WorldWideScience

Sample records for metallic glass matrix

  1. Metallic-glass-matrix composite structures with benchmark mechanical performance

    Science.gov (United States)

    Schramm, Joseph P.; Hofmann, Douglas C.; Demetriou, Marios D.; Johnson, William L.

    2010-12-01

    Metallic-glass-matrix composites demonstrating unusual combination of high strength, high toughness, and excellent processability are utilized to fabricate cellular structures of egg-box topology. Under compressive loading, the egg-box panels are capable of undergoing extensive plastic collapse at very high plateau stresses enabling absorption of large amounts of mechanical energy. In terms of specific mechanical energy absorbed, the present panels far outperform panels of similar topology made of aluminum or fiber-reinforced polymer composites, and even surpass steel structures of highly buckling-resistant topologies, thus emerging among the highest performance structures of any kind.

  2. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  3. Investigations on LM6 Metal Matrix Composite with borosilicate Glass Reinforcement for Aerospace applications

    Science.gov (United States)

    Rathnaraj, J. David; Sathish, S.

    2017-10-01

    The recycling of glass wastes from the industries and society holds a threat to the environment and leads to the need for new applications. While producing a metal matrix composite production cost is an important factor which decides the suitable application. So, while developing a new material with this low - cost has great importance in this competitive world. In this study, an metal-matrix composite fabricated from an aluminum alloy (LM6) and Borosilicate glass powder particles with % addition of 2.5%, 5%, 7.5%, and 10% were produced by liquid Processing (stir casting) technique. The variations in the mechanical properties like toughness, compressive strength, hardness, and tensile were examined. The microstructures of the fabricated metal matrix composite have been obtained by using Metallographic microscope. The addition of the borosilicate glass indicated an improved behavior in the hardness and toughness properties. The Rockwell hardness value of fabricated metal matrix composite increases with the increase in % of reinforcement. The compressive and tensile strength of the fabricated MMC increases until reinforcement reaches a maximum of 7.5%. The microstructure of the fabricated MMC shows that the reinforcements were homogeneously distributed in the fabricated metal matrix composite.

  4. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    Zr-based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional .... with no evidence of any crystalline Bragg peaks, indicating that the as-cast sample is fully ..... Acknowledgements. Funding by education fund item of Liaoning Province under grant no.

  5. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target

    Science.gov (United States)

    Chen, X. W.; Chen, G.

    2012-08-01

    In the present paper, the penetration experiments of tungsten-fiber/metallic-glass matrix composite material bullets into 45# steel targets are conducted by employing H25 artillery. In which, an experimental technique of sub-caliber penetration is constructed. The quasi static and dynamic behaviours of tungsten-fiber/metallic-glass matrix composite material are also experimental investigated. The self-sharpening phenomenon of composite material is observed. Integrated with metallographic analysis, the failure modes of tungsten-fiber/metallic-glass matrix composite material are identified systemically and compared with the quasi-static and dynamic material tests. It includes four failure modes, i.e., shear fracture of tungsten fiber, brittle fracture of tungsten fiber and shear fracture of metallic glass matrix as well as melting of tungsten fiber and metallic glass matrix. Comparatively, three failure mechanisms of tungsten fiber in the bullet nose are also identified, i.e., shear fracture, splitting fracture and bending or/and buckling. Finally, the mechanism of self-sharpening behaviour of tungsten-fiber/metallic-glass matrix composite material is discussed.

  6. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target

    Directory of Open Access Journals (Sweden)

    Chen X.W.

    2012-08-01

    Full Text Available In the present paper, the penetration experiments of tungsten-fiber/metallic-glass matrix composite material bullets into 45# steel targets are conducted by employing H25 artillery. In which, an experimental technique of sub-caliber penetration is constructed. The quasi static and dynamic behaviours of tungsten-fiber/metallic-glass matrix composite material are also experimental investigated. The self-sharpening phenomenon of composite material is observed. Integrated with metallographic analysis, the failure modes of tungsten-fiber/metallic-glass matrix composite material are identified systemically and compared with the quasi-static and dynamic material tests. It includes four failure modes, i.e., shear fracture of tungsten fiber, brittle fracture of tungsten fiber and shear fracture of metallic glass matrix as well as melting of tungsten fiber and metallic glass matrix. Comparatively, three failure mechanisms of tungsten fiber in the bullet nose are also identified, i.e., shear fracture, splitting fracture and bending or/and buckling. Finally, the mechanism of self-sharpening behaviour of tungsten-fiber/metallic-glass matrix composite material is discussed.

  7. Glass matrix armor

    Science.gov (United States)

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  8. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.

    Science.gov (United States)

    Fan, J; Qiao, J W; Wang, Z H; Rao, W; Kang, G Z

    2017-05-12

    The present study demonstrates that Ti-based metallic glass matrix composites (MGMCs) with a normal composition of Ti 43 Zr 32 Ni 6 Ta 5 Be 14 containing ductile dendrites dispersed in the glass matrix has been developed, and deformation mechanisms about the tensile property have been investigated by focusing on twinning-induced plasticity (TWIP) effect. The Ti-based MGMC has excellent tensile properties and pronounced tensile work-hardening capacity, with a yield strength of 1100 MPa and homogeneous elongation of 4%. The distinguished strain hardening is ascribed to the formation of deformation twinning within the dendrites. Twinning generated in the dendrites works as an obstacle for the rapid propagation of shear bands, and then, the localized necking is avoided, which ensures the ductility of such kinds of composites. Besides, a finite-element model (FEM) has been established to explain the TWIP effect which brings out a work-hardening behavior in the present MGMC instead of a localized strain concentration. According to the plasticity theory of traditional crystal materials and some new alloys, TWIP effect is mainly controlled by stacking fault energy (SFE), which has been analyzed intensively in the present MGMC.

  9. Metallic glasses

    NARCIS (Netherlands)

    Schaafsma, Arjen Sybren

    1981-01-01

    It is shown in section 7.1. that the influence of topological disorder on the range of magnetic interactions in ferromagnetic transition metal-metalloid (TM-M) glasses, is much less than often assumed. This is demonstrated via a study of the temperature dependence of the average iron hyperfine field

  10. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    Science.gov (United States)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  11. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  12. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  13. Metal particles constraint in glass matrix composites and its impact on fracture toughness enhancement

    Czech Academy of Sciences Publication Activity Database

    Kotoul, M.; Dlouhý, Ivo

    387-389 (2004), s. 404-408 ISSN 0921-5093 R&D Projects: GA ČR GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : brittle matrix composites * crack bridging * crack trapping Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.445, year: 2004

  14. Organic luminophor metal complex in inorganic glass matrix-A new hybrid material

    Science.gov (United States)

    I. Avetisov, Roman; Petrova, Olga; Khomyakov, Andrew; Mushkalo, Oksana; Akkuzina, Alina; Cherednichenko, Alexander; Avetissov, Igor

    2014-09-01

    Hybrid materials were synthesized on the base of borate glass matrix and the tris(8-hydroxyquinoline) aluminum, gallium and indium (Mq3=Alq3, Gaq3, and Inq3) organic complexes, which are used as phosphors in OLED devices. The luminescence properties of hybrid materials containing 0.02-0.1 wt% of Mq3 in B2O3 glass matrix were studied. It was found that the luminescence peaks of hybrid materials were significantly shifted to shorter wavelengths. The measured luminescence lifetimes of Mq3 based hybrid materials fitted by two exponents were found to be several times less for the shorter components and nearly the same for the long components when compared with pure Mq3.

  15. Multi-scale Characterisation of the 3D Microstructure of a Thermally-Shocked Bulk Metallic Glass Matrix Composite

    Science.gov (United States)

    Zhang, Wei; Bodey, Andrew J.; Sui, Tan; Kockelmann, Winfried; Rau, Christoph; Korsunsky, Alexander M.; Mi, Jiawei

    2016-01-01

    Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods.

  16. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    [10] on the wear rates of graphite-/ZrC-reinforced bulk me- tallic glass composites indicates that adding a low volume content of graphite and especially of ZrC generated a sig- nificant decrease in a coefficient of friction and the compos- ites displayed an even lower wear rate than 100Cr6 bearing steel. Recently, Kwon et al ...

  17. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    ... wear debris, which exhibited the characteristic of a mild abrasive wear. The improvement of the wear resistance of the composite with the proper amount of β -Zr crystalline phase is attributed to the fact that the β -Zr crystalline phase distributed in the amorphous matrix has some effective load bearing, plastic deformation ...

  18. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  19. Role of sodium ions in the vitrification process: glass matrix modification, slag structure depolymerization, and influence of metal immobilization.

    Science.gov (United States)

    Kuo, Yi-Ming

    2014-07-01

    This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 degrees C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag's structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts. Implications: Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.

  20. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meiyu Stella [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Suresh, Vignesh [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Chan, Mei Yin [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Ma, Yu Wei [Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Lee, Pooi See [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Krishnamoorthy, Sivashankar [Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Science et Analyse des Materiaux Unit (SAM), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux, 4422 (Luxembourg); Srinivasan, M.P., E-mail: srinivasan.madapusi@rmit.edu.au [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); School of Engineering, RMIT University, Building 10, Level 11, Room 14, 376-392 Swanston Street, Melbourne, Victoria, 3001 (Australia)

    2017-01-15

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10{sup 11}–10{sup 12} cm{sup −2}) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10{sup 4} s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10{sup 3} and 10{sup 4} s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  1. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  2. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  3. Relaxation Pathways in Metallic Glasses

    Science.gov (United States)

    Gallino, Isabella; Busch, Ralf

    2017-11-01

    At temperatures below the glass transition temperature, physical properties of metallic glasses, such as density, viscosity, electrical resistivity or enthalpy, slowly evolve with time. This is the process of physical aging that occurs among all types of glasses and leads to structural changes at the microscopic level. Even though the relaxation pathways are ruled by thermodynamics as the glass attempts to re-attain thermodynamic equilibrium, they are steered by sluggish kinetics at the microscopic level. Understanding the structural and dynamic pathways of the relaxing glassy state is still one of the grand challenges in materials physics. We review some of the recent experimental advances made in understanding the nature of the relaxation phenomenon in metallic glasses and its implications to the macroscopic and microscopic properties changes of the relaxing glass.

  4. Studies on mechanical properties of aluminium 6061 reinforced with titanium and E glass fibre metal matrix hybrid composites

    Science.gov (United States)

    Kumar, B. N. Ravi; Vidyasagar, H. N.; Shivanand, H. K.

    2018-04-01

    2Development of the mmc with fibers and filler materials as a replacement material for some engineering purpose such as automobiles, aerospace are indispensable. Therefore, the studies related to hybrid mmc's of Al6061 were noted in this paper. In this work, Al6061 reinforced with E glass fibers and micro Titanium particles. Hybrid composites was prepared by very feasible and commercially used technique Stir casting and by varying composition of Al6061, Titanium and E-glass fibre. Experiments were done by varying weight fraction of Titanium (0%, 1%, 3% and 5%) and E glass fibre (0%, 1%, 3% and 5%). Wire EDM were used to prepare the specimens required for tensile and hardness according to standards and tests conducted. The proportion of elements which are present the mmc's are identified by EDAX. Optical microscopy were conducted by SU3500 machine Scanning Electron Microscope and Microstructure shows the distribution of reinforced Ti particles and E glass fibres. The characterization of Al6061 hybrid mmc's is having significant impact on the mechanical properties.

  5. Joining ceramics, glass and metal

    International Nuclear Information System (INIS)

    Kraft, W.

    1989-01-01

    In many areas of electronics, engine manufacturing, machine and apparatus construction and aearospace, different combinations of materials such as ceramics/metal and glass/metal are gaining increasingly in importance. The proceedings cover the 53 papers presented to the 3rd International Conference on Joining Ceramics, Glass and Metal, held in Bad Nauheim (FRG) from April 26 to 28, 1989. The papers discuss problems and results under the following main topics of the conference: (1) Active brazing applied to non-oxide ceramics and oxide ceramics. (2) Diffusion bonding of metals and ceramics. (3) Friction welding, reaction bonding, and other joining methods. (4) Properties of metal-ceramic joints (as e.g. residual stress, fracture toughness, thermal stress) and various investigation methods for their determination. (MM) [de

  6. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  7. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  8. Yield point of metallic glass

    International Nuclear Information System (INIS)

    Shimizu, Futoshi; Ogata, Shigenobu; Li, Ju

    2006-01-01

    Shear bands form in most bulk metallic glasses (BMGs) within a narrow range of uniaxial strain ε y ≅ 2%. We propose this critical condition corresponds to embryonic shear band (ESB) propagation, not its nucleation. To propagate an ESB, the far-field shear stress τ ∞ ∼ Eε y /2 must exceed the quasi-steady-state glue traction τ glue of shear-alienated glass until the glass transition temperature is approached internally due to frictional heating, at which point ESB matures as a runaway shear crack. The incubation length scale l inc necessary for this maturation is estimated to be ∼10 2 nm for Zr-based BMGs, below which sample size-scale shear localization does not happen. In shear-alienated glass, the last resistance against localized shearing comes from extremely fast downhill dissipative dynamics of timescale comparable to atomic vibrations, allowing molecular dynamics (MD) simulations to capture this recovery process which governs τ glue . We model four metallic glasses: a binary Lennard-Jones system, two binary embedded atom potential systems and a quinternary embedded atom system. Despite vast differences in the structure and interatomic interactions, the four MD calculations give ε y predictions of 2.4%, 2.1%, 2.6% and 2.9%, respectively

  9. Metallic glass-strengthened thermoplastic elastomer composites

    Science.gov (United States)

    Liu, Xue; Liu, Hao; Wang, Dong; Wang, Enpeng; Liu, Wenjian; Yao, Kefu; Chen, Na

    2017-06-01

    Thermoplastic elastomers (TPEs) and metallic glasses (MGs), both lack of long-range ordering structure, have different physical and mechanical properties. To combine unique viscoelasticity of elastomers and excellent wear resistance of MGs, we propose to introduce a Pd40Ni40Si4P16 MG into a commercial styrene-butadiene-styrene (SBS) TPE to form MG/TPE composites. Serving as a hard and strong second phase dispersed in the SBS matrix, the micrometer-sized MG particles can effectively improve the wear resistance of the matrix due to a strengthening effect. In particular, the MG/TPE composite with an addition of 60 wt% MG shows significantly enhanced wear resistance up to about three times that of the SBS matrix. The present results provide a new way to enhance the wear resistance of the widely used TPEs, which may generate immense economic value by extending their service life.

  10. Preparation of SnO_2-Glass Composite Containing Cu Particles Reduced from Copper Ions in Glass Matrix : Effect of Glass Particle Size on Microstructure and Electrical Property

    OpenAIRE

    Haruhisa, SHIOMI; Kaori, UMEHARA; Faculty of Engineering and Design, Kyoto Institute of Technology; Faculty of Engineering and Design, Kyoto Institute of Technology

    2000-01-01

    An attempt was made to improve the electrical properties of SnO_2-glass composites by dispersing Cu particles with low resistivity and positive temperature coefficient of resistance(TCR)in the glass matrix. Cu metal particles were precipitated by reducing Cu_2O previously dissolved into the matrix glass by adding LaB_6 as a reducing agent. The effect of the glass particle size, which influences the homogeneity of LaB_6 dispersion in the powder mixture before firing, on the Cu precipitation in...

  11. U-based metallic glasses with superior glass forming ability

    Science.gov (United States)

    Xu, Hongyang; Ke, Haibo; Huang, Huogen; Zhang, Pengguo; Pu, Zhen; Zhang, Pei; Liu, Tianwei

    2018-02-01

    By using Al as the third and B as the fourth but minor alloying elements for the U66.7Co33.3 basic metallic glass, a series of U-Co-Al(-B) alloys were designed. The quaternary U-Co-Al-B alloys exhibit significantly improved glass-forming ability (GFA) than previously reported U-based metallic glasses. Low fragility (∼24) is found for these new U-based metallic glasses. The improvement in GFA would result from denser atomic packing in the undercooled liquids due to the presence of small B atoms. Some U-Co-Al(-B) glasses showed corrosion resistance comparable to that of U64Co34Al2 glass, known for premium anti-corrosive performance among the unveiled U-based glasses.

  12. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122 ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composite s * fracture toughness * toughening effects Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  13. CdS/CdSSe quantum dots in glass matrix

    Indian Academy of Sciences (India)

    Wintec

    –5 nm are uniformly distributed into the glass matrix. Keywords. CdS; CdSSe; nanocrystals; glasses; optical filters. 1. Introduction. Today nanostructured materials and quantum dots have immense importance in the field of optoelectronics and.

  14. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  15. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  16. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  17. Metal nanoparticle doped coloured coatings on glasses and plastics ...

    Indian Academy of Sciences (India)

    Wintec

    Metal (single/mixed/alloy) nanoparticles; surface plasmon; coloured coatings on glasses and plas- tics; layer-by-layer coatings by sol–gel ... the particle size and shape, concentration, refractive index of the surrounding medium .... coatings were also prepared for the measurement of matrix refractive index values. The details ...

  18. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  19. Geometric frustration of icosahedron in metallic glasses.

    Science.gov (United States)

    Hirata, A; Kang, L J; Fujita, T; Klumov, B; Matsue, K; Kotani, M; Yavari, A R; Chen, M W

    2013-07-26

    Icosahedral order has been suggested as the prevalent atomic motif of supercooled liquids and metallic glasses for more than half a century, because the icosahedron is highly close-packed but is difficult to grow, owing to structure frustration and the lack of translational periodicity. By means of angstrom-beam electron diffraction of single icosahedra, we report experimental observation of local icosahedral order in metallic glasses. All the detected icosahedra were found to be distorted with partially face-centered cubic symmetry, presenting compelling evidence on geometric frustration of local icosahedral order in metallic glasses.

  20. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  1. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  2. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  3. Fabrication of metallic glass structures

    Science.gov (United States)

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  4. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  5. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  6. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  7. Hybrid materials based on organic luminophores in inorganic glass matrix

    Science.gov (United States)

    Petrova, O. B.; Avetisov, R. I.; Avetisov, I. Kh.; Mushkalo, O. A.; Khomyakov, A. V.; Cherednichenko, A. G.

    2013-06-01

    Hybrid materials were synthesized based on borate glass matrix and the tris(8-hydroxyquinoline) aluminum (Alq3) organic luminophore, which is used as a green luminophore in OLED devices. The luminescent properties of hybrid materials with 0.02-0.1 wt % of Alq3 in glass were studied. The luminescence peak of the hybrid material is significantly shifted to shorter wavelengths (443 nm versus 518 nm in pure Alq3 powder).

  8. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  9. Luminescent Stability of Hybrids Based on Different Borate Glass Matrix’s and Organic Metal Complexes

    Science.gov (United States)

    Petrova, Olga; Avetisov, Roman; Akkuzina, Alina; Anurova, Mariia; Mozