desired spectral position. The experimental results we obtain with this nanoscale fabrication technique are well described by the so-called plasmon ruler equation. Consequently, both the changes in particle diameter as well as in gap width can be characterized in-situ via far-field read-out of the optical properties of the dimers.

  13. Laser Pulse Heating of Spherical Metal Particles

    Directory of Open Access Journals (Sweden)

    Michael I. Tribelsky

    2011-12-01

    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  14. Metal-organic framework templated electrodeposition of functional gold nanostructures

    International Nuclear Information System (INIS)

    Worrall, Stephen D.; Bissett, Mark A.; Hill, Patrick I.; Rooney, Aidan P.; Haigh, Sarah J.; Attfield, Martin P.; Dryfe, Robert A.W.

    2016-01-01

    Highlights: • Electrodeposition of anisotropic Au nanostructures templated by HKUST-1. • Au nanostructures replicate ∼1.4 nm pore spaces of HKUST-1. • Encapsulated Au nanostructures active as SERS substrate for 4-fluorothiophenol. - Abstract: Utilizing a pair of quick, scalable electrochemical processes, the permanently porous MOF HKUST-1 was electrochemically grown on a copper electrode and this HKUST-1-coated electrode was used to template electrodeposition of a gold nanostructure within the pore network of the MOF. Transmission electron microscopy demonstrates that a proportion of the gold nanostructures exhibit structural features replicating the pore space of this ∼1.4 nm maximum pore diameter MOF, as well as regions that are larger in size. Scanning electron microscopy shows that the electrodeposited gold nanostructure, produced under certain conditions of synthesis and template removal, is sufficiently inter-grown and mechanically robust to retain the octahedral morphology of the HKUST-1 template crystals. The functionality of the gold nanostructure within the crystalline HKUST-1 was demonstrated through the surface enhanced Raman spectroscopic (SERS) detection of 4-fluorothiophenol at concentrations as low as 1 μM. The reported process is confirmed as a viable electrodeposition method for obtaining functional, accessible metal nanostructures encapsulated within MOF crystals.

  15. Method of making spherical metallic oxide and metallic carbide particles

    International Nuclear Information System (INIS)

    Zimmer, E.

    1976-01-01

    A method is described for making spherical metallic oxide and metallic carbide particles, especially particles consisting of fuel or breeder material such as oxide or carbide compounds of uranium, plutonium, thorium and the like with a diameter of from 0.1 to 1.5 millimeters, according to which an aqueous solution of a metallic nitrate or a metallic chloride or a mixture of metallic nitrates or metallic chlorides in which the metallic ions and anions are in a stoichiometric ratio to each other, is added dropwise to an organic phase. The method is characterized primarily in that the drops formed from the aqueous solution after congealing are washed in an aqueous solution containing ammonia and from 0.001 percent to 0.1 percent of a non-ionic surface active agent, especially an ethylene oxide condensate, enveloping the particles and preventing them from clumping during the following drying step. The hardened particles are dried in an air current having a temperature of from 150 to 300 0 C and an atmospheric moisture content corresponding to the degree of saturation of the air at a temperature of about from 20 to 50 0 C, and sintered at about 1300 0 C

  16. Effect of Particle Size and Grinding Time on Gold Dissolution in Cyanide Solution

    Directory of Open Access Journals (Sweden)

    Jessica Egan

    2016-07-01

    Full Text Available The recovery of gold by ore leaching is influenced by the size of the particles and the chemical environment. The effect of particle size on the dissolution of gold is usually studied using mono-size particles as the gold in solution comes from the ore of a unique leached particle size. This paper proposes a method to estimate the gold dissolution as a function of particle size using a bulk ore sample, i.e., with the dissolved gold coming from the various sizes of particles carried by the ore. The results are consistent with the fact that gold dissolution increases with the decreasing particle size but results also indicate that gold dissolution of the ore within a size interval is not significantly affected by the grinding time used for the ore size reduction. Results also show a good dissolution of the gold contained in the fine-size fractions without oxidation and lead nitrate pre-treatment for an ore that is known to require such pre-treatment.

  17. Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source.

    Science.gov (United States)

    Ding, Huaijian; Ji, Hongbing; Tang, Lei; Zhang, Aixing; Guo, Xinyue; Li, Cai; Gao, Yang; Briki, Mergem

    2016-02-01

    Pinggu District is adjacent to the county of Miyun, which contains the largest drinking water source of Beijing (Miyun Reservoir). The Wanzhuang gold field and tailing deposits are located in Pinggu, threatening Beijing's drinking water security. In this study, soil samples were collected from the surface of the mining area and the tailings piles and analyzed for physical and chemical properties, as well as heavy metal contents and particle size fraction to study the relationship between degree of pollution degree and particle size. Most metal concentrations in the gold mine soil samples exceeded the background levels in Beijing. The spatial distribution of As, Cd, Cu, Pb, and Zn was the same, while that of Cr and Ni was relatively similar. Trace element concentrations increased in larger particles, decreased in the 50-74 μm size fraction, and were lowest in the mining area.

  18. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  19. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration

    NARCIS (Netherlands)

    De Jong, Wim H.; Hagens, Werner I.; Krystek, Petra; Burger, Marina C.; Sips, Adriënne J A M; Geertsma, Robert E.

    2008-01-01

    A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the

  20. Gold nanoparticles modified with coordination compounds of metals: synthesis and application

    International Nuclear Information System (INIS)

    Beloglazkina, Elena K; Majouga, Alexander G; Romashkina, Renata B; Zyk, Nikolai V; Zefirov, Nikolai S

    2012-01-01

    The data on the preparation methods and applications of gold nanoparticles with coordinated metal ions on the surfaces are generalized. The currently available data on the interaction of metal ions with gold nanoparticles modified with organic (particularly, sulfur-containing) ligands comprising terminal chelating groups are considered in detail as well as the applications of such modified nanoparticles. The bibliography includes 141 references.

  1. Gold Finger: Metal Jewellery as a Disease Modifying Antirheumatic Therapy!

    Directory of Open Access Journals (Sweden)

    T. Hlaing

    2009-01-01

    Full Text Available Polyarticular psoriatic arthritis is a chronic, progressive and disabling auto-immune disease often affecting the small joints of the hands in a symmetrical fashion. The disease can progress rapidly causing joint swelling and damaging cartilage and bone around the joints resulting in severe deformities. We report a very unusual case of a 49-year-old woman who presented with polyarticular psoriatic arthritis affecting all proximal interphalangeal (PIP joints of both hands except the left ring finger PIP joint. On clinical examination there was no evidence of arthritis in the left ring finger PIP joint. We confirmed the paucity of joint damage in the PIP joint of the left ring finger using more modern imaging modalities such as musculoskeletal ultrasound and MRI scan of the small joints of the hands. All other PIP joints in both hands demonstrated advanced degrees of joint damage secondary to chronic psoriatic inflammatory arthritis. We postulated that wearing a gold wedding ring has helped protecting the PIP joint of the left ring finger from the damaging effect of inflammatory arthritis. The possible mechanisms by which metal jewellery (gold ring confer protection to adjacent joints was discussed.

  2. Core-shell and asymmetric polystyrene-gold composite particles via one-step Pickering emulsion polymerization.

    Science.gov (United States)

    Zhang, Mingmeng; Ngo, Thao H; Rabiah, Noelle I; Otanicar, Todd P; Phelan, Patrick E; Swaminathan, Raja; Dai, Lenore L

    2014-01-14

    Core-shell structured polystyrene-gold composite particles are synthesized from one-step Pickering emulsion polymerization. The surface coverage of the core-shell composite particles is improved with increasing gold nanoparticle (AuNP) hydrophobicity and concentration. At high surface coverage, the AuNPs exhibit an ordered hexagonal pattern, likely due to electrostatic repulsion during the emulsion polymerization process. In addition to core-shell structured polystyrene-gold composite particles, an intriguing observation is that at low AuNP concentrations, asymmetric polystyrene-gold nanocomposite particles are simultaneously formed, where a single gold nanoparticle is attached onto each polystyrene particle. It is found that these asymmetric particles are formed via a "seeded-growth" mechanism. The core-shell and asymmetric polystyrene-gold composite particles prove to be efficient catalysts as they successfully catalyze the Rhodamine B reduction reaction with stable performance and show high recyclability as catalysts.

  3. Facile hierarchical assembly of gold particle decorated conductive polymer nanofibers for electrochemical sensing

    Science.gov (United States)

    Dai, Minhui; Chen, Juhong; Goddard, Julie M.; Nugen, Sam R.

    2017-02-01

    In this study, we successfully applied vapor-phase polymerization towards the synthesis of PEDOT nanofibers which were subsequently functionalized with gold particles and used as electrodes for electrochemical sensing. Two methods were used to synthesize the PEDOT nanofibers including (1) electrospinning followed by vapor-phase polymerization (EVP), and (2) one-step vapor-phase polymerization (OSVP). The average diameter of EVP fibers was approximately 350 nm, and OSVP was approximately 200 nm. Gold particles (∼500 nm) were synthesized by an oxidation-reduction reaction between gold precursors and residue EDOT monomers on the surface of the PEDOT nanofibers. In order to investigate the electrochemical performance of these electrodes, ascorbic acid was chosen as an analyte model. Our results indicated that PEDOT nanofiber electrodes showed an enhanced response with respect to bare gold electrodes. Furthermore, the OSVP PEDOT nanofibers with gold particles demonstrated the highest sensitivity at low ascorbic acid concentrations. These hierarchically assembled, gold particle-decorated, conductive polymer nanofibers were further fabricated into flexible electrodes, demonstrating a potential in advanced applications such as wearable electronics.

  4. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  5. NOTE: Ranges of ions in metals for use in particle treatment planning

    Science.gov (United States)

    Jäkel, Oliver

    2006-05-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold.

  6. Ranges of ions in metals for use in particle treatment planning

    International Nuclear Information System (INIS)

    Jaekel, Oliver

    2006-01-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold. (note)

  7. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    gold implants reduce inflammation and neuronal apoptosis, while generating an increased neuronal stem cell response following focal brain damage. In this study mice were subjected to a unilateral traumatic cryo-lesion with concomitant injection of 25-45 microm gold particles near the lesion. Placebo......Traumatic brain injury represents a leading cause of morbidity in young individuals and there is an imperative need for neuroprotective treatments limiting the neurologic impairment following such injury. It has recently been demonstrated that bio-liberated gold ions liberated from small metallic...

  8. A Straightforward Route to Tetrachloroauric Acid from Gold Metal and Molecular Chlorine for Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Shirin R. King

    2015-08-01

    Full Text Available Aqueous solutions of tetrachloroauric acid of high purity and stability were synthesised using the known reaction of gold metal with chlorine gas. The straightforward procedure developed here allows the resulting solution to be used directly for gold nanoparticle synthesis. The procedure involves bubbling chlorine gas through pure water containing a pellet of gold. The reaction is quantitative and progressed at a satisfactory rate at 50 °C. The gold(III chloride solutions produced by this method show no evidence of returning to metallic gold over at least twelve months. This procedure also provides a straightforward method to determine the concentration of the resulting solution using the initial mass of gold and volume of water.

  9. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military...... compound sarin. Raman and infrared spectral bands of the pyridostigmine bromide were measured. Detailed correlation of obtained spectral bands with specific vibrations in pyridostigmine bromide was done. Silica nanoparticles with attached gold nano-islands showed more essential enhancement of the Raman...

  10. Activation analysis for platinum in gold and metals of the platinum group through 199Au

    International Nuclear Information System (INIS)

    Foerster, H.

    1976-01-01

    Platinum was determined in gold and in metals of the platinum group through 199 Au by activation analysis. The matrix was separated at the end of irradiation before the daughter nuclide was formed. Gold was separated by extraction with MIBK from 1

  11. Introduction of Electrostatically Charged Particles into Metal Melts

    Science.gov (United States)

    Kudryashova, Olga; Vorozhtsov, Sergey; Stepkina, Maria; Khrustalev, Anton

    2017-12-01

    One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.

  12. Gold and other metals in big sagebrush (Artemisia tridentata Nutt.) as an exploration tool, Gold Run District, Humboldt County, Nevada

    Science.gov (United States)

    Erdman, J.A.; Cookro, T.M.; O'Leary, R. M.; Harms, T.F.

    1988-01-01

    Big sagebrush - a cold-desert species that dominates the terrain over large parts of western United States - was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g-1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or ??g g-1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals. ?? 1988.

  13. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

    International Nuclear Information System (INIS)

    Korotcenkov, Ghenadii; Cho, Beong K.; Brinzari, Vladimir

    2016-01-01

    This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required. (author)

  14. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.

    2016-12-28

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  15. Observation of shell effects in nanowires for the noble metals copper, silver and gold

    OpenAIRE

    Mares, A. I.; van Ruitenbeek, J. M.

    2005-01-01

    We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ...

  16. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    Science.gov (United States)

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  17. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  18. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    Science.gov (United States)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  19. Influence of crystal/particle size and gold content of a structured Au/C based sorbent on mercury capture

    Science.gov (United States)

    Gómez-Giménez, C.; Ballestero, D.; Ferrer, N.; Rubio, B.; Izquierdo, M. T.

    2017-11-01

    A sorbent based on gold nanoparticles deposited by direct reduction of a gold salt on a structured carbon surface has been prepared to be used in the mercury capture at low concentrations. A total of 13 samples have been obtained varying preparation conditions (stirring rate, gold salt concentration and contact time). A kinetic study of the gold reduction on the carbon surface has been carried out, indicating that the calculated reaction rate constant corresponds to the diffusion rate equation. The study of the influence of gold salt concentration on the reduction potential of the gold showed that the use of a high concentration gold salt solution shifts the reduction reaction to gold reduction. Mercury capture capacity cannot be directly related with either gold content or average particle size or average crystal size, but the study of the grain size distribution can explain the mercury capture performance of the samples.

  20. Liquid Metal Phagocytosis: Intermetallic Wetting Induced Particle Internalization.

    Science.gov (United States)

    Tang, Jianbo; Zhao, Xi; Li, Jing; Zhou, Yuan; Liu, Jing

    2017-05-01

    A biomimetic cellular-eating phenomenon in gallium-based liquid metal to realize particle internalization in full-pH-range solutions is reported. The effect, which is called liquid metal phagocytosis, represents a wet-processing strategy to prepare various metallic liquid metal-particle mixtures through introducing excitations such as an electrical polarization, a dissolving medium, or a sacrificial metal. A nonwetting-to-wetting transition resulting from surface transition and the reactive nature of the intermetallic wetting between the two metallic phases are found to be primarily responsible for such particle-eating behavior. Theoretical study brings forward a physical picture to the problem, together with a generalized interpretation. The model developed here, which uses the macroscopic contact angle between the two metallic phases as a criterion to predict the particle internalization behavior, shows good consistency with experimental results.

  1. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    Science.gov (United States)

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  2. Time-resolved X-ray diffraction on laser-excited metal nano-particles

    CERN Document Server

    Plech, A; Kurbitz, S; Berg, K J; Graener, H; Berg, G; Gresillon, S; Kaempfe, M; Feldmann, J; Von Plessen, G

    2003-01-01

    The lattice expansion and relaxation of noble-metal nano-particles heated by intense femtosecond laser pulses are measured by pump-probe time-resolved X-ray scattering. Following the laser pulse, shape and angular shift of the (111) Bragg reflection from crystalline silver and gold particles with diameters from 20 to 100 nm are resolved stroboscopically using 100 ps X-ray- pulses from a synchrotron. We observe a transient lattice expansion that corresponds to a laser-induced temperature rise of up to 200 K, and a subsequent lattice relaxation. The relaxation occurs within several hundred picoseconds for embedded silver particles, and several nanoseconds for supported free gold particles. The relaxation time shows a strong dependence on particle size. The relaxation rate appears to be limited by the thermal coupling of the particles to the matrix and substrate; respectively, rather than by bulk thermal diffusion. Furthermore, X-ray diffraction can resolve the internal strain state of the nano-particles to sepa...

  3. Skin contact with gold and gold alloys.

    Science.gov (United States)

    Rapson, W S

    1985-08-01

    3 types of reaction to gold merit discussion. First, there is the effect known as black dermographism, in which stroking with certain metals immediately produces well-defined black lines on the skin. Some gold alloys are amongst such metals. The evidence indicates that the effect is the result of impregnation of the skin with black metallic particles generated by mechanical abrasion of the metal by contaminants of the skin. There is no positive and unequivocal evidence of the ability of metals to mark uncontaminated skin so rapidly that it is possible to write upon it. Secondly there are the 2 related phenomena of the wear of gold jewelry, and the susceptibility to certain individuals to blackening of the skin where it is in contact with such jewelry. The occurrence of smudge, as it is often called, is not very common, but is brought to the attention of most jewelers from time to time. In extreme cases it may make it embarrassing for the person concerned to wear metallic jewelry. It would appear as if gold smudge also results mainly from mechanical abrasion of jewelry, though this may be aided and/or supplemented in some instances by corrosion of gold or gold alloy induced by certain components of the sweat. Finally, there is the question of true allergic responses to contact of the skin with gold and its alloys. Judging from the very few cases which have been recorded, such responses are extremely rare. Some recent observations on the reactions of metallic gold with amino acids and of reaction to contact of the skin with gold on the part of rheumatoid arthritis patients undergoing gold therapy, are, however, relevant in this connection.

  4. Material comprising two different non-metallic parrticles having different particle sizes for use in solar reactor

    Science.gov (United States)

    Klausner, James F.; Momen, Ayyoub Mehdizadeh; Al-Raqom, Fotouh A.

    2017-10-03

    Disclosed herein is a composite particle comprising a first non-metallic particle in which is dispersed a second non-metallic particle, where the first non-metallic particle and the second non-metallic particle are inorganic; and where a chemical composition of the first non-metallic particle is different from a chemical composition of the second non-metallic particle; and where the first non-metallic particle and the second non-metallic particle are metal oxides, metal carbides, metal nitrides, metal borides, metal silicides, metal oxycarbides, metal oxynitrides, metal boronitrides, metal carbonitrides, metal borocarbides, or a combination thereof.

  5. Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste

    OpenAIRE

    Jana Ficeriová; Peter Baláž; Eberhard Gock

    2011-01-01

    Au-Ag noble metal wastes represent a wide range of waste types and forms, with various accompanying metallic elements.The presented leaching strategy for Au-Ag contained in circuit boards (PCBs) aims at gaining gold and silver in the metallic form.Application of the proposed ammonium thiosulphate leaching process for the treatment of the above mentioned Au-Ag containing wastesrepresents a practical, economic and at the same time an ecological solution. The ammonium thiosulphate based leaching...

  6. Efficient recovery of gold and other noble metals from electronic and other scraps

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hidetoshi

    1987-01-01

    Pure gold is extracted from crude gold by the solvent extraction method in the recovery and refining process for Noble metals recovered from electronic and other scraps. This solvent extraction method is advantageous in that it facilitates rapid processing, thereby reducing the interest burden of gold staying too long in the unit. Therefore, the method is also used in the refining of platinum and palladium. Technological innovation has created more complex and diversified types of scraps, and efforts are being made to accommodate ourselves to such a trend.

  7. Particle migration and gap healing around trabecular metal implants

    DEFF Research Database (Denmark)

    Rahbek, O; Kold, S; Zippor, Berit

    2005-01-01

    Bone on-growth and peri-implant migration of polyethylene particles were studied in an experimental setting using trabecular metal and solid metal implants. Cylindrical implants of trabecular tantalum metal and solid titanium alloy implants with a glass bead blasted surface were inserted either i...

  8. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy

    Directory of Open Access Journals (Sweden)

    Puvanakrishnan P

    2012-03-01

    Full Text Available Priyaveena Puvanakrishnan1, Jaesook Park1, Deyali Chatterjee2, Sunil Krishnan2, James W Tunnell11Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; 2The UT MD Anderson Cancer Center, Houston, TX, USAAbstract: Gold nanoparticles (GNPs have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle’s geometric properties (eg, size and dosing strategy (eg, number and amount of injections. The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs and gold nanorods (GNRs for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.Keywords: gold nanorods, gold nanoshells, tumor targeting

  9. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    Science.gov (United States)

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  10. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  11. Low temperature thermal radiative properties of gold coated metals

    Czech Academy of Sciences Publication Activity Database

    Frolec, Jiří; Králík, Tomáš; Srnka, Aleš

    2017-01-01

    Roč. 82, OCT (2017), s. 51-55 ISSN 0140-7007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : gold films * heat transfer * thermal radiation * cryogenics Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.779, year: 2016

  12. Controllable reductive method for synthesizing metal-containing particles

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Ji-Won; Jung, Hyunsung; Phelps, Tommy Joe; Duty, Chad E.; Ivanov, Ilia N.; Joshi, Pooran Chandra; Jellison, Jr., Gerald Earle; Armstrong, Beth Louise; Smith, Sean Campbell; Rondinone, Adam Justin; Love, Lonnie J.

    2018-03-06

    The invention is directed to a method for producing metal-containing particles, the method comprising subjecting an aqueous solution comprising a metal salt, E.sub.h, lowering reducing agent, pH adjusting agent, and water to conditions that maintain the E.sub.h value of the solution within the bounds of an E.sub.h-pH stability field corresponding to the composition of the metal-containing particles to be produced, and producing said metal-containing particles in said aqueous solution at a selected E.sub.h value within the bounds of said E.sub.h-pH stability field. The invention is also directed to the resulting metal-containing particles as well as devices in which they are incorporated.

  13. Leaching of gold, silver and accompanying metals from circuit boards (PCBs waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2011-12-01

    Full Text Available Au-Ag noble metal wastes represent a wide range of waste types and forms, with various accompanying metallic elements.The presented leaching strategy for Au-Ag contained in circuit boards (PCBs aims at gaining gold and silver in the metallic form.Application of the proposed ammonium thiosulphate leaching process for the treatment of the above mentioned Au-Ag containing wastesrepresents a practical, economic and at the same time an ecological solution. The ammonium thiosulphate based leaching of gold and silverfrom PCBs waste, using crushing as a pretreatment, was investigated. It was possible to achieve 98 % gold and 93 % silver recovery within48 hours of ammonium thiosulphate leaching. This type of leaching is a better leaching procedure for recovery of gold and silver from PCBwaste than the classical toxic cyanide leaching. 84 % Cu, 82 % Fe, 77 % Al, 76 % Zn, 70 % Ni, 90 % Pd, 88 % Pb and 83 % Sn recovery ofthe accompanying metals was achieved, using sulphuric acid with hydrogen peroxide, sodium chloride and aqua regia. A four steps leachingprocess gave a very satisfactory yield and a more rapid kinetics for all observed metals solubilization than other technologies.

  14. Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene

    OpenAIRE

    Ya-Ting Tsu; Yu-Wen Chen

    2017-01-01

    Nano-gold catalyst has been reported to have high activity and selectivity for liquid phase hydrogenation reaction. In this study, gold-containing bimetals were loaded on TiO2. For bimetallic catalysts, gold and different metals were prepared by the deposition-precipitation method, and then used NaBH4 to reduce metal cations. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray photoelectron spectr...

  15. Gold-phosphine-porphyrin as potential metal-based theranostics.

    Science.gov (United States)

    Tasan, Semra; Licona, Cynthia; Doulain, Pierre-Emmanuel; Michelin, Clément; Gros, Claude P; Le Gendre, Pierre; Harvey, Pierre D; Paul, Catherine; Gaiddon, Christian; Bodio, Ewen

    2015-01-01

    Two new gold-phosphine-porphyrin derivatives were synthesized and fully characterized, and their photophysical properties investigated along a water-soluble analog. The cytotoxicity of the compounds was tested on cancer cells (HCT116 and SW480), and their cell uptake was followed by fluorescence microscopy in vitro (on SW480). The proof that the water-soluble gold-phosphine-porphyrin is a biologically active compound that can be tracked in vitro was clearly established, especially concerning the water-soluble analog. Some preliminary photodynamic therapy (PDT) experiments were also performed. They highlight a dramatic increase of the cytotoxicity when the cells were illuminated for 30 min with white light.

  16. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    Science.gov (United States)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  17. Nano organic (block copolymer)-inorganic (gold) composite particle; Burokku kyojugo porima to kin tono yuki {center_dot} muki fukugo nano biryushi

    Energy Technology Data Exchange (ETDEWEB)

    Yamachita, H. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1999-12-01

    Synthesis of nano-scale inorganic particles and development of the application to electronics, photonics and catalytic reactions are recently paid attention. Nguyen, Mirkin et al. recently reported a simple method for synthesizing a nano organic-inorganic composite particle by polymerizing a monomer on the surface of a gold particle. The polymerization employs ring-opening metathesis polymerization of norbornene ring, and the point is using a Ru catalyst that makes living polymerization possible. In addition, Weiss, Grubbs et al. used the same method to grow a homopolymer of the similar norbornene monomer on the gold surface, and directly observed the existence of a polymer chain with a length of several hundred A or greater on the gold surface with an interatomic force microscope, a scanning tunnel microscope and scanning electron microscope. The reactions used in these cases is considered to be easily adapted to other monomers having a norbornene ring. This method is regarded as an effective method for forming a copolymer or a homopolymer having a uniform length on metal particles. (NEDO)

  18. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  19. Porous metal oxide particles and their methods of synthesis

    Science.gov (United States)

    Chen, Fanglin; Liu, Qiang

    2013-03-12

    Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.

  20. PNP pincer ligands in late transition metal nitrido chemistry and gold catalysis

    NARCIS (Netherlands)

    Vreeken, V.

    2016-01-01

    In this dissertation 1) an investigation of the possibility of forming cobalt- and nickel-nitrido complexes by studying the activation of the corresponding metal-azido complexes, and 2) an investigation into a novel, bimetallic approach to selectively promote the σ,π-activation mode in dual-gold

  1. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits

    Science.gov (United States)

    Ulrich, T.; Günther, D.; Heinrich, C. A.

    1999-06-01

    Porphyry copper-molybdenum-gold deposits are the most important metal resources formed by hydrothermal processes associated with magmatism. It remains controversial, however, whether the metal content of porphyry-style and other magmatic-hydrothermal deposits is dominantly controlled by metal partitioning between magma and an exsolving magmatic fluid phase, or by scavenging of metals from solid upper-crustal rocks by surface-derived fluids. It also remains unknown to what degree the metal content in such deposits is affected by selective mineral precipitation from the ore fluid. Extremely saline fluids, precipitating quartz and ore minerals in veins have been inferred to have a significant magma-derived component, on the basis of geological, isotopic, and experimental evidence,. Here we report gold and copper concentrations of single fluid inclusions in quartz, determined by laser-ablation inductively coupled plasma mass spectrometry. The results show that the Au/Cu ratio of primary high-temperature brines is identical to the bulk Au/Cu ratio in two of the world's largest copper-gold ore bodies. This indicates that the bulk metal budget of such deposits is primarily controlled by the composition of the incoming fluid, which is, in turn, likely to be controlled by the crystallization process in an underlying magma chamber.

  2. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  3. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    Science.gov (United States)

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K; Briglio, N M; Hartati, D Sri; Tsang, S M W; MacCormac, J E; Welchons, D R [Department of Chemistry, State University of New York College at Geneseo, One College Circle, Geneseo, NY 14454 (United States)], E-mail: yokoyama@geneseo.edu

    2008-09-17

    Absorption spectroscopy was utilized to investigate the conjugation of amyloid {beta} protein solution (A{beta}{sub 1-40}) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pH{sub o}, exhibited colloidal size dependence for both A{beta}{sub 1-40} and ovalbumin coated particles. In particular, A{beta}{sub 1-40} coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pH{sub o} value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with A{beta}{sub 1-40} coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than A{beta}{sub 1-40} coated gold colloid.

  5. The Effects of Toxic Particles in Human Lung Cells - Research Area 8. Life Sciences

    Science.gov (United States)

    2016-01-05

    silver and gold nanoparticle-induced effects; and 6) Assess metal levels in whale skin biopsies in the Gulf of Mexico. The first five aims focused... metal particle genotoxicity; 4) Characterize metal particle-induced chromosome instability; 5) Compare silver and gold nanoparticle-induced effects; and...nanoparticles, particles associated with metal -on- metal hip implants and microparticles of military concern. We found that silver , gold and titanium dioxide

  6. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry.

    Science.gov (United States)

    Amini, Seyed Mohammad; Kharrazi, Sharmin; Rezayat, Seyed Mahdi; Gilani, Kambiz

    2017-09-10

    Hyperthermia treatment of cancerous cells has been recently developed drastically with the help of nanostructures. Heating of gold nanoparticles in non-invasive radiofrequency electric field (RF-EF) is a promising and unique technique for cancer hyperthermia. However, because of differences between particles (i.e. their surface chemistry and dispersion medium) and between RF-EF sources, the research community has not reached a consensus yet. Here, we report the results of investigations on heating of gold nanoparticles and gold nanorods under RF-EF and feasibility of in-vitro cancer hyperthermia. The heating experiments were performed to investigate the role of particle shape and surface chemistry (CTAB, citrate and PEG molecules). In-vitro hyperthermia was performed on human pancreatic cancer cell (MIA Paca-2) with PEG-coated GNPs and GNRs at concentrations that were found non-toxic based on the results of cytotoxicity assay. Application of RF-EF on cells treated with PEG-GNPs and PEG-GNRs proved highly effective in killing cells.

  7. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    Science.gov (United States)

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  9. Metal ion detection with oligo(ethylene glycol) monolayer-modified gold nanoparticles.

    Science.gov (United States)

    Li, Guangzhao; Yang, Bin; Lu, Zhiqiang; Xia, Sijing; Feng, Hui; Zhu, Xiaoqing; Wang, Anning; Zhu, Jin

    2011-11-01

    Two colorimetric sensors of gold nanoparticles (AuNPs) modified with different oligo(ethylene glycol)-containing organic molecules have been developed to detect metal ions by ultraviolet-visible (UV-vis) extinction spectroscopy. These sensors display different responses to some metal ions. One exhibits high selectivity for Hg2+ over a variety of competitive metal ions and the other one can respond to a multitude of metal ions. These differences might result from the different functionalized end groups of the modified molecules. Coordination effect, pH response, and ionic strength were investigated to understand the mechanism of the responses to metal ions. The results suggested that the colorimetric responses were mainly induced by the coordination effect of the modified organic molecules and the removing of the modified organic molecules caused by metal ions.

  10. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor.

    Directory of Open Access Journals (Sweden)

    Andrew John Love

    2015-11-01

    Full Text Available We genetically modified tobacco mosaic virus (TMV to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV, and demonstrate that unlike wild type (WT TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

  11. Transport properties of transition metal impurities on gold nanowires

    Science.gov (United States)

    Pontes, Renato B.; da Silva, Edison Z.; Fazzio, Adalberto; da Silva, Antônio J. R.

    2009-03-01

    Performing first principles density functional theory (DFT) we calculated the electronic and transport properties of a Au thin nanowire with transition metal atoms (Mn, Fe, Ni or Co) bridging the two sides of the Au nanowire. We will show that these systems have strong spin dependent transport properties and that the local symmetry can dramatically change them, leading to a significant spin polarized conductance. This spin dependent transport is also associated with the transition metal in the nanowire, in particular with the d-level positioning. Using Co, for example [1], when the symmetry permits the mixing between the wire s-orbitals with the transition metal d-states, there are interference effects that resemble Fano-like resonances with an anisotropy of 0.07 at the Fermi level. On the other hand, if this symmetry decouples such states, we simply have a sum of independent transmission channels and the calculated anisotropy was 0.23. The anisotropies for the other transition metals, as well as calculated transmittances for two Co impurities will also be presented [1] R. B. Pontes, E. Z. da Silva, A. Fazzio and Antônio J. R. da Silva, J. Am. Chem. Soc. 130 (30), 9897-903, 2008

  12. Nanostructured metal particle-modified electrodes for ...

    Indian Academy of Sciences (India)

    face-dominated properties, which significantly differ from those of the bulk material. The integration of metal nanoparticles into thin film of permselective membrane is particularly important for various appli- cations, for example in biological ... tally interesting class of materials, in part because of an apparent dichotomy which ...

  13. Nanostructured metal particle-modified electrodes for ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Nanostructured ... Nanotechnology has become one of the most exciting frontier fields in analytical chemistry. The huge interest in nanomaterials, for example in chemical sensors and catalysis, is driven by their many desirable properties. Although metal ...

  14. METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, David; Martel, Hugo [Département de physique, de génie physique et d’optique, Université Laval, Québec, QC, G1V 0A6 (Canada); Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey (United Kingdom)

    2016-05-10

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  15. Single particle deformation and analysis of the same silica coated gold nanorods before and after fs-laser pulse excitation

    NARCIS (Netherlands)

    Albrecht, W.; Deng, Tian-Song; Goris, Bart; van Huis, M.A.; Bals, Sarah; van Blaaderen, Alfons

    2016-01-01

    We performed single particle deformation experiments on silicacoated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were

  16. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    OpenAIRE

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  17. Numerical modelling of electrochemical polarization around charged metallic particles

    Science.gov (United States)

    Bücker, Matthias; Undorf, Sabine; Flores Orozco, Adrián; Kemna, Andreas

    2017-04-01

    We extend an existing analytical model and carry out numerical simulations to study the polarization process around charged metallic particles immersed in an electrolyte solution. Electro-migration and diffusion processes in the electrolyte are described by the Poisson-Nernst-Planck system of partial differential equations. To model the surface charge density, we consider a time- and frequency-invariant electric potential at the particle surface, which leads to the build-up of a static electrical double layer (EDL). Upon excitation by an external electric field at low frequencies, we observe the superposition of two polarization processes. On the one hand, the induced dipole moment on the metallic particle leads to the accumulation of opposite charges in the electrolyte. This charge polarization corresponds to the long-known response of uncharged metallic particles. On the other hand, the unequal cation and anion concentrations in the EDL give rise to a salinity gradient between the two opposite sides of the metallic particle. The resulting concentration polarization enhances the magnitude of the overall polarization response. Furthermore, we use our numerical model to study the effect of relevant model parameters such as surface charge density and ionic strength of the electrolyte on the resulting spectra of the effective conductivity of the composite model system. Our results do not only give interesting new insight into the time-harmonic variation of electric potential and ion concentrations around charged metallic particle. They are also able to reduce incongruities between earlier model predictions and geophysical field and laboratory measurements. Our model thereby improves the general understanding of IP signatures of metallic particles and represents the next step towards a quantitative interpretation of IP imaging results. Part of this research is funded by the Austrian Federal Ministry of Science, Research and Economy under the Raw Materials Initiative.

  18. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  19. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars.

    Science.gov (United States)

    Yuan, Hsiangkuo; Khoury, Christopher G; Wilson, Christy M; Grant, Gerald A; Bennett, Adam J; Vo-Dinh, Tuan

    2012-11-01

    Gold nanostars offer unique plasmon properties that efficiently transduce photon energy into heat for photothermal therapy. Nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross-sections that are tunable in the near-infrared region with relatively low scattering effect, making them efficient photothermal transducers. Here, we demonstrate particle tracking and photothermal ablation both in vitro and in vivo. Using SKBR3 breast cancer cells incubated with bare nanostars, we observed photothermal ablation within 5 minutes of irradiation (980-nm continuous-wave laser, 15 W/cm2). On a mouse injected systemically with PEGylated nanostars for 2 days, extravasation of nanostars was observed and localized photothermal ablation was demonstrated on a dorsal window chamber within 10 minutes of irradiation (785-nm continuous-wave laser, 1.1 W/cm2). These preliminary results of plasmon-enhanced localized hyperthermia are encouraging and have illustrated the potential of gold nanostars as efficient photothermal agents in cancer therapy. Gold nanostars are tunable in the near-infrared region with low scattering, thus enable photothermal therapy. Encouraging preliminary results of plasmon-enhanced localized hyperthermia both in vitro and in vivo demonstrate that Au nanostars may be efficient photothermal agents for cancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    Science.gov (United States)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  1. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.

    Science.gov (United States)

    Krystek, Petra; Brandsma, Sicco; Leonards, Pim; de Boer, Jacob

    2016-01-15

    The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to various sized and composed noble metal (gold (Au), platinum (Pt) and silver (Ag)) ENPs during acute, short-term exposure of Daphnia (D.) magna. Next to the total elemental quantification of absorbed ENPs by D. magna, especially information on the size and particle distribution of ENPs in D. magna is of relevance. Dissolution of the exposed biological material prior to measurement by asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICPMS) is challenging because the ENPs must stay stable regarding to particle size and composition. Next to dissolution of exposed D. magna by tetra methyl ammonium hydroxide (TMAH), a new enzymatic dissolution approach was explored by using trypsin. The presence of various sized and composed ENPs has been confirmed by AF4-ICPMS but the chosen dissolution medium was crucial for the results. TMAH and trypsin led to comparable results for medium-sized (50nm) noble metals ENPs in exposed D. magna. But it was also shown that the dissolution of biological materials with smaller (magna or adsorption to particles occurred because only 1-5% of the exposed ENPs remained in the exposure medium. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Latex particle template lift-up guided gold wire-networks via evaporation lithography

    KAUST Repository

    Lone, Saifullah

    2014-01-01

    We describe a hybrid methodology that combines a two dimensional (2D) monolayer of latex particles (with a pitch size down to 1 μm) prepared by horizontal dry deposition, lift-up of a 2D template onto flat surfaces and evaporation lithography to fabricate metal micro- and nano wire-networks. This journal is

  3. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Yang, Yuan; Long, Chen-Lu; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang

    2016-09-01

    The production and use of engineering nanomaterials (ENMs) leads to the release of manufactured or engineered nanoparticles into environment. The quantification and characterization of ENMs are crucial for the assessment of their environmental fate, transport behavior and health risks to humans. To analyze the size distribution and particle number concentration of AgNPs and AuNPs in environmental water and track their stability at low number concentration, a systematic study on SP-ICPMS was presented. The Poisson statistics was used to discuss the effect of dwell time and particle number concentration theoretically on the detection of NPs in solution by SP-ICPMS. The dynamic range of SP-ICPMS is approximately two orders of magnitude. The size detection limits for silver and gold nanoparticle in ultrapure water are 20 and 19nm respectively. The detection limit of nanoparticle number concentration is 8×10(4)particlesL(-1). Size distribution of commercial silver and gold nanoparticle dispersions is determined by SP-ICP-MS, which was in accordance with the TEM results. High particle concentration recoveries of spiked AgNPs and AuNPs are obtained (80-108% and 85-107% for AgNPs and AuNPs respectively in ultrapure and filtered natural water). It indicates that SP-ICPMS can be used to detect AgNPs and AuNPs. The filtration study with different membranes showed that filtration might be a problematic pre-treatment method for the detection of AgNPs and AuNPs in environmental water. Furthermore, the stability of citrate-coated AgNPs and tannic acid-coated AuNPs spiked into filtrated natural and waste water matrix was also studied at low concentration using SP-ICP-MS measurements. Dissolution of AgNPs was observed while AuNPs was stable during a ten day incubation period. Finally SP-ICPMS was used to analyze NPs in natural water and waste water. The results indicate that SP-ICPMS can be used to size metallic nanoparticles sensitively of low concentration under realistic

  4. Detecting the shape of anisotropic gold nanoparticles in dispersion with single particle extinction and scattering.

    Science.gov (United States)

    Potenza, M A C; Krpetić, Ž; Sanvito, T; Cai, Q; Monopoli, M; de Araújo, J M; Cella, C; Boselli, L; Castagnola, V; Milani, P; Dawson, K A

    2017-02-23

    The shape and size of nanoparticles are important parameters affecting their biodistribution, bioactivity, and toxicity. The high-throughput characterisation of the nanoparticle shape in dispersion is a fundamental prerequisite for realistic in vitro and in vivo evaluation, however, with routinely available bench-top optical characterisation techniques, it remains a challenging task. Herein, we demonstrate the efficacy of a single particle extinction and scattering (SPES) technique for the in situ detection of the shape of nanoparticles in dispersion, applied to a small library of anisotropic gold particles, with a potential development for in-line detection. The use of SPES paves the way to the routine quantitative analysis of nanoparticles dispersed in biologically relevant fluids, which is of importance for the nanosafety assessment and any in vitro and in vivo administration of nanomaterials.

  5. Preparation and formation mechanisms of metallic particles with controlled size, shape, structure and surface functionality

    Science.gov (United States)

    Lu, Lu

    Due to their excellent conductivity and chemical stability, particles of silver (Ag), gold (Au), copper (Cu) and their alloys are widely used in the electronic industry. Other unique properties extend their uses to the biomedical, optical and catalysis fields. All of these applications rely on particles with well controlled size, morphology, structure, and surface properties. Chemical precipitation from homogeneous solutions was selected as the synthetic route for the investigations described in this work. Based on the evaluation of key process parameters (temperature, reactant concentrations, reactant addition rate, mixing, etc.) the general formation mechanisms of metallic particles in various selected precipitation systems were investigated and elucidated. Five different systems for preparing particles with controlled size, morphology, structure and surface functionality are discussed. The first system involves the precipitation of Ag nanoparticles with spherical and anisotropic (platy or fiber-like) morphology. It will be shown that the formation of a stable Ag/Daxad complex has a significant impact on the reaction kinetics, and that the chromonic properties of Daxad molecules are responsible for the particle anisotropy. In the second system, Au-Ag core-shell nanoparticles were prepared in aqueous solution by a two-step precipitation process. The optical properties of these particles can be tailored by varying the thickness of the Ag shell. It was also determined that the stability of the bimetallic metallic sols depends on the Cl-ion concentration in solution. The third system discussed deals with preparation by the polyol process of well dispersed Cu nanospheres with high crystallinity and excellent oxidation resistance. We show that the heterogeneous nucleation (seeding) approach has significant merit in controlling particle size and uniformity. The functionalization of Au nanoparticle surfaces with glutathione molecules is discussed in the next section. The

  6. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Automated installation for atomic emission determination of gold, silver and platinum group metals

    International Nuclear Information System (INIS)

    Zayakina, S.B.; Anoshin, G.N.; Gerasimov, P.A.; Smirnov, A.V.

    1999-01-01

    An automated installation for the direct atomic emission determination of silver, gold and platinum-group metals (Ru) in geological and geochemical materials with software for automated data acquisition and handling is designed and developed. The installation consists of a DFS-458 diffraction spectrograph, a MAES-10 multichannel analyzer of emission spectra, and a dual-jet plasmatron. A library of spectral lines of almost all elements excited in the dual-jet plasmatron is complied [ru

  8. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Kadhim Al-Sahlani

    2017-09-01

    Full Text Available Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles’ strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF. The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20–0.26 g/cm3, the resulting foam exhibits a low density (1.03–1.19 g/cm3 that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70–80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa.

  9. Determination of concentration levels of arsenic, gold and antimony in particle-size fractions of gold ore using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Nyarku, M.

    2009-02-01

    Instrumental Neutron Activation Analysis (INAA) has been used to quantify the concentrations of arsenic, gold and antimony in particle-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd, was first fractionated into fourteen (14) particle-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 microns and grains >2000 microns were not considered for analysis. Results of the sieving were analysed with easysieve software. The < 36 microns sub fraction was found to be the optimum, hosting bulk of all three elements. For arsenic, the element was found to be highly concentrated in < 36 to +100 microns size fractions and erratically distributed from +150 microns fraction and above. For gold, in exception of the sub fraction <36 which had exceptionally high concentration, the element is distributed in all the size fractions but slightly 'plays out' in the +150 to +400 microns fractions. Antimony occurrence in the sample was relatively high in <36 microns size fraction followed by 600 - 800, 800 - 1000, 400 - 600 and 36 - 40 microns size fractions in that order. Gold content in the sample was far higher than that of arsenic and antimony. Gold concentration in the composite sample was in the range 564 - 8420 ppm. Arsenic levels were higher as compared to antimony. The range of arsenic concentration in the composite sample was 14.33 - 186.92 ppm. Antimony concentration was in the range 1.09 - 9.48 ppm. (au)

  10. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Wong, H.K.T. [National Water Research Institute, P.O. Box 5050, Burlington (Canada); Gauthier, A. [Environmental Protection Branch, Environment Canada, Dartmouth, Nova Scotia (Canada); Nriagu, J.O. [Department of Environmental and Industrial Health, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    1999-03-22

    As its name indicates, Goldenville was a famous gold mining area in Nova Scotia where large quantities of mercury were used in the gold recovery process. It is estimated that the 3 million tons of tailings left from the mining activities which lasted from 1860 to 1945 contain 470 kg of Cd, 37-300 kg of Pb, 6800 kg of Hg, 20-700 kg of As and 2600 kg of Tl. Analysis of metal contents of stream water, stream and lake sediments, tailings, and vegetation show that the tailings have been distributed over time across the stream basin to form a tailing field of approximately 2 km{sup 2}. There is a continuous release of As, Hg, Pb, Tl and other metals from the tailing field, resulting in contamination of ecosystems downstream including the Gagogan Harbor of the Atlantic Ocean. Stream water and sediments of Lake Gagogan located downstream from the mine were found toxic to the benthic community. A loss of fish habitat was observed. Although the mines were closed over 50 years ago, sedimentary records of metal loadings into Lake Gagogan show that the release of metals from the tailings has not slowed down. Analysis of metal tolerant species in the area suggests that horsetails (Equisetum rubiaceae and E. sylvaticum) can be used in phytoremediation of sites contaminated with arsenic and mercury. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Hydraulically refueled battery employing a packed bed metal particle electrode

    Science.gov (United States)

    Siu, Stanley C.; Evans, James W.

    1998-01-01

    A secondary zinc air cell, or another selected metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically, two embodiments of a cell, one that is capable of being hydraulically recharged, and a second that is capable of being either hydraulically or electrically recharged. Additionally, each cell includes a sloped bottom portion to cause stirring of the electrolyte/metal particulate slurry when the cell is being hydraulically emptied and refilled during hydraulically recharging of the cell.

  12. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  13. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup......Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...... results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500-1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time...

  14. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    GREGORY

    2012-01-10

    Jan 10, 2012 ... 7000, and 11000 mg/l, increased the samples of river water; and then they are mixed in JAR TEST apparatus twice for one and ... Key words: Chalus River, adsorption, heavy metal, suspended particle, sediment. INTRODUCTION .... concentrations using the conventional method of flame atomic absorption ...

  15. Deposition of the fractal-like gold particles onto electrospun polymethylmethacrylate fibrous mats and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Bin; Han Gaoyi; Li Miaoyu; Zhao Shizhen

    2010-01-01

    The ultrafine polymethylmethacrylate fibers containing gold nanoparticles have been prepared by using the electrospinning technique. Then the continuously coarse gold films formed by fractal-like thorny gold particles were deposited on the organic eletrospun fiber surface by an electroless process. The morphology of coarse gold films was characterized by scanning electron and transmission electron microscopy. The results revealed that the morphology of the gold particles was affected not only by the amount of gold seeds embedded in the organic fibers but also by the amount of gold deposited on the fiber's surfaces. The surface-enhanced Raman scattering (SERS) effect of the fibrous mats coated with gold films was evaluated by using Rhodamine B as an adsorbate. The results indicated that this kind of fibrous mat exhibited high and reproducible SERS activity and could be developed as highly sensitive SERS substrate.

  16. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    International Nuclear Information System (INIS)

    Yang, Hongyu; Tang, Zhenghua; Wang, Likai; Zhou, Weijia; Li, Ligui; Zhang, Yongqing; Chen, Shaowei

    2016-01-01

    Highlights: • Apparent color change upon the addition of Hg 2+ or As 3+ ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg 2+ ions. • The Hg 2+ concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg 2+ or As 3+ ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg 2+ , along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg 2+ reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  17. Analysis of Air Particles Around Site Plan of Gold Mining, North Sumatera

    International Nuclear Information System (INIS)

    Gatot-Suhariyono; Erizal-Tanjung

    2004-01-01

    Analysis of air particles around site plan of gold mining, North Sumatra has been conducted. Air particles of TSP (Total Suspended Particulate), which has maximum diameter around 45 μm (PM 2.5 ) was sampled in four places using impactor cascade. The measurement results indicate that concentration of TSP and PM 10 /PM 2.5 were in site plan center of mining smaller than quality standard of ambient air (PP RI no. 41/1999), while the concentration in areas of around it was on the contrary. The concentration in areas of around the mining was not because of air particle from in site plan center of mining. Based on regulatory of BAPEDAL head no. Kep-107/BAPEDAL/11/1997, concentration of PM 10 /PM 2.5 and TSP in site plan center of mining is in moderate category, while in areas of around the mining are in unhealthy category. Unhealthy category affects decrease at view distance and happened dust defilement everywhere, while moderate category is only happened degradation of view distance. (author)

  18. Interaction of metal ions and DNA films on gold surfaces: an electrochemical impedance study.

    Science.gov (United States)

    Bin, Xiaomin; Kraatz, Heinz-Bernhard

    2009-07-01

    Electrochemical impedance spectroscopy (EIS) has been used to investigate the effects of a number of metal ions with DNA films on gold surfaces exploiting [Fe(CN)6](3-/4-) as a solution-based redox probe. Alkaline earth metal ions Mg2+, Ca2+, trivalent Al3+, La3+ and divalent transition metal ions Ni2+, Cu2+, Cd2+ and Hg2+ have been selected in this study and the results are compared with previous studies on the effects of Zn2+ on the EIS of DNA films. All experimental results were evaluated with the help of equivalent circuits which allowed the extraction of resistive and capacitive components. For all metal ions studied here, addition of the metal ions causes a decrease in the charge transfer resistance. The difference of charge transfer resistance (DeltaR(ct)) of ds-DNA films in the presence and absence of the various metal ions is different and particular to any given metal ion. In addition, we studied the EIS of ds-DNA films containing a single A-C mismatch in the presence and absence of Ca2+, Zn2+, Cd2+ and Hg2+. DeltaR(ct) values for ds-DNA films with a single A-C mismatch is smaller than those of fully matched ds-DNA films.

  19. Ultrafast Relaxation Dynamics of the Optical Nonlinearity in Nanometric Gold Particles

    International Nuclear Information System (INIS)

    Puech, K.; Blau, W.J.

    2001-01-01

    Measurements of the resonantly enhanced, third-order nonlinear optical properties of gold nanostructures exhibiting reduced charge-carrier mobility in three dimensions were performed with a number of ultrafast nonlinear optical techniques. The size of the particles investigated was varied between 5 and 40 nm. The magnitude of the nonlinear susceptibility is of the order of 5.10 -16 m 2 V -2 at resonance and an order of magnitude lower off-resonance. The response time of the nonlinearity is found to be extremely fast and could not be resolved in the experiments undertaken here. The only statement that can be made in this regard is that the phase relaxation time is of the order of or less than 20 fs while the energy relaxation time is of the order of or less than 75 fs

  20. Fiber-optic SERS microfluidic chip based on light-induced gold nano-particle aggregation

    Science.gov (United States)

    Liu, Haitao; Liu, Jiansheng; Li, Shaopeng; Chen, Luoyang; Zhou, Hongwen; Zhu, Jinsong; Zheng, Zheng

    2015-10-01

    A novel optofluidic surface-enhanced Raman scattering (SERS) chip was specially designed and fabricated using polydimethylsiloxane (PDMS) and embedded with normal silica multi-mode optical fibers. Unlike in a conventional Raman detection configuration where an angle of 90° is commonly adopted, here the orientations of the excitation fiber and the collection fiber was set at such an obtuse angle so that the light beam from the excitation fiber can illuminate the endface, but is not within the acceptance angle of the collection fiber. It was found that with the laser irradiating on the endface of the collection fiber in the sample solution, the Raman scattering intensity continued to grow and a level about 30-times than its initial intensity was observed, which was understood by light-induced gold nano-particle aggregation. The effects of fibers' coupling angles, positions and laser irradiation power on the aggregation were investigated.

  1. Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle.

    Science.gov (United States)

    Jena, Bikash Kumar; Raj, C Retna

    2008-06-30

    Gold nanoparticle based nanostructured electrode has been developed for the amperometric detection of ultratrace amount of toxic Cr(VI). The nano-sized Au particles have been grown on a conducting substrate modified with sol-gel-derived thiol functionalized silicate network and used for the electroanalysis of Cr(VI). The nanostructured interface show well-defined voltammetric peak for the reduction of Cr(VI) at approximately 0.4 V. The voltammetric behavior of Cr(VI) strongly depends on the coverage of nanoparticle on the electrode surface. Constant potential amperometry has been used for the detection of Cr(VI) at well below the guideline value set by World Health Organization (WHO). This electrode is highly sensitive (30+/-0.2 nA/ppb) and the detection limit (S/N=9) was 0.1 ppb. Cr(III) and coexisting other metal ions and surface active agent present in water do not interfere with the amperometric measurement of Cr(VI). This nanostructured electrode is highly stable and it can be used for continuous measurement of Cr(VI) without using any pretreatment or activation procedures. The accuracy of the measurement has been validated by measuring the concentration of Cr(VI) in the certified reference material (CRM).

  2. The Influence of Ceramic and Metallic Substrates on the Oxidation Behavior of Gold ABA

    Energy Technology Data Exchange (ETDEWEB)

    Weil, K. Scott; Rice, Joseph P.

    2004-12-31

    Two commercial ceramic-to-metal braze alloys, Nioro ABA and Gold ABA, were exposure tested in high-temperature air to evaluate their oxidation behavior, microstructural stability, and materials compatibility for potential application in sealing the ceramic and metal components of a solid-state oxygen separation device. Oxidation studies were conducted on the as-received braze alloy foils, on wetting samples prepared using yttria-stabilized zirconia (YSZ) and stainless steel substrates, and on brazed YSZ/stainless steel joints. It was found that the introduction of the YSZ and/or the stainless steel can significantly modify the inherent oxidation characteristics of these brazes due to accelerated oxygen transport along the braze/ceramic interface and/or diffusion of oxidizable species from the metal substrate into the braze during joining and subsequent segregation and oxidation of these species at the braze/ceramic interface.

  3. In-situ follow up of gold nano-particles nucleation-growth

    International Nuclear Information System (INIS)

    Abecassis, Benjamin

    2006-01-01

    In this thesis, we assess the formation mechanism of gold nanoparticles in situ in liquid media (homogeneous or in microemulsion) by small angle scattering techniques. The first part details several important concepts which are useful for an appropriate understanding of the rest of the thesis along with an overview of the literature on the subject. We then present results of time resolved synchrotron small angle X ray scattering and UV-visible experiment performed in situ during the formation of gold nanoparticles in organic solvent. We show that it is possible to follow the nucleation and growth of the particles in real time with a time resolution of a few hundreds milliseconds. We show that depending on the chemical nature of the ligand the nucleation and growth can be either simultaneous or separated in time. In the latter case, the growth is limited by surface reaction of the monomer at the particles surface. We also show that when the produced nanoparticles have an average radius larger than 5 nm, they self-assemble into ordered super-lattice which exhibit a cubic face center crystallographic structure. In a third part, by using a combination of complementary techniques we study water/oil/octyl-ammonium-octanoate microemulsions in the reverse micelles part of the phase diagram. The structure of these 'catanionic' microemulsions are revealed as a function of the water content, the temperature and the surface charge. The different observed topologies (sphere, rod-like or connected worm-like) and the phase transitions are compared to a recent theory which takes into account the curvature energy of the surfactant film. Finally, we show that these microemulsions can be used efficiently to synthesise gold nanoparticles. We show that the template effect, often cited to explain the formation of nanoparticles in reverse micelles is in our case not relevant. It is also noteworthy possible to separate and purify the as-produced nanoparticles by slightly

  4. Illustration of a fingerprinting method to isolate Gold King Release Metals from Background Concentrations in the San Juan River

    Science.gov (United States)

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the sa...

  5. High coating of Ru(II) complexes on gold nanoparticles for single particle luminescence imaging in cells.

    Science.gov (United States)

    Rogers, Nicola J; Claire, Sunil; Harris, Robert M; Farabi, Shiva; Zikeli, Gerald; Styles, Iain B; Hodges, Nikolas J; Pikramenou, Zoe

    2014-01-18

    Gold nanoparticles are efficiently labelled with a luminescent ruthenium complex, producing 13 and 100 nm diameter, monodisperse red-emissive imaging probes with luminescence lifetimes prolonged over the molecular unit. Single, 100 nm particles are observed in whole cell luminescence imaging which reveals their biomolecular association with chromatin in the nucleus of cancer cells.

  6. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    Science.gov (United States)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  7. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.

    1990-01-01

    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  8. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  9. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  10. Gold-ISH: a nano-size gold particle-based phylogenetic identification compatible with NanoSIMS.

    Science.gov (United States)

    Kubota, Kengo; Morono, Yuki; Ito, Motoo; Terada, Takeshi; Itezono, Shogo; Harada, Hideki; Inagaki, Fumio

    2014-06-01

    The linkage of microbial phylogenetic and metabolic analyses by combining ion imaging analysis with nano-scale secondary ion mass spectrometry (NanoSIMS) has become a powerful means of exploring the metabolic functions of environmental microorganisms. Phylogenetic identification using NanoSIMS typically involves probing by horseradish peroxidase-mediated deposition of halogenated fluorescent tyramides, which permits highly sensitive detection of specific microbial cells. However, the methods require permeabilization of target microbial cells and inactivation of endogenous peroxidase activity, and the use of halogens as the target atom is limited because of heavy background signals due to the presence of halogenated minerals in soil and sediment samples. Here, we present "Gold-ISH," a non-halogen phylogenetic probing method in which oligonucleotide probes are directly labeled with Undecagold, an ultra-small gold nanoparticle. Undecagold-labeled probes were generated using a thiol-maleimide chemical coupling reaction and they were purified by polyacrylamide gel electrophoresis. The method was optimized with a mixture of axenic (13)C-labeled Escherichia coli and Methanococcus maripaludis cells and applied to investigate sulfate-reducing bacteria in an anaerobic sludge sample. Clear gold-derived target signals were detected in microbial cells using NanoSIMS ion imaging. It was concluded that Gold-ISH can be a useful approach for metabolic studies of naturally occurring microbial ecosystems using NanoSIMS. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Application of voltammetric methods for the analysis of gold and other transition metals in quartzite rock.

    Science.gov (United States)

    Tamrakar, Praveen Kumar; Pitre, Krishna Sadashiv

    2004-04-01

    Simple, rapid and accurate voltammetric methods viz. DCP, DPP and DPASV have been presented for the trace determination of gold and other transition metals in quartzite rock sample. The analysis has been performed using 0.1 M(NH4)2 tartrate, 0.1 M NaClO4 and 1 M NaOH as supporting electrolyte with 0.001% gelatin as maximum suppressor. The results show the presence of CuII(10.70), CoII(4.72), FeIII(66.96), AuIII(0.066), ZnII(1.68) and CdII(0.62) mg x g(-1) metal ions from the sample. Gold produced a well defined wave/peak with E1,2/Ep = -0.61 V/-0.64 V vs SCE, in 1 M NaOH supporting electrolyte. The quantitative analysis of metal inos was carried out by the method of standard addition. Statistical treatment of the observed voltammetric data reveals high accuracy and good precision of determination. The observed voltammetric results are comparable with those obtained using AAS method.

  12. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    Science.gov (United States)

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  13. ESEM Detection of Foreign Metallic Particles inside Ameloblastomatous Cells.

    Science.gov (United States)

    Roncati, Luca; Gatti, Antonietta Morena; Pusiol, Teresa; Barbolini, Giuseppe; Maiorana, Antonio; Montanari, Stefano

    2015-01-01

    Ameloblastoma is a borderline tumor of odontogenic origin, with a high recurrence rate and possible local aggressiveness. The etiopathogenetic factors involved in its occurrence are not still defined and our study has been precisely aimed to search for novel factors associated with its development. Sections cut from paraffin blocks, containing the representative specimens of 18 different ameloblastomas, collected in a 15-year period (1999-2014), have been observed by an environmental scanning electron microscope, in order to search micro- and nano-sized particles and to identify their composition. In all the neoplastic cases, micro- and nano-sized metallic debris, differing in size and composition, have been detected inside the ameloblastomatous cells. On the contrary, the total absence of metallic particles in the healthy control cases has been emerged. Our results reveal a relationship between ameloblastoma and metallic particulate. The cigarette smoke and the routine dental practice appear the most probable source for the presence of these biopersistant inorganic particles inside the neoplastic cells.

  14. 3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography.

    Science.gov (United States)

    González, J C; Hernández, J C; López-Haro, M; del Río, E; Delgado, J J; Hungría, A B; Trasobares, S; Bernal, S; Midgley, P A; Calvino, José Juan

    2009-01-01

    Living on the edge: Three-dimensional reconstructions from electron tomography data recorded from Au/Ce(0.50)Tb(0.12)Zr(0.38)O(2-x) catalysts show that gold nanoparticles (see picture; yellow) are preferentially located on stepped facets and nanocrystal boundaries. An epitaxial relationship between the metal and support plays a key role in the structural stabilization of the gold nanoparticles.

  15. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  16. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass

    Science.gov (United States)

    Xue, Yanpeng; Scaglione, Federico; Rizzi, Paola; Battezzati, Livio

    2017-12-01

    A Au20Cu48Ag7Pd5Si20 metallic glass precursor has been used to synthesize nanoporous gold by chemical de-alloying in a mixture of HNO3 and HF. Gold ligaments of size ranging from 45 to 100 nm were obtained as a function of HNO3 concentration, electrolyte temperature and de-alloying time. The as-prepared nanoporous gold exhibited strong surface enhanced Raman scattering (SERS) effect using 4,4‧-bi-pyridine as probe molecule. For application in melamine sensing, the detection limit of 10-6 M was achieved, which indicated that this biocompatible material has great potential as SERS active substrate.

  17. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    Harnessing sunlight to drive chemical reactions for energy storage is an important element in the transitiontowards green and sustainable technologies. Solar fuel production using semiconductor nanoparticles (SNPs) are widely studied but suffer from poor utilization of the solar spectrum and....../or poor stability under operating conditions. A new avenue addressing these challenges involve plasmonic metal nanoparticles (PNPs). These stable materials have tunable optical properties and exciting catalytic behavior. Composite photocatalysts of SNPs and PNPs exploit the majority of the solar spectrum......, provide new catalytic routes and expands the scope of solar photocatalysis. We prepare metal oxide SNPs, gold PNPs and their hybrids through mild aqueous syntheses to develop efficient photocatalyst for solar fuel production. Focus is placed on the synergetic interplay between SNPs and PNPs, understanding...

  18. Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity.

    Science.gov (United States)

    Kapia, Samuel; Rao, B K Rajashekhar; Sakulas, Harry

    2016-10-01

    This study reports the heavy metal (Hg, Cd, Cr, Cu, and Pb) contamination risks to and safety of two species of fresh water fish (tilapia, Oreochromis mossambicus and carp, Cyprinus carpio) that are farmed in the Yonki Reservoir in the Eastern Highlands of Papua New Guinea (PNG). The upper reaches of the reservoir are affected by alluvial and large-scale gold mining activities. We also assessed heavy metal levels in the surface waters and sediments and in selected aquatic plant species from the reservoir and streams that intersect the gold mining areas. The water quality was acceptable, except for the Cr concentration, which exceeded the World Health Organization (WHO) standard for water contamination. The sediments were contaminated with Cd and Cu in most of the sampling stations along the upstream waters and the reservoir. The Cd concentration in the sediments exceeded the US Environmental Protection Agency's Sediment Quality Guideline (SQG) values, and the geoaccumulation index (Igeo) values indicated heavy to extreme pollution. In addition, the Cd, Cu, and Pb concentrations in aquatic plants exceeded the WHO guidelines for these contaminants. Between the fish species, tilapia accumulated significantly higher (P < 0.05) Cu in their organ tissues than carp, confirming the bioaccumulation of some metals in the aquatic fauna. The edible muscles of the fish specimens had metal concentrations below the maximum permissible levels established by statutory guidelines. In addition, a human health risk assessment, performed using the estimated weekly intake (EWI) values, indicated that farmed fish from the Yonki Reservoir are safe for human consumption.

  19. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongyu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Tang, Zhenghua, E-mail: zhht@scut.edu.cn [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Wang, Likai; Zhou, Weijia; Li, Ligui [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhang, Yongqing [Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Chen, Shaowei, E-mail: shaowei@ucsc.edu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-08-15

    Highlights: • Apparent color change upon the addition of Hg{sup 2+} or As{sup 3+} ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg{sup 2+} ions. • The Hg{sup 2+} concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg{sup 2+} or As{sup 3+} ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg{sup 2+}, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg{sup 2+} reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  20. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Boamponsem, L.K. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana); Adam, J.I. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Dampare, S.B., E-mail: dampare@cc.okayama-u.ac.j [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Department of Earth Sciences, Okayama University, 1-1, Tsushima-Naka 3-Chome, Okayama 700-8530 (Japan); Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Essumang, D.K. [Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana)

    2010-05-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  1. The effect of the electronic structure, phase transition, and localized dynamics of atoms in the formation of tiny particles of gold

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mubarak, E-mail: mubarak74@comsats.edu.pk, E-mail: mubarak74@mail.com [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Lin, I-Nan [Tamkang University, Department of Physics (China)

    2017-01-15

    In addition to self-governing properties, tiny-sized particles of metallic colloids are the building blocks of large-sized particles; thus, their study has been the subject of a large number of publications. In the present work, it has been discussed that geometry structure of tiny particle made through atom-to-atom amalgamation depends on attained dynamics of gold atoms along with protruded orientations. The localized process conditions direct two-dimensional structure of a tiny particle at atomically flat air-solution interface while heating locally dynamically approached atoms, thus, negate the role of van der Waals interactions. At electronphoton-solution interface, impinging electrons stretch or deform atoms of tiny particles depending on the mechanism of impingement. In addition, to strike regular grid of electrons ejected on split of atoms not executing excitations and de-excitations of their electrons, atoms of tiny particles also deform or stretch while occupying various sites depending on the process of synergy. Under suitable impinging electron streams, those tiny particles in monolayer two-dimensional structure electron states of their atoms are diffused in the direction of transferred energy, thus, coincide to the next adjacent atoms in each one-dimensional array dealing the same sort of behavior. Instantaneously, photons of adequate energy propagate on the surfaces of such electronic structures and modify those into smooth elements, thus, disregard the phenomenon of localized surface plasmons. This study highlights the fundamental process of formation of tiny particles where the role of localized dynamics of atoms and their electronic structure along with interaction to light are discussed. Such a tool of processing materials, in nonequilibrium pulse-based process, opens a number of possibilities to develop engineered materials with specific chemical, optical, and electronic properties.

  2. Silver and gold nanoparticles in plants: sites for the reduction to metal.

    Science.gov (United States)

    Beattie, Isabel R; Haverkamp, Richard G

    2011-06-01

    Induced formation of metal nanoparticles in living plants is poorly understood. The sites for the reduction of Ag(+) and Au(3+) to Ag(0) and Au(0) metal nanoparticles in vivo in plants were investigated in order to better understand the mechanism of the reduction processes. Brassica juncea was grown hydroponically, followed by growth in solutions of AgNO(3), [Ag(NH(3))(2)]NO(3) or HAuCl(4). Harvested plants were sectioned and studied by transmission electron microscopy. Total metal content was analysed by atomic absorption spectroscopy. The chemical state of the metals was determined by X-ray absorption spectroscopy. Nanoparticles of Ag(0) and Au(0) were found in leaves, stem, roots and cell walls of the plants at a concentration of 0.40% Ag and 0.44% Au in the leaves. Particles which were approximately spherical were formed with sizes of 2-100 nm. The sites of the most abundant reduction of metal salts to nanoparticles were the chloroplasts, regions of high reducing sugar (glucose and fructose) content. We propose that these sugars are responsible for the reduction of these metals and other metal salts with reduction potentials over +0.16 V and that the amount of reducing sugar present or produced determines the quantity of metal nanoparticles that may be formed.

  3. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    Science.gov (United States)

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Extraction of gold (Au) particles from sea water by Delftia Acidovorans microbes

    Science.gov (United States)

    Yusoff, A. H. M.; Nading, M. E.; Salimi, M. N.

    2017-10-01

    Gold-mining activities have been an issue, especially when it involves in contamination of chemicals, for example arsenic and mercury. However, despite of these hazards, gold-mining activities are still being conducted. This is because the gold is worth, regardless of the problems. Gold-mining, as known needs a very large area of land, or site plant. Vast amount of labor force, mechanical force and fund are a must in order for the mining process to be continued. High demand of gold, made gold-mining industries as ones of the most profitable industries in the world. Thus, this has encouraged another alternative way to extract gold. At the mining site, researchers found that biomineralization of gold by Delftia acidovorans can be conducted. How it is done still cannot be understood. It is said that the bacteria secretes secondary metabolites, Delftibactin as a defensive mechanism against the toxicity of the soluble gold. Researchers try to find another source of elemental gold besides of the earth’s core. The options are either lava of a volcano or ocean. Here, the focus is seawater. The problem of seawater is that its composition still not yet to be proved. Dissolve gold existed as gold chloride in seawater, but in a very small amount. So, the gold separation should be focused, in order to make this process to be a successful one. Factors such as depth, climate, region, temperature need to be considered. If this difference affecting the separating process, standardized seawater composition have to be proposed.

  5. The fate of meteoric metals in ice particles: Effects of sublimation and energetic particle bombardment

    Science.gov (United States)

    Mangan, T. P.; Frankland, V. L.; Murray, B. J.; Plane, J. M. C.

    2017-08-01

    The uptake and potential reactivity of metal atoms on water ice can be an important process in planetary atmospheres and on icy bodies in the interplanetary and interstellar medium. For instance, metal atom uptake affects the gas-phase chemistry of the Earth's mesosphere, and has been proposed to influence the agglomeration of matter into planets in protoplanetary disks. In this study the fate of Mg and K atoms incorporated into water-ice films, prepared under ultra-high vacuum conditions at temperatures of 110-140 K, was investigated. Temperature-programmed desorption experiments reveal that Mg- and K-containing species do not co-desorb when the ice sublimates, demonstrating that uptake on ice particles causes irreversible removal of the metals from the gas phase. This implies that uptake on ice particles in terrestrial polar mesospheric clouds accelerates the formation of large meteoric smoke particles (≥1 nm radius above 80 km) following sublimation of the ice. Energetic sputtering of metal-dosed ice layers by 500 eV Ar+ and Kr+ ions shows that whereas K reacts on (or within) the ice surface to form KOH, adsorbed Mg atoms are chemically inert. These experimental results are consistent with electronic structure calculations of the metals bound to an ice surface, where theoretical adsorption energies on ice are calculated to be -68 kJ mol-1 for K, -91 kJ mol-1 for Mg, and -306 kJ mol-1 for Fe. K can also insert into a surface H2O to produce KOH and a dangling H atom, in a reaction that is slightly exothermic.

  6. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory

    2010-01-01

    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  7. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  8. Physical sputtering of metallic systems by charged-particle impact

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  9. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  10. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  11. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    Science.gov (United States)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  12. Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles

    Science.gov (United States)

    Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham

    2016-04-12

    Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).

  13. Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. I. Analysis of particle size and shape.

    Science.gov (United States)

    Catelas, I; Bobyn, J D; Medley, J B; Krygier, J J; Zukor, D J; Petit, A; Huk, O L

    2001-06-05

    Isolation of metal wear particles from hip simulator lubricants or tissues surrounding implants is a challenging problem because of small particle size, their tendency to agglomerate, and their potential for chemical degradation by digestion reagents. To provide realistic measurements of size, shape, and composition of metal wear particles, it is important to optimize particle isolation and minimize particle changes due to the effects of the reagents. In this study (Part I of II), transmission electron microscopy (TEM) was used to examine and compare the effects of different isolation protocols, using enzymes or alkaline solutions, on the size and shape of three different types of cobalt-based alloy particles produced from metal-metal bearings. The effect on particle composition was examined in a subsequent study (Part II). Large particles (particles (particle size and to a lesser extent particle shape. For both large particles and small particles generated in water, the changes in size were more extensive after alkaline than after enzymatic protocols and increased with alkaline concentration and time in solution, up to twofold at 2 h and threefold at 48 h. However, when isolating particles from 95% serum, an initial protective effect of serum proteins and/or lipids was observed. Because of this protective effect, there was no significant difference in particle size and shape for both oval and needle-shaped particles after 2 h in 2N KOH and after enzymatic treatments. However, round particles were significantly smaller after 2 h in 2N KOH than after enzymatic treatments. Particle composition may also have been affected by the 2N KOH treatment, as suggested by a difference in particle contrast under TEM, an issue examined in detail in Part II. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 55: 320-329, 2001

  14. Selective recovery of gold and other metal ions from an algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Darnall, D.W.; Greene, B.; Henzl, M.T.; Hosea, J.M.; McPherson, R.A.; Sneddon, J.; Alexander, M.D.

    1986-02-01

    The authors observed that the pH dependence of the binding of Au/sup 3 +/, Ag/sup +/, and Hg/sup 2 +/ to the algae Chlorella vulgaris is different than the binding of other metal ions. Between pH 5 and 7, a variety of metal ions bind strongly to the cell surface. Most of these algal-bound metal ions can be selectively desorbed by lowering the pH to 2; however, Au/sup 3 +/, Hg/sup 2 +/, and Ag/sup +/ are all bound strongly at pH 2. Addition of a strong ligand at different pHs is required to elute these ions from the algal surface. Algal-bound gold and mercury can be selectively eluted by using mercaptoethanol. An elution scheme is demonstrated for the binding and selective recovery of Cu/sup 2 +/, Zn/sup 2 +/, Au/sup 3 +/, and Hg/sup 2 +/ from an equimolar mixture. 20 references, 2 figures.

  15. Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold.

    Science.gov (United States)

    Xu, Teng; Jia, Xinle; Chen, Xia; Ma, Zhanfang

    2014-06-15

    In this work, a sandwich-format electrochemical immunosensor has been fabricated in the aim of simultaneous detection of carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) using metal ions tagged immunocolloidal gold nanocomposites as signal tags. The capture anti-CEA and anti-AFP were immobilized onto the chitosan-Au nanoparticles (CHIT-AuNPs) membrane modified glassy carbon electrode through glutaraldehyde (GA). The metal ion labels could be detected directly through differential pulse voltammetry (DPV) without metal pre-concentration, and the distinct voltammetric peaks had a close relationship with each sandwich-type immunoreaction. Under the optimized conditions, the multiplexed immunoassay exhibited good sensitivity and selectivity for the simultaneous determination of CEA and AFP with linear ranges of 0.01-50 ng mL(-1). The detection limits for CEA and AFP are 4.6 pg mL(-1) and 3.1 pg mL(-1), respectively. The method was successfully applied for the determination of AFP and CEA levels in clinical serum samples, and the results were in good agreement with standard enzyme linked immunosorbent assay (ELISA). This approach gives a promising simple and sensitive immunoassay strategy for clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Orogenic gold: Common or evolving fluid and metal sources through time

    Science.gov (United States)

    Goldfarb, Richard J.; Groves, David I.

    2015-09-01

    Orogenic gold deposits of all ages, from Paleoarchean to Tertiary, show consistency in chemical composition. They are the products of aqueous-carbonic fluids, with typically 5-20 mol% CO2, although unmixing during extreme pressure fluctuation can lead to entrapment of much more CO2-rich fluid inclusions in some cases. Ore fluids are typically characterized by significant concentrations of CH4 and/or N2, common estimates of 0.01-0.36 mol% H2S, a near-neutral pH of 5.5, and salinities of 3-7 wt.% NaCl equiv., with Na > K > > Ca,Mg. This fluid composition consistency favors an ore fluid produced from a single source area and rules out mixing of fluids from multiple sources as significant in orogenic gold formation. Nevertheless, there are broad ranges in more robust fluid-inclusion trapping temperatures and pressures between deposits that support a model where this specific fluid may deposit ore over a broad window of upper to middle crustal depths. Much of the reported isotopic and noble gas data is inconsistent between deposits, leading to the common equivocal interpretations from studies that have attempted to define fluid and metal source areas for various orogenic gold provinces. Fluid stable isotope values are commonly characterized by the following ranges: (1) δ18O for Precambrian ores of + 6 to + 11‰ and for Phanerozoic ores of + 7 to + 13‰; (2) δD and δ34S values that are extremely variable; (3) δ13C values that range from - 11 to - 2‰; and (4) δ15N of + 10 to + 24‰ for the Neoarchean, + 6.5 to + 12‰ for the Paleoproterozoic, and + 1.5 to + 10‰ for the Phanerozoic. Secular variations in large-scale Earth processes appear to best explain some of the broad ranges in the O, S, and N data. Fluid:rock interaction, particularly in ore trap areas, may cause important local shifts in the O, S, and C ratios. The extreme variations in δD mainly reflect measurements of hydrogen isotopes by bulk extraction of waters from numerous fluid inclusion

  17. Chemistry and thermal history of metal particles in Luna 20 soils.

    Science.gov (United States)

    Goldstein, J. I.; Blau, P. J.

    1973-01-01

    Individual metal particles from Luna 20 thin sections 521, 513 and 514 as well as several small metallic inclusions in silicate particles from Luna 20 thin sections 501 and 502 were examined using optical microscopy and the electron microprobe. All the metallic particles and inclusions analyzed are of meteoritic Co-Ni content as are most of the metallic particles from the Fra Mauro and the Apollo 16 highlands sites. It is proposed that most of the metal at these 3 sites had its origin in the meteoritic projectiles that bombarded and accumulated in the early lunar crust. It is apparent that the metallic particles and some of the metallic inclusions in the Luna 20 soil have been subjected to reheating on the moon and this process has removed any evidence of the original meteoritic microstructure of the metal.

  18. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  19. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  20. Facile synthesis of gold-silver alloy nanoparticles for application in metal enhanced bioluminescence.

    Science.gov (United States)

    Abhijith, K S; Sharma, Richa; Ranjan, Rajeev; Thakur, M S

    2014-07-01

    In the present study we explored metal enhanced bioluminescence in luciferase enzymes for the first time. For this purpose a simple and reproducible one pot synthesis of gold-silver alloy nanoparticles was developed. By changing the molar ratio of tri-sodium citrate and silver nitrate we could synthesize spherical Au-Ag colloids of sizes ranging from 10 to 50 nm with a wide range of localized surface plasmon resonance (LSPR) peaks (450-550 nm). The optical tunability of the Au-Ag colloids enabled their effective use in enhancement of bioluminescence in a luminescent bacterium Photobacterium leiognathi and in luciferase enzyme systems from fireflies and bacteria. Enhancement of bioluminescence was 250% for bacterial cells, 95% for bacterial luciferase and 52% for firefly luciferase enzyme. The enhancement may be a result of energy transfer or plasmon induced enhancement. Such an increase can lead to higher sensitivity in detection of bioluminescent signals with potential applications in bio-analysis.

  1. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides

    NARCIS (Netherlands)

    Hereijgers, B.P.C.; Weckhuysen, B.M.

    2009-01-01

    A series of alumina-supported gold catalysts was investigated for the CO-free production of hydrogen by partial oxidation of methanol. The addition of alkaline-earth metal oxide promoters resulted in a significant improvement of the catalytic performance. The methanol conversion was ca. 85 % with

  2. SQUID sensor application for small metallic particle detection

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  3. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes

    International Nuclear Information System (INIS)

    Chen, Meijie; He, Yurong; Zhu, Jiaqi; Kim, Dong Rip

    2016-01-01

    Highlights: • Au NPs with different sizes were synthesized by a seed mediated method. • Au NPs were added to improve the photo-thermal conversion efficiency. • Properties of two collector models were discussed and compared. • The size effects of Au NPs on photo-thermal conversion were discussed. - Abstract: This work describes an experimental study of the particle size dependence of gold nanofluids during photo-thermal conversion in a direct absorption solar collector (DASC). Au nanoparticles (NPs) with different sizes were synthesized using a seed mediated method. Au NPs play a significant role in enhancing the solar light absorption with respect to a pure base fluid at a very low concentration due to the localized surface plasmon resonance effect. Experimental results of the photo-thermal conversion showed that the photo-thermal conversion efficiency of Au nanofluids obtained an average enhancement of 19.9% and 21.3% for a cube shaped DASC and a flat shaped DASC, respectively, compared with H 2 O at a relatively low mass fraction (∼0.000008% weight). Reducing the Au NP size led to the enhancement of the photo-thermal conversion efficiency under the present experimental conditions, which could be an effective way for the modification of optical properties and thermodynamic characteristics. However, the size of Au NPs did not significantly influence the efficiency for the cube shaped DASC. The cube shaped DASC model usually had the higher efficiency than the flat DASC model using the same working fluids since the heat loss percentage of the cube shaped DASC was lower.

  4. Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty.

    Science.gov (United States)

    Xia, Zhidao; Ricciardi, Benjamin F; Liu, Zhao; von Ruhland, Christopher; Ward, Mike; Lord, Alex; Hughes, Louise; Goldring, Steven R; Purdue, Edward; Murray, David; Perino, Giorgio

    2017-04-01

    Increased failure rates due to metallic wear particle-associated adverse local tissue reactions (ALTR) is a significant clinical problem in resurfacing and total hip arthroplasty. Retrieved periprosthetic tissue of 53 cases with corrosion/conventional metallic wear particles from 285 revision operations for ALTR was selected for nano-analyses. Three major classes of hip implants associated with ALTR, metal-on-metal hip resurfacing arthroplasty (MoM HRA) and large head total hip replacement (MoM LHTHA) and non-metal-on-metal dual modular neck total hip replacement (Non-MoM DMNTHA) were included. The size, shape, distribution, element composition, and crystal structure of the metal particles were analyzed by conventional histological examination and electron microscopy with analytic tools of 2D X-ray energy dispersive spectrometry and X-ray diffraction. Distinct differences in size, shape, and element composition of the metallic particles were detected in each implant class which correlate with the histological features of severity of ALTR and variability in implant performance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites

    Directory of Open Access Journals (Sweden)

    Oluwatosin Gbemisola Oladipo

    Full Text Available ABSTRACT Increased environmental pollution has necessitated the need for eco-friendly clean-up strategies. Filamentous fungal species from gold and gemstone mine site soils were isolated, identified and assessed for their tolerance to varied heavy metal concentrations of cadmium (Cd, copper (Cu, lead (Pb, arsenic (As and iron (Fe. The identities of the fungal strains were determined based on the internal transcribed spacer 1 and 2 (ITS 1 and ITS 2 regions. Mycelia growth of the fungal strains were subjected to a range of (0-100 Cd, (0-1000 Cu, (0-400 Pb, (0-500 As and (0-800 Fe concentrations (mgkg-1 incorporated into malt extract agar (MEA in triplicates. Fungal radial growths were recorded every three days over a 13-days' incubation period. Fungal strains were identified as Fomitopsis meliae, Trichoderma ghanense and Rhizopus microsporus. All test fungal exhibited tolerance to Cu, Pb, and Fe at all test concentrations (400-1000 mgkg-1, not differing significantly (p > 0.05 from the controls and with tolerance index >1. T. ghanense and R. microsporus demonstrated exceptional capacity for Cd and As concentrations, while showing no significant (p > 0.05 difference compared to the controls and with a tolerance index >1 at 25 mgkg-1 Cd and 125 mgkg-1 As. Remarkably, these fungal strains showed tolerance to metal concentrations exceeding globally permissible limits for contaminated soils. It is envisaged that this metal tolerance trait exhibited by these fungal strains may indicate their potentials as effective agents for bioremediative clean-up of heavy metal polluted environments.

  6. Functional Role of Infective Viral Particles on Metal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans and the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.

  7. Influence of gold coating and interplate voltage on the performance of chevron micro-channel plates for temporally and spatially resolved single particle detection

    Science.gov (United States)

    Hoendervanger, A. L.; Clément, D.; Aspect, A.; Westbrook, C. I.; Dowek, D.; Picard, Y. J.; Boiron, D.

    2013-02-01

    We present a study of two different sets of Micro-Channel Plates used for time and space resolved single particle detection. We investigate the effects of the gold coating and that of introducing an interplate voltage between the spatially separated plates. We find that the gold coating increases the count rate of the detector and the pulse amplitude as previously reported for non-spatially resolved setups. The interplate voltage also increases count rates. In addition, we find that a non-zero interplate voltage improves the spatial accuracy in determining the arrival position of incoming single particles (by ˜20%) while the gold coating has a negative effect (by ˜30%).

  8. Development of carbon and metallic nano particle composite materials for the determination of uranium and other heavy metal ions

    International Nuclear Information System (INIS)

    Sahoo, S.; Dey, M.K.; Satpati, A.K.; Reddy, A.V.R.

    2014-01-01

    Carbon and metallic nano particle based composite materials were developed and characterised for the determination of heavy metal ions and uranium in trace concentration levels. Composite material were electrodeposited on the substrate electrode and applied for the electrochemical determination of metal ions. Electrodeposition parameters to synthesise the composite material and the analytical parameters for determination were optimised. (author)

  9. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, Mohamed A; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-12-06

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobalt metals.

  10. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China.

    Science.gov (United States)

    Chen, Mo; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Jiang, Xue; Wu, Jichun

    2017-01-01

    Different gold mining and smelting processes can lead to distinctive heavy metal contamination patterns and results. This work examined heavy metal pollution from a large-scale cyanidation gold mining operation, which is distinguished from artisanal and small-scale amalgamation gold mining, in Jilin Province, China. A total of 20 samples including one background sample were collected from the surface of the mining area and the tailings pond in June 2013. These samples were analyzed for heavy metal concentrations and degree of pollution as well as sources of Cr, Cu, Zn, Pb, Ni, Cd, As, and Hg. The mean concentrations of Pb, Hg, and Cu (819.67, 0.12, and 46.92 mg kg -1 , respectively) in soil samples from the gold mine area exceeded local background values. The mean Hg content was less than the first-class standard of the Environmental Quality for Soils, which suggested that the cyanidation method is helpful for reducing Hg pollution. The geochemical accumulation index and enrichment factor results indicated clear signs that enrichment was present for Pb, Cu, and Hg, with the presence of serious Pb pollution and moderate presence to none of Hg and Cu pollution. Multivariate statistical analysis showed that there were three metal sources: (1) Pb, Cd, Cu, and As came from anthropogenic sources; (2) Cr and Zn were naturally occurring; whereas (3) Hg and Ni had a mix of anthropogenic and natural sources. Moreover, the tailings dam plays an important role in intercepting the tailings. Furthermore, the potential ecological risk assessment results showed that the study area poses a potentially strong risk to the ecological health. Furthermore, Pb and Hg (due to high concentration and high toxicity, respectively) are major pollutants on the risk index, and both Pb and Hg pollution should be of great concern at the Haigou gold mines in Jilin, China.

  11. Non ideal detonation of emulsion explosives mixed with metal particles

    Science.gov (United States)

    Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.

    2011-06-01

    The detonation of ammonium nitrate based compositions like emulsion explosives (EX) mixed with metal particles has been investigated experimentally. Aluminium powder with a mean particle size of 10 μm was used, and the mass concentration of aluminum on the explosive charge was ranged from 0 to 30%. The values of the detonation velocity, the pressure attenuation - P(x) - of detonation front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressure-times histories have been evaluated using the multi fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allow a quasi continuous evaluation of the detonation wave run propagation and the assessment to spatial resolved measurements of the shock wave induced in the PMMA barrier which in turns allows a detailed characterization of the detonation reaction zone structure. Results of that characterization process are presented and discussed for aluminized and non aluminized EX. Moreover, the effect of the mass concentration of the sensitizing agent (hollow glass micro-balloons) on the non monotonic detonation velocity variation, for EX, will be discussed.

  12. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B.

    Science.gov (United States)

    Bhargava, Arpit; Jain, Navin; Khan, Mohd Azeem; Pareek, Vikram; Dilip, R Venkataramana; Panwar, Jitendra

    2016-12-01

    In recent years, the surging demand of nanomaterials has boosted unprecedented expansion of research for the development of high yielding and sustainable synthesis methods which can deliver nanomaterials with desired characteristics. Unlike the well-established physico-chemical methods which have various limitations, biological methods inspired by mimicking natural biomineralization processes have great potential for nanoparticle synthesis. An eco-friendly and sustainable biological method that deliver particles with well-defined shape, size and compositions can be developed by selecting a proficient organism followed by fine tuning of various process parameter. The present study revealed high metal tolerance ability of a soil fungus Cladosporium oxysporum AJP03 and its potential for extracellular synthesis of gold nanoparticles. The morphology, composition and crystallinity of nanoparticles were confirmed using standard techniques. The synthesized particles were quasi-spherical in shape with fcc packing and an average particle size of 72.32 ± 21.80 nm. A series of experiments were conducted to study the effect of different process parameters on particle size and yield. Biomass: water ratio of 1:5 and 1 mM precursor salt concentration at physiological pH (7.0) favoured the synthesis of well-defined gold nanoparticles with maximum yield. The as-synthesized nanoparticles showed excellent catalytic efficiency towards sodium borohydride mediated reduction of rhodamine B (2.5 × 10(-5) M) within 7 min of reaction time under experimental conditions. Presence of proteins as capping material on the nanoparticle surface was found to be responsible for this remarkable catalytic efficiency. The present approach can be extrapolated to develop controlled and up-scalable process for mycosynthesis of nanoparticles for diverse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Particle size and kind of mica in synthesis of nontoxic bronze and gold pearlescent pigments based on nanoencapsulated hematite

    Directory of Open Access Journals (Sweden)

    Maryam Hosseini-Zori

    2015-12-01

    Full Text Available Nano-encapsulated iron oxide in Zirconium oxide-coated mica pigments are thermally stable,innocuous to human health, non-combustible, and they do not conduct electricity. They could beapplied in several industries such as thermoplastics, cosmetics, food packaging, children toys, paints,automobiles coating, security purposes, and banknotes. Nowadays, they are highly desirable inceramic decoration. In the present study, intensively dark gold to bronze colored mica clay pigments,which were based on mica flakes covered with a layer of nano-iron oxide-Zirconium oxide particles,were prepared by homogeneous precipitation of iron nitrate and Zirconium chloride ammonia in thepresence of mica flakes in two kinds of ore clay-based phlogopite and muscovite minerals. The finalcolor was obtained by thermal annealing of precipitates at a temperature of 800◦C. The pigments werecharacterized by X-Ray Diffraction, Particle size analysis, Scanning electron microscopy,Transmission electron microscopy, X-Ray fluorescence, and Simultaneous thermal analysis. Resultsindicate that nano-encapsulated iron oxide in zirconia particles have been formed on mica flakes andkinds of clay-mica can be related to obtained shade from dark gold to bronze pearl. Higher particlesize of mica flakes about phlogopite type of mica introduced pearl effects with higher L* changes indifferent angles. Muscovite performed higher hue and better pearl effect than phlogopite.

  14. Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene

    Directory of Open Access Journals (Sweden)

    Ya-Ting Tsu

    2017-06-01

    Full Text Available Nano-gold catalyst has been reported to have high activity and selectivity for liquid phase hydrogenation reaction. In this study, gold-containing bimetals were loaded on TiO2. For bimetallic catalysts, gold and different metals were prepared by the deposition-precipitation method, and then used NaBH4 to reduce metal cations. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The catalytic properties of these catalysts were tested by hydrogenation of p-chloronitrobenzene (p-CNB in a batch reactor at 1.1 MPa H2 pressure, 373 K and 500 rpm. Cu, Ag, Ru, and Pd formed nano-alloy with Au. In addition, Cu–Au, Ag–Au, and Ru–Au alloy had Cu-, Ag-, and Ru-enriched surface, respectively. Instead, Pd–Au alloy had Pd-enriched surface. There are two kinds of alloy effects: (1 geometric effects, i.e., the surface-enriched metal would change the distance of Au–Au atoms that is required for facilitating the hydrogenation of chloronitrobenzene; and (2 electronic effects, which involve charge transfer between the metals. The activity decreased in the following order: PdAu/TiO2 > Au/TiO2 > NiAu/TiO2 > AgAu/TiO2 > RuAu/TiO2 > CuAu/TiO2. Comparing with other metals, adding Pd in Au showed a higher activity. Adding palladium could reduce gold-valence state, and increased active sites for reaction.

  15. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  16. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  17. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  18. Cobalt bioavailability from hard metal particles. Further evidence that cobalt alone is not responsible for the toxicity of hard metal particles.

    Science.gov (United States)

    Lison, D; Lauwerys, R

    1994-01-01

    Hard metal is an alloy of tungsten carbide (WC) in a matrix of cobalt metal (Co). The inhalation of hard metal dust can cause an alveolitis which may progress to interstitial fibrosis. This study was undertaken to compare, both in vivo and in vitro, the bioavailability of cobalt metal when mixed or not with WC and to assess whether this factor had any influence on the cellular toxicity of hard metal particles. In vivo, non-toxic doses of cobalt metal were administered intratracheally in the rat, alone (Co, 0.03 mg/100 g) or mixed with tungsten carbide (WC-Co, 0.5 mg/100 g containing 6.3% of cobalt metal particles). Sequential measurements of cobalt in the lung and in urine demonstrated that the retention time of the metal in the lung was longer in Co- than in WC-Co-treated animals. In vitro, the cellular cobalt uptake was higher when the metal was presented to the macrophages as WC-Co. However, there was no relationship between the cellular uptake of cobalt and the occurrence of toxicity, since the intracellular concentration of cobalt associated with the occurrence of a cytotoxic effect of WC-Co particles was insufficient to exert the same effect when resulting from exposure to Co alone. This clearly indicates that increased bioavailability of cobalt is not the mechanism by which hard metal particles exhibit their cellular toxicity. These observations confirm and extend our previous findings supporting the view that cobalt is not the only component responsible for the toxicity of hard metal particles which should be considered as a specific toxic entity.

  19. Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities

    Directory of Open Access Journals (Sweden)

    Noel Peter Bengzon Tan

    2016-03-01

    Full Text Available Herein we report a simple and green synthesis of smart Au and Ag@Au nanocomposite particles using poly(N-isopropylacrylamide/polyethyleneimine (PNIPAm/PEI core-shell microgels as dual reductant and templates in an aqueous system. The nanocomposite particles were synthesized through a spontaneous reduction of tetrachloroauric (III acid to gold nanoparticles at room temperature, and in situ encapsulation and stabilization of the resultant gold nanoparticles (AuNPs with amine-rich PEI shells. The preformed gold nanoparticles then acted as seed nanoparticles for further generation of Ag@Au bimetallic nanoparticles within the microgel templates at 60 °C. These nanocomposite particles were characterized by TEM, AFM, XPS, UV-vis spectroscopy, zeta-potential, and particle size analysis. The synergistic effects of the smart nanocomposite particles were studied via the reduction of p-nitrophenol to p-aminophenol. The catalytic performance of the bimetallic Ag@Au nanocomposite particles was 25-fold higher than that of the monometallic Au nanoparticles. Finally, the controllable catalytic activities of the Au@PNIPAm/PEI nanocomposite particles were demonstrated via tuning the solution pH and temperature.

  20. On the High Sensitivity of the Electronic States of 1 nm Gold Particles to Pretreatments and Modifiers

    Directory of Open Access Journals (Sweden)

    Oxana Martynyuk

    2016-03-01

    Full Text Available In this paper, the effect of modifiers and pretreatments on the electronic states of 1 nm gold nanoparticles (AuNPs supported on silica was systematically studied. AuNPs deposited on silica (particle size of 2–4 nm modified with Ce, La and Fe oxides, were studied by FTIR of adsorbed CO after different redox treatments at 100, 300 and 500 °C. This study was conducted at room temperature to allow detecting the electronic states of gold, which is more likely involved in CO oxidation at the same temperature. AuNP size distribution was measured by HRTEM. It is shown that the electronic state of gold species (Aunδ−, Au0, Aunδ+, Au+ in 1 nm AuNPs is sensitive to the modifier as well as to the temperatures of redox pretreatments. Supports modified with the same additives but containing larger AuNPs (~3, 4, 5, and 7 nm were also studied. They showed that Au0 remains stable irrespective of additives and redox pretreatments, indicating no significant effect of such treatments on the electronic properties of larger AuNPs. Samples with a predominant AuNP size of 2 nm are an intermediate case between these two groups of materials.

  1. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  2. Nucleation of polypropylene crystallization with gold nanoparticles. Part 2: relation between particle morphology and nucleation activity

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Vacková, Taťana; Zhigunov, Alexander; Sikora, Antonín; Piorkowska, E.

    2016-01-01

    Roč. 55, č. 4 (2016), s. 393-410 ISSN 0022-2348 R&D Projects: GA ČR GAP205/10/0348; GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : crystallization * gold nanoparticles * isotactic polyproplylene Subject RIV: JJ - Other Materials Impact factor: 0.828, year: 2016

  3. Uptake of Gold Nanoparticles by Intestinal Epithelial Cells: Impact of Particle Size on Their Absorption, Accumulation, and Toxicity.

    Science.gov (United States)

    Yao, Mingfei; He, Lili; McClements, David Julian; Xiao, Hang

    2015-09-16

    Inorganic nanomaterials have been increasingly utilized in many consumer products, which has led to concerns about their potential toxicity. At present, there is limited knowledge about the gastrointestinal fate and cytotoxicity of ingested inorganic nanoparticles. This study determined the influence of particle size and concentration of gold nanoparticles (AuNPs) on their absorption, accumulation, and cytotoxicity in model intestinal epithelial cells. As the mean particle diameter of the AuNPs decreased (from 100 to 50 to 15 nm), their rate of absorption by the intestinal epithelium cells increased, but their cellular accumulation in the epithelial cells decreased. Moreover, accumulation of AuNPs caused cytotoxicity in the intestinal epithelial cells, which was evidenced by depolarization of mitochondria membranes. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity.

  4. Post Gold King Mine spill investigation of metal stability in water and sediments of the Animas River watershed

    OpenAIRE

    Rodriguez-Freire, Lucia; Avasarala, Sumant; Ali, Abdul-Mehdi S.; Agnew, Diane; Hoover, Joseph H.; Artyushkova, Kateryna; Latta, Drew E.; Peterson, Eric J.; Lewis, Johnnye; Crossey, Laura J.; Brearley, Adrian J.; Cerrato, José M.

    2016-01-01

    We applied spectroscopy, microscopy, diffraction, and aqueous chemistry methods to investigate the persistence of metals in water and sediments from the Animas River 13 days after the Gold King Mine spill (August 5, 2015). The Upper Animas River watershed, located in San Juan CO, is heavily mineralized and impacted by acid mine drainage, with low pH water and elevated metal concentrations in sediments (108.4±1.8 mg kg−1 Pb, 32.4±0.5 mg kg−1 Cu, 729.6±5.7 mg kg−1 Zn and 51,314.6±295.4 mg kg−1 ...

  5. Characterization of typical metal particles during haze episodes in Shanghai, China.

    Science.gov (United States)

    Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin

    2017-08-01

    Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  7. Study on Gold and base metal occurrence in Uluwai Prospect, Western Latimojong Mountain, South Sulawesi

    Science.gov (United States)

    Maulana, Adi; Jaya, Asri; Imai, Akira

    2018-02-01

    Uluwai Prospect is located in the northern part of South Arm of Sulawesi along the eastern part of the Kalosi Fold Belt and Latimojong Mountain. The area is generally characterized by moderate to rugged topography area with elevation in the range of 700 to 1400 m above sea level in the mountainous complex called Latimojong Mountain Complex. The mineralization is characterized by a relatively simple sulphide ore mineral assemblage consists of pyrite, sphalerite and chalcopyrite. Samples were collected in areas showing abundant sulphide minerals where younger faults cut the bedding and foliation of country rocks. A number of silicified zones have been observed, as well as float material containing disseminated pyrite, chalcopyrite, and sphalerite with hematite, goethite and limonite. Some alteration types have been observed including sericitization, albitization, carbonatization and silisification. The samples collected indicated that the mineralisation is contained within metasedimentary (sandstone to mudstone) and greenschist. Geochemical analyses from 16 samples including 5 stream sediment samples indicated that the most promising mineralization occur in the prospect area are copper (Cu) and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. Assaying of the collected samples revealed most of samples contain relatively low gold (Au) concentration. However, two samples contain 0.007 and 0.01 ppm of Au. In the mineralized area, Zn concentrations are up to 134 ppm, Cu up to 120 ppm and Pb up to 18 ppm and As up to 70 ppm. There is no clear relationship that exists between Au and the base metals except that one of the samples with highest Au values tend to have high Zn and As. This unclear pattern also shown by Cu, Pb and Zn. Base metal concentration in stream sediment samples show a relatively stable pattern than in rock samples. Arsenic tends to be elevated in base metal rich samples. Sb and Mo are

  8. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    Science.gov (United States)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  9. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes.

    Science.gov (United States)

    Christau, Stephanie; Möller, Tim; Yenice, Zuleyha; Genzer, Jan; von Klitzing, Regine

    2014-11-04

    The effect of the brush grafting density on the loading of 13 nm gold nanoparticles (AuNPs) into stimuli-responsive poly(N,N-(dimethylamino ethyl) methacrylate) (PDMAEMA) brushes anchored to flat impenetrable substrates is reported. Atom-transfer radical polymerization (ATRP) is used to grow polymer brushes via a "grafting from" approach from a 2-bromo-2-methyl-N-(3-(triethoxysilyl) propyl) propanamide (BTPAm)-covered silicon substrate. The grafting density is varied by using mixtures of initiator and a "dummy" molecule that is not able to initiate polymerization. A systematic study is carried out by varying the brush grafting density while keeping all of the other parameters constant. X-ray reflectivity is a suitable tool for investigating the spatial structure of the hybrid, and it is combined with scanning electron microscopy and UV/vis spectroscopy to study the particle loading and interpenetration of the particles within the polymer brush matrix. The particle uptake increases with decreasing grafting density and is highest for an intermediate grafting density because more space between the polymer chains is available. For very low grafting densities of PDMAEMA brushes, the particle uptake decreases because of a lack of the polymer matrix for the attachment of particles. The structure of the surface-grafted polymer chains changes after particle attachment. More water is incorporated into the brush matrix after particle immobilization, which leads to a swelling of the polymer chains in the hybrid material. Water can be removed from the brush by decreasing the relative humidity, which leads to brush shrinking and forces the AuNPs to get closer to each other.

  10. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications.

    Science.gov (United States)

    Shankar, P Dheeban; Shobana, Sutha; Karuppusamy, Indira; Pugazhendhi, Arivalagan; Ramkumar, Vijayan Sri; Arvindnarayan, Sundaram; Kumar, Gopalakrishnan

    2016-12-01

    The synthesis of nanoparticles (NP) using algae has been underexploited and even unexplored. In recent times, there are few reports on the synthesis of NP using algae, which are being used as a bio-factory for the synthesis. Moreover, the algae are a renewable source, so that it could be effectively explored in the green synthesis of NP. Hence, this review reports on the biosynthesis of NP especially gold and silver NP using algae. The most widely reported NP from algae are silver and gold than any other metallic NP, which might be due to their enormous biomedical field applications. The NP synthesized by this method is mainly in spherical shape; the reports are revealing the fact that the cell free extracts are highly exploited for the synthesis than the biomass, which is associated with the problem of recovering the particles. Besides, mechanism involving in the reduction and stabilization is well demonstrated to deepen the knowledge towards enhancement possibilities for the synthesis and applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores

    Science.gov (United States)

    El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-01-01

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467

  12. Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth

    Czech Academy of Sciences Publication Activity Database

    Siegel, J.; Záruba, K.; Švorčík, V.; Kroumanová, Kristýna; Burketová, Lenka; Martinec, Jan

    2018-01-01

    Roč. 13, APR 10 (2018), č. článku 95. ISSN 1556-276X R&D Projects: GA ČR GA17-10907S; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Concentration * Gold nanoparticles * Root growth * Size Subject RIV: JJ - Other Materials OBOR OECD: Plant sciences, botany Impact factor: 2.833, year: 2016

  13. Synthesis of gold nano particles with enlargement size by gamma Co-60 irradiation and investigation of anti oxidation effect

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Gold nanoparticles (AuNPs) with size in the range of 10-53 nm were synthesized by gamma Co-60 irradiation using water-soluble chitosan (WSC) as stabilizer and size enlargement by seed approach. Absorption wavelength (λ max ) was measured by UV-Vis spectroscopy and particle size was determined from TEM images. Results showed that value of λ max increased from 523 nm (seed particles) to 525, 537 and 549 nm and the size of AuNPs increased from 10 nm (seed particles) to 20, 38 and 53 nm, respectively, for concentration ratio of Au 3+ /Au 0 (seed) of 2.5, 5 and 10. Antioxidant effect of AuNPs with size of 10, 20, 38 and 53 nm was investigated using free radical 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS .+ ). Results indicated that the smaller the particle size was (10 nm) the stronger the antioxidant effect attained. Thus, AuNPs/WSC synthesis by gamma Co-60 irradiation are promising for applications as antioxidants in cosmetics and in other fields as well. (author)

  14. UV-Visible intensity ratio (aggregates/single particles) as a measure to obtain stability of gold nanoparticles conjugated with protein A

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M. A. [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico); Garcia-Perez, B. E. [Instituto Politecnico Nacional, Departamento de Inmunologia, ENCB (Mexico); Jaramillo-Flores, M. E. [Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, ENCB (Mexico); Gayou, V. L.; Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico)

    2013-05-15

    We have analyzed the titration process of gold nanoparticles with several amounts of protein A (0.3, 0.5, 1, 3, 6, and 9 {mu}g/ml) in the presence of NaCl, which induces aggregation if the surface of particles is not fully covered with protein A. The colloidal solutions with different particle size (16, 18, 20, 33 nm) were synthesized by citrate reduction to be conjugated with protein A. UV-Visible spectroscopy was used to measure the absorption of the surface plasmon resonance of gold nanoparticles as a function of the concentration of protein A. Such dependence shows an aggregation region (0 < x<6 {mu}g/ml), where the amount of protein A was insufficient to cover the surface of particles, obtaining aggregation caused by NaCl. The next part is the stability region (x {>=} 6 {mu}g/ml), where the amount of protein used covers the surface of particles and protects it from the aggregation. In addition to that the ratio between the intensities of both: the aggregates and of the gold nanoparticle bands was plotted as a function of the concentration of protein A. It was determined that 6 {mu}g/ml is a sufficient value of protein A to stabilize the gold nanoparticle-protein A system. This method provides a simple way to stabilize gold nanoparticles obtained by citrate reduction, with protein A.

  15. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles

    Science.gov (United States)

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  16. Dielectric relaxation in metal-coated particles: the dramatic role of nano-scale coatings

    International Nuclear Information System (INIS)

    Youngs, I J; Bowler, N; Lymer, K P; Hussain, S

    2005-01-01

    Insulating materials filled with conducting particles permit tailoring of electrical, electromagnetic and thermal properties of the resulting composite. When the filler particles are small and metallic, a dielectric relaxation due to interfacial polarization is commonly observed at optical or smaller wavelengths. Here, experimental results are presented in which the dielectric relaxation is shifted to microwave frequencies as a result of using metal-coated dielectric particles with a nano-scale coating thickness. The results are analysed in the context of effective medium theory adapted for multi-layer particles. Such a large shift in relaxation frequency, compared with that for a similar composite with solid metal filler particles, is shown to be a function of both the coating geometry and a thin-film-related reduction in the conductivity of the metal. The observed broadening of the relaxation peak is attributed to non-uniformity of the coating thickness and a consequent distribution of coating conductivity

  17. Processes of conversion of a hot metal particle into aerogel through clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  18. Nucleated crystallization of isotactic polypropylene in multilayered sandwich nanocomposites with gold particles

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Sikora, Antonín; Pavlova, Ewa; Vlková, Helena; Baldrian, Josef; Baše, Tomáš; Piorkowska, E.

    2012-01-01

    Roč. 125, č. 6 (2012), s. 4338-4346 ISSN 0021-8995. [International Conference on Polymer Behavior /4./. Lodz, 19.09.2010-23.09.2010] R&D Projects: GA ČR GAP205/10/0348; GA AV ČR KAN200520704 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40320502 Keywords : isotactic poly(propylene) * nucleated crystallization * gold nanoparticles Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UACH-T) Impact factor: 1.395, year: 2012

  19. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent

    International Nuclear Information System (INIS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2015-01-01

    Highlights: • Submicron-sized spherical particles of gold were prepared using laser irradiation for the source gold nanoparticles stabilized by NaCl. • The source gold nanoparticles agglomeration was controlled both by the NaCl concentration of and by laser irradiation. • The formation process and the laser-fluence dependence of the particle size of gold nanoparticles in NaCl solutions differs from those in citrate solutions. • We revealed that properties of ligands are significantly important to prepare submicron-sized spherical particles and to control their size. - Abstract: Laser-induced melting in liquids (LIML) was applied to prepare spherical submicron-sized particles of gold (AuSMPs) from gold nanoparticles (AuNPs) stabilized using NaCl. Because undesirable byproducts, which might be generated when organic reagents such as citrate are used as the stabilizing reagent, are not generated from NaCl by laser irradiation, AuSMPs fabricated from AuNPs stabilized by NaCl will be low toxic. The AuSMPs were obtained by laser irradiation of the source AuNPs in NaCl solutions stabilized by NaCl at the proper concentration. Similar to the preparation of AuSMPs from AuNPs stabilized by citrate, the agglomeration of the source AuNPs, which is necessary to obtain AuSMPs, was controlled both by the NaCl concentration and by laser irradiation. However, the formation process and the laser-fluence dependence of the particle size of AuSMPs differed for various NaCl solutions and citrate solutions

  20. Optical and morphological characteristics of gold nanostructures

    OpenAIRE

    Pereira, Francisco Claudece; Zanoni, Maria Valnice Boldrin; Moretto, Ligia Maria; Ugo, Paolo

    2007-01-01

    The present study describes a new procedure to obtain gold nanoparticles, directly in the pores of polycarbonate membranes commonly used in ultrafiltration. The dimensions of the particles may be controlled through the reduction time of the ions in the channels of the harbor matrix. The dissolution of the metallized polymer enables an investigation of the optical and morphologic properties of these elements.

  1. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  2. The Study and Application of Hydrometallurgical Gold Leaching in the Analysis of Refractory Precious Metals

    Science.gov (United States)

    Yang, M.; Geng, X.; Wang, Y. L.; Li, D. X.

    2017-05-01

    Three orthogonal tests are separately designed for each hydrometallurgical gold leaching process to finding the optimum reaction conditions of melting gold and palladium in each process. Under the optimum condition, the determination amount of gold and palladium in aqua regia—hydrofluoric acid, Sodium thiosulfate, and potassium iodide reaches 2.87g/kg and 8.34 g/kg, 2.39g/kg and 8.12 g/kg, 2.51g/kg and 7.84g/kg. From the result, the content of gold and palladium using the leaching process of combining Aqua regia, hydrofluoric acid and hydrogen peroxide is relatively higher than the other processes. In addition, the experiment procedure of aqua regia digestion operates easily, using less equipment, and its period is short.

  3. Metal doped polymer films prepared by simultaneous plasma polymerization of tetrafluoromethane and evaporation of gold

    International Nuclear Information System (INIS)

    Martinu, L.; Biederman, H.; Zemek, J.

    1985-01-01

    The incorporation of gold from an evaporation source during plasma polymerization of tetrafluoromethane CF 4 in an rf (20 MHz) glow discharge excited by means of a planar magnetron has been investigated. Optical emission spectroscopy was used to monitor the deposition process in situ. The structure of the films was studied by transmission electron microscopy (TEM) observations. The sheet resistance and optical transmission measurements have been performed showing a dramatic influence of gold concentration on the film properties. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis were used for determining the concentration depth profiles through the films. It has been shown that the presence of gold in the layers substantially reduces the fluorine content. The effect of various gold incorporation methods on the film characteristics has been discussed. (author)

  4. The use of gold nanoparticles to enhance radiotherapy in mice

    International Nuclear Information System (INIS)

    Hainfeld, James F; Slatkin, Daniel N; Smilowitz, Henry M

    2004-01-01

    Mice bearing subcutaneous EMT-6 mammary carcinomas received a single intravenous injection of 1.9 nm diameter gold particles (up to 2.7 g Au/kg body weight), which elevated concentrations of gold to 7 mg Au/g in tumours. Tumour-to-normal-tissue gold concentration ratios remained ∼8:1 during several minutes of 250 kVp x-ray therapy. One-year survival was 86% versus 20% with x-rays alone and 0% with gold alone. The increase in tumours safely ablated was dependent on the amount of gold injected. The gold nanoparticles were apparently non-toxic to mice and were largely cleared from the body through the kidneys. This novel use of small gold nanoparticles permitted achievement of the high metal content in tumours necessary for significant high-Z radioenhancement. (note)

  5. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin

    2006-01-01

    Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.

  6. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  7. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  8. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  9. Characterization of the metal-semiconductor interface of gold contacts on CdZnTe formed by electroless deposition

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2015-06-01

    Fully spectroscopic x/γ-ray imaging is now possible thanks to advances in the growth of wide-bandgap semiconductors. One of the most promising materials is cadmium zinc telluride (CdZnTe or CZT), which has been demonstrated in homeland security, medical imaging, astrophysics and industrial analysis applications. These applications have demanding energy and spatial resolution requirements that are not always met by the metal contacts deposited on the CdZnTe. To improve the contacts, the interface formed between metal and semiconductor during contact deposition must be better understood. Gold has a work function closely matching that of high resistivity CdZnTe and is a popular choice of contact metal. Gold contacts are often formed by electroless deposition however this forms a complex interface. The prior CdZnTe surface preparation, such as mechanical or chemo-mechanical polishing, and electroless deposition parameters, such as gold chloride solution temperature, play important roles in the formation of the interface and are the subject of the presented work. Techniques such as focused ion beam (FIB) cross section imaging, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and current  -  voltage (I-V) analysis have been used to characterize the interface. It has been found that the electroless reaction depends on the surface preparation and for chemo-mechanically polished (1 1 1) CdZnTe, it also depends on the A/B face identity. Where the deposition occurred at elevated temperature, the deposited contacts were found to produce a greater leakage current and suffered from increased subsurface voiding due to the formation of cadmium chloride.

  10. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    Science.gov (United States)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  11. Synthesis of Supported Ultrafine Non-noble Subnanometer-Scale Metal Particles Derived from Metal-Organic Frameworks as Highly Efficient Heterogeneous Catalysts.

    Science.gov (United States)

    Kang, Xinchen; Liu, Huizhen; Hou, Minqiang; Sun, Xiaofu; Han, Hongling; Jiang, Tao; Zhang, Zhaofu; Han, Buxing

    2016-01-18

    The properties of supported non-noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non-noble metal particles on supports using metal-organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt%. Interestingly, the ultrafine non-noble metal particles exhibited very high activity for liquid-phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrochemical method for synthesizing metal-containing particles and other objects

    Science.gov (United States)

    Rondinone, Adam Justin; Ivanov, Ilia N.; Smith, Sean Campbell; Liang, Chengdu; Hensley, Dale K.; Moon, Ji-Won; Phelps, Tommy Joe

    2017-05-02

    The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.

  13. Exceptional function of nanoporous metal organic framework particles in emulsion stabilisation.

    Science.gov (United States)

    Xiao, Bo; Yuan, Qingchun; Williams, Richard A

    2013-09-25

    A new concept of nanoporous metal organic framework particles stabilising emulsions was investigated. The copper benzenetricarboxylate MOF particles adsorbed at the oil/water interface play an exceptional role in stabilising both oil-in-water and water-in-oil emulsions.

  14. Impact of metal-ion contaminated silica particles on gate oxide integrity

    NARCIS (Netherlands)

    Rink, Ingrid; Wali, F.; Knotter, D.M.

    2009-01-01

    The impact of metal-ion contamination (present on wafer surface before oxidation) on gate oxide integrity (GOI) is well known in literature, which is not the case for clean silica particles [1, 2]. However, it is known that particles present in ultra-pure water (UPW) decrease the random yield in

  15. Effect of erodent particles on the erosion of metal specimens

    Energy Technology Data Exchange (ETDEWEB)

    Razzaque, M. Mahbubur, E-mail: mmrazzaque@me.buet.ac.bd; Alam, M. Khorshed; Khan, M. Ishak, E-mail: ishak.buet@gmail.com [Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka (Bangladesh)

    2016-07-12

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.

  16. Effect of erodent particles on the erosion of metal specimens

    Science.gov (United States)

    Razzaque, M. Mahbubur; Alam, M. Khorshed; Khan, M. Ishak

    2016-07-01

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.

  17. Study on Sumbawa gold ore liberation using rod mill: effect of rod-number and rotational speed on particle size distribution

    Science.gov (United States)

    Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.

    2018-01-01

    Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.

  18. Cross Linked Metal Particles for Low Noise Bolometer Materials

    Science.gov (United States)

    2016-12-12

    1.5 nm Figure 1: Coulomb energy of oppositely charged NPs as a function of edge-to-edge distance between the particles for different particle sizes ...1.2 nm either during storage or during the ligand exchange reaction. 3.4.2 Au-C6 Due to the poor contrast, the particle- size measurement is less...either the storage or the ligand exchange process, as mentioned above. Currently we are working on the conditions that prevent such size change from

  19. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  20. The Porgera gold deposit, Papua, New Guinea, 2: sources of metals

    International Nuclear Information System (INIS)

    Richards, J.P.; McCulloch, M.T.; Kerrich, R.

    1991-01-01

    Sr and Pb isotopic studies of mineralized rocks and veins from the Porgera gold deposit indicates that these components were derived from a mixture of sedimentary and igneous sources, probably located within the Om Formation which underlies (< 3 km depth) the presently exposed Porgera Intrusive Complex (PIC) and associated ore deposit. Gold abundances in least-altered samples correlate with PGE, and indicate that the parental magma was mil enriched in Au and Pt-group elements relative to the Ir-group. (author)

  1. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  2. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    Energy Technology Data Exchange (ETDEWEB)

    Binupriya, A.R. [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Sathishkumar, M., E-mail: cvemuthu@nus.edu.sg [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Yun, S.-I., E-mail: siyun@chonbuk.ac.kr [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2010-05-15

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  3. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles.

    Science.gov (United States)

    Jena, Bikash Kumar; Raj, C Retna

    2008-03-14

    A simple optical method for the sensing of biomedically important polyionic drugs, protamine and heparin based on the reversible aggregation and de-aggregation of gold nanoparticles (AuNPs) is described. The polycationic protamine induces the aggregation of negatively charged citrate-stabilized AuNPs, resulting in a shift in the surface plasmon (SP) band and a consequent color change of the AuNPs from red to blue. Addition of polyanionic heparin dissipates the aggregated AuNPs due to its strong affinity to protamine and the blue color changes to the native color. The color change was monitored using UV-vis spectrophotometry. The aggregation and de-aggregation was confirmed by transmission electron microscopic (TEM) measurements. The degree of aggregation and de-aggregation is proportional to the concentration of added protamine and heparin, allowing their quantitative detection. The change in the absorbance and SP band position has been used to monitor the concentration of protamine and heparin. This optical method can quantify protamine and heparin as low as 0.1 microg/ml and 0.6 microg/ml, respectively and the calibration is linear for a wide range of concentration.

  4. Effect of gold nano-particle layers on ablative acceleration of plastic foil targets

    Czech Academy of Sciences Publication Activity Database

    Dhareshwar, L.J.; Gupta, N.K.; Chaurasia, S.; Ayyub, P.; Kulkarni, N.; Badziak, J.; Pisarczyk, T.; Kasperczuk, A.; Parys, P.; Rosinski, M.; Wolowski, J.; Krouský, Eduard; Krása, Josef; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Velyhan, Andriy; Margarone, Daniele; Mezzasalma, A.; Pisarczyk, P.

    2010-01-01

    Roč. 244, č. 2 (2010), 022018/1-022018/8 ISSN 1742-6588 R&D Projects: GA MŠk(CZ) LC528; GA MŠk(CZ) 7E08094 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser pulse absorption * nano-particle coating * lateral thermal conduction Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Reliability Tests of Aluminium Wedge Wire Bonding on Auto-catalytic Silver Immersion Gold (ASIG) PCB Metallization

    CERN Document Server

    Drozd, A; Kaufmann, S; Manolescu, F; McGill, I

    2011-01-01

    The Auto-catalytic Silver Immersion Gold (ASIG) PCB metallization is a new process that has clear advantages for PCB assembly especially with regard to lead-free soldering. As it may become a popular process in the future for electronics used in physics experiments, the quality of this metallization for aluminium wire bonding has been studied. Aluminium wedge wire bonding continues to be the interconnection method of choice for many physics detector sensors, for high density signal routing and for unpackaged die. Although advertised as having good quality for aluminium wire bonding, this study was performed to verify this claim as well as to test the longer term reliability of the wire bonds taking into consideration the environmental conditions and life-expectancy of devices, in particular for high energy physics detector applications. The tests were performed on PCBs made with the ASIG and ENIG (Electro-less Nickel Immersion Gold) processes at the same time in order to make a comparison with the current ind...

  6. Emission processes of molecule-metal cluster ions from self-assembled monolayers of octanethiols on gold and silver

    International Nuclear Information System (INIS)

    Arezki, B.; Delcorte, A.; Bertrand, P.

    2004-01-01

    In this contribution, we focus on the emission processes of molecule-metal cluster ions from self-assembled monolayers (SAMs) of octanethiols CH 3 (CH 2 ) 7 SH on gold and silver. To improve our understanding of these complex phenomena, mass spectra and kinetic energy distributions (KEDs) of these two systems have been measured and compared using time-of-flight-SIMS under 15 keV Ga + bombardment. First, the spectra obtained from SAMs/Ag exhibit positive (M-H) m Ag m+1 + and negative (M-H) m Ag m-1 - cluster ions that are generally more intense than the (M-H) m Au n - observed for SAMs/Au. This trend is attributed to the electronegativity difference between S and these two metals resulting in a more ionic Ag-S bond. Second, our results show that, like for the SAM/Au system already investigated, unimolecular dissociation of Ag-thiolate clusters in the acceleration section of the spectrometer is an important formation mechanism. The fraction of the (M-H) m Ag n +,- aggregates formed in the vacuum via this process is even significantly higher than that of the (M-H) m Au n - cluster ions. This suggests that the cluster ions ejected from SAMs/Ag are less stable than those ejected from SAMs/Au. It is also observed that the high energy parts of the KEDs are steeper than for gold, which is probably due to the same phenomenon

  7. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  8. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM; Lesman, Zayd [UNM; Soliman, Haytham [UNM; Zea, Hugo [UNM

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current work is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.

  9. The effects of beryllium metal particles on the viability and function of cultured rat alveolar macrophages

    International Nuclear Information System (INIS)

    Finch, G.L.; Lowther, W.T.; Hoover, M.D.; Brooks, A.L.

    1988-01-01

    Rat pulmonary alveolar macrophages (PAM) were exposed in vitro to beryllium metal particles. The particles used were relatively large (Be-II) and small (Be-V) size fractions of beryllium metal obtained from an aerosol cyclone, and a beryllium metal aerosol generated by laser vaporization of beryllium metal in an argon atmosphere (Be-L). Glass beads (GB) were used as a negative control particle. The endpoints examined included cell killing (trypan blue dye exclusion) and phagocytic ability (sheep red blood cell uptake). Phagocytic ability was inhibited by beryllium particles at concentrations that did not cause appreciable cell killing. Results based on the mass concentration of particles in culture medium were transformed by the amount of specific surface area of the particles to permit expression of toxicity on the basis of amount of surface area of particles per unit volume of culture medium. On a mass concentration basis, the order of cytotoxicity was Be-L > Be-V ∼ Be-II > GB; for inhibition of phagacytosis, the cytotoxicity order was Be-L ∼ Be-V > Be-II > GB. On a surface area concentration basis, the order of toxicity for viability was altered to Be-II > Be-L ∼ Be-V (with GB indeterminant) and to Be-V > Be-II ∼ Be-L > GB for inhibition of phagocytosis. We conclude that there are factors in addition to specific surface area that influence the expression of toxic effects in cultured PAM. (author)

  10. Metal-Particle-Decorated ZnO Nanocrystals: Photocatalysis and Charge Dynamics.

    Science.gov (United States)

    Lin, Wei-Hao; Chiu, Yi-Hsuan; Shao, Pao-Wen; Hsu, Yung-Jung

    2016-12-07

    Understanding of charge transfer processes is determinant to the performance optimization for semiconductor photocatalysts. As a representative model of composite photocatalysts, metal-particle-decorated ZnO has been widely employed for a great deal of photocatalytic applications; however, the dependence of charge carrier dynamics on the metal content and metal composition and their correlation with the photocatalytic properties have seldom been reported. Here, the interfacial charge dynamics for metal-decorated ZnO nanocrystals were investigated and their correspondence with the photocatalytic properties was evaluated. The samples were prepared with a delicate antisolvent approach, in which ZnO nanocrystals were grown along with metal particle decoration in a deep eutectic solvent. By modulating the experimental conditions, the metal content (from 0.6 to 2.3 at%) and metal composition (including Ag, Au, and Pd) in the resulting metal-decorated ZnO could be readily controlled. Time-resolved photoluminescence spectra showed that an optimal Au content of 1.3 at% could effectuate the largest electron transfer rate constant for Au-decorated ZnO nanocrystals, in conformity with the highest photocatalytic efficiency observed. The relevance of charge carrier dynamics to the metal composition was also inspected and realized in terms of the energy level difference between ZnO and metal. Among the three metal-decorated ZnO samples tested, ZnO-Pd displayed the highest photocatalytic activity, fundamentally according with the largest electron transfer rate constant deduced in carrier dynamics measurements. The current work was the first study to present the correlations among charge carrier dynamics, metal content, metal composition, and the resultant photocatalytic properties for semiconductor/metal heterostructures. The findings not only helped to resolve the standing issues regarding the mechanistic foundation of photocatalysis but also shed light on the intelligent design

  11. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    Science.gov (United States)

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  12. Assessment of heavy metal pollution in the Lupa gold field, SW ...

    African Journals Online (AJOL)

    The concentrations of AS, Cd, Cr, Cu, Hg and Pb were determined in water, stream sediments, soil, and mine tailings from Lupa Gold Field (LGF), SW Tanzania, in order to assess their pollution levels. As, Cd and Cr were determined by automated Graphite Furnace Absorption Spectrophotometry. Cu and Pb were analysed ...

  13. Eliminating Cyanide, Reducing Heavy Metals, and Harvesting Gold from Mining Waste with Plants

    DEFF Research Database (Denmark)

    2001-01-01

    Large amounts of cyanides are used in gold mining. The application is open and generates environmental problems. Regulators therefore insist on detoxifying cyanide-contaminated wastewater. There are existing technologies to remove cyanides, but none uses plants. Here, a new technology is introduced...

  14. A study of the effect of solid particle impact and particle shape on the erosion morphology of ductile metals

    Science.gov (United States)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1984-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possiblity of complex chemical and/or mechanical interactions between erodants and target materials.

  15. Fine metal dust particles on the wall probes from JET-ILW

    Science.gov (United States)

    Fortuna-Zaleśna, E.; Grzonka, J.; Moon, Sunwoo; Rubel, M.; Petersson, P.; Widdowson, A.; Contributors, JET

    2017-12-01

    Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.

  16. Hollow Disc and Sphere-Shaped Particles from Red Blood Cell Templates

    Directory of Open Access Journals (Sweden)

    Ratnesh Lal

    2008-04-01

    Full Text Available Colloidal gold particles with uniform size distributions were fabricated utilizing human red blood cells (RBCs as templates. The gold shells were charged with a metal chelating agent to prevent flocculation. The procedure described here allows control over the shape of the colloidal particles. Thus, it was possible to fabricate discs and spheres by controlling the osmotic pressure.

  17. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  18. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  19. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    Nowadays, it is important to evaluate the self-purifying capacity of rivers because of the different kinds of pollutants discharged into them. Important kind of pollutants and heavy metals exist in wastewaters industries. When the Sorb Dona mine is placed in Upper Chalus River, in the west of Mazandaran, products of mine ...

  20. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mihály T.; Bertóti, Imre, E-mail: bertoti.imre@ttk.mta.hu; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-15

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN){sub 2}. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5–30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60–200 nm size and well faceted Au particles develop together with a fibrous (CN){sub n} polymer phase, and the Au crystallites are covered by a 3–5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4–20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar{sup +} ion bombardment with 2500 eV energy, 5–30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications. - Graphical abstract: Proposed scheme of the decomposition mechanism of AuCN samples: heat treatment in Ar flow (a) and in sealed ampoule (b); Ar{sup +} ion treatment at 300 eV (c) and at 2500 eV (d). Cross section sketches

  1. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    International Nuclear Information System (INIS)

    Li, Weijun; Shi, Zongbo; Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing

    2013-01-01

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM 2.5 and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM 2.5 concentration reached 183 μg m −3 during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO 2 to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers/fireworks during the Chinese New

  2. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijun, E-mail: liweijun@sdu.edu.cn [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China); State Key of Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Shi, Zongbo [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China)

    2013-01-15

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM{sub 2.5} and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM{sub 2.5} concentration reached 183 μg m{sup −3} during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO{sub 2} to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers

  3. Heavy metal: Can molten metal technology turn toxic dross into gold? A study in alchemy, controversy, and green tech

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, S.

    1995-12-31

    In a Massachusetts industrial park, inside a renovated helicopter factory, stands a giant, Rube Goldbergesque machine of metal boxes and pipes. Technicians in blue uniforms, hard hats, and safety glasses attend this contraption, watching over the fire at its heart: a cauldron of molten metal, usually iron, heated to some 3,000 degrees Fahrenheit. Hazardous wastes are injected into this molten bath. There, according to its inventor, the metal acts as a catalyst for a chemical reaction that instantly reduces compound molecules to their elemental components. A considerable portion for the wastes thus digested are spit out again in the form of industrial-grade materials, ready for reuse or resale. This article describes both the processing of hazardous wastes by using molten metal to drive reactions that would recover useful materials from hazardous waste and the future possibilities for its use.

  4. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    Wang, H.-W.; Nien, S.-W.; Lee, K.-C.; Wu, M.-C.

    2005-01-01

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  5. Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon σ-bonds.

    Science.gov (United States)

    Hashimoto, Masanori; Toshima, Hirokazu; Yonezawa, Tetsu; Kawai, Koji; Narushima, Takashi; Kaga, Masayuki; Endo, Kazuhiko

    2014-06-01

    Nanometals are currently receiving considerable attention for industrial and biomedical applications, but their potentially hazardous and toxic effects have not been extensively studied. This study evaluated the biological responses of novel water-dispersible gold (Au-NPs) and silver nanoparticles (Ag-NPs) stabilized by Au-C or Ag-C σ-bonds in cultured macrophages (RAW264.7), via analysis of the cell viability, the integrity of the plasma membrane, and the inflammatory and morphological properties. The cultured RAW264.7 was exposed to metal-NPs at various concentrations. The Ag-NPs showed cytotoxicity at high NP concentrations, but the cytotoxic effects of the Au-NPs were smaller than those of the Ag-NPs. For the microscopic analysis, both types of particles were internalized into cells, the morphological changes in the cells which manifested as an expansion of the vesicles' volume, were smaller for the Au-NPs compared with the Ag-NPs. For the Ag-NPs, the endocytosis abilities of the macrophages might have induced harmful effects, because of the expansion of the cell vesicles. Although an inflammatory response was observed for both the Au- and Ag-NPs, the harmful effects of the Au-NPs were smaller than those of the Ag-NPs, with minor morphological changes observed even after internalization of the NPs into the cells. Copyright © 2013 Society of Plastics Engineers.

  6. Chitosan-coated Silica Nanoparticles - A Potential Support for Metal Particles used as Heterogeneous Catalyst

    International Nuclear Information System (INIS)

    Haghighizadeh, A.; Abu Bakar, M.; Ghani, S.A.; Abu Bakar, N.H.H.

    2011-01-01

    In this work a strategy to immobilize noble metal nanoparticles on silica microspheres is proposed. In order to achieve this, monodispersed silica nanoparticles of an average size of 63.5±6.7 nm were synthesized via sol-gel method. Then chitosan was coated onto the silica to create a core/ shell composite with the size range of 66.56±9.78 nm to 79.18±11.87 nm. The noble metal nanoparticles were then synthesized on the shell of the composite through coordination of the respective metal ions to the polymer followed by the subsequent reduction. In this way, the silver particles of average size 6.17±1.83 nm, 9.85±2.60 nm, and 11.80±4.26 nm have been synthesized on the shell successfully. The optimized supported metal particles can be used as a potential heterogeneous catalyst. (author)

  7. Development, characterization and machining of Al and SiCp nano particles metal matrix nano composite

    Science.gov (United States)

    Swain, Pradyut Kumar; Sahool, Ashok Kumar; Das, Ratnakar; Padhi, Payodhar

    2018-02-01

    The present study has been developed to ensure proper mixing of SiCp nano particle with powder of aluminum metal matrix. Different wt fraction of SiCp 1, 1.5 and 2% samples were prepared for characterization of nano composite material. The paper deals with the influence of different machining parameters at different wt fraction of SiCp in aluminum metal matrix. It was also observed that the cutting forces are affected by dry turning machining operation. As result, high cutting forces were required for machining of high percentage of SiCp nano particles. The study also deals with the dispersion of nano particle and segregation of the particles near the grain boundaries due to grain growth.

  8. Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates.

    Science.gov (United States)

    Padbury, Richard P; Halbur, Jonathan C; Krommenhoek, Peter J; Tracy, Joseph B; Jur, Jesse S

    2015-01-27

    The stability and spatial separation of nanoparticles (NP's) is essential for employing their advantageous nanoscale properties. This work demonstrates the entrapment of gold NP's embedded in a porous inorganic matrix. Initially, gold NP's are decorated on fibrous nylon-6, which is used as an inexpensive sacrificial template. This is followed by inorganic modification using a novel single exposure cycle vapor phase technique resulting in distributed NP's embedded within a hybrid organic-inorganic matrix. The processing is extended to the synthesis of porous nanoflakes after calcination of the modified nylon-6 yielding a porous metal oxide framework surrounding the disconnected NP's with a surface area of 250 m(2)/g. A unique feature of this work is the use of a transmission electron microscope (TEM) equipped with an in situ annealing sample holder. The apparatus affords the opportunity to explore the underlying nanoscopic stability of NP's embedded in these frameworks in a single step. TEM analysis indicates thermal stability up to 670 °C and agglomeration characteristics thereafter. The vapor phase processes developed in this work will facilitate new complex NP/oxide materials useful for catalytic platforms.

  9. How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Epple, Matthias; Barcikowski, Stephan

    2017-05-05

    Gold is one of the most valuable materials, and its monetary value is enhanced by size reduction from bullions to colloidal nanoparticles by a factor of 450. Wet-chemical reduction with subsequent centrifugation and pulsed laser ablation in liquids are frequently used for pure colloidal gold synthesis. Both methods provide similar physicochemical nanoparticle properties, but are very different synthesis techniques. However, the costs inherent to these methods are surprisingly seldom discussed. Both methods have in common that the labor effort poses the majority of synthesis costs. Besides an increase in batch size and mass concentration, especially an increase of the nanoparticle productivity via higher laser power and centrifugation capacity reduces synthesis costs if pilot- or industrial-scale applications are intended. In this case, laser-based synthesis is more economical if its productivity exceeds a break-even value of 550 mg h -1 , where the costs arising are limited by the metal costs. In contrast to industrial scale production, wet-chemical synthesis is more feasible for laboratory-scale applications, especially if the advantageous nanoparticle properties provided by laser ablation in liquids are not needed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Decrystallization of Crystals Using Gold “Nano-Bullets” and the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    Science.gov (United States)

    Thompson, Nishone; Boone-Kukoyi, Zainab; Shortt, Raquel; Lansiquot, Carisse; Kioko, Bridgit; Bonyi, Enock; Toker, Salih; Ozturk, Birol; Aslan, Kadir

    2017-01-01

    Gout is caused by the overproduction of uric acid and the inefficient metabolism of dietary purines in humans. Current treatments of gout, which include anti-inflammatory drugs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids, have harmful side-effects. Our research laboratory has recently introduced an innovative approach for the decrystallization of biological and chemical crystals using the Metal-Assisted and Microwave-Accelerated Evaporative Decrystallization (MAMAD) technique. In the MAMAD technique, microwave energy is used to heat and activate gold nanoparticles that behave as “nano-bullets” to rapidly disrupt the crystal structure of biological crystals placed on planar surfaces. In this study, crystals of various sizes and compositions were studied as models for tophaceous gout at different stages (i.e., uric acid as small crystals (~10–100 μm) and L-alanine as medium (~300 μm) and large crystals (~4400 μm). Our results showed that the use of the MAMAD technique resulted in the reduction of the size and number of uric acid and L-alanine crystals up to >40% when exposed to intermittent microwave heating (up to 20 W power at 8 GHz) in the presence of 20 nm gold nanoparticles up to 120 s. This study demonstrates that the MAMAD technique can be potentially used as an alternative therapeutic method for the treatment of gout by effective decrystallization of large crystals, similar in size to those that often occur in gout. PMID:27763557

  11. Decrystallization of Crystals Using Gold "Nano-Bullets" and the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    Science.gov (United States)

    Thompson, Nishone; Boone-Kukoyi, Zainab; Shortt, Raquel; Lansiquot, Carisse; Kioko, Bridgit; Bonyi, Enock; Toker, Salih; Ozturk, Birol; Aslan, Kadir

    2016-10-18

    Gout is caused by the overproduction of uric acid and the inefficient metabolism of dietary purines in humans. Current treatments of gout, which include anti-inflammatory drugs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids, have harmful side-effects. Our research laboratory has recently introduced an innovative approach for the decrystallization of biological and chemical crystals using the Metal-Assisted and Microwave-Accelerated Evaporative Decrystallization (MAMAD) technique. In the MAMAD technique, microwave energy is used to heat and activate gold nanoparticles that behave as "nano-bullets" to rapidly disrupt the crystal structure of biological crystals placed on planar surfaces. In this study, crystals of various sizes and compositions were studied as models for tophaceous gout at different stages (i.e., uric acid as small crystals (~10-100 μm) and l-alanine as medium (~300 μm) and large crystals (~4400 μm). Our results showed that the use of the MAMAD technique resulted in the reduction of the size and number of uric acid and l-alanine crystals up to >40% when exposed to intermittent microwave heating (up to 20 W power at 8 GHz) in the presence of 20 nm gold nanoparticles up to 120 s. This study demonstrates that the MAMAD technique can be potentially used as an alternative therapeutic method for the treatment of gout by effective decrystallization of large crystals, similar in size to those that often occur in gout.

  12. Metal Halide Perovskite Supercrystals: Gold-Bromide Complex Triggered Assembly of CsPbBr3 Nanocubes.

    Science.gov (United States)

    Wang, Kun-Hua; Yang, Jun-Nan; Ni, Qian-Kun; Yao, Hong-Bin; Yu, Shu-Hong

    2018-01-16

    Using nanocrystals as "artificial atoms" to construct supercrystals is an interesting process to explore the stacking style of nanoscale building blocks and corresponding collective properties. Various types of semiconducting supercrystals have been constructed via the assembly of nanocrystals driven by the entropic, electrostatic, or van der Waals interactions. We report a new type of metal halide perovskite supercrystals via the gold-bromide complex triggered assembly of newly emerged attractive CsPbBr 3 nanocubes. Through introducing gold-bromide (Au-Br) complexes into CsPbBr 3 nanocubes suspension, the self-assembly process of CsPbBr 3 nanocubes to form supercrystals was investigated with the different amount of Au-Br complexes added to the suspensions, which indicates that the driven force of the formation of CsPbBr 3 supercrystals included the van der Waals interactions among carbon chains and electrostatic interactions between Au-Br complexes and surfactants. Accordingly, the optical properties change with the assembly of CsPbBr 3 nanocubes and the variation of mesoscale structures of supercrystals with heating treatment was revealed as well, demonstrating the ionic characteristics of CsPbBr 3 nanocrystals. The fabricated CsPbBr 3 supercrystal presents a novel type of semiconducting supercrystals that will open an avenue for the assembly of ionic nanocrystals.

  13. Synthesis of gold nanoparticles stabilised by metal-chelator and the ...

    Indian Academy of Sciences (India)

    Unknown

    The surface plasmon band of nanoparticles is very sensitive not only to their size and shape but also to the inter-particle distance. In aggregated state, the individual nano- particles can interact with each another and give rise to oscillations that are combinations of oscillations of individual nanoparticles.14 This causes red ...

  14. Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Pan Qinmin; Wang Min; Wang Hongbo; Zhao Jianwei; Yin Geping

    2008-01-01

    A novel method to modify the surfaces of transition metal oxides (MO) film-electrode was proposed in this study. At first, a monolayer of terephthalic acid was covalently bonded to the surfaces of Cu 2 O films. Then silver (Ag) particles were electrodeposited on the monolayer-grafted films by a potential-step process. The resulting Ag-Cu 2 O films exhibited improved electrochemical performance as negative electrodes in lithium-ion batteries compared to the original Cu 2 O films. An increase in electrical contact between Cu 2 O particles was considered to be responsible for the improvement in the electrochemical properties

  15. The effect of electrons surface scattering on fine metal particle electromagnetic radiation absorption

    Directory of Open Access Journals (Sweden)

    I.A. Kuznetsova

    2014-03-01

    Full Text Available The magnetic dipole absorption cross section of spherical shaped metal particle was calculated in terms of kinetic approach. The particle considered was placed in the field of plane electromagnetic wave. The model of boundary conditions taking into account the dependence of the reflectivity coefficient both on the surface roughness parameter and on the electrons incidence angle was investigated. The results obtained were compared with theoretical computation results for model of combined diffusion-specular boundary conditions of Fuchs.

  16. Fracture and toughening of high volume fraction ceramic particle reinforced metals

    OpenAIRE

    Miserez, Ali Gilles Tchenguise

    2003-01-01

    This work contributes to the fundamental understanding of fracture properties of Particle Reinforced Metal Matrix Composites (PRMMCs), by identifying the key microstructural parameters that control fracture. To this end, PRMMCs with a high volume fraction of ceramic reinforcement (40-60 vol.%) are produced by gas-pressure infiltration. These composites are considered as model ductile/brittle twophase materials in that (i): the particles are homogeneously distributed in the matrix, (ii): the m...

  17. Fracture and toughening of high volume fraction ceramic particle reinforced metals

    OpenAIRE

    Miserez, Ali Gilles Tchenguise; Mortensen, Andreas

    2005-01-01

    This work contributes to the fundamental understanding of fracture properties of Particle Reinforced Metal Matrix Composites (PRMMCs), by identifying the key microstructural parameters that control fracture. To this end, PRMMCs with a high volume fraction of ceramic reinforcement (40-60 vol.%) are produced by gas-pressure infiltration. These composites are considered as model ductile/brittle twophase materials in that (i): the particles are homogeneously distributed in the matrix, (ii): the m...

  18. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  19. Novel Catalysis by Gold: A Modern Alchemy

    Science.gov (United States)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  20. Contamination from gold and platinum-group metals mining in the Gulf of Darién, Colombia

    Science.gov (United States)

    Vasquez-Bedoya, L.; Palacio Baena, J.

    2013-12-01

    Gulf of Darién, triangular southernmost extension of the Caribbean Sea, bounded by Panama on the southwest and by Colombia on the southeast and east. The Gulf is made up of 17 municipalities in the department of Choco and Antioquia. The Gulf of Darién is a geostrategic region, rich in biodiversity, known for its natural resources of minerals, oil, lumber as well as its water and fertile land. The Darién also acts as the bridge between South America and Central America and has access to the Pacific Ocean and the Caribbean Sea. The economy in the region is based mainly on agribusinesses, tourism and mining activities, mainly the 'mining of gold and platinum-group metals'. In our study we determined the degree of trace element contamination in estuarine sediment samples originated from mining activities and municipal waste water discharges of effluents on the gulf of Darién. . Surface samples were taken from 17 locations through the entire Gulf. Grain size, Corg, Ag, Al, Ca , Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb and Zn concentrations were analyzed, and enrichment factors (EF) as well as geo-accumulation indices (Igeo) were calculated. Concentrations of Pb, Zn, Ni, Cu and Cr show levels that are consistent with those typically found in urbanized marine environments. EF and Igeo values revealed that the Gulf is extremely contaminated with Ag and moderately contaminated with Cr and Zn. The sources of Cr, Ag, Hg and Zn are associated with the development of mining activities in the Atrato River basin. The observed enrichment of Ag may be explained as a residue of the extraction of gold and platinum-group metals.

  1. Deposition of toxic metal particles on rough nanofiltration membranes

    International Nuclear Information System (INIS)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa; Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van

    2014-01-01

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m 2 /h to 14 L/m 2 /h and 11 L/ m 2 /h to 6 L/m 2 /h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm

  2. Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma.

    Science.gov (United States)

    Shang, Wenting; Zeng, Chaoting; Du, Yang; Hui, Hui; Liang, Xiao; Chi, Chongwei; Wang, Kun; Wang, Zhongliang; Tian, Jie

    2017-01-01

    One of the most significant challenges in the diagnosis of brain cancer is efficient in vivo imaging using nontoxic nanoprobes. Core-shell gold nanorod@MIL-88(Fe) nanostars are successfully constructed as triple-modality imaging (computed tomography/magnetic-resonance imaging/photoacoustic imaging) nanoprobes that show low cytotoxicity, high contrast, high penetration depth, and high spatial resolution for accurate and noninvasive imaging and diagnosis of gliomas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  4. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    Science.gov (United States)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  5. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  6. Mechanism of decomposition of transition metal organometallic compounds and role of intermediate particles in catalysis

    International Nuclear Information System (INIS)

    Dolgoplosk, B.A.

    1984-01-01

    In the review, containing 105 bibliographic references, ways of decomposition of transition metal organic compounds in the moment of their formation are considered. For methyl, benzyl, trimethylsililmethyl and neophilic derivatives of transition metals (Mo, W, Re, Nb, Ta, Nd, Y) α-decay, which is accompanied by the formation of carbene and carbyne particles, is the determining one. Mechanism of the chain processes of metathesis of olefines and cycloolephines under the effect of carbene complexes of transition metals is discussed. Suppositions are made on chemical nature of elementary acts in the reactions of hydrogenolisis, isomerization of carbon carcass; dehydration and hydration of hydrocarbons

  7. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  8. Low Dielectric Constant Insulators and Gold Metallization for GHz Multi-Chip Modules

    Science.gov (United States)

    1992-06-01

    sleam/hr 0 0 20 0 0 20 lime of 1st/last rinse/hr NR 20 NO NO 20 NO I nse duration #times/min 0 1/10 0 0 1/10 0 Rinse interval (hr...little as possible to this environment. When small particles contaminate the wafer, the Au I will plate over the particle and when etched, a black blotch

  9. Is there a contraction of the interatomic distance in small metal particles?

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet

    1990-01-01

    A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...

  10. The manipulation of micron-sized metal particles by pulse laser

    Science.gov (United States)

    Chen, Jimin; Shun, Daqing; Zhong, Xiajun

    2006-08-01

    In Selective Laser Micro Sintering the powder particles should be assembled or arranged and sintered together. Optical tweezers make used of optical refractive force to manipulate micro objects. Currently the manipulated objects are limited to nano or several micro meters scale. In this paper we develop a novel optical tweezers which employs pulse laser force to drive bigger particles and assemble them. This pulse laser is controlled to form spiral trap which can grasp big particles. In our experiment the 50μm- 100μm-diameter metal particles were moved on a solid surfaces in a process we call 'laser spiral driving force'. Nearly any shape particle, including sphere and non-regular shape, can be moved on the surfaces.

  11. Improved synthesis of gold and silver nanoshells.

    Science.gov (United States)

    Brito-Silva, Antonio M; Sobral-Filho, Regivaldo G; Barbosa-Silva, Renato; de Araújo, Cid B; Galembeck, André; Brolo, Alexandre G

    2013-04-02

    Metallic nanoshells have been in evidence as multifunctional particles for optical and biomedical applications. Their surface plasmon resonance can be tuned over the electromagnetic spectrum by simply adjusting the shell thickness. Obtaining these particles, however, is a complex and time-consuming process, which involves the preparation and functionalization of silica nanoparticles, synthesis of very small metallic nanoparticles seeds, attachment of these seeds to the silica core, and, finally, growing of the shells in a solution commonly referred as K-gold. Here we present synthetic modifications that allow metallic nanoshells to be obtained in a faster and highly reproducible manner. The main improved steps include a procedure for quick preparation of 2.3 ± 0.5 nm gold particles and a faster approach to synthesize the silica cores. An investigation on the effect of the stirring speed on the shell growth showed that the optimal stirring speeds for gold and silver shells were 190 and 1500 rpm, respectively. In order to demonstrate the performance of the nanoshells fabricated by our method in a typical plasmonic application, a method to immobilize these particles on a glass slide was implemented. The immobilized nanoshells were used as substrates for the surface-enhanced Raman scattering from Nile Blue A.

  12. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  13. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  14. Adsorption of Cashew Allergens to Acid-Etched Zinc Metal Particles

    Science.gov (United States)

    Galvanized metal surfaces are approved by the FDA for use in many food processing steps. Food allergens can cause severe reactions even in very small amounts, and surfaces contaminated with allergens could pose a serious threat. The binding of cashew allergens to zinc particles was evaluated. Whi...

  15. Metal nano-particles modernized layers and those with polymers for laser thermonuclear targets

    Science.gov (United States)

    Akimova, I. V.; Akunets, A. A.; Borisenko, N. G.; Chaurasia, S.; Gromov, A. I.; Kaur, C.; Munda, D. S.; Orekhov, D. S.; Orekhov, A. S.; Sklizkov, G. V.; Tolokonnikov, S. M.; Rao, U.; Rastogi, V.

    2017-10-01

    The manufacturing and precision monitoring methods of the layers as promising direct and indirect targets for Inertial confinement fusion (ICF) are under study, as well as their application in the experiments. The metal-containing foams with a density that is several times or several orders of magnitude smaller than the full-density material of the same composition are of interest for higher laser light conversion into X-rays and for better energy delivery into the target in direct and indirect interaction schemes. Such targets are developed and provided. We report the interaction of Nd: glass laser with a low-density bismuth and gold targets. The plasma dynamics and X-ray emissions were observed using multiframe optical shadowgraphy and an X-ray streak camera. Enhanced X-ray intensities and festoon plasma flame are observed from the metal low-density layers.

  16. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    Science.gov (United States)

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  17. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  18. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses.

    Science.gov (United States)

    Demos, Stavros G; Negres, Raluca A; Raman, Rajesh N; Shen, Nan; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-04-04

    The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate.

  19. Thin Metallic Films from Solvated Metal Atoms.

    Science.gov (United States)

    1987-07-14

    research has developed over the past two decades that deals with the generation of atoms of metals (by metal evaporation, and the interaction of these...Departamento de Quimica , Universidad de Concepcion, Cassilla 3-:, c oncepcion, Chile. -I{ - ~ *~.’JS*~M 4 .~4\\ 821 19 the gold particles were negatively...flocculation were observed, as shown in table a Generally about 0.1 g In was Suspended in 100-200 nl solvent. Several approacies to characterization of

  20. Radiation crosslinking of polymers with segregated metallic particles. Final report, June 1, 1971--September 30, 1973

    International Nuclear Information System (INIS)

    Corneliussen, R.D.; Kamel, I.; Kusy, R.P.

    1973-01-01

    Through the past four years of research, a new approach to fabricating conductive polymer/metal composites has been developed. This approach consists of compacting mixtures of polymer and metal powders and then stabilizing the composite through radiation-induced crosslinking. The result is a mechanically strong, conductive materials consisting of two intertwining networks. One is a massive network consisting of fused crosslinked, large (greater than 100 μ) polymer particles while the other is a fine network of small, metallic particles (greater than 10 μ). Nine different systems including crystalline, amorphous, and rubbery polymers were studied. Processing at this time is limited to compression molding in a closed die because of network stability problems. Costs for processing were estimated at about $6.00/lb compared to $50.00 and up for commercial material based on random networks. (U.S.)

  1. Study of conditions of production and characterization of noble metal micro-particles suspensions

    International Nuclear Information System (INIS)

    Malabre, Catherine

    1983-01-01

    As the production and identification of metal micro-particle suspensions are some aspects of issues related to nuclear fuel reprocessing, this research thesis reports the use of ruthenium, molybdenum, niobium, palladium and rhodium (fission metals) to generate such micro-particles. They are produced by erosion of two electrodes between which occurs an electric arc discharge in aqueous media. Different analytic methods are developed to determine the characteristics of so-produced colloidal solutions. A granulometry study is performed by transmission electronic microscopy, light quasi-elastic scattering, and turbidimetry associated to centrifugation. This has lead to the production of steady micro-particle suspensions which have been used in a first set of industrial trials [fr

  2. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs)

    OpenAIRE

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Yohannes, Yared Beyene; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metal and metalloid contamination in food resulting from mining is of major concern due to the potential risk involved. Food consumption is the most likely route of human exposure to metals. This study was therefore to assess metals in different organs and different animal species near gold mines used for human consumption (free-range chicken, goat and sheep) in Tarkwa, Ghana, and to estimate the daily intake and health risk. The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and...

  3. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  4. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    Science.gov (United States)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  5. Gold geochemistry and mineralogy of till fines: a new approach for data integration

    Directory of Open Access Journals (Sweden)

    Vladimir Knauf

    2000-01-01

    Full Text Available A new method of heavy mineral (HM separation and assessment of gold grade was compared with the results of conventional AAS analysis. Sixteen gold micronuggets and a number of particles of native metal and metal alloys (brass, tin, bismuth, lead were extracted from 100 g of till fines (< 50 μm. From the size, number, and composition of micronuggets, the total gold grade (58 ppb of till fines was evaluated. The assessments agree well with the results of AASanalysis (57 ppb. A slightly lower value (44 ppb was obtained by Flame Atomic Absorption Analysis with Fire Assay (FAAS FA method of the extracted HM. Mineralogical investigations allow identification of two types of gold micronuggets thus revealing a complex origin for the geochemical anomaly. The association of brass-pyroxene (Mg# = 80–82 with complex gold-brass-lead-tin intergrowths indicates that some gold in till is derived from ultramafic rocks.

  6. Particle size and metals concentrations of dust from a paint manufacturing plant.

    Science.gov (United States)

    Huang, Siew Lai; Yin, Chun-Yang; Yap, Siaw Yang

    2010-02-15

    In this study, the particle size distribution and concentration of metallic elements of solvent- and water-based paint dust from bulk dust collected from dust-collecting hoppers were determined. The mean particle size diameter over a 12-week sampling period was determined using a particle size analyzer. The metals composition and concentration of the dust were determined via acid digestion technique followed by concentration analysis using inductively coupled plasma. The volume weighted mean particle diameters were found to be 0.941+/-0.016 and 8.185+/-0.201 microm for solvent- and water-based paint dust, respectively. The mean concentrations of metals in solvent-based paint dust were found to be 100+/-20.00 microg/g (arsenic), 1550+/-550.00 microg/g (copper), 15,680+/-11,780.00 microg/g (lead) and 30,460+/-10,580.00 microg/g (zinc) while the mean concentrations of metals in water-based paint dust were found to be 20.65+/-6.11 microg/g (arsenic), 9.14+/-14.65 microg/g (copper), 57.46+/-22.42 microg/g (lead) and 1660+/-1260 microg/g (zinc). Both paint dust types could be considered as hazardous since almost all of the dust particles were smaller than 10 microm. Particular emphasis on containment of solvent-based paint dust particles should be given since it was shown that they were very fine in size (<1 microm) and had high lead and zinc concentrations.

  7. Field effect on digestive ripening of thiol-capped gold nanoparticles

    International Nuclear Information System (INIS)

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh; Yang, Fuqian

    2014-01-01

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticles tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening

  8. Non-Gold Base Dental Casting Alloys. Volume 2. Porcelain-Fused-to-Metal Alloys.

    Science.gov (United States)

    1986-08-01

    nature of nickel release in human saliva at pH levels of 2 through 6 for 5, 10, 20, and 30 days, the specimens were immersed for 120 days. The results...poor thermal con- ductors--a property which can be beneficial to pulpal tissues. COPING - A designation for the metal substructure of a single unit

  9. Oxidative Etching and Metal Overgrowth of Gold Nanorods within Mesoporous Silica Shells

    NARCIS (Netherlands)

    Deng, Tian Song; Van Der Hoeven, Jessi E S; Yalcin, Anil O.; Zandbergen, Henny W.; Van Huis, Marijn A.; Van Blaaderen, Alfons

    2015-01-01

    Composite noble metal-based nanorods for which the surface plasmon resonances can be tuned by composition and geometry are highly interesting for applications in biotechnology, imaging, sensing, optoelectronics, photovoltaics, and catalysis. Here, we present an approach for the oxidative etching and

  10. Differentiation of nonferrous metal particles in lubrication oil using an electrical conductivity measurement-based inductive sensor

    Science.gov (United States)

    Wu, Yu; Zhang, Hongpeng; Wang, Man; Chen, Haiquan

    2018-02-01

    A method that measures the electrical conductivity of metal based on monitoring the inductance changes of coils via an inductive sensor is introduced in this work to differentiate metal particles in lubrication oil. Theoretical analysis coupled with experimentation is employed to differentiate varieties of nonferrous metal particles, including copper and aluminum particles, ranging from 860 μm to 880 μm in diameter. The results show that the inductive sensor is capable of the identification and differentiation of nonferrous metal particles in lubrication oil based on the electrical conductivity measurement. The concept demonstrated in this paper can be extended to inductive sensors in metal particle detection and other scientific and industrial applications.

  11. Transformations of particles, metal elements and natural organic matter in different water treatment processes.

    Science.gov (United States)

    Yan, Ming-Quan; Wang, Dong-Sheng; Shi, Bao-You; Wei, Qun-Shan; Qu, Jiu-Hui; Tang, Hong-Xiao

    2007-01-01

    Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Pre-ozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.

  12. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions

    International Nuclear Information System (INIS)

    Qiu, Danfeng; Wang, Song; Zheng, Yuanqin; Deng, Zhaoxiang

    2013-01-01

    In response to an increasing demand for understanding electrochemical processes on the nanometer scale, it now becomes possible to monitor electron transfer reactions at the single-nanoparticle level, namely particle collision electrochemistry. This technique has great potential in the development of research tools towards single-particle electrocatalysis and selective and multiplexed particle sizing. However, one existing problem that may discourage these applications is the relatively weak colloidal stability of nanoparticles in an electrolytic solution. Here we report on a facile but efficient way to achieve a good stability of gold nanoparticles in an acidic media so that ‘zero-aggregation’ collisions can be achieved at a carbon ultramicroelectrode. This allows us to obtain anodic dissolution currents from individual nanoparticles in a ‘one particle at a time’ manner, based on which accurate particle sizing with a resolution of 1–2 nm can be achieved. Our work strongly suggests that to maintain a well dispersed nanoparticle solution during a particle impact electrochemical experiment is critically important for accurate particle sizing, as well as other applications that require information to be extracted from individual nanoparticles (not their aggregates). (paper)

  13. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions.

    Science.gov (United States)

    Qiu, Danfeng; Wang, Song; Zheng, Yuanqin; Deng, Zhaoxiang

    2013-12-20

    In response to an increasing demand for understanding electrochemical processes on the nanometer scale, it now becomes possible to monitor electron transfer reactions at the single-nanoparticle level, namely particle collision electrochemistry. This technique has great potential in the development of research tools towards single-particle electrocatalysis and selective and multiplexed particle sizing. However, one existing problem that may discourage these applications is the relatively weak colloidal stability of nanoparticles in an electrolytic solution. Here we report on a facile but efficient way to achieve a good stability of gold nanoparticles in an acidic media so that 'zero-aggregation' collisions can be achieved at a carbon ultramicroelectrode. This allows us to obtain anodic dissolution currents from individual nanoparticles in a 'one particle at a time' manner, based on which accurate particle sizing with a resolution of 1-2 nm can be achieved. Our work strongly suggests that to maintain a well dispersed nanoparticle solution during a particle impact electrochemical experiment is critically important for accurate particle sizing, as well as other applications that require information to be extracted from individual nanoparticles (not their aggregates).

  14. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuyuan [Northwestern University, Evanston; Wu, Zili [ORNL; Wen, Jianguo [Argonne National Laboratory (ANL); Poeppelmeier, Kenneth R [Northwestern University, Evanston; Marks, Laurence D [Northwestern University, Evanston

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorod support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.

  15. Digital image processing of nanometer-size metal particles on amorphous substrates

    Science.gov (United States)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  16. [Research Progress in Analytical Technology for Heavy Metals in Atmospheric Particles].

    Science.gov (United States)

    Wang, Yu-jie; Tu, Zhen-quan; Zhou, Li; Chi, Yong-jie; Luo, Qin

    2015-04-01

    Atmospheric particles have become the primary atmospheric pollutions, of which the heavy metals, owing to non-degradability and hysteresis, a serious threat to human life and natural environment, have become a hot research issue currently. The analytical methods of heavy metals in atmospheric particles are summarized in the present review, including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry, neutron activation analysis, fluorescence spectrometry, glow discharge atomic emission spectrometry, microwave plasma atomic emission spectrometry, and laser induced breakdown spectroscopy, and some proposals are tried to make for improving the shortcomings of these technologies: continuum source Atomic absorption spectrometry for simultaneously measuring multi-elements, atomic emission spectrometry for direct determination of particulates, high resolution laser ablation inductively coupled plasma mass spectrometry for determination of solid samples, low scattering synchrotron fluorescence spectrum for determination of atmospheric particulate matter and k0 neutron activation analysis for determination of radioactive elements in the troposphere Analysis techniques of heavy metals in atmospheric particulate matter are promoted to develop toward being real-time, fast, low- detection-limit, direct-measurement and simple-operation due to the spatial and temporal distribution difference of the heavy metals in atmospheric particles and human requirement for improvement of ambient air quality as well as rapid development of modern instrument science and technology.

  17. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  18. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  19. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    Science.gov (United States)

    Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin

    2016-02-01

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  20. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.

    Science.gov (United States)

    Çınar, Simge; Tevis, Ian D; Chen, Jiahao; Thuo, Martin

    2016-02-23

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate ('/' = physisorbed, '-' = chemisorbed), from molten Field's metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  1. Lead Isotope Characteristics of the Mindyak Gold Deposit, Southern Urals: Evidence for the Source of Metals

    Science.gov (United States)

    Chugaev, A. V.; Znamensky, S. E.

    2018-01-01

    The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide-carbonate-quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250-18.336, 207Pb/204Pb = 15.645-15.653, 208Pb/204Pb = 38.179-38.461; while for late pyrite 206Pb/204Pb = 18.102-18.378, 207Pb/204Pb = 15.635-15.646, 208Pb/204Pb = 38.149-38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.

  2. Prediction and prevention of rockburst in metal mines – A case study of Sanshandao gold mine

    Directory of Open Access Journals (Sweden)

    Meifeng Cai

    2016-04-01

    Full Text Available Rockburst is a kind of artificial earthquake induced by human activities, such as mining excavations. The mechanism of rockburst induced by mining disturbance is revealed in terms of energy in this context. For understanding the rockburst mechanism, two necessary conditions for the occurrence of rockburst are presented: (1 the rock mass has the capability to store huge amount of energy and possesses a strong bumping-prone characteristic when damaged; and (2 the geological conditions in the mining area have favorable geo-stress environments that can form high-stress concentration area and accumulate huge energy. These two conditions are also the basic criteria for prediction of rockburst. In view of energy analysis, it is observed that artificial and natural earthquakes have similar regularities in many aspects, such as the relationship between the energy value and burst magnitude. By using the relationship between energy and magnitude of natural earthquake, rockburst is predicted by disturbance energy analysis. A practical example is illustrated using the above-mentioned theorem and technique to predict rockburst in a gold mine in China. Finally, the prevention and control techniques of rockburst are also provided based on the knowledge of the rockburst mechanism.

  3. Column bioleaching of arsenic and Heavy metals from gold mine tailings by aspergillus fumigatus

    International Nuclear Information System (INIS)

    Seh-Bardan, Bahi Jalili; Othman, Radziah; Ab Wahid, Samsuri; Husin, Aminudin; Sadegh-Zadeh, Fardin

    2012-01-01

    A column bioleaching experiment was carried out to compare the effectiveness of the fungus Aspergillus fumigatus to bioleach arsenic (As) and heavy metals from the tailings using two different methods. In the first method, which is named as distribution method (DM), the fungus was distributed in the column by means of vertical and horizontal layers of coarse sand. In the other method, named as surface applied method (SAM), the fungus was cultivated on the surface of the tailings, which was covered with a few centimeters of coarse sand. Results showed that in the DM, oxalic acid production was stimulated and maximum removal of As, Fe, Mn, and Zn was 53, 51, 81, and 62%, respectively. However, Pb removal was low (8%), which might be due to the precipitation of Pb as its oxalates. On the other hand, the maximum removal of As, Fe, Mn, Pb, and Zn were 22, 28, 37, 64, and 34%, respectively, for the SAM. Results of the sequential extraction study showed that the DM was effective in removing the water soluble, exchangeable, carbonate, and Fe/Mn oxide fractions of As, Fe, Mn, and Zn. Our study suggested that A. fumigatus has a potential to be used in remediation of heavy metal contaminated sites. Distributing the fungus throughout the entire tailings columns improved the bioleaching of heavy metals by the fungus. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Sensing Applications of Silver and Gold Nanoparticles

    OpenAIRE

    Jao, Chih-Yu

    2012-01-01

    Nanoscale materials have great applications in many areas. One of these applications is for manufacturing ultra-compact and efficient sensors for chemical and biological molecule detection. Noble metals, such as gold (Au) and silver (Ag), because of their distinguished optical property"localized surface plasmon resonances (LSPRs) that exhibit low loss, are ideal materials to fabricate these nanoscale plasmonic particles or structures. This work addresses the synthesis, characterization, and s...

  5. In vitro genotoxic effects of different combinations of cobalt and metallic carbide particles.

    Science.gov (United States)

    De Boeck, Marlies; Lombaert, Noömi; De Backer, Sofie; Finsy, Robert; Lison, Dominique; Kirsch-Volders, Micheline

    2003-03-01

    Occupational exposure to hard metal dust, consisting of tungsten carbide (WC) and metallic cobalt particles (Co), is associated with an increased risk of lung cancer, while no increased risk was observed in workers exposed to Co alone. In vitro, in human peripheral blood mononucleated cells (PBMC), we previously demonstrated that WC-Co is more genotoxic than Co and WC alone. A possible mechanism underlying this higher genotoxicity is a specific physicochemical interaction between Co and WC particles leading to the enhanced short-term formation of active oxygen species. The aim of this study was to evaluate the in vitro genotoxicity of other combinations of Co with metal carbide particles in comparison with WC-Co. The ability of Cr(3)C(2), Mo(2)C and NbC and of their powder mixtures with Co to induce DNA strand breaks and alkali-labile sites was assessed by the alkaline Comet assay and their potential to induce chromosome(/genome) mutations by the cytokinesis-block micronucleus test on human PBMC from two donors. PBMC were treated in vitro for 15 min, 24 h after the onset of PHA stimulation. In the micronucleus test, while the metal carbides alone did not increase the micronucleus frequency, Co alone and the four tested carbide-Co mixtures induced a statistically significant concentration-dependent increase in micronucleated binucleates. In addition to WC, NbC and Cr(3)C(2) particles were able to interact with Co, producing a higher mutagenic effect than the individual metal particles. Mo(2)C particles did not display interactive mutagenicity with Co in the micronucleus test, possibly related to their small specific surface area, compactness and/or spherical shape. With the Comet assay, applied directly at the end of the treatment, less clear results, due to inter-experimental and inter-donor variation, were obtained. These data indicate that particular interaction of a metal carbide with Co leading to enhanced mutagenicity is not specific for WC.

  6. Persistence of Metal-rich Particles Downstream Zones of Acid Drainage Mixing in Andean Rivers

    Science.gov (United States)

    Pasten, P.; Montecinos, M.; Guerra, P. A.; Bonilla, C. A.; Escauriaza, C. R.; Dabrin, A.; Coquery, M.

    2016-12-01

    The Andes mountain range provides the setting for watersheds with high natural background of metals and for mining operations that enhance contaminant mobilization, notably in Northern and Central Chile. Dissolved and solid metal species are actively transported by streams to the Pacific Ocean from area and point sources, like acid drainage. We examine the response of metal rich particle suspensions downstream zones of mixing where shifts in the chemical environment occur. We propose a conceptual model which is used to analyze the fate of copper in the upper Mapocho watershed. The main source of copper is the Yerba Loca river, a naturally impacted stream with pH ranging from 3 to 7 and high concentrations of Cu (0.8 - 6.3 mg/L), Al (1.3 - 7.6 mg/L) and Fe (0.4 - 4.2 mg/L). Steep chemical shifts occur after the confluences with the San Francisco and the Molina rivers. We characterized stream chemistry, hydrological variables and suspended particles, including particle size distribution (PSD), turbidity, and total suspended solids. A marked seasonal behavior was observed, with a higher total Cu flux during smelting periods and a shift towards the dissolved phase during summer. When acid drainage is discharged into a receiving stream, incomplete mixing occurs thereby promoting the formation of a range of metal-rich solids with a characteristic PSD. Similarly, areas of chemical heterogeneity control the partition of metals associated to suspended geomaterials coming from bank and slope erosion. A highly dynamic process ensues where metastable phases shift to new equilibria as fully mixed conditions are reached. Depending on the reaction kinetics, some particles persist despite being exposed to thermodynamically unfavorable chemical environments. The persistence of metal-rich particles downstream zones of acid drainage mixing is important because it ultimately controls the flux of metals being delivered to the ocean by watersheds impacted by acid drainage. Funding from

  7. Particle-bound metal transport after removal of a small dam in ...

    Science.gov (United States)

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa

  8. Preparation of gold ethanol colloid by the arc discharge method

    International Nuclear Information System (INIS)

    Tseng, K.-H.; Huang, J.-C.; Liao, C.-Y.; Tien, D.-C.; Tsung, T.-T.

    2009-01-01

    A new method using the arc discharge method (ADM) to synthesize gold nanoparticles in an anhydrous ethanol was studied. Fabricated gold nanoparticles were characterized by different techniques. Unlike conventional methods for metal nanoparticles synthesis, the ADM method does not require application of chemical surfactants and stabilizers. The microstructure of ADM-produced gold nanoparticles was examined by transmission electron microscope (TEM) and scanning electron microscope (SEM). The particle size was found in the range of 2-40 nm. The chemical composition of gold nanoparticles has been confirmed by the energy dispersive X-ray analysis (EDX). The crystal structure of the nanoscale gold particles was studied using the X-ray diffraction (XRD) method. Images of the gold nanoparticles, Zeta potential, size distribution, and ultraviolet-visible (UV-vis) absorbance were investigated. This innovative approach for gold nanoparticles preparation has been successfully established. The experimental results showed that the ADM technique is easy, cheap and clean method which can be used to manufacture gold nanoparticles suspended in ethanol solution without any surfactant

  9. An Analysis of the Retention of a Diamond Particle in a Metallic Matrix after Hot Pressing

    Directory of Open Access Journals (Sweden)

    Borowiecka-Jamrozek J.

    2017-03-01

    Full Text Available This paper deals with computer modelling of the retention of a synthetic diamond particle in a metallic matrix produced by powder metallurgy. The analyzed sintered powders can be used as matrices for diamond impregnated tools. First, the behaviour of sintered cobalt powder was analyzed. The model of a diamond particle embedded in a metallic matrix was created using Abaqus software. The preliminary analysis was performed to determine the mechanical parameters that are independent of the shape of the crystal. The calculation results were compared with the experimental data. Next, sintered specimens obtained from two commercially available powder mixtures were studied. The aim of the investigations was to determine the influence of the mechanical and thermal parameters of the matrix materials on their retentive properties. The analysis indicated the mechanical parameters that are responsible for the retention of diamond particles in a matrix. These mechanical variables have been: the elastic energy of particle, the elastic energy of matrix and the radius of plastic zone around particle.

  10. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  11. Characterization of airborne particles generated from metal active gas welding process.

    Science.gov (United States)

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  12. Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets.

    Science.gov (United States)

    Tan, Cher Lin Clara; Sapiha, Kostantyn; Leong, Yoke Fun Hannah; Choi, Siwon; Anariba, Franklin; Thio, Beng Joo Reginald

    2015-07-21

    A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable.

  13. Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution

    Directory of Open Access Journals (Sweden)

    Stephanie Christau

    2014-06-01

    Full Text Available The effect of brush thickness on the loading of gold nanoparticles (AuNPs within stimuli-responsive poly-(N,N-(dimethylamino ethyl methacrylate (PDMAEMA polyelectrolyte brushes is reported. Atom transfer radical polymerization (ATRP was used to grow polymer brushes via a “grafting from” approach. The brush thickness was tuned by varying the polymerization time. Using a new type of sealed reactor, thick brushes were synthesized. A systematic study was performed by varying a single parameter (brush thickness, while keeping all other parameters constant. AuNPs of 13 nm in diameter were attached by incubation. X-ray reflectivity, electron scanning microscopy and ellipsometry were used to study the particle loading, particle distribution and interpenetration of the particles within the brush matrix. A model for the structure of the brush/particle hybrids was derived. The particle number densities of attached AuNPs depend on the brush thickness, as do the optical properties of the hybrids. An increasing particle number density was found for increasing brush thickness, due to an increased surface roughness.

  14. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis.

    Science.gov (United States)

    Dan, Yongbo; Zhang, Weilan; Xue, Runmiao; Ma, Xingmao; Stephan, Chady; Shi, Honglan

    2015-03-03

    Plant uptake and accumulation of nanoparticles (NPs) represent an important pathway for potential human expose to NPs. Consequently, it is imperative to understand the uptake of accumulation of NPs in plant tissues and their unique physical and chemical properties within plant tissues. Current technologies are limited in revealing the unique characteristics of NPs after they enter plant tissues. An enzymatic digestion method, followed by single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) analysis, was developed for simultaneous determination of gold NP (AuNP) size, size distribution, particle concentration, and dissolved Au concentration in tomato plant tissues. The experimental results showed that Macerozyme R-10 enzyme was capable of extracting AuNPs from tomato plants without causing dissolution or aggregation of AuNPs. The detection limit for quantification of AuNP size was 20 nm, and the AuNP particle concentration detection limit was 1000 NPs/mL. The particle concentration recoveries of spiked AuNPs were high (79-96%) in quality control samples. The developed SP-ICP-MS method was able to accurately measure AuNP size, size distribution, and particle concentration in the plant matrix. The dosing study indicated that tomato can uptake AuNPs as intact particles without alternating the AuNP properties.

  15. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold

    Science.gov (United States)

    Baksi, Ananya; Pradeep, T.

    2013-11-01

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster

  16. Absorbed dose assessment in particle-beam irradiated metal-oxide and metal-nonmetal memristors

    Directory of Open Access Journals (Sweden)

    Knežević Ivan D.

    2012-01-01

    Full Text Available Absorbed dose was estimated after Monte Carlo simulation of proton and ion beam irradiation on metal-oxide and metal-nonmetal memristors. A memristive device comprises two electrodes, each of a nanoscale width, and a double-layer active region disposed between and in electrical contact with electrodes. Following materials were considered for the active region: titanium dioxide, zirconium dioxide, hafnium dioxide, strontium titanium trioxide and galium nitride. Obtained results show that significant amount of oxygen ion - oxygen and nonmetal ion - nonmetal vacancy pairs is to be generated. The loss of such vacancies from the device is believed to deteriorate the device performance over time. Estimated absorbed dose values in the memristor for different constituting materials are of the same order of magnitude because of the close values of treshold displacement energies for the investigated materials.

  17. Gold and platinum in shales with evidence against extraterrestrial sources of metals

    Science.gov (United States)

    Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.; Glascock, M.D.; Denison, J.R.

    1992-01-01

    Few black shales contain concentrations of precious metals higher than average continental crust (i.e. ???5 ppb Au). Yet Au and Pt alloys have been reported from the Kupferschiefer in Poland. Moreover, thin sulfide beds in certain Chinese and Canadian shales contain several hundred ppb Au, Pd and Pt and average ???4% Mo and ???2.5% Ni in an association that is difficult to explain. Volcanic and non-volcanic exhalations, hydrothermal epigenesis involving either igneous or sedex fluids, biogenic processes and low-temperature secondary enrichment are among the possible factors involved in deriving Ni, PGE and Au for black shales and sulfide beds in black shales. Extraterrestrial sources have been invoked in some cases (e.g., the Cambrian of China). However, available data on abundances of PGE indicate relatively low values for Ir (metals for Chinese shales and Ni-Mo-sulfide beds. Data are less complete for the U.S. shales, but nevertheless are suggestive of earthly origins for PGE. ?? 1992.

  18. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... in silico methods are here proposed for apoptosis studies and for AMG studies.   Methods   MR - heating of high concentration micrometer gold and low concentration nano gold.   CSLM of ethidum bromide stained cell lines, with and witout gold and automated image processing.   AMG gold uptake study...

  19. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Antifouling paint residues collected from the hard-standings of a marine leisure boat facility have been chemically characterised. Scanning electron microscopy revealed distinct layers, many containing oxidic particles of Cu and Zn. Quantitative analysis indicated concentrations of Cu and Zn averaging about 300 and 100 mg g -1 , respectively, and small proportions of these metals ( -1 , respectively. Estuarine sediment collected near a boatyard contained concentrations of Cu and Zn an order of magnitude greater than respective concentrations in 'background' sediment, and mass balance calculations suggested that the former sample was contaminated by about 1% by weight of paint particles. Clearly, antifouling residues represent a highly significant, heterogeneous source of metallic contamination in the marine environment where boating activities occur.

  20. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    Science.gov (United States)

    Terrani, K. A.; Silva, C. M.; Kiggans, J. O.; Cai, Z.; Shin, D.; Snead, L. L.

    2013-06-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  1. Data on the histological and immune cell response in the popliteal lymph node in mice following exposure to metal particles and ions

    Directory of Open Access Journals (Sweden)

    Bethany Winans

    2016-12-01

    Full Text Available Hip implants containing cobalt–chromium (CoCr have been used for over 80 years. In patients with metal-on-metal (MoM hip implants, it has been suggested that wear debris particles may contribute to metal sensitization in some individuals, leading to adverse reactions. This article presents data from a study in which the popliteal lymph node assay (PLNA was used to assess immune responses in mice treated with chromium-oxide (Cr2O3 particles, metal salts (CoCl2, CrCl3, and NiCl2 or Cr2O3 particles with metal salts (“A preliminary evaluation of immune stimulation following exposure to metal particles and ions using the mouse popliteal lymph node assay” (B.E. Tvermoes, K.M. Unice, B. Winans, M. Kovochich, E.S. Fung, W.V. Christian, E. Donovan, B.L. Finley, B.L. Kimber, I. Kimber, D.J. Paustenbach, 2016 [1]. Data are presented on (1 the chemical characterization of TiO2 particles (used as a particle control, (2 clinical observations in mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (3 PLN weight and weight index (WI in mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (4 histological changes in PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (5 percentages of immune cells in the PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, and (6 percentages of proliferating cells in the PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts.

  2. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions

    Science.gov (United States)

    Villiers, Christian L.; Freitas, Heidi; Couderc, Rachel; Villiers, Marie-Bernadette; Marche, Patrice N.

    2010-01-01

    The effect of manufactured gold nanoparticles (NPs) on the immune system was analysed through their ability to perturb the functions of dendritic cells (DCs), a major actor of both innate and acquired immune responses. For this purpose, DCs were produced in culture from mouse bone marrow progenitors. The analysis of the viability of the cells after their incubation in the presence of gold NPs shows that these NPs are not cytotoxics even at high concentration. Furthermore, the phenotype of the DC is unchanged after the addition of NPs, indicating that there is no activation of the DC. However, the analysis of the cells at the intracellular level reveals important amounts of gold NPs amassing in endocytic compartments. Furthermore, the secretion of cytokines is significantly modified after such internalisation indicating a potential perturbation of the immune response.

  3. Magnetic response from a composite of metal-dielectric particles in the visible range: T-matrix simulation

    Directory of Open Access Journals (Sweden)

    O. Zhuromskyy

    2011-09-01

    Full Text Available The optical response of a particle composed of a dielectric core surrounded by a densely packed shell of small metal spheres is simulated with the superposition Tmatrix method for realistic material parameters. In order to compute the electric and magnetic particle polarizabilities a single expansion T-matrix is derived from a particle centered T-matrix. Finally the permeability of a medium comprising such particles is found to deviate considerable from unity resulting in a noticeable optical response.

  4. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  5. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions

    CERN Document Server

    Gastaldo, L.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-01-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of $^{163}$Ho using MMCs having the radioactive $^{163}$Ho ions implanted in the absorber. The implantation of $^{163}$Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. In addition an optimized detector design for future $^{163}$Ho experiments is presented.

  6. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  7. Detection of charge dynamics of a tetraphenylporphyrin particle using GaAs-based nanowire enhanced by particle-metal tip capacitive coupling

    Science.gov (United States)

    Okamoto, Shoma; Sato, Masaki; Sasaki, Kentaro; Kasai, Seiya

    2017-06-01

    We investigate a detection technique of charge dynamics of a molecular particle using a GaAs-based nanowire where the charge sensitivity is locally enhanced by particle-metal tip capacitive coupling. By equivalent circuit analysis, it was clarified that the nanowire channel potential becomes sensitive to the molecular particle on the nanowire when the particle is capacitively coupled with a metal tip. The concept was demonstrated using a GaAs-based nanowire with tetraphenylporphyrin (TPP) particles on its surface and a measurement system integrating an atomic force microscope (AFM) and a dynamic current measurement monitor/spectrum analyzer. When the metal tip was in contact with a TPP particle on the nanowire under an appropriate tip bias condition, random telegraph signal (RTS) noise was imposed on the nanowire current, suggesting the increase in sensitivity to the charge state of the particle by the metal tip contact. We discussed the origin of the RTS noise through analysis of the time constant of RTS noise, RTS amplitude, and noise spectrum.

  8. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    Energy Technology Data Exchange (ETDEWEB)

    Goix, Sylvaine [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Lévêque, Thibaut [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Xiong, Tian-Tian [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Schreck, Eva [Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); and others

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.

  9. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator

    International Nuclear Information System (INIS)

    El-Bashir, S.M.; Barakat, F.M.; AlSalhi, M.S.

    2013-01-01

    Poly(methyl methacrylate) (PMMA) nanocomposite films doped with mixed coumarin dyestuffs and noble metal nanoparticles (60 nm silver and 100 nm gold) were prepared by spin coating technique. The effect of silver and gold nanoparticles on the film properties was studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis absorption and fluorescence spectroscopy measurements. DSC measurements indicated the increase of the glass transition temperature of the films by increasing nanogold concentration, recommending their promising thermal stability towards hot climates. It was found that the fluorescence signals of the mixed coumarin dyes were amplified by 5.4 and 7.15 folds as a result of metal enhanced fluorescence (MEF). The research outcomes offered a potential application of these films in solar energy conversion by plasmonic thin film luminescent solar concentrator (PTLSC). -- Graphical abstract: Plasmonic thin film luminescent solar concentrators. Highlights: • Metal enhanced fluorescence was achieved for mixed coumarin dyes doped in PMMA nanocomposite films. • The amplification of the fluorescence signals is dependent on the concentration of silver and gold nanoparticles. • These films is considered as potential candidates for plasmonic thin film luminescent solar concentrators (PTLSCs)

  10. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    El-Bashir, S.M., E-mail: elbashireg@yahoo.com [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia); Department of Physics Faculty of Science, Benha University (Egypt); Barakat, F.M.; AlSalhi, M.S. [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia)

    2013-11-15

    Poly(methyl methacrylate) (PMMA) nanocomposite films doped with mixed coumarin dyestuffs and noble metal nanoparticles (60 nm silver and 100 nm gold) were prepared by spin coating technique. The effect of silver and gold nanoparticles on the film properties was studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis absorption and fluorescence spectroscopy measurements. DSC measurements indicated the increase of the glass transition temperature of the films by increasing nanogold concentration, recommending their promising thermal stability towards hot climates. It was found that the fluorescence signals of the mixed coumarin dyes were amplified by 5.4 and 7.15 folds as a result of metal enhanced fluorescence (MEF). The research outcomes offered a potential application of these films in solar energy conversion by plasmonic thin film luminescent solar concentrator (PTLSC). -- Graphical abstract: Plasmonic thin film luminescent solar concentrators. Highlights: • Metal enhanced fluorescence was achieved for mixed coumarin dyes doped in PMMA nanocomposite films. • The amplification of the fluorescence signals is dependent on the concentration of silver and gold nanoparticles. • These films is considered as potential candidates for plasmonic thin film luminescent solar concentrators (PTLSCs)

  11. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    Science.gov (United States)

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  12. Improved recovery of trace amounts of gold (III), palladium (II) and platinum (IV) from large amounts of associated base metals using anion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, I. [Lab. of Chemistry, Tokyo Women' s Medical Univ. (Japan); Takeda, Y.; Ishida, K. [Lab. of Chemistry, Nippon Medical School, Kawasaki-shi, Kanagawa-ken (Japan)

    2000-02-01

    The adsorption and desorption behaviors of gold (III), palladium (II) and platinum (IV) were surveyed in column chromatographic systems consisting of one of the conventional anion-exchange resins of large ion-exchange capacity and dilute thiourea solutions. The noble metals were strongly adsorbed on the anion-exchange resins from dilute hydrochloric acid, while most base metals did not show any marked adsorbability. These facts made it possible to separate the noble metals from a large quantity of base metals such as Ag (I), Al (III), Co (II), Cu (II), Fe (III), Mn (II), Ni (II), Pb (II), and Zn (II). Although it used to be very difficult to desorb the noble metals from the resins used, the difficulty was easily overcome by use of dilute thiourea solutions as an eluant. In the present study, as little as 1.00 {mu}g of the respective noble metals was quantitatively separated and recovered from as much as ca. 10 mg of a number of metals on a small column by elution with a small amount of dilute thiourea solution. The present systems should be applicable to the separation, concentration and recovery of traces of the noble metals from a number of base metals coexisting in a more extended range of amounts and ratios. (orig.)

  13. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures

    Science.gov (United States)

    Avci, Civan; Imaz, Inhar; Carné-Sánchez, Arnau; Pariente, Jose Angel; Tasios, Nikos; Pérez-Carvajal, Javier; Alonso, Maria Isabel; Blanco, Alvaro; Dijkstra, Marjolein; López, Cefe; Maspoch, Daniel

    2018-01-01

    Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing.

  14. The Effect of Gold Nano Particles Compared to Dioxide Titanium Nano Particles on Vital Factors of Isolated Candida albicans in Patients with Oral Candidiasis in Vitro

    Directory of Open Access Journals (Sweden)

    Ladan Rahimzadeh Torabi

    2016-12-01

    Full Text Available Background Oral Candidiasis is fungal infection that affects the oral cavity. Oral infections caused by yeast of the genus Candida and particularly Candida albicans (oral candidiasis have been recognized throughout recorded history. Objectives The aim of this study was to compare the antifungal effects of gold nanoparticles and dioxide titanium nanoparticles on patients with Oral Candidiasis patients. This review is to give the reader a contemporary overview of oral candidiasis, the organisms involved, and the management strategies that are currently employed or could be utilized in the future. Methods This experimental study has been done in Isfahan city totally with 56 numbers of patients suffering from Candidiasis in groups of different ages from hospitals and laboratories The resulted from swap in Sabouraud Dexteros agar and finally with complementary experiments 56 isolated Candida albicans (oral Candidiasis detected and grew in culture milieu then gold nanoparticles (10 nanometers and titanium dioxide nanoparticles (10 - 15 nanometers in different consistencies add to this milieu and the least density of halting and the least density of killing fungi for different suspension thinness containing Candida albicans. The data were analyzed by spss 15 version software. Results The results showed that gold nanoparticles have a good anticandidial effects and can be used to treat infections of Candida, it is recommended that further research considered the effects of different infections candidiasis in In vitro condition. Conclusions Using gold nanoparticles with 10 nanometer diameters have high antifungal effect on oral candidiasis and its function has been proved. In current study halting effect of gold nanoparticles on micro-organisms experimented in different densities was observed.

  15. Metallic particles into mechanical and hydraulic systems in agricultural and construction machines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jair Rosas da; Silva, Deise Paula da [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Centro de Engenharia Agricola; Bormio, Marcos Roberto [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia

    2008-07-01

    The lubricant oil analysis are an indicator of the conditions how the lubricant is, may to allow the prevision of damages that occurred into machine due to the internal abrasion of hydraulic and mechanical components of the machines. The present study had the objective to determine the kind and quantity of the metallic particles that occurred into the lubricant oil of the mechanical and hydraulic compartments of the energy transmission systems of three kinds of machines: a tracked-tractor, a sugarcane harvester and a group of power-shovels. The metallic particles presents into these compartments were determined under laboratory tests and concerning to the following elements: iron, copper, chromium, lead, nickel, aluminum, silex, tin and molybdenum. About to the tracked-tractor, the metallic contaminators into to the oil charges surpasses the tolerate levels, considering the technical standards adopted in this evaluation. In the sugarcane harvester only a metallic element in excess was identified and, in a power-shovel group it was showed the need to correct air false entrances in the hydraulic or mechanical systems due the high presence of silex element. (author)

  16. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching.

    Science.gov (United States)

    Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe

    2015-04-08

    Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.

  17. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  18. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sashuk, Volodymyr, E-mail: vsashuk@ichf.edu.pl; Rogaczewski, Konrad [Polish Academy of Sciences, Institute of Physical Chemistry (Poland)

    2016-09-15

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV–Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold–silver bimetallic nanoparticles.

  19. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    International Nuclear Information System (INIS)

    Sashuk, Volodymyr; Rogaczewski, Konrad

    2016-01-01

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV–Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold–silver bimetallic nanoparticles.

  20. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Science.gov (United States)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  1. Cardiopulmonary responses of intratracheally instilled tire particles and constituent metal components

    Science.gov (United States)

    Gottipolu, R.R.; Landa, E.R.; Schladweiler, M.C.; McGee, J.K.; Ledbetter, A.D.; Richards, J.H.; Wallenborn, G.J.; Kodavanti, U.P.

    2008-01-01

    Tire and brake wear particles contain transition metals, and contribute to near-road PM. We hypothesized that acute cardiopulmonary injury from respirable tire particles (TP) will depend on the amount of soluble metals. Respirable fractions of two types of TP (TP1 and TP2) were analyzed for water and acid-leachable metals using ICP-AES. Both TP types contained a variety of transition metals, including zinc (Zn), copper (Cu), aluminum, and iron. Zn and Cu were detected at high levels in water-soluble fractions (TP2 > TP1). Male Wistar Kyoto rats (12-14 wk) were intratracheally instilled, in the first study, with saline, TP1 or TP2 (5 mg/kg), and in the second study, with soluble Zn, Cu (0.5 ??mol/kg), or both. Pulmonary toxicity and cardiac mitochondrial enzymes were analyzed 1 d, 1 wk, or 4 wk later for TP and 4 or 24 h later for metals. Increases in lavage fluid markers of inflammation and injury were observed at d 1 (TP2 > TP1), but these changes reversed by wk 1. No effects on cardiac enzymes were noted with either TP. Exposure of rats to soluble Zn and Cu caused marked pulmonary inflammation and injury but temporal differences were apparent (Cu effects peaked at 4 h and Zn at 24 h). Instillation of Zn, Cu, and Zn+ Cu decreased the activity of cardiac aconitase, isocitrate dehydrogenase, succinate dehydrogenase, cytochrome-c-oxidase and superoxide dismutase suggesting mitochondrial oxidative stress. The observed acute pulmonary toxicity of TP could be due to the presence of water soluble Zn and Cu. At high concentrations these metals may induce cardiac oxidative stress. Copyright ?? Informa Healthcare USA, Inc.

  2. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thao M. Nguyen

    2015-07-01

    Full Text Available Gold nanorods (GNRs are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F and single particle inductively coupled mass spectrometry (spICP-MS provide unique advantages for fractionating and analyzing the typically complex mixtures produced by common synthetic procedures. A4F fractions collected at specific elution times were analyzed off-line by spICP-MS. The individual particle masses were obtained by conversion of the ICP-MS pulse intensity for each detected particle event, using a defined calibration procedure. Size distributions were then derived by transforming particle mass to length assuming a fixed diameter. The resulting particle lengths correlated closely with ex situ transmission electron microscopy. In contrast to our previously reported observations on the fractionation of low-aspect ratio (AR GNRs (AR < 4, under optimal A4F separation conditions the results for high-AR GNRs of fixed diameter (≈20 nm suggest normal, rather than steric, mode elution (i.e., shorter rods with lower AR generally elute first. The relatively narrow populations in late eluting fractions suggest the method can be used to collect and analyze specific length fractions; it is feasible that A4F could be appropriately modified for industrial scale purification of GNRs.

  3. Platinum group metal particles aggregation in nuclear glass melts under the effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hanotin, Caroline [CEA Marcoule, DEN/MAR/DTCD/SECM/LDMC, Bagnols-sur-Cèze, F-30207 (France); Puig, Jean [Laboratoire PROMES-CNRS, UPR 8521, Font-Romeu Odeillo, F-66120 (France); Neyret, Muriel, E-mail: muriel.neyret@cea.fr [CEA Marcoule, DEN/MAR/DTCD/SECM/LDMC, Bagnols-sur-Cèze, F-30207 (France); Marchal, Philippe [Laboratoire Réactions et Génie des Procédés (LRGP-GEMICO), Université de Lorraine-CNRS, UMR 7274, Nancy F-54001 (France)

    2016-08-15

    The viscosity of simulated high level radioactive waste glasses containing platinum group metal particles is studied over a wide range of shear stress, as a function of the particles content and the temperature, thanks to a stress imposed rheometer, coupled to a high-temperature furnace. The system shows a very shear thinning behavior. At high shear rate, the system behaves as a suspension of small clusters and individual particles and is entirely controlled by the viscosity of the glass matrix as classical suspensions. At low shear rate, above a certain fraction in platinum group metal particles, the apparition of macroscopic aggregates made up of chains of RuO{sub 2} particles separated by thin layers of glass matrix strongly influences the viscosity of the nuclear glass and leads, in particular, to the apparition of yield stress and thixotropic effects. The maximum size of these clusters as well as their effective volume fraction have been estimated by a balance between Van der Waals attractive forces and hydrodynamic forces due to shear flow. We showed experimentally and theoretically that this aggregation phenomenon is favored by an increase of the temperature, owing to the viscosity decrease of the glass matrix, leading to an unusual increase of the suspension viscosity. - Highlights: • The macroscopic aggregates made up of RuO{sub 2} particles strongly influence the nuclear glass viscosity. • The maximum size of clusters as well as their effective volume fraction can be estimated. • This aggregation phenomenon is favored by an increase of the temperature. • A viscosity model as a function of the PGM content, volume fraction and shear stress is proposed.

  4. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Science.gov (United States)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-03-01

    An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with 15N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non-biodegradability. In a final step, the grafting of the carboxylic ligands at the surface of the SPEs and an accumulation step in the presence of lead(II) cations allowed us to evidence the interest of nanostructured materials as metallic pollutants sensors.

  5. Transport-related mylonitic ductile deformation and shape change of alluvial gold, southern New Zealand

    Science.gov (United States)

    Kerr, Gemma; Falconer, Donna; Reith, Frank; Craw, Dave

    2017-11-01

    Gold is a malleable metal, and detrital gold particles deform via internal distortion. The shapes of gold particles are commonly used to estimate transport distances from sources, but the mechanisms of internal gold deformation leading to shape changes are poorly understood because of subsequent recrystallisation of the gold in situ in placer deposits, which creates a rim zone around the particles, with undeformed > 10 μm grains. This paper describes samples from southern New Zealand in which grain size reduction (to submicrometer scale) and mylonitic textures have resulted from internal ductile deformation. These textures have been preserved without subsequent recrystallisation after deposition in late Pleistocene-Holocene alluvial fan placers. These mylonitic textures were imposed by transport-related deformation on recrystallised rims that were derived from previous stages of fluvial transportation and deposition. This latest stage of fluvial transport and deformation has produced numerous elongated gold smears that are typically 100 μm long and 10-20 μm wide. These smears are the principal agents for transport-induced changes in particle shape in the studied placers. Focused ion beam (FIB) sectioning through these deformed zones combined with scanning electron microscopic (SEM) imaging show that the interior of the gold particles has undergone grain size reduction (to 500 nm) and extensive folding with development of a ductile deformation fabric that resembles textures typical of mylonites in silicate rocks. Relict pods of the pre-existing recrystallised rim zone are floating in this ductile deformation zone and these pods are irregular in shape and discontinuous in three dimensions. Micrometer scale biologically-mediated deposition from groundwater of overgrowth gold on particle surfaces occurs at all stages of placer formation, and some of this overgrowth gold has been incorporated into deformation zones. These examples provide a rare view into the nature

  6. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core-shell and hard particle types.

    Science.gov (United States)

    Duval, Jérôme F L

    2017-05-17

    Soft nanoparticulate complexants are defined by a spatial confinement of reactive sites and electric charges inside their 3D body. In turn, their reactivity with metal ions differs significantly from that of simple molecular ligands. A revisited form of the Eigen mechanism recently elucidated the processes leading to metal/soft particle pair formation. Depending on e.g. particle size and metal ion nature, chemodynamics of nanoparticulate metal complexes is controlled by metal conductive diffusion to/from the particles, by intraparticulate complex formation/dissociation kinetics, or by both. In this study, a formalism is elaborated to achieve a comprehensive and systematic identification of the rate-limiting step governing the overall formation and dissociation of nanoparticulate metal complexes. The theory covers the different types of spherical particulate complexants, i.e. 3D soft/permeable and core-shell particles, and hard particles with reactive sites at the surface. The nature of the rate-limiting step is formulated by a dynamical criterion involving a power law function of the ratio between particle radius and an intraparticulate reaction layer thickness defined by the key electrostatic, diffusional and kinetic components of metal complex formation/dissociation. The analysis clarifies the intertwined contributions of particle properties (size, soft or hard type, charge, density or number of reactive sites) and aqueous metal ion dehydration kinetics in defining the chemodynamic behavior of nanoparticulate metal complexes. For that purpose, fully parameterized chemodynamic portraits involving the defining features of particulate ligand and metal ion as well as the physicochemical conditions in the local intraparticulate environment, are constructed and thoroughly discussed under conditions of practical interest.

  7. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models

    Science.gov (United States)

    Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.

    2018-01-01

    Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

  8. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction.

    Science.gov (United States)

    Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C; Pretzer, Lori A; Heck, Kimberly N; Wong, Michael S

    2014-01-07

    Nitrate (NO3(-)) and nitrite (NO2(-)) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (k(cat) = 576 L g(Pd)(-1) min(-1)) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L g(Pd)(-1) min(-1)) and Pd/Al2O3 (1 wt% Pd; 76 L g(Pd)(-1) min(-1)), respectively. Accounting only for surface Pd atoms, these NPs (576 L g(surface-Pd)(-1) min(-1)) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L g(surface-Pd)(-1) min(-1)) and Pd/Al2O3 (361 L g(surface-Pd)(-1) min(-1)). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.

  9. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.

    2009-01-01

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  10. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  11. Geochemical phase and particle size relationships of metals in urban road dust.

    Science.gov (United States)

    Jayarathne, Ayomi; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2017-11-01

    Detailed knowledge of the processes that metals undergo during dry weather periods whilst deposited on urban surfaces and their environmental significance is essential to predict the potential influence of metals on stormwater quality in order to develop appropriate stormwater pollution mitigation measures. However, very limited research has been undertaken in this area. Accordingly, this study investigated the geochemical phase and particle size relationships of seven metals which are commonly associated with urban road dust, using sequential extraction in order to assess their mobility characteristics. Metals in the sequentially extracted fractions of exchangeable, reducible, oxidisable and residual were found to follow a similar trend for different land uses even though they had variable accumulation loads. The high affinity of Cd and Zn for exchangeable reactions in both, bulk and size-fractionated solid samples confirmed their high mobility, while the significant enrichment of Ni and Cr in the stable residual fraction indicated a low risk of mobility. The study results also confirmed the availability of Cu, Pb and Mn in both, stable and mobile fractions. The fine fraction of solids (dust. The outcomes from this study are expected to contribute to the development of effective stormwater pollution mitigation strategies by taking into consideration the metal-particulate relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The relation between heavy metals distribution and particle size fractions in some egyptian soils

    Directory of Open Access Journals (Sweden)

    Monier Morad Wahba

    Full Text Available Soil as a part of the environment receives pollutants from all types of human activities. Heavy metals originating from various organic waste sources and industrial activities accumulate in the soil surface, and their fate depends not only on the types and amounts of waste applied, but on soil properties. Furthermore, soils differ in their retention power for various heavy or trace elements. Twelve soil samples were selected from different sites irrigated with industrial and sewage wastes at Helwan city (Cairo Governorate in the north and El-Saff (Giza Governorate in the south. Separation of clay, silt and sand fractions were carried out. Chemical analyses of trace elements in the form of total and available contents (Fe, Mn, Zn and Pb were determined in each fraction. The obtained results show that the average amounts of heavy metals in different fractions are related to the particle size of the soil especially the fine fraction. Heavy metals content was always in the surface layers higher than sub-surface. All metals were highest in clay fraction followed by silt and sand fractions respectively. This investigation discussed the importance of the fine fractions in the accumulation of heavy metals by coordination number in the lattice structure.

  13. Thermoelectric properties of semiconductor-metal composites produced by particle blending

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2016-10-01

    Full Text Available In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.

  14. Gold recycling and enrichment beneath volcanoes: A case study of Tolbachik, Kamchatka

    Science.gov (United States)

    Zelenski, Michael; Kamenetsky, Vadim S.; Hedenquist, Jeffrey

    2016-03-01

    Magmas supply metals to hydrothermal ore deposits, although typical arc basalts may be unable to produce a gold-rich ore-forming fluid, as such basalts rarely exceed 5 ppb Au. Consistent with this, the occurrence of native gold of magmatic origin is extremely rare, and only a few finds of micron-sized gold particles in unaltered basalts have been documented. Surprisingly, some lava flows and scoria cones of the historic basaltic eruptions of Tolbachik volcano (Kamchatka) are unusually gold-rich. Tolbachik basalts contain up to 11.6 ppb Au based on whole rock analyses, nuggets of gold (electrum) up to 900 μm in size and native gold droplets up to 200 μm, plus numerous vapor-deposited gold crystals within fumarolic incrustations and directly on surfaces of basaltic lapilli. Our results demonstrate that the gold nuggets in Tolbachik basalt are of hydrothermal origin and were physically scavenged from epithermal veins hosted by country rocks during intrusion of mafic magmas. Depending on the melt temperature and/or time span of the melt-rock interaction, gold was ejected by the erupting volcano either in the form of abraded nuggets or liquid droplets, or was fully assimilated (dissolved) into the shallow long-lived magma chamber to provide a 4-fold increase in gold content over background concentration of 2.7 ppb Au, characteristic of mafic volcanic rocks in Kamchatka. Upon the end of the eruption, the continued discharge of volcanic vapors enriched in gold deposited abundant crystals of gold on cooling lava and scoria. Similar to Tolbachik, recycling of metals from prior accumulations (ore deposits) in the shallow crust may take place in other long-lived magma reservoirs, thus upgrading the gold and other metal contents and contributing to the ore-forming potential of a magma.

  15. Metallic ions in organs of rats injected with metallic particles of stainless steel 316L and Ti6Al4V alloy

    Directory of Open Access Journals (Sweden)

    Silvia Helena Giertz

    2010-03-01

    Full Text Available Despite the interest in identifying systemic effects caused by the metallic particles released from long term metallic implants in the body, few works support reliable conclusions about the effects of those particles in organs. The aim of the present work is to look for damages in tissues of liver, kidney, lung and heart of rats submitted to injection of Hank's solution contained particles of Ti6Al4V alloy and Stainless Steel 316L, obtained by metal friction. The particles size ranges from 50 to 200 µm for the Ti alloy and from 100 to 500 µm for the 316L. Tissues isolated from the organs after the euthanasia were prepared and analyzed in an optical microscope and Energy Dispersive Spectrometer (EDS. Lesions caused by an inflammatory response such as strange body epithelioid granuloma and giant cells were found in some of the tissues containing yttrium and aluminum.

  16. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Electronic cigarettes (EC deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol.We tested the hypothesis that EC aerosol contains metals derived from various components in EC.Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry.The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers. Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease.The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.

  17. PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent

    International Nuclear Information System (INIS)

    Khanna, P.K.; Gokhale, R.; Subbarao, V.V.V.S.; Vishwanath, A. Kasi; Das, B.K.; Satyanarayana, C.V.V.

    2005-01-01

    Poly(vinyl alcohol) (PVA) stabilized gold nanoparticles have been prepared in aqueous medium using two different reducing viz.; hydrazine hydrate, a stronger reducing agent and sodium formaldehydesulfoxylate (SFS), a slightly weaker reducing agent. SFS is used for first ever time for reduction of gold metal salt. The PVA stabilized gold nanoparticles solutions are wine red to blood red coloured and are stable over a long period of time with no indication of aggregation. The solution shows strong visible light absorptions in the range of 520-540 nm, characteristics of gold nanoparticles. Powder X-ray diffraction patterns of freshly prepared films containing gold nanoparticles indicated particles size to be about 15 nm. Transmission electron microscopy (TEM) of a more than two-week-old sample revealed well-defined non-agglomerated spherical particles of about 50 nm diameter in solutions

  18. The applications of microwave energy to improve grindability and extraction of gold ores

    CERN Document Server

    Huang, J H

    2000-01-01

    decomposed than pyrite at the same exposure conditions. Scanning electron microscope (SEM), optical microscope, and X-ray diffraction results indicated that the alterations during microwave treatment were complex. Some intermediate products (e.g. Fe sub ( sub 1 sub - sub x sub ) S) were formed before the sulphides were completely oxidised into hematite (Fe sub 2 O sub 3). Oxidation developed from the surfaces into the cores of the microwaved particles. Metallic particles were also formed during microwave exposure. Lihir gold ore, in which gold was finely disseminated in pyrite and marcasite, was an extremely refractory gold ore. Without pretreatment, only 37 approx 39% of the gold could be extracted with sodium cyanide. However, this was improved after the head ores or floatation concentrates were pretreated by microwave radiation. 74.5 approx 81.2% of the gold was extracted from the microwave treated head ore. The hydrometallurgical pretreatment of pyrite and marcasite in a microwave field and a conventional...

  19. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species

    Science.gov (United States)

    Ahmad, Absar; Senapati, Satyajyoti; Islam Khan, M.; Kumar, Rajiv; Ramani, R.; Srinivas, V.; Sastry, Murali

    2003-07-01

    The development of reliable, eco-friendly processes for the synthesis of nanoscale materials is an important aspect of nanotechnology. In this paper, we report on the use of an alkalotolerant actinomycete (Rhodococcus sp.) in the intracellular synthesis of gold nanoparticles of the dimension 5-15 nm. Electron microscopy analysis of thin sections of the gold actinomycete cells indicated that gold particles with good monodispersity were formed on the cell wall as well as on the cytospasmic membrane. The particles are more concentrated on the cytoplasmic membrane than on the cell wall, possibly due to reduction of the metal ions by enzymes present in the cell wall and on the cytoplasmic membrane. The metal ions were not toxic to the cells and the cells continued to multiply after biosynthesis of the gold nanoparticles.

  20. An electrochemical metalloimmunoassay based on a colloidal gold label.

    Science.gov (United States)

    Dequaire, M; Degrand, C; Limoges, B

    2000-11-15

    A novel, sensitive electrochemical immunoassay has been developed using a colloidal gold label that, after oxidative gold metal dissolution in an acidic solution, was indirectly determined by anodic stripping voltammetry (ASV) at a single-use carbon-based screen-printed electrode (SPE). The use of disposable electrodes allows for simplified measurement in 35 microL of solution. The method was evaluated for a noncompetitive heterogeneous immunoassay of an immunoglobulin G (IgG) and a concentration as low as 3 x 10(-12) M was determined, which is competitive with colorimetric ELISA or with immunoassays based on fluorescent europium chelate labels. The high performance of the method is related to the sensitive ASV determination of gold(III) at a SPE (detection limit of 5 x 10(-9) M) and to the release of a large number of gold(III) ions from each gold particle anchored on the immunocomplex (e.g., 1.7 x 10(5) gold atoms are theoretically contained in a 18-nm spherical gold particle).

  1. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  2. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  3. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    International Nuclear Information System (INIS)

    Turner, Andrew; Singh, Nimisha; Richards, Jonathan P.

    2009-01-01

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  4. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  5. Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles.

    Science.gov (United States)

    He, Yun; Zhang, Yan; Yan, Nan; Zhu, Yutian; Jiang, Wei; Shi, Dean

    2017-10-12

    Well-defined polymeric particles with not only a controllable shape and internal nanostructures but also stimuli-responsive functions have attracted intensive attention because of their great potential in various fields. Herein, we created unique sieve-like particles with lattice arrayed switchable channels via the confined self-assembly of poly(4-vinylpyridine)-b-polystyrene-b-poly(4-vinylpyridine) (P4VP-b-PS-b-P4VP) triblock copolymers within the emulsion droplets and the subsequent swelling treatment in ethanol. It is worth noting that the hexagonally packed P4VP channels in the sieve-like particles are switched on and off by changing the solvent type, i.e., P4VP channels are switched on in ethanol and switched off in water, which can operate as a solvent-controlled chemical gate. Moreover, the well-defined sieve-like particles can be further used as scaffolds to guide the spatial arrangement of gold nanoparticles, which generates hybrid nanomaterials with controllable morphology and ordered spatial arrangement of AuNPs.

  6. General Synthesis of Multishell Mixed-Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David

    2017-02-20

    We report a general approach for the synthesis of multishell mixed-metal oxyphosphide particles. Seven-layer Mn-Co oxide particles were first prepared by thermal treatment of Mn-Co coordination polymer precursors. Afterwards, these multishell Mn-Co oxide particles were further transformed into multishell Mn-Co oxyphosphide particles through a phosphidation reaction. This approach is very versatile and can be applied to synthesize other multishell mixed-metal oxyphosphide particles with different compositions. By applying a constant electrochemical potential, these multishell Mn-Co oxyphosphide particles can be activated to produce Mn-Co oxide/hydroxide species in their nanoshells and then show greatly enhanced electrocatalytic activity in the oxygen evolution reaction (OER). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment.

    Science.gov (United States)

    Acosta, Jose A; Faz, Ángel; Kalbitz, Karsten; Jansen, Boris; Martínez-Martínez, Silvia

    2011-11-01

    Street dust has been sampled from six different types of land use of the city of Murcia (Spain). The samples were fractionated into eleven particle size fractions (<2, 2-10, 10-20, 20-50, 50-75, 75-106, 106-150, 150-180, 180-425, 425-850 μm and 850-2000 μm) and analyzed for Pb, Cu, Zn and Cd. The concentrations of these four potentially toxic metals were assessed, as well as the effect of particle size on their distribution. A severe enrichment of all metals was observed for all land-uses (industrial, suburban, urban and highways), with the concentration of all metals affected by the type of land-use. Coarse and fine particles in all cases showed concentrations of metals higher than those found in undisturbed areas. However, the results indicated a preferential partitioning of metals in fine particle size fractions in all cases, following a logarithmic distribution. The accumulation in the fine fractions was higher when the metals had an anthropogenic origin. The strong overrepresentation of metals in particles <10 μm indicates that if the finest fractions are removed by a vacuum-assisted dry sweeper or a regenerative-air sweeper the risk of metal dispersion and its consequent risk for humans will be highly reduced. Therefore, we recommend that risk assessment programs include monitoring of metal concentrations in dust where each land-use is separately evaluated. The finest particle fractions should be examined explicitly in order to apply the most efficient measures for reducing the risk of inhalation and ingestion of dust for humans and risk for the environment.

  8. Preparation of Al-based metal matrix composites reinforced by Cu coated SiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hailong; Zhang Rui; Xu Hongliang; Lu Hongxia; Guan Shaokang [Coll. of Materials Engineering, Zhengzhou Univ., HEN (China)

    2005-07-01

    In order to improve the interfacial behavior between SiC and Al, a surface layer of Cu was coated on SiC particles. The influence of pH value on the coating process was analyzed. A powder metallurgy method was used to prepare the Al-based metal matrix composites (MMCs). SEM, XRD techniques were used to characterize the sintered compacts. It was found that the optimized pH value during the coating process was 1{proportional_to}2. The specimen showed the maximum density when sintered at 750 C. Inter-metallic compound of Al{sub 3.21}Si{sub 0.47} was detected which contributed to the enhancement at the interface between SiC and Al. The hardness of the composites is improved to 90 MPa. (orig.)

  9. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  10. Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition

    Science.gov (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel

    1995-05-01

    A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  11. Synthesis of supported metallic nano-particles and their use in air depollution

    International Nuclear Information System (INIS)

    Barrault, J.; Valange, S.; Tatibouet, J.M.; Thollon, St.; Herlin-Boime, N.; Giraud, S.; Ruiz, J.Ch.; Bergaya, B.; Joulin, J.P.; Delbianco, N.; Gabelica, Z.; Daturi, M.

    2009-01-01

    The main objectives of the 'NACACOMO' Consortium ('Nano-materials: Catalysts for the Conversion of organic Molecules. Uses in fine chemicals and environment protection ') consisted in generating novel catalysts composed of nanoparticles of metals (Pt, Pd, Ag...) and/or oxides (TiO 2 ...) stabilized and well distributed over the surface of a support (foams, ceramics), by monitoring both the particle size and the 'coating' process itself, using new technologies: CVD, plasma-spray, laser pyrolysis, supercritical preparation, which were compared to conventional soft chemistry recipes. The most accurate characterization of particle morphology, local structure, texture, spatial arrangement but also of their reactivity, were achieved by privileging the utilization of various in situ methods. Details on formation mechanisms of a solid nano-particle at the atomic level (nucleation, growth and particle (re)distribution over the support...) could be obtained in selected cases, with opportunities for scaling up and shaping. The (chemical) nature of the so-obtained nano-materials was monitored for selected catalytic applications involving the development of environmental friendly processes, such as oxidation of VOC, with a priority for aromatics and chlorinated compounds. (authors)

  12. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  13. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design.

    Science.gov (United States)

    Dumée, Ludovic F; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-10-26

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  14. Evaluation of atmospheric pollution in Kenitra city (MOROCCO) (Particles and Metals)

    International Nuclear Information System (INIS)

    Zghaid, M.; Noack, Y.; Tahiri, M.; Zahry, F.; Bounakhla, M.; Benyaich, F

    2008-01-01

    Full text: All Recent epidemiological studies show that air pollution in general and especially particulate pollution have a strong influence on human health, particularly on the respiratory and cardio-vascular systems, but also affect the developing fetus. Like developed countries, countries under development are subject to significant air pollution both urban and industrial. The car park is often old, sometimes uncontrolled industrialization, the regulations of atmospheric emissions are infancy and the network monitoring rare. The aim of this work is to focus on the problem of particulate air pollution in Kenitra (50 km north of Rabat, Morocco) by characterizing the pollution in both quantity and quality, to assess the impact potential health and provide decision makers with reliable data. Initial results show that the OMS recommendations, along with European standards on sulfur dioxide as well as PM10 are largely outdated (80 ug / Nm 3 instead of 40 in average). This is also the case for some metals: Lead concentrations are approximately ten times greater than those encountered in urban sites in Europe; nickel is fifteen times higher than the European standard. The metals are mainly present in the thin fraction (particles below 2.5 um). The low proportion of thin particles in the total particles, show the influence of resuspension events and other natural inputs from arid or desert. The SO2 average concentrations are also quite important (60 ug / m 3 ). The concentrations near the site are much higher than those that can be measured on similar sites in Europe. It is more than probable that in this city, the health impacts are not negligible. We will look to continue this work in three aspects: Spatial distribution of particulate pollution in Kenitra; The health impact of air pollution in Kenitra; Cyto-and geno-toxicity of airborne particles in Kenitra [fr

  15. [Dust particles and metals in outdoor and indoor air of Upper Silesia].

    Science.gov (United States)

    Górny, R L; Jedrzejczak, A; Pastuszka, J S

    1995-01-01

    This work contains the results of the aerosol mass size distribution and preliminary studies on concentrations and size distribution of heavy metals (Pb, Zn, Cu, Mn, Fe and Cd) in indoor and outdoor environment in Upper Silesia (the highly industrialized region in the southern part of Poland). In studies, the measurements of aerosol concentration, mass size distribution, and evaluation of heavy metals concentration were made from December 1992 to April 1994 in some apartments in five towns in Upper Silesia and in one village in the Beskidy Mountains in both indoor and outdoor environments. The particles were fractionated in Andersen cascade impactor. The sampling time was 6-7 days and 4-5 days for indoor and outdoor respectively. Aerosol particulates were collected on A-type glass fiber collection substrate used later for determination of heavy concentrations by atomic absorption spectrophotometry (AAS 3, Carl Zeiss Jena). The dust was mineralized by the means of the mixture of hydrofluoric and nitric acids. The results of mass size distribution as well as the measurements of TSP for indoor and outdoor aerosol show that the main source of particulate matter indoors, in this region, are heavy polluted outdoor air and cigarette smoking. It can be said that, except homes in Knurów and Sosnowiec with hard smokers, the indoor levels of particulate pollution were significant lower than the outdoors levels. Whenever in the indoor environment appear additional source of particulate emission situation can changed. When we compare mass size distribution for outdoor aerosol and indoor aerosol contaminated by tobacco smoke, we can observed considerable increase of indoor aerosol level in the 0.33-0.54 microns size range. Besides, indoor aerosol status may be changed by coal stove emission (displacement of maximum peak to direction of coarse particles). The observed differences in concentration of particulate matter may also indicate the important differences in chemical and

  16. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jasmin, Jean-Philippe [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France); Miserque, Frédéric [Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Dumas, Eddy [Institut Lavoisier de Versailles, UMR 8180, CNRS-Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles (France); Vickridge, Ian; Ganem, Jean-Jacques [INSP, UMR 7588, CNRS- Université Pierre et Marie Curie, 4 place Jussieu, boîte courrier 840 75252 Paris, Cedex 05 (France); Cannizzo, Caroline, E-mail: caroline.cannizzo@univ-evry.fr [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France); Chaussé, Annie [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France)

    2017-03-01

    Highlights: • Functionalized nanostructured SPEs were made by multi-step diazonium salt chemistry. • Investigation of SPEs surface by XPS and NRA shows monolayer coverage by aminobenzyl groups. • Complete conversion of aminobenzyl groups into diazonium functions was also evidenced. • Covalent grafting of AuNPs onto SPEs lead to an unusual modification of Au-4f core level spectrum. • Ligand and lead signals showed the interest of nanostructurated SPEs for trace metals detection. - Abstract: An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with {sup 15}N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non

  17. Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell

    Directory of Open Access Journals (Sweden)

    M. Inam

    2011-12-01

    Full Text Available We report the observation of large changes in the electro-optical properties of nematic liquid crystal (NLC due to inclusion of small concentration of 10 nm diameter gold nanoparticles (GNPs. It is observed that GNPs lower switch-on voltage and also lower the relaxation frequency with applied voltage (AC field to NLC cell. These studies of GNP doped NLC cell have been done using optical interferometry and capacity measurement by impedance analyzer. The change in threshold voltage and relaxation frequency by doping GNPs in NLC is explained theoretically.

  18. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Science.gov (United States)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  19. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.

    Science.gov (United States)

    Liu, Fangchao; Dong, Chaoqing; Ren, Jicun

    2018-03-15

    Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.

  20. Structural defect induced peak splitting in gold-copper bimetallic nanorods during growth by single particle spectroscopy.

    Science.gov (United States)

    Thota, Sravan; Chen, Shutang; Zhou, Yadong; Zhang, Yong; Zou, Shengli; Zhao, Jing

    2015-09-21

    A single particle level study of bimetallic nanoparticle growth provides valuable information that is usually hidden in ensemble measurements, helping to improve the understanding of a reaction mechanism and overcome the synthetic challenges. In this study, we use single particle spectroscopy to monitor the changes in the scattering spectra of Au-Cu alloy nanorods during growth. We found that the unique features of the single particle scattering spectra were due to atomic level geometric defects in the nanorods. Electrodynamics simulations have demonstrated that small structural defects of a few atomic layers split the scattering peaks, giving rise to higher order modes, which do not exist in defect-free rods of similar geometry. The study shows that single particle scattering technique is as sensitive as high-resolution electron microscopy in revealing atomic level structural defects.

  1. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    Science.gov (United States)

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  2. Estance of gold in molten LiCl and the effect of the nature of cation on the estance zero potentials of Au in molten alkali metal chlorides

    Science.gov (United States)

    Pastukhov, Yu. G.

    2017-08-01

    The dependences estance vs. potential in molten LiCl are obtained. They have three zeros of estance near the melting temperature of the salt. When the temperature increases by 400 K, only one cathode zero is retained for equilibrium estance. A comparison of the potentials of this zero of estance in a row of alkali metal chlorides at the same temperature indicates their nonmonotonic dependence on the cation radius, in contrast to the potentials of the ECC maxima of liquid Pb, Bi, and In and the PZC of gold in this row.

  3. Platinum-group elements and gold in base metal sulfides, platinum-group minerals, and Re-Os isotope compositions of the Uitkomst complex, South Africa

    Czech Academy of Sciences Publication Activity Database

    Trubač, Jakub; Ackerman, Lukáš; Gauert, Ch.; Ďurišová, Jana; Hrstka, Tomáš

    2018-01-01

    Roč. 113, č. 2 (2018), s. 439-461 ISSN 0361-0128 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : binary alloys * copper compounds * economic geology * gold * iridium * isotopes * ore deposits * osmium * palladium * platinum * platinum metals * pyrites * Rhenium * rhenium alloys * ruthenium * solid solutions * sulfur compounds * crustal materials * mass-balance calculations * massive sulfides * mineralized zone * monosulfide solid solutions * platinum group elements * platinum group elements (PGEs) * platinum group minerals Subject RIV: DB - Geology ; Mineralogy; AC - Archeology, Anthropology, Ethnology (ARUB-Q) OBOR OECD: Geology; Archaeology (ARUB-Q) Impact factor: 2.519, year: 2016

  4. Characterization and treatment of artisanal gold mine tailings

    International Nuclear Information System (INIS)

    Andrade Lima, L.R.P. de; Bernardez, L.A.; Barbosa, L.A.D.

    2008-01-01

    The solid waste generated by artisanal gold mining, with high mercury and gold contents, can be found in several areas in the South America. The present study focused on the tailings of an artisanal gold mine area located in the Brazilian northeastern. Samples of the mine tailings were taken and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron activation, X-ray fluorescence, induced coupled plasma-mass spectrometry, among others analytical methods. The results indicate that the material is composed mainly by quartz and goethite, the characteristic size of the particles (d 50 ) is about 150 μm, and the density is close of that of quartz. The main constituents are silicon, iron, and aluminum. The tailings gold content is of about 1.8 mg/kg and the mercury content is of about 10 mg/kg. A remarkable feature of this solid waste is that the gold and mercury are both concentrated in both the fine and the coarse particles, but not in particles of intermediary size. Leaching studies indicated that the tailings are stable in weak organic acids, but soluble in alkaline and aired cyanide solutions, in which 89% of gold and 100% of mercury are extracted in 24 h. Electroleaching experiments, performed using sodium chloride as electrolyte, indicated that mercury and gold are extracted simultaneously and the recovery of both metals can be as high as 70% in 4 h. In addition, chromium, nickel, and lead are found in relatively large amounts in the solution, which indicate an effectively action of the electroleaching method to clean up solid wastes contaminated with metals

  5. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  6. A 197Au and 57Fe Moessbauer study of the roasting of refractory gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.

    1989-01-01

    The transformation of chemically bound gold into metallic gold during industrial scale roasting of an arsenical gold ore concentrate from the Fairview Mine, Eastern Transvaal, has been studied quantitatively by 197 Au Moessbauer spectroscopy. The iron compounds in the concentrate, mainly FeAsS and FeS 2 , and their transformations during roasting have been studied by 57 Fe Moessbauer spectroscopy. The bound gold is found to convert into the metal in parallel to the decomposition of FeAsS and the increase in cyanide leachability. This shows that the refractory character of the ore is caused by the chemical bonding of the gold rather than by the physical inclusion of small, discrete metallic particles in the matrix of FeAsS or FeS 2 . The ratio of the f-factors of gold bound in the FeAsS component of a refractory ore and of metallic gold was determined to be f(Au:FeAsS)/f(Au)=1.48 ± 0.09. (orig.)

  7. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology

    OpenAIRE

    Walsh, F.C.; Ponce de Leon, Carlos

    2014-01-01

    Following a brief overview of their history, which dates back to the 1920s with marked developments during the 1960s and 1970s, the principles of composite coatings, achieved by including particles dispersed in a bath into a growing electrodeposited metal layer, are considered. The principles and role of electroplating compared to other techniques for realising such coatings, are considered. A good quality particle dispersion (often aided by a suitable type and concentration of surfactants) a...

  8. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  9. Engineered Gold Nanoparticles and Plant Adaptation Potential

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  10. The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles

    International Nuclear Information System (INIS)

    Rodriguez, A.; Hall, M.J.

    2003-01-01

    A numerical model BAEROSOL for solving the general dynamic equation (GDE) of aerosols is presented. The goal was to model the capture of volatilized metals by sorbents under incinerator-like conditions. The model is based on algorithms presented by Jacobson and Turco [Aerosol Science and Technology 22 (1995) 73]. A hybrid size bin was used to model growth and formation of particles from the continuum phase and the coagulation of existing particles. Condensation and evaporation growth were calculated in a moving size bin approach, where coagulation and nucleation was modeled in the fixed size bin model of the hybrid grid. To account for the thermodynamic equilibrium in the gas phase, a thermodynamic equilibrium code CET89 was implemented. The particle size distribution (PSD) calculated with the model was then compared to analytical solutions provided for growth, coagulation and both combined. Finally, experimental findings by Rodriguez and Hall [Waste Management 21 (2001) 589-607] were compared to the PSD predicted by the developed model and the applicability of the model under incineration conditions is discussed

  11. Development of Thermal Spraying and Coating Techniques by Using Thixotropic Slurries Including Metals and Ceramics Particles

    International Nuclear Information System (INIS)

    Kirihara, S; Tasaki, S; Itakura, Y

    2013-01-01

    Thermal nanoparticles coating and microlines patterning were newly developed as novel technologies to fabricate fine ceramics layers and geometrical intermetallics patterns for mechanical properties modulations of practical alloys substrates. Nanometer sized alumina particles were dispersed into acrylic liquid resins, and the obtained slurries were sputtered by using compressed air jet. The slurry mists could blow into the arc plasma with argon gas spraying. On stainless steels substrates, the fine surface layers with high wear resistance were formed. In cross sectional microstructures of the coated layers, micromater sized cracks or pores were not observed. Subsequently, pure aluminum particles were dispersed into photo solidified acrylic resins, and the slurry was spread on the stainless steel substrates by using a mechanical knife blade. On the substrates, microline patterns with self similar fractal structures were drawn and fixed by using scanning of an ultra violet laser beam. The patterned pure metal particles were heated by the argon arc plasma spray assisting, and the intermetallics or alloys phases with high hardness were created through reaction diffusions. Microstructures in the coated layers and the patterned lines were observed by using a scanning electron microscopy.

  12. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Afonso, Luciana Caminha

    2011-01-01

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  13. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  14. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  15. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    International Nuclear Information System (INIS)

    Wei Gehong; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming

    2009-01-01

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196

  16. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gehong [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)], E-mail: weigehong@yahoo.com.cn; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)

    2009-02-15

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196.

  17. Reversible transformations of gold nanoparticle morphology.

    Science.gov (United States)

    Stoeva, Savka I; Zaikovski, Vladimir; Prasad, B L V; Stoimenov, Peter K; Sorensen, Christopher M; Klabunde, Kenneth J

    2005-11-08

    Herein is reported a metamorphosis taking place in a gold nanosized system. The observed phenomenon of shape and size transformations was found to be completely reversible. Unlike most procedures in the literature where shape and size control occur in the synthetic step by adding growth- and shape-controlling agents such as surfactants or polymers, in this system postsynthetic changes in shape and size can be carried out simply by changing the ratio of reactive, competing reagents, more specifically, alkylthiols versus tetralkylammonium salts. Interestingly, the transfer of gold metal occurs (large prismatic particles to small particles and vice versa) under the influence of reagents that do not cause such interactions with bulk gold. All intermediate steps of the morphology change were observed using HRTEM and electron diffraction. The processes of breaking down and "welding back" solid metal nanoparticles occur under mild conditions and are remarkable examples of the unique chemical properties of nanomaterials. The described process is expected to be relevant to other nanoscale systems where similar structural circumstances could occur.

  18. Investigation, evaluation and analysis of SiCp nano particle metal matrix nano composite using a hybrid process

    Science.gov (United States)

    Swain, Pradyut Kumar; Sahool, Ashok Kumar; Das, Ratnakar; Padhi, Payodhar

    2018-02-01

    The present study was performed on mixing of fine powder of aluminum and silicon carbide nano particles 25nm size each. In this process, aluminum works as matrix and silicon carbide works as reinforcement with volume fraction of 1, 1.5 and 2%. Scanning electron microscopy (SEM) and electron microscopy techniques were used for crystal structure and micro structural characterization of the nano composite material. The objective of study was to achieve uniform distribution of SiCp nano particles in the aluminum matrix. The effect of reinforcement of Silicon carbide nano particle size and its volume fraction with aluminum encouraged investigation of stress strain response, elastic modulus and yield strength of nano composite metal matrix. Nano indentation and compression test were performed to characterize the nano composite material. Yield strength, compressive strength and elastic modulus were obtained from the compression test. Whereas, nano indentation results gave the yield strength, maximum shear stress and elastic modulus. The tensile test was conducted to find out the ultimate tensile strength. FESEM and EDAX techniques were also used to evaluate the different elements and their properties of Aluminum and SiCp nano particle metal matrix nano composite. The study reveals that in the liquid metal nano particle were uniformly dispersed and the segregation of the particles near the grain boundaries is due to pushing of the nano particle during growth of grain.

  19. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    Science.gov (United States)

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning.

  20. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  1. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  2. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    Science.gov (United States)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  3. Nickel, cobalt, chromium, palladium and gold induce a mixed Th1- and Th2-type cytokine response in vitro in subjects with contact allergy to the respective metals.

    Science.gov (United States)

    Minang, J T; Areström, I; Troye-Blomberg, M; Lundeberg, L; Ahlborg, N

    2006-12-01

    Nickel (Ni), the main cause of contact allergy to metals, induces in vitro production of both Th1- and Th2-type cytokines in peripheral blood mononuclear cells (PBMC) from allergic subjects. Because the knowledge of the cellular immune response to other metals involved in contact allergy has been limited, we investigated the cytokine profile induced by Ni, cobalt (Co), chromium (Cr), palladium (Pd) and gold (Au) in PBMC from patients with patch test reactivity to the respective metals. PBMC from patients with patch test reactivity to Ni, Co, Cr, Au and/or Pd (n = 31) and non-allergic controls (n = 5) were stimulated in vitro with corresponding metal salts. Th1- [interleukin (IL)-2 and interferon (IFN)-gamma] and Th2- (IL-4 and IL-13) type cytokine responses were measured by enzyme-linked immunospot (ELISpot) and/or enzyme-linked immunosorbent assay (ELISA). All metals induced a mixed Th1- and Th2-type cytokine production in PBMC from individual patients with patch test reactivity to the corresponding metal, but not in control PBMC. Significantly higher responses in the patient versus controls were found for Cr (IL-2 and IL-13), Pd (IL-2 and IL-4), Au (IL-13 and IFN-gamma) (all P < 0.05) and Ni (all four cytokines; P < 0.01) but not Co. Overall, 71% (37/52) and 89% (81/91) of the positive and negative patch test reactivities to metals, respectively, were matched by the in vitro reactivity. In conclusion, our data suggest that sensitization to Co, Cr, Pd and Au results in a cellular immune response of a character similar to the mixed Th1- and Th2-type cytokine profile shown previously to be induced by Ni.

  4. In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays.

    Science.gov (United States)

    Anard, D; Kirsch-Volders, M; Elhajouji, A; Belpaeme, K; Lison, D

    1997-01-01

    Hard metals (WC-Co) are made of a mixture of cobalt metal (Co, 5-10%) and tungsten carbide particles (WC, >80%). Excessive inhalation of WC-Co is associated with the occurrence of different lung diseases including an excess of lung cancers. The elective toxicity of hard metal is based on a physico-chemical interaction between cobalt metal and tungsten carbide particles to produce activated oxygen species. The aim of the present study was to assess the genotoxic activity of hard metal particles as compared with Co and WC alone. In human peripheral lymphocytes incubated with Co or WC-Co, a dose- and time-dependent increased production of DNA single strand breaks (ssb) was evidenced by alkaline single cell gel electrophoresis (SCGE) and modified alkaline elution (AE) assays. Addition of 1 M formate, a hydroxyl radical scavenger, had a protective effect against the production of ssb by both WC-Co or Co alone. On the basis of an equivalent cobalt-content, WC-Co produced significantly more ssb than Co. WC alone did not produce DNA ssb detectable by the AE assay, but results obtained with the SCGE assay may suggest that it either allows some uncoiling of the chromatin loops or induces the formation of slowly migrating fragments. Overall, this in vitro study is the first demonstration of the clastogenic property of cobalt metal-containing dusts. The results are consistent with the implication of an increased production of hydroxyl radicals when Co is mixed with WC particles. The SCGE results also suggest that WC may modify the structure of the chromatin, leading to an increased DNA sensitivity to clastogenic effects. Both mechanisms are not mutually exclusive and may concurrently contribute to the greater clastogenic activity of WC-Co dust. This property of WC-Co particles may account for the excess of lung cancers observed in hard metal workers.

  5. An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings.

    Science.gov (United States)

    Zong, Yiwu; Liu, Jing; Liu, Rui; Guo, Honglian; Yang, Mingcheng; Li, Zhiyuan; Chen, Ke

    2015-11-24

    Bistable rotation is realized for a gold-coated Janus colloidal particle in an infrared optical trap. The metal coating on the Janus particles are patterned by sputtering gold on a monolayer of closely packed polystyrene particles. The Janus particle is observed to stably rotate in an optical trap. Both the direction and the rate of rotation can be experimentally controlled. Numerical calculations reveal that the bistable rotation is the result of spontaneous symmetry breaking induced by the uneven curvature of the coating patterns on the Janus sphere. Our results thus provide a simple method to construct large quantities of fully functional rotary motors for nano- or microdevices.

  6. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  7. The Metal-Support Interaction Concerning the Particle Size Effect of Pd/Al2O3on Methane Combustion.

    Science.gov (United States)

    Murata, Kazumasa; Mahara, Yuji; Ohyama, Junya; Yamamoto, Yuta; Arai, Shigeo; Satsuma, Atsushi

    2017-12-11

    The particle size effect of Pd nanoparticles supported on alumina with various crystalline phases on methane combustion was investigated. Pd/θ, α-Al 2 O 3 with weak metal-support interaction showed a volcano-shaped dependence of the catalytic activity on the size of Pd particles, and the catalytic activity of the strongly interacted Pd/γ-Al 2 O 3 increased with the particle size. Based on a structural analysis of Pd nanoparticles using CO adsorption IR spectroscopy and spherical aberration-corrected scanning/transmission electron microscopy, the dependence of catalytic activity on Pd particle size and the alumina crystalline phase was due to the fraction of step sites on Pd particle surface. The difference in fraction of the step site is derived from the particle shape, which varies not only with Pd particle size but also with the strength of metal-support interaction. Therefore, this interaction perturbs the particle size effect of Pd/Al 2 O 3 for methane combustion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The mechanism of diffusion and ionic transport of alkali metal ions in the particles of tin(IV) antimonate

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Aly, S.I.; Atomic Energy Establishment, Cairo

    1992-01-01

    The kinetics of exchange Li + , Na + , K + and Cs + ions of tin(IV) antimonate with H + form was studied under particle-diffusion-control conditions at different temperatures. The value of activation energy, diffusion coefficient and entropy of activation increase with the ionic mobilities and radii, and decrease with the hydration energy of the alkali metal ions. On the basis of the kinetic parameters, the exchange of alkali metal ions occurs in the unhydrated form. (author). 29 refs.; 4 figs.; 2 tabs

  9. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  10. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  11. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure

    Science.gov (United States)

    Kim, C.S.; Wilson, K.M.; Rytuba, J.J.

    2011-01-01

    The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.

  12. Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids

    Science.gov (United States)

    Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan

    2018-03-01

    For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied

  13. Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State.

    Science.gov (United States)

    Navarrete, Jose; Siefe, Chris; Alcantar, Samuel; Belt, Michael; Stucky, Galen D; Moskovits, Martin

    2018-02-14

    Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ω p , the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ω p for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ω p is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the

  14. Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles.

    Science.gov (United States)

    Marzougui, Zied; Chaabouni, Amel; Elleuch, Boubaker; Elaissari, Abdelhamid

    2016-08-01

    In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5-5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π-π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity.

  15. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  16. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  17. Characterization of compositional modifications in metal-organic frameworks using carbon and alpha particle microbeams

    Science.gov (United States)

    Paneta, V.; Fluch, U.; Petersson, P.; Ott, S.; Primetzhofer, D.

    2017-08-01

    Zirconium-oxide based metal-organic frameworks (MOFs) were grown on p-type Si wafers. A modified linker molecule containing iodine was introduced by post synthetic exchange (PSE). Samples have been studied using Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) techniques, employing the 5 MV 15SDH-2 Pelletron Tandem accelerator at the Ångström laboratory. The degree of post synthetic uptake of the iodine-containing linker has been investigated with both a broad beam and a focused beam of carbon and alpha particles targeting different kind of MOF crystals which were of ∼1-10 μm in size, depending on the linker used. Iodine concentrations in MOF crystallites were also measured by Nuclear Magnetic Resonance Spectroscopy (NMR) and are compared to the RBS results. In parallel to the ion beam studies, samples were investigated by Scanning Electron Microscopy (SEM) to quantify possible crystallite clustering, develop optimum sample preparation routines and to characterize the potential ion beam induced sample damage and its dependence on different parameters. Based on these results the reliability and accuracy of ion beam data is assessed.

  18. Synthesis and characterization of silver and gold nanoparticles in ionic liquid.

    Science.gov (United States)

    Singh, Prashant; Kumari, Kamlesh; Katyal, Anju; Kalra, Rashmi; Chandra, Ramesh

    2009-07-01

    In this paper, we report the reduction of silver and gold salts by methanolic solution of sodium borohydride in tetrazolium based ionic liquid as a solvent at 30 degrees C leads to pure phase of silver and gold nanoparticles. Silver and gold nanoparticles so-prepared were well characterized by powder X-ray diffraction measurements (XRD), transmission electron microscopy (TEM) and QELS. XRD analysis revealed all relevant Bragg's reflection for crystal structure of silver and gold metal. XRD spectra also revealed no oxidation of silver nanoparticles to silver oxide. TEM showed nearly uniform distribution of the particles in methanol and it was confirmed by QELS. Silver and gold nanoparticles in ionic liquid can be easily synthesized and are quite stable too.

  19. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  20. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  1. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    Science.gov (United States)

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-07

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  2. Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana.

    Science.gov (United States)

    Armah, Frederick Ato; Gyeabour, Elvis Kyere

    2013-03-01

    The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were 4.18 × 10(-6) and 1.84 × 10(-7), respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments.

  3. Optical properties of individual nano-sized gold particle pairs. Mie-scattering, fluorescence, and Raman-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Olk, Phillip

    2008-07-01

    This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source - a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis - scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. (orig.)

  4. Laser-induced-breakdown-spectroscopy-based detection of metal particles released into the air during combustion of solid propellants.

    Science.gov (United States)

    O'Neil, Morgan; Niemiec, Nicholas A; Demko, Andrew R; Petersen, Eric L; Kulatilaka, Waruna D

    2018-03-10

    Numerous metals and metal compounds are often added to propellants and explosives to tailor their properties such as heat release rate and specific impulse. When these materials combust, these metals can be released into the air, causing adverse health effects such as pulmonary and cardiovascular disease, particulate-matter-induced allergies, and cancer. Hence, robust, field-deployable methods are needed to detect and quantify these suspended metallic particles in air, identify their sources, and develop mitigation strategies. Laser-induced breakdown spectroscopy (LIBS) is a technique for elemental detection, commonly used on solids and liquids. In this study, we explored nanosecond-duration LIBS for detecting airborne metals during reactions of solid propellant strands, resulting from additives of aluminum (Al), copper, lead, lead stearate, and mercury chloride. Using the second harmonic of a 10-ns-duration 10-Hz, Nd:YAG laser, plasma was generated in the gas-phase exhaust plume of burning propellant strands containing the target metals. Under the current experimental conditions, the ns-LIBS scheme was capable of detecting Al at concentrations of 5%, 10%, and 16% by weight in the propellant strand. As the weight percentage increased, the LIBS signal was detected by more laser shots, up to a point where the system transition from being nonhomogeneous to a more-uniform distribution of particles. Further measurements and increased understanding of the reacting flow field are necessary to quantify the effects of other metal additives besides Al.

  5. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2017-02-01

    Full Text Available Synchrotron radiation computed tomography was applied to investigate Cu–Fe mixture microwave sintering in situ and to examine the magnetic force between reversely magnetized micro-metal particles in microwave sintering. Results revealed that the growth rate of the sintering necks between Cu–Fe particles and Cu–Cu particles around the iron particles distributed in a vertical direction was faster than that of the sintering necks in the horizontal direction. These phenomena were consistent with the possible influence caused by the magnetic force between metal particles, as shown in our simple particle model. The kinetic curves of sintering neck growth along the vertical and horizontal directions quantitatively revealed the difference in growth rates. The contributing factors of magnetic force in microwave sintering were subsequently discussed. The volume of iron particles was proportional to the influence of magnetic force, and their shape elicited a remarkable influence based on demagnetization effects. This study provided a useful basis for microwave sintering mechanisms and anisotropic material preparation.

  6. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Jessica Jenkins Broglie

    Full Text Available Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk virus-like particles (VLPs as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1 by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  7. X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes

    NARCIS (Netherlands)

    Kalirai, Samanbir; Boesenberg, Ulrike; Falkenberg, Gerald; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2015-01-01

    Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3D multi-element imaging, at submicron resolution was achieved by using a

  8. A Novel Ultraviolet Irradiation Technique for Fabrication of Polyacrylamide-metal (M = Au, Pd) Nanocomposites at Room Temperature

    International Nuclear Information System (INIS)

    Zhou, Y.; Hao, L.Y.; Zhu, Y.R.; Hu, Y.; Chen, Z.Y.

    2001-01-01

    Polyacrylamide (PAM)-metal (M = gold, palladium) nanocomposites with metal nanoparticles homogeneously dispersed in the polymer matrix have been prepared via a novel ultraviolet irradiation technique at room temperature, which is based on the simultaneous occurrence of photo-reduction formation of the colloidal metal particles and photo-polymerization of the acrylamide (AM) monomer. The UV-vis absorption spectra and TEM were employed to characterize the M-PAM nanocomposites by different irradiation times. The average sizes of the colloidal gold and palladium particles dispersed in the nanocomposites were calculated by XRD patterns and TEM images. The present method may be extended to prepare other metal-polymer hybrid nanocomposite materials

  9. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  10. Antiviral effect of gold/copper sulfide core-shell nanoparticles on GI.1 human norovirus virus like particles (VLPS)

    Science.gov (United States)

    Alston, Brittny C.

    This research studied the effects of the Au/CuS core shell nanoparticles on norovirus (NoV) VLPs in efforts to disrupt the capsids and ultimately inactivate the virus. The results of the study showed that treatment of the GI.1 norovirus VLP ranging from 0.37-5.6ug/mL5.6 microg/mL with Au/CuS core shell nanoparticle concentrations ranging from 1%-25% (v/v) was effective in altering and completely inactivating the viral capsid of the VLP. The likely mechanism of action of the nanoparticles was that the particles degraded the capsid protein and disrupted the viral capsids. This mechanism of action has been supported by the TEM imaging results and Western blotting analysis of capsid protein which showed that the viral capsids were compromised and the major capsid protein degraded.

  11. Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions.

    Science.gov (United States)

    Karimipour, Gholamreza; Ghaedi, Mehrorang; Sahraei, Reza; Daneshfar, Ali; Biyareh, Mehdi Nejati

    2012-01-01

    In this study, a new sorbent based on the gold nanoparticle loaded in activated carbon (Au-NP-AC) was synthesized and modified by bis(4-methoxy salicylaldehyde)-1,2-phenylenediamine (BMSAPD). This sorbent, which is abbreviated as Au-NP-AC-BMSAPD, has been applied for the enrichment and preconcentration of trace amounts of Co(2+), Cu(2+), Ni(2+), Fe(2+), Pb(2+), and Zn(2+) ions in real samples. All metal ions under study were retained on the Au-NP-AC-BMSAPD sorbent by complexation of the ions with the BMSAPD ligand, providing an efficient preconcentration fashion. The retained metal ions were then eluted from the sorbent by HNO(3) and detected by flame atomic absorption spectrometry. The analytical parameters including pH, amount of ligand, and the nature of the eluent and solid phase were evaluated to obtain the optimum condition for the preconcentration factor. Following the optimum conditions, a preconcentration factor of 200 was obtained for all the metal ions under study with detection limits of 1.4-2.6 ng mL(-1). The method has been successfully applied for the extraction and determination of the ion content in the same real samples with recoveries in the range of 95-99.6% and a relative standard deviation lower than 4.0%.

  12. A gold electrode modified with hemoglobin and the chitosan Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide

    International Nuclear Information System (INIS)

    Wang, Yuan-Hong; Yu, Chun-Mei; Pan, Zhong-Qin; Wang, Yu-Fei; Guo, Jian-Wei; Gu, Hai-Ying

    2013-01-01

    We report on a novel electrochemical biosensor that was fabricated by immobilizing hemoglobin (Hb) onto the surface of a gold electrode modified with a chitosan Fe 3 O 4 nano-composite. The Fe 3 O 4 nanoparticles were prepared by co-precipitation and have an average size of 25 nm. They were dispersed in chitosan solution to obtain the chitosan Fe 3 O 4 nano-composite particles with an average diameter of 35 nm as verified by transmission electron microscopy. X-ray diffraction patterns and Fourier transform IR spectroscopy confirmed that the crystallite structure of the Fe 3 O 4 particles in the nano-composite has remained unchanged. At pH 7.0, Hb gives a pair of redox peaks with a potential of about −0.21 V and −0.36 V. The Hb on the film maintained its biological activity and displays good electrocatalytic reduction activity towards hydrogen peroxide. The linear range for the determination of H 2 O 2 is from 2.3 μM to 9.6 mM, with a detection limit at 1.1 μM concentration (at S/N = 3). The apparent Michaelis-Menten constant is 3.7 mM and indicates the high affinity of Hb for H 2 O 2 . This biosensor also exhibits good reproducibility and long-term stability. Thus, it is expected to possess potential applications in the development of the third-generation electrochemical biosensors (author)

  13. On the observation of the need for an unusually high concentration of cysteine and homocysteine to induce aggregation of polymer-stabilized gold nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Radhakumary, C.; Sreenivasan, K., E-mail: sreeni@sctimst.ac.in [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Laboratory for Polymer Analysis, Biomedical Technology Wing (India)

    2013-02-15

    This study reports the interaction of chitosan-stabilized gold nanoparticles (CH-AuNPs) with cysteine (Cys) and homocysteine (Hcys) in aqueous media at pH 1.4. Since the polymer precipitates at higher pH, and the amino acids Cys and HCys are soluble at acidic pH, we kept the pH around 1.4 for stabilizing the particles. Zeta potential of CH-AuNPs was found to be positive and it is reasonable to assume that +ve Cys or Hcys at pH 1.4 will experience repulsive force. However, TEM images and absorption spectra indicated formation of aggregates including rod-like assembly. An interesting observation was the need for unusually high concentration of analytes (Cys and Hcys) to induce the assembly of CH-AuNPs. We also found time bound variation of the optical properties probably indicating the interaction is kinetically controlled and only a fraction of the analyte molecules having sufficient energy can bind onto the particles. We observed that at elevated temperature, the reaction was faster with a lower concentration of Cys or Hcys. These observations were supported by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which describes the interparticle interaction and the colloidal stability in solution. Only molecules possessing enough energy to cross this force barrier can cause the aggregation. We also noted a time lag between Cys and Hcys to influence optical properties reflecting the possibility of using this simple approach to discriminate these two clinically relevant molecules. Our observation shows that simple sensing as well as generation of novel nanostructures could be manipulated by a judicious choice of conditions such as stabilizing agents, pH, etc.Graphical AbstractMore energetic ones cross the barrier to induce aggregation.

  14. On the observation of the need for an unusually high concentration of cysteine and homocysteine to induce aggregation of polymer-stabilized gold nano particles

    Science.gov (United States)

    Radhakumary, C.; Sreenivasan, K.

    2013-02-01

    This study reports the interaction of chitosan-stabilized gold nanoparticles (CH-AuNPs) with cysteine (Cys) and homocysteine (Hcys) in aqueous media at pH 1.4. Since the polymer precipitates at higher pH, and the amino acids Cys and HCys are soluble at acidic pH, we kept the pH around 1.4 for stabilizing the particles. Zeta potential of CH-AuNPs was found to be positive and it is reasonable to assume that +ve Cys or Hcys at pH 1.4 will experience repulsive force. However, TEM images and absorption spectra indicated formation of aggregates including rod-like assembly. An interesting observation was the need for unusually high concentration of analytes (Cys and Hcys) to induce the assembly of CH-AuNPs. We also found time bound variation of the optical properties probably indicating the interaction is kinetically controlled and only a fraction of the analyte molecules having sufficient energy can bind onto the particles. We observed that at elevated temperature, the reaction was faster with a lower concentration of Cys or Hcys. These observations were supported by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which describes the interparticle interaction and the colloidal stability in solution. Only molecules possessing enough energy to cross this force barrier can cause the aggregation. We also noted a time lag between Cys and Hcys to influence optical properties reflecting the possibility of using this simple approach to discriminate these two clinically relevant molecules. Our observation shows that simple sensing as well as generation of novel nanostructures could be manipulated by a judicious choice of conditions such as stabilizing agents, pH, etc.

  15. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation

    International Nuclear Information System (INIS)

    Roach, Nicole; Reddy, Krishna R.; Al-Hamdan, Ashraf Z.

    2009-01-01

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1 VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  16. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.

    Science.gov (United States)

    Roach, Nicole; Reddy, Krishna R; Al-Hamdan, Ashraf Z

    2009-06-15

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  17. Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water

    International Nuclear Information System (INIS)

    Koschinsky, A.; Winkler, A.; Fritsche, U.

    2003-01-01

    In experiments of 7 days duration using voltammetric and radiotracer measurement techniques, the role of different particle types in the sorption of dissolved metal species in a disturbed deep-sea bottom seawater system were investigated. Resuspension of oxic to suboxic surface sediment into the bottom water in the deep sea (either by natural events or industrial activities like Mn nodule mining) has been shown to be followed quickly by scavenging of dissolved heavy metals, e.g. released from interstitial water, on the resuspended particles. Compared to other deep-sea particles (like clay minerals, calcite and apatite), Mn and Fe oxides and oxyhydroxides were found to be by far the most important phases in scavenging many dissolved heavy metals. Only Pb was sorbed strongly on all particles used, with highest affinity to carbonate fluorapatite. Caesium + was significantly scavenged only by clay minerals like illite. The sorption experiments support a simple electrostatic model: Hydrated cations and labile cationic chloro-complexes in seawater like Mn 2+ , MnCl + , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Ba 2+ , and PbCl + , are preferentially adsorbed or ion-exchanged on the negatively charged surfaces of Mn oxides. In contrast, oxyanions and neutrally or negatively charged complexes like HVO 4 2- , MoO 4 2- , HAsO 4 2- , UO 2 (CO 3 ) 2 2- , and PbCO 3 0 associate with neutral to slightly positive amphoteric Fe oxyhydroxide particles. Metals forming strong chloro-complexes in seawater like Cd (CdCl 2 0 ), are less readily sorbed by oxides than others. A comparison of the results of voltammetric and radiotracer techniques revealed that after fast sorption within the first hour, isotopic exchange dominated reactions on MnO 2 -rich particles in the following days. This was especially pronounced for Mn and Co which are bound to the Mn oxide surface via a redox transformation

  18. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles

    Science.gov (United States)

    Mohseni, Naimeh; Bahram, Morteza

    2018-03-01

    Herein, a rapid, sensitive and selective approach for the colorimetric detection of dopamine (DA) was developed utilizing unmodified gold nanoparticles (AuNPs). This assay relied upon the size-dependent aggregation behavior of DA and three other structurally similar catecholamines (CAs), offering highly specific and accurate detection of DA. By means of this study, we attempted to overcome the tedious procedures of surface premodifications and achieve selectivity through tuning the particle size of AuNPs. DA could induce the aggregation of the AuNPs via hydrogen-bonding interactions, resulting in a color change from pink to blue which can be monitored by spectrophotometry or even the naked-eye. The proposed colorimetric probe works over the 0.1 to 4 μM DA concentration range, with a lower detection limit (LOD) of 22 nM, which is much lower than the therapeutic lowest abnormal concentrations of DA in urine (0.57 μM) and blood (16 μM) samples. Furthermore, the selectivity and potential applicability of the developed method in spiked actual biological (human plasma and urine) specimens were investigated, suggesting that the present assay could satisfy the requirements for clinical diagnostics and biosensors.

  19. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  20. PRODUCTION OF METAL CHEMICAL WELDING ADDITIVE WITH NANODISPERSED PARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2013-12-01

    Full Text Available When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material, which is powdered by modifying chemical additive of titanium dioxide (TiO₂ in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity.

  1. Statistical analysis of support thickness and particle size effects in HRTEM imaging of metal nanoparticles

    International Nuclear Information System (INIS)

    House, Stephen D.; Bonifacio, Cecile S.; Grieshaber, Ross V.; Li, Long; Zhang, Zhongfan; Ciston, Jim; Stach, Eric A.; Yang, Judith C.

    2016-01-01

    High-resolution transmission electron microscopy (HRTEM) examination of nanoparticles requires their placement on some manner of support – either TEM grid membranes or part of the material itself, as in many heterogeneous catalyst systems – but a systematic quantification of the practical imaging limits of this approach has been lacking. Here we address this issue through a statistical evaluation of how nanoparticle size and substrate thickness affects the ability to resolve structural features of interest in HRTEM images of metallic nanoparticles on common support membranes. The visibility of lattice fringes from crystalline Au nanoparticles on amorphous carbon and silicon supports of varying thickness was investigated with both conventional and aberration-corrected TEM. Over the 1–4 nm nanoparticle size range examined, the probability of successfully resolving lattice fringes differed significantly as a function both of nanoparticle size and support thickness. Statistical analysis was used to formulate guidelines for the selection of supports and to quantify the impact a given support would have on HRTEM imaging of crystalline structure. For nanoparticles ≥1 nm, aberration-correction was found to provide limited benefit for the purpose of visualizing lattice fringes; electron dose is more predictive of lattice fringe visibility than aberration correction. These results confirm that the ability to visualize lattice fringes is ultimately dependent on the signal-to-noise ratio of the HRTEM images, rather than the point-to-point resolving power of the microscope. This study provides a benchmark for HRTEM imaging of crystalline supported metal nanoparticles and is extensible to a wide variety of supports and nanostructures. - Highlights: • The impact of supports on imaging nanoparticle lattice structure is quantified. • Visualization probabilities given particle size and support thickness are estimated. • Aberration-correction provided limited benefit

  2. Orientation of diamagnetic layered transition metal oxide particles in 1-tesla magnetic fields.

    Science.gov (United States)

    Sklute, Elizabeth C; Eguchi, Miharu; Henderson, Camden N; Angelone, Mark S; Yennawar, Hemant P; Mallouk, Thomas E

    2011-02-16

    The magnetic field-driven orientation of microcrystals of six diamagnetic layered transition metal oxides (HLaNb(2)O(7), HCa(2)Nb(3)O(10)·0.5H(2)O, KNaCa(2)Nb(4)O(13), KTiTaO(5), KTiNbO(5), and H(2.2)K(1.8)Nb(6)O(17)·nH(2)O) suspended in epoxy resins was studied by X-ray diffraction using permanent magnets producing a 0.8 T field. Although the degree of orientation, quantified as the Hermans order parameter, was strongly affected by the particle size distribution, in all cases microcrystals with ∼1-2 μm lateral dimensions were found to orient with the magnetic field vector in the layer plane. Control of the orientation of ionically conducting layered oxides is of interest for practical applications in batteries and fuel cells. The consistent direction of orientation of the lamellar oxides studied can be rationalized in the framework of a quantitative bond anisotropy model developed by Uyeda (Phys. Chem. Miner.1993, 20, 77-80). The asymmetry of metal-oxygen bonding at the faces of the octahedral layers results in long and short M-O bonds perpendicular to the plane of the sheets. This distortion of the M-O octahedra, which is a structural feature of almost all layered materials that contain octahedral bonding frameworks, gives rise to the diamagnetic anisotropy and results in an easy axis or plane of magnetization in the plane of the sheets.

  3. Bioinspired systems for metal-ion sensing: new emissive peptide probes based on benzo[d]oxazole derivatives and their gold and silica nanoparticles.

    Science.gov (United States)

    Oliveira, Elisabete; Genovese, Damiano; Juris, Riccardo; Zaccheroni, Nelsi; Capelo, José Luis; Raposo, M Manuela M; Costa, Susana P G; Prodi, Luca; Lodeiro, Carlos

    2011-09-19

    Seven new bioinspired chemosensors (2-4 and 7-10) based on fluorescent peptides were synthesized and characterized by elemental analysis, (1)H and (13)C NMR, melting point, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and IR and UV-vis absorption and emission spectroscopy. The interaction with transition- and post-transition-metal ions (Cu(2+), Ni(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Fe(3+)) has been explored by absorption and fluorescence emission spectroscopy and MALDI-TOF-MS. The reported fluorescent peptide systems, introducing biological molecules in the skeleton of the probes, enhance their sensitivity and confer them strong potential for applications in biological fields. Gold and silica nanoparticles functionalized with these peptides were also obtained. All nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and UV-vis absorption and fluorescence spectroscopy. Stable gold nanoparticles (diameter 2-10 nm) bearing ligands 1 and 4 were obtained by common reductive synthesis. Commercial silica nanoparticles were decorated at their surface using compounds 8-10, linked through a silane spacer. The same chemosensors were also taken into aqueous solutions through their dispersion in the outer layer of silica core/poly(ethylene glycol) shell nanoparticles. In both cases, these complex nanoarchitectures behaved as new sensitive materials for Ag(+) and Hg(2+) in water. The possibility of using these species in this solvent is particularly valuable because the impact on human health of heavy- and transition-metal-ion pollution is very severe, and all analytical and diagnostics investigations involve a water environment.

  4. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  5. New studies on mustard gold from the Dongping Mines, Hebei Province, China: The tellurian, plumbian, manganoan and mixed varieties

    DEFF Research Database (Denmark)

    Li, Jiuling; Makovicky, Emil

    2001-01-01

    geologi, Dongping gold tellurite deposit, mustard gold, calaverite, Fe-Pb-Te minerals, alteration, tellurium, filling in micro-porous, composite varieties, particles of gold......geologi, Dongping gold tellurite deposit, mustard gold, calaverite, Fe-Pb-Te minerals, alteration, tellurium, filling in micro-porous, composite varieties, particles of gold...

  6. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  7. Crystalline gold in soil and the problem of supergene nugget formation: Freezing and exclusion as genetic mechanisms

    Science.gov (United States)

    Watterson, J.R.

    1985-01-01

    Many of the world's richest gold placer deposits now occur in cold regions despite differences in their climatic history. It therefore seems possible that there may be some fundamental connection between freezing climates and the local chemical behavior of gold in the weathering cycle. This hypothesis, along with the problematical occurrence of gold as euhedral crystals in arctic gravel and soil placers, has led me to review low temperature phenomena that may bear on the geochemistry of gold. Several effects which may influence the weathering of natural gold-bearing rocks, the chemical complexation of gold, and its subsequent mobility and deposition appear to be strongly connected with freeze action. The exclusion of dissolved solutes, solute gases, and particles from ice, subjects rock and soil minerals to increased corrosion from thin, unfrozen, adsorbed water films which remain at particle surfaces throughout the freezing of rocks and soils. The preferential exclusion of cations (over anions) from growing ice crystals creates charge separations and measurable current flow across waterice phase boundaries in freezing soil - a phenomenon which leads to troublesome seasonal electrolytic corrosion of pipelines buried in soil; this phenomenon may also favor the dissolution of normally insoluble metals such as gold during geologic time periods. The ice-induced accumulation of clays, organic acids, bacteria, and other organic matter at mineral surfaces may also speed chemical attack by providing a nearby sink of alternate cation-binding sites and hence rapid removal of liberated cations from solution. The latter mechanism may be operative in both the dissolution and redeposition of gold. These physical, chemical, and electrical effects are favorable to the dissolution of rocks (in addition to frost shattering) and to the dissolution, mobilization, and redeposition of gold and other noble metals and must therefore contribute significantly to the behavior of gold at low

  8. Catalytic performances of supported gold nano-particles in catalytic oxidation of organic acids by wet way; Performances catalytiques de nanoparticules d'or supportees en oxydation catalytique d'acides organiques par voie humide

    Energy Technology Data Exchange (ETDEWEB)

    Doan, Pham Minh; Aubert, G.; Gallezot, P.; Bessona, M. [Institut de Recherche sur la Catalyse (IRC), UPR 5401-CNRS, 69 - Villeurbanne (France); Zanella, R.; Delannoy, L.; Louis, C. [Paris-6 Univ., Lab. de Reactivite de Surface, UMR 7609-CNRS 75 (France)

    2004-07-01

    It has been shown for the first time that gold catalysts in the form of supported nano-particles, active in the reactions of CO oxidation and VOC combustion, are active too for the elimination reactions of organic acids in aqueous solution by the air wet oxidation process. The acids are mainly oxidized in CO{sub 2} and H{sub 2}O. (O.M.)

  9. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Directory of Open Access Journals (Sweden)

    Jotinder Kaur

    2016-05-01

    Full Text Available Barium Hexaferrite (BaM is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm/silicon substrate was used to grow the BaM thin films (100-150 nm using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc voltage much larger.

  10. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Science.gov (United States)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  11. Micro/nano-particle decorated metal wire for cutting soft matter.

    Science.gov (United States)

    Zhang, Wei; Feng, Liang-Liang; Wu, Fan; Zhang, Run-Run; Wu, Cheng-Wei

    2016-09-02

    To cut soft materials such as biological tissues with minimal damage and reduced positional error is highly desired in medical surgery and biomechanics. After years of natural selection and evolution, mosquitoes have acquired the ability to insert their proboscises into human skin with astonishingly tiny forces. This can be associated with the unique structure of their proboscises, with micro/nano sawteeth, and the distinctive insertion manner: high frequency reciprocating saw cutting. Inspired by these, this communication describes the successful implantation of metal oxide particles onto molybdenum wire surfaces through a sol-calcination process, to form a biomimetic sawblade with a high density of micro/nano saw teeth, where the acidification is essential in terms of generating active anchoring sites on the wire. When used as a sawblade in conjunction with reciprocating action to cut the viscoelastic gel, both the cut-in force and cut-in displacement could be decreased substantially. The cutting speed and frequency of reciprocating action are important operating parameters influencing cut-in force.

  12. Characterization of Fine Metal Particles Derived from Shredded WEEE Using a Hyperspectral Image System: Preliminary Results

    Science.gov (United States)

    Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello

    2017-01-01

    Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070

  13. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing

    International Nuclear Information System (INIS)

    Zhang, Yuan; May, Volkhard

    2015-01-01

    The recent quantum description of a few molecules interacting with plasmon excitations of a spherical metal nano-particle (MNP) as presented in the work of Zhang and May [Phys. Rev. B 89, 245441 (2014)] is extended to systems with up to 100 molecules. We demonstrate the possibility of multiple plasmon excitation and describe their conversion into far-field photons. The calculation of the steady-state photon emission spectrum results in an emission line-narrowing with an increasing number of molecules coupled to the MNP. This is considered as an essential criterion for the action of the molecule-MNP system as a nano-laser. To have exact results for systems with up to 20 molecules, we proceed as recently described by Richter et al. [Phys. Rev. B 91, 035306 (2015)] and study a highly symmetric system. It assumes an equatorial and regular position of identical molecules in such a way that their coupling is dominated by that to a single MNP dipole-plasmon excitation. Changing from the exact computation of the system’s complete density matrix to an approximate theory based on the reduced plasmon density matrix, systems with more than 100 molecules can be described. Finally, nonlinear rate equations are proposed which reproduce the mean number of excited plasmons in their dependence of the number of molecules and of the used pump rate. The second order intensity correlation function of emitted photons is related to the respective plasmon correlation function which approaches unity when the system starts lasing

  14. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca

    2015-01-01

    Hip replacements are used to improve the quality of life of people with orthopaedic conditions, but the use of metal-on-metal (MoM) arthroplasty has led to poor outcomes for some patients. These problems are related to the generation of micro- to nanosized metal wear particles containing Cr, Co o...

  15. METALS DISTRIBUTION AND PARTICLE SIZE ANALYSIS IN WATER AND SEDIMENT OF THE DJETINJA RIVER AND DRAGIĆA SPRING (SERBIA

    Directory of Open Access Journals (Sweden)

    JELENA KIURSKI

    2010-12-01

    Full Text Available This paper reports the results on total metal concentration (Al, Fe, Cr, Cu, Ni and Zn in water and sediment of the Djetinja river basin in the area of western Serbia. Samples were collected in spring season. Based on the comparison of the concentrations of all analyzed metals it is possible to differentiate two zo¬nes: zone I (sampling sites 1-4, affected by the discharge of the Dragića spring, and zone II (sites 5-8, affected by the confluence of the Dragića spring with the Djetinja river. The analysis of suspended solid particle size in water as well as in sediment samples was performed in size range 0.02-2000 m and a posi¬tive corelation was found with the concentration of aluminium, zinc, iron and nickel in water samples. The study of particle size and metals distribution through the river basin of the Djetinja was a useful tool for getting information about the distribution degree of the polluting agents, and their possible evolution growth and pollution sources. The research of metals distribution and particle size analysis in water and sediment of the Djetinja river and Dragića spring (Serbia was conducted for the first time.

  16. Metal-based particles in human amniotic fluids of fetuses with normal karyotype and congenital malformation--a pilot study.

    Science.gov (United States)

    Barošová, H; Dvořáčková, J; Motyka, O; Kutláková, K Mamulová; Peikertová, P; Rak, J; Bielniková, H; Kukutschová, J

    2015-05-01

    This study explores the inorganic composition of amniotic fluid in healthy human fetuses and fetuses with congenital malformation with a special attention to presence of metal-based solid particles. Amniotic fluid originates from maternal blood and provides fetus mechanical protection and nutrients. In spite of this crucial role, the environmental impact on the composition of amniotic fluid remains poorly studied. The samples of human amniotic fluids were obtained by amniocentesis, including both healthy pregnancies and those with congenital malformations. The samples were analysed using several techniques, including Raman microspectroscopy, scanning electron microscopy with energy-dispersed spectrometry (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Several metal-based particles containing barium, titanium, iron, and other elements were detected by SEM-EDS and Raman microspectroscopy. XRD analysis detected only sodium chloride as the main component of all amniotic fluid samples. Infrared spectroscopy detected protein-like organic components. Majority of particles were in form of agglomerates up to tens of micrometres in size, consisting of mainly submicron particles. By statistical analysis (multiple correspondence analysis), it was observed that groups of healthy and diagnosed fetuses form two separate groups and therefore, qualitative differences in chemical composition may have distinct biological impact. Overall, our results suggest that metal-based nanosized pollutants penetrate into the amniotic fluid and may affect human fetuses.

  17. Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2016-01-01

    Full Text Available ABSTRACT Bioavailability of heavy metals at contaminated sites is largely controlled by the physicochemical properties of the environmental media such as dissolved organic matter, hydroxides and clay colloids, pH, soil cation exchange capacity and oxidation-reduction potential. The aim of this study was to investigate soil pH and heavy metal solubility effect by levels of humic and fulvic acids applied in soil samples with different levels of contamination by heavy metals. The soil samples used in this study were collected in a known metal-contaminated site. Humic acid (HA and fulvic acid (FA were purchased as a commercially available liquid material extracted from Leonardite. The experiment was carried out in a factorial scheme of 4 × (4 + 1, with four contaminated soil samples and four treatments, comprised of two levels of HA, two levels of FA and a control. The HA treatments increased the solubility of Cu, Zn, Ni, Cr, Cd, Pb, As and Ba from soils, while FA treatments decreased, thus raising or not their availability and mobility in soil. Humic acid concentration did not influence soil pH and FA decreased soil pH until 0.7 units. The initial heavy metal concentration in soil affects the magnitude of the processes involving humic substances. The lower releases of heavy metals by FA verified the importance of the complexation properties of organic compounds. These results appear to encourage the use of HA for increased plant-availability of heavy metals in remediation projects and the use of FA for decreased plant-availability of heavy metals at contaminated sites with a risk of introducing metals into the food chain.

  18. Gold- and silver-induced murine autoimmunity--requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity.

    Science.gov (United States)

    Havarinasab, S; Pollard, K M; Hultman, P

    2009-03-01

    Treatment with gold in the form of aurothiomaleate, silver or mercury (Hg) in genetically susceptible mouse strains (H-2(s)) induces a systemic autoimmune condition characterized by anti-nuclear antibodies targeting the 34-kDa nucleolar protein fibrillarin, as well as lymphoproliferation and systemic immune-complex (IC) deposits. In this study we have examined the effect of single-gene deletions for interferon (IFN)-gamma, interleukin (IL)-4, IL-6 or CD28 in B10.S (H-2(s)) mice on heavy metal-induced autoimmunity. Targeting of the genes for IFN-gamma, IL-6 or CD28 abrogated the development of both anti-fibrillarin antibodies (AFA) and IC deposits using a modest dose of Hg (130 microg Hg/kg body weight/day). Deletion of IL-4 severely reduced the IgG1 AFA induced by all three metals, left the total IgG AFA response intact, but abrogated the Hg-induced systemic IC deposits. In conclusion, intact IFN-gamma and CD28 genes are necessary for induction of AFA with all three metals and systemic IC deposits using Hg, while lack of IL-4 distinctly skews the metal-induced AFA response towards T helper type 1. In a previous study using a higher dose of Hg (415 microg Hg/kg body weight/day), IC deposits were preserved in IL-4(-/-) and IL-6(-/-) mice, and also AFA in the latter mice. Therefore, the attenuated autoimmunity following loss of IL-4 and IL-6 is dose-dependent, as higher doses of Hg are able to override the attenuation observed using lower doses.

  19. Autometallography: tissue metals demonstrated by a silver enhancement kit

    DEFF Research Database (Denmark)

    Danscher, G; Nørgaard, J O; Baatrup, E

    1987-01-01

    In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit......, primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial...... methods and for demonstration of gold, silver, and mercury in tissues from animals intravitally exposed to these metals. It can also be used for counterstaining silver treated osmium fixed tissues embedded in plastic. Udgivelsesdato: 1987-null...

  20. Drawing the Optimal Design Factor of a Metal Filter for Capturing Radioactive Aerosol Using Particle Collection Modeling

    International Nuclear Information System (INIS)

    Lee, Seunguk; Park, Minchan; Lee, Jaekeun

    2014-01-01

    In the U. S., the number of HEPA filters, which are located in the HVAC system of nuclear power plants, generated as wastes is annually 31,055, and tremendous economic/social costs are incurred to deal with them. Thus, it is needed to develop the metal fiber filter that can be reused and has performance equal to the HEPA level to replace the glass fiber HEPA filter. This study, to draw the optimal design factors of the metal fiber filter for removing radioactive aerosol, analyzed the design condition by reflecting the actual temperature and pressure condition that can be generated in the nuclear HVAC system to the particle collection mechanism by single fiber. As a result of performing modeling for the radioactive aerosol particle collection efficiency and the pressure drop of the filter made up with single metal fiber. It was analyzed that when a diameter of the metal fiber is less than 4 μm, thickness more than 1 mm, solidity more than 0.2, and face velocity less than 5 cm, it shows more than 99.97% particle collection efficiency, which is equal to the HEPA level. Because generally as the particle collection efficiency gets higher, the pressure drop gets bigger, it is judged that the filter design factors should be optimized to satisfy the design condition for the HVAC system. It is also judged that, in the future, an additional verification should be conducted through a comparison of the test results of the filter particle collection efficiency and the pressure drop in the condition of actual temperature and pressure, and the modeling results of this study

  1. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  2. Lamellar multilayer hexadecylaniline-modified gold nanoparticle

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  3. [Distributions and pollution status of heavy metals in the suspended particles of the estuaries and coastal area of eastern Hainan].

    Science.gov (United States)

    Xin, Cheng-Lin; Ren, Jing-Ling; Zhang, Gui-Ling; Shao, Ya-Ping; Zhang, Guo-Ling; Liu, Su-Mei

    2013-04-01

    The distributions and pollution status of heavy metals in the suspended particles were investigated in the Wanquan and Wenchang/Wenjiao estuaries and the coastal area of eastern Hainan in July 2008. The concentrations of metal elements (Al, Fe, Mn, Cr, Cu, Ni, V, Zn) were determined by ICP-AES after microwave digestion. Multivariate statistical methods (e. g. correlation analysis and principal factor analysis) were used to discuss the major factors controlling the variability of heavy metal concentrations and the pollution status in those areas. There was an obvious variability in particulate metal concentrations from upstream to estuary of both rivers. The concentrations first increased with increasing salinity and then decreased with further increase of the salinity; the concentrations were slightly higher at the coastal area in the east. The variability of particulate metal concentrations reduced significantly after the normalization by Al, indicating the effects of grain size. Enrichment factor calculation results showed that there was heavy metal pollution (especially Cu, Ni) in the Wenchang/Wenjiao River and estuary, while the situation in Wanquan River remained at pristine level. Concentrations of particulate metals in the study area were mainly controlled by source geology and provenance, as well as contamination from the discharge of waste water and biological activity.

  4. Sequential Extractions and Toxicity Potential of Trace Metals Absorbed into Airborne Particles in an Urban Atmosphere of Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Emmanuel Gbenga Olumayede

    2018-01-01

    Full Text Available The paper investigates the hypothesis that biotoxicities of trace metals depend not only on the concentration as expressed by the total amount, but also on their geochemical fractions and bioavailability. Airborne particles were collected using SKC Air Check XR 5000 high volume Sampler at a human breathing height of 1.5–2.0 meters, during the dry season months from November 2014 to March 2015 at different locations in Akure (7°10′N and 5°15′E. The geochemical-based sequential extractions were performed on the particles using a series of increasingly stringent solutions selected to extract metals (Cd, Cu, Cr, Ni, Pb, Zn, and Mn into four operational geochemical phases—exchangeable, reducible, organic, and residual—and then quantified using an Atomic Absorption Spectrophotometer. The results showed metals concentration of order Pb > Cr > Cd > Zn > Ni > Cu > Mn. However, most metals in the samples exist in nonmobile fractions: exchangeable (6.43–16.2%, reducible (32.58–47.39%, organic (4.73–9.88%, and residual (18.28–27.53%. The pollution indices show ingestion as the leading route of metal exposure, with noncarcinogenic (HQ and cancer risk (HI for humans in the area being higher than 1.0 × 10−4, indicating a health threat.

  5. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  6. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  7. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans

    Science.gov (United States)

    Samanta, Saumik; Dalai, Tarun K.

    2018-05-01

    The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.

  8. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  9. A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals

    Science.gov (United States)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1982-01-01

    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials.

  10. Porous metal cones: gold standard for massive bone loss in complex revision knee arthroplasty? A systematic review of current literature.

    Science.gov (United States)

    Divano, Stefano; Cavagnaro, Luca; Zanirato, Andrea; Basso, Marco; Felli, Lamberto; Formica, Matteo

    2018-04-18

    Revision knee arthroplasty is increasing, and in that case, bone loss management is still a challenging problem. In the last years, the body of literature and interest surrounding porous metal cones has grown, but few systematic evaluations of the existing evidence have been performed. The aim of our systematic review is to collect and critically analyze the available evidence about metal cones in revision knee arthroplasty especially focusing our attention on indications, results, complications, and infection rate of these promising orthopaedic devices. We performed a systematic review of the available English literature, considering the outcomes and the complications of tantalum cones. The combinations of keyword were "porous metal cones", "knee revision", "bone loss", "knee arthroplasty", "periprosthetic joint infection", and "outcome". From the starting 312 papers available, 20 manuscripts were finally included. Only one included study has a control group. The main indication for metal cones is type IIb and III defects according AORI classification. Most of the papers show good clinical and radiological outcomes with low rate of complications. The examined studies provide encouraging clinical and radiological short-to-mid-term outcomes. Clinical studies have shown a low rate of aseptic loosening, intraoperative fractures, infection rate and a lower failure rate than the previous treatment methods. Higher quality papers are needed to draw definitive conclusions about porous metal cones.

  11. Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering

    Science.gov (United States)

    Scaglione, F.; Paschalidou, E. M.; Rizzi, P.; Bordiga, S.; Battezzati, L.

    2015-09-01

    Nanoporous gold (NPG) has been synthesized by electrochemical de-alloying a new precursor, amorphous Au30Cu38Ag7Pd5Si20 (at.%), starting from melt-spun ribbons. Ligaments ranging from 75 to 210 nm depending on the de-alloying time were obtained. Analytical and electrochemical evidence showed the ligaments contain residual Cu, Ag and Pd. Surface-enhanced Raman scattering from the NPG was investigated using pyridine and 4,4‧-bi-pyridine as probe molecules. It was found that the activity is at maximum when the ribbon is fully de-alloyed although the ligaments then have a larger size. The enhancement is attributed to the small size of crystals in the ligaments, to their morphology and to trapped atoms.

  12. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  13. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles.

    Science.gov (United States)

    Li, Xue; Guo, Tao; Lachmanski, Laurent; Manoli, Francesco; Menendez-Miranda, Mario; Manet, Ilse; Guo, Zhen; Wu, Li; Zhang, Jiwen; Gref, Ruxandra

    2017-10-15

    Cyclodextrin-based metal-organic frameworks (CD-MOFs) represent an environment-friendly and biocompatible class of MOFs drawing increasing attention in drug delivery. Lansoprazole (LPZ) is a proton-pump inhibitor used to reduce the production of acid in the stomach and recently identified as an antitubercular prodrug. Herein, LPZ loaded CD-MOFs were successfully synthesized upon the assembly with γ-CD in the presence of K + ions using an optimized co-crystallization method. They were characterized in terms of morphology, size and crystallinity, showing almost perfect cubic morphologies with monodispersed size distributions. The crystalline particles, loaded or not with LPZ, have mean diameters of around 6μm. The payloads reached 23.2±2.1% (wt) which corresponds to a molar ratio of 1:1 between LPZ and γ-CD. It was demonstrated that even after two years storage, the incorporated drug inside the CD-MOFs maintained its spectroscopic characteristics. Molecular modelling provided a deeper insight into the interaction between the LPZ and CD-MOFs. Raman spectra of individual particles were recorded, confirming the formation of inclusion complexes within the tridimensional CD-MOF structures. Of note, it was found that each individual particle had the same chemical composition. The LPZ-loaded particles had remarkable homogeneity in terms of both drug loading and size. These results pave the way towards the use of CD-MOFs for drug delivery purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals

    Science.gov (United States)

    Manoylov, Anton; Lebon, Bruno; Djambazov, Georgi; Pericleous, Koulis

    2017-11-01

    The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters' breakup by cavitation.

  15. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.

    Science.gov (United States)

    Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng

    2013-08-01

    Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms

  16. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles.

    Science.gov (United States)

    Lucarelli, Marilena; Gatti, Antonietta M; Savarino, Graziana; Quattroni, Paola; Martinelli, Lucia; Monari, Emanuela; Boraschi, Diana

    2004-01-01

    Nano-sized particles of ceramic and metallic materials are generated by high-tech industrial activities, and can be generated from worn-out replacement and prosthetic implants. The interaction with the human body of such nanoparticles has been investigated, with a particular emphasis on innate defence mechanisms. Human macrophages (PMA-differentiated myelomonocytic U-937 cells) were exposed in vitro to non-toxic concentrations of TiO(2), SiO(2), ZrO(2), or Co nanoparticles, and their inflammatory response (expression of TLR receptors and co-receptors, and cytokine production) was examined. Expression of TLR receptors was generally unaffected by exposure to the different nanoparticles, except for some notable cases. Exposure to nanoparticles of ZrO(2) (and to a lesser extent TiO(2)), upregulated expression of viral TLR receptors TLR3 and TLR7. Expression of TLR10 was also increased by TiO(2) and ZrO(2) nanoparticles. On the other hand, TLR9 expression was decreased by SiO(2) nano-particles, and expression of the co-receptor CD14 was inhibited by Co nanoparticles. Basal and LPS-induced production of cytokines IL-1beta, TNF-alpha, and IL-1Ra was examined in macrophages exposed to nanoparticles. SiO(2) nanoparticles strongly biased naive macrophages towards inflammation (M1 polarisation), by selectively inducing production of inflammatory cytokines IL-1beta and TNF-alpha. SiO(2) nanoparticles also significantly amplified the inflammatory phenotype of LPS-polarised M1 macrophages. Other ceramic nanoparticles had little influence on cytokine production, either in resting macrophages, or in LPS-activated cells. Generally, Co nanoparticles had an overall pro-inflammatory effect on naive macrophages, by reducing anti-inflammatory IL-1Ra and inducing inflammatory TNF-alpha. However, Co nanoparticles reduced production of IL-1beta and IL-1Ra, but not TNF-alpha, in LPS-polarised M1 macrophages. Thus, exposure to different nanoparticles can modulate, in different ways, the

  17. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles.

    Science.gov (United States)

    Ahmed, Syed Rahin; Takemeura, Kenshin; Li, Tian-Cheng; Kitamoto, Noritoshi; Tanaka, Tomoyuki; Suzuki, Tetsuro; Park, Enoch Y

    2017-01-15

    A hybrid structure of graphene-gold nanoparticles (Grp-Au NPs) was designed as a new nanoprobe for colorimetric immunoassays. This hybrid structure was prepared using chloroauric acid, sodium formate and Grp flakes at room temperature. Au NPs attached strongly onto the Grp surface, and their size was controlled by varying the sodium formate concentration. The Raman intensity of the Grp-Au NP hybrids was significantly enhanced at 1567cm -1 and 2730cm -1 compared with those of pristine Grp because of the electronic interaction between Au NPs and Grp. The Grp-Au NPs with a hybrid structure catalyzed the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) with H 2 O 2 , developing a blue color in aqueous solution. This catalytic activity was utilized to detect norovirus-like particles (NoV-LPs) in human serum. The enhanced colorimetric response was monitored using Ab-conjugated-Grp-Au NPs and found to depend on the NoV-LP concentration, exhibiting a linear response from 100pg/mL to 10μg/mL. The limit of detection (LOD) of this proposed method was 92.7pg/mL, 112 times lower than that of a conventional enzyme-linked immunosorbent assay (ELISA). The sensitivity of this test was also 41 times greater than that of a commercial diagnostic kit. The selectivity of the Grp-Au NPs was tested with other viruses, and no color changes were observed. Therefore, the proposed system will facilitate the utilization of the intrinsic peroxidase-like activity of Grp-Au NPs in medical diagnostics. We believe that the engineered catalytic Grp-Au NP hybrids could find potential applications in the future development of biocatalysts and bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Thermolysis characteristics of salts of o-phthalic acid with the formation of Fe, Co, Ni, Cu metal particles

    Science.gov (United States)

    Yudanova, L. I.; Logvinenko, V. A.; Yudanov, N. F.; Rudina, N. A.; Ishchenko, A. V.; Korol'kov, I. V.; Semyannikov, P. P.; Sheludyakova, L. A.; Alferova, N. I.

    2016-06-01

    Studies of the thermolysis of ortho-[Ni(H2O)2(C8H4O4)](H2O)2, [Cu(H2O)(C8H4O4)], and acid [M(H2O)6](C8H5O4)2 (M(II) = Fe(II), Co(II), and Ni(II)), [Cu(H2O)2(C8H5O4)2] phthalates reveal that the solid products of their decomposition are composites with nanoparticles embedded in carbon-polymer matrices. Metallic nanoparticles with oxide nanoparticle impurities are detected in iron/cobalt polymer composites, while nickel/copper composites are composed of only metallic particles. It is found that nickel nanoparticles with the diameters of 6-8 nm are covered with disordered graphene layers, while the copperbased composite matrix contains spherical conglomerates (50-200 nm) with numerous spherical Cu particles (5-10 nm).

  19. Sum-frequency generation spectroscopy on metals, oxides, and oxide-supported metal particles; Summenfrequenzerzeugungsspektroskopie an Metallen, Oxiden und oxidgetraegerten Metallpartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Aumer, Andreas

    2010-06-21

    This thesis focuses on 4 different model systems of surface science. The experimental techniques used for the measurements include sum frequency generation (SFG), thermal desorption spectroscopy (TDS), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), infrared adsorption spectrosocopy (IRAS) and scanning tunneling microscopy (STM). By using SFG, measurements could be performed up to a pressure of 50 mbar. The systems under investigation were: CO on Pt(111), water on Ag(001) and on MgO/Ag(001), CO on Au/MgO/Ag(001), and CO on Au-Pd/MgO/Ag(001). The system of CO on Pt(111) exhibits a two peak-pattern under certain pressure and temperature conditions which has not been studied so far. Various experiments helped to elucidate the origin of this distinct behaviour. The measurements of water on Ag(001) and MgO/Ag(001) show that on MgO, water first adsorbs as a monolayer with a following multilayer, whereas on Ag(001) it adsorbs as a multilayer from the beginning. The monolayer can be studied below the multilayer and some resonances can be identified. For the case of Au/MgO/Ag(001), STM shows that the growth mode of Au depends on the thickness of the supporting MgO film, which can not be seen with spectroscopic methods. For mixed Au-Pd particles on MgO/Ag(001) a clear difference in the adsorption behaviour between pure metal particles and mixed particles can be seen, which is explained by an interaction between these metals. Annealing the mixed particles to 600 K leads to a segregation of the metals, where the Au atoms diffuse to the shell and the Pd atoms make up the core. The results of all these measurements are discussed in the light of recent publications. (orig.)

  20. SU-F-T-661: Dependence of Gold Nano Particles Cluster Morphology On Dose Enhancement of Photon Radiation Therapy Apply for Radiation Biology Effect

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University (Korea, Republic of); Chung, K; Han, Y; Park, H [Samsung Medical Center, Sungkyunkwan University School of Medicine radiation oncology (Korea, Republic of)

    2016-06-15

    Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beams of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].

  1. An Enhancing Effect of Gold Nanoparticles on the Lethal Action of 2450 MHz Electromagnetic Radiation in Microwave Oven

    Science.gov (United States)

    Mollazadeh-Moghaddam, Kamyar; Moradi, Bardia Varasteh; Dolatabadi-Bazaz, Reza; Shakibae, Mojtaba; Shahverdi, Ahmad Reza

    2011-01-01

    Today, there is an increasing interest in the use of metal nanoparticles in health sciences. Amongst all nanoparticles, the gold nanoparticles have been known to kill the cancer cells under hyperthermic condition by near-infrared frequency electromagnetic waves. On the other hand, although there are different physiochemical methods for disinfection of microbial pollution, however applications of irradiated gold nanoparticles against microorganisms have not yet been investigated. In this study, gold nanoparticles were prepared using D-glucose and characterized (particle size effect of the non toxic level of gold nanoparticles (50 µg/mL) on the antimicrobial activity of 2450 MHz electromagnetic radiation generated at a microwave oven operated at low power (100 W), was investigated by time-kill course assay against Staphylococcus aureus (S.aureus) ATCC 29737. The results showed that application of gold nanoparticles can enhance the lethal effect of low power microwave in a very short exposure time (5 s). PMID:23407707

  2. The T-Matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles.

    Science.gov (United States)

    Matyssek, Christian; Schmidt, Vladimir; Hergert, Wolfram; Wriedt, Thomas

    2012-06-01

    In this paper, we present the application of the T-Matrix method (TMM) for the calculation of Electron Energy Loss Spectra (EELS), cathodoluminescence spectra (CLS) and far-field patterns produced by metallic nano-particles. Being frequently used in electromagnetic scattering calculations, the TMM provides an efficient tool for EELS calculations as well and can be employed, e.g. for the investigation of nano-antennas. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana.

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-07-01

    Concentrations of heavy metals and metalloid in borehole drinking water from 18 communities in Tarkwa, Ghana, were measured to assess the health risk associated with its consumption. Mean concentrations of heavy metals (μg/L) exceeded recommended values in some communities. If we take into consideration the additive effect of heavy metals and metalloid, then oral hazard index (HI) results raise concerns about the noncarcinogenic adverse health effects of drinking groundwater in Huniso. According to the US Environmental Protection Agency's (USEPA) guidelines, HI values indicating noncarcinogenic health risk for adults and children in Huniso were 0.781 (low risk) and 1.08 (medium risk), respectively. The cancer risk due to cadmium (Cd) exposure in adults and children in the sampled communities was very low. However, the average risk values of arsenic (As) for adults and children through drinking borehole water in the communities indicated medium cancer risk, but high cancer risk in some communities such as Samahu and Mile 7. Based on the USEPA assessment, the average cancer risk values of As for adults (3.65E-05) and children (5.08E-05) indicated three (adults) and five (children) cases of neoplasm in a hundred thousand inhabitants. The results of this study showed that residents in Tarkwa who use and drink water from boreholes could be at serious risk from exposure to these heavy metals and metalloid.

  4. Quantification and Prediction of Bulk Gold Fineness at Placer Gold Mines: A New Zealand Example

    Directory of Open Access Journals (Sweden)

    Dave Craw

    2017-11-01

    Full Text Available This study documents the bulk Au fineness (Au parts per thousand of the bullion from a placer gold mine in southern New Zealand. The compositions of doré bars produced approximately every 10 days over nearly three years is compared to the range of compositions of gold particles which have been extracted. Silver is the principal impurity in the gold, and the doré bars contained 2–3 wt % Ag over the period examined. At the scale of a typical individual 0.5 mm gold particle, there are three different types of gold: an Ag-bearing core (2–9 wt % Ag, a 10–50 µm wide Ag-poor rim (typically <1 wt % Ag, and micron scale overgrowth gold (0% Ag. The overgrowths are volumetrically negligible, and the average Ag content of a gold particle is controlled principally by the proportions of core and rim gold. The rims have been formed by recrystallisation of deformed core gold, with associated leaching of the Ag from the recrystallised gold. The volumetric proportion of cores has decreased with increasing flattening of gold particles, and highly flattened and folded flakes have little or no remnant cores. The bulk Au fineness of doré bars from the mine has decreased from ~980 to ~970 as the mine progressed upstream in a Pleistocene paleochannel because the upstream gold has been less flattened than the downstream gold.

  5. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2001-05-04

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined.

  6. Algorithmic implementation of particle-particle ladder diagram approximation to study strongly-correlated metals and semiconductors

    Science.gov (United States)

    Prayogi, A.; Majidi, M. A.

    2017-07-01

    In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.

  7. Formation of Metal-Cyanide Complexes in Deliquescent Airborne Particles: A New Possible Sink for HCN in Urban Environments.

    Science.gov (United States)

    Giorio, Chiara; Marton, Daniele; Formenton, Gianni; Tapparo, Andrea

    2017-12-19

    Hydrogen cyanide is a ubiquitous gas in the atmosphere and a biomass burning tracer. Reactive gases can be adsorbed onto aerosol particles where they can promote heterogeneous chemistry. In the present study, we report for the first time on the measurement and speciation of cyanides in atmospheric aerosol. Filter samples were collected at an urban background site in the city center of Padua (Italy), extracted and analyzed with headspace gas chromatography and nitrogen-phosphorus detection. The results showed that strongly bound cyanides were present in all aerosol samples at a concentration ranging between 0.3 and 6.5 ng/m 3 in the PM 2.5 fraction. The concentration of cyanides strongly correlates with concentration of total carbon and metals associated with combustion sources. The results obtained bring evidence that hydrogen cyanide can be adsorbed onto aerosol liquid water and can react with metal ions to form stable metal-cyanide complexes.

  8. Chemodynamics of Soft Nanoparticulate Metal Complexes: From the Local Particle/Medium Interface to a Macroscopic Sensor Surface.

    Science.gov (United States)

    Town, Raewyn M; Pinheiro, José Paulo; van Leeuwen, Herman P

    2017-01-17

    The lability of a complex species between a metal ion M and a binding site S, MS, is conventionally defined with respect to an ongoing process at a reactive interface, for example, the conversion or accumulation of the free metal ion M by a sensor. In the case of soft charged multisite nanoparticulate complexes, the chemodynamic features that are operative within the micro environment of the particle body generally differ substantially from those for dissolved similar single-site complexes in the same medium. Here we develop a conceptual framework for the chemodynamics and the ensuing lability of soft (3D) nanoparticulate metal complexes. The approach considers the dynamic features of MS at the intraparticulate level and their impact on the overall reactivity of free metal ions at the surface of a macroscopic sensing interface. Chemodynamics at the intraparticulate level is shown to involve a local reaction layer at the particle/medium interface, while at the macroscopic sensor level an operational reaction layer is invoked. Under a certain window of conditions, volume exclusion of the nanoparticle body near the medium/sensor interface is substantial and affects the properties of the reaction layer and the overall lability of the nanoparticulate MS complex toward the reactive surface.

  9. Determination of particle size and content of metals in the atmosphere of ZMCM (Metropolitan Zone of Mexico City)

    International Nuclear Information System (INIS)

    Aldape U, F.; Flores M, J.; Diaz, R.V.; Garcia G, R.

    1994-01-01

    Inside the breathable fraction of the atmosphere of Mexico City, the presence of metals in suspended particles, is determined and quantified. The detection was carry out simultaneously in three places of the city, using collectors of the type stacking filter unit (SFU) which allow the separation of particles according to its size. The SFU detectors allow the separation in two size: 'Gross' mass from 2.5 to 1.5 μm and 'fine' mass for particles smallest than 2.5 μm. The analysis of the samples was fulfilled by means of PIXE method. Samples were irradiated with a proton beam, and based in the X-ray spectra the elements were identified and quantified, which allow to establish the temporal behavior of the concentrations per element for gross mass and fine mass in each one of the places of sampling. (Author)

  10. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  11. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans.

    Science.gov (United States)

    Creamer, Neil J; Baxter-Plant, Victoria S; Henderson, John; Potter, M; Macaskie, Lynne E

    2006-09-01

    Biomass of Desulfovibrio desulfuricans was used to recover Au(III) as Au(0) from test solutions and from waste electronic scrap leachate. Au(0) was precipitated extracellularly by a different mechanism from the biodeposition of Pd(0). The presence of Cu(2+) ( approximately 2000 mg/l) in the leachate inhibited the hydrogenase-mediated removal of Pd(II) but pre-palladisation of the cells in the absence of added Cu(2+) facilitated removal of Pd(II) from the leachate and more than 95% of the Pd(II) was removed autocatalytically from a test solution supplemented with Cu(II) and Pd(II). Metal recovery was demonstrated in a gas-lift electrobioreactor with electrochemically generated hydrogen, followed by precipitation of recovered metal under gravity. A 3-stage bioseparation process for the recovery of Au(III), Pd(II) and Cu(II) is proposed.

  12. Neutralization study of boron and some metallic impurities (gold, titanium, manganese, chromium) by hydrogen implantation in monocrystal silicon

    International Nuclear Information System (INIS)

    Zundel, T.

    1987-02-01

    Boron doped silicon implanted with hydrogen at low energy in the temperature range 80-140 0 C shows a large decrease of the electrically active dopant concentration up to a depth which increases with the temperature, the implantation duration and the starting material resistivity. This effect is assigned to the formation of an electrically inactive BH complex. The hydrogen incorporation process shows a weakly temperature dependent enhanced diffusion step followed by a normal diffusion phase which may be described by a thermally activated diffusion coefficient. Heating at 80 0 C produces a complete dissociation of the BH complexes in the space charge region of reverse biased Schottky diodes. Consequently the released hydrogen drifts under the electric field and the neutralization becomes more pronounced in the bulk. Hydrogen neutralizes the gold, chromium, manganese related deep levels but has no effect on titanium related defect levels. Thermal annealing at 495 0 C of hydrogenated chromium or manganese doped samples produces four majority carriers levels which disappear at 700 0 C [fr

  13. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  14. Size-dependent interaction of gold nanoparticles with transport protein: A spectroscopic study

    International Nuclear Information System (INIS)

    Pramanik, Smritimoy; Banerjee, Paltu; Sarkar, Arindam; Bhattacharya, Subhash Chandra

    2008-01-01

    Gold nanoparticles of different sizes have been synthesized using sodium citrate as a reducing agent for tetrachloroau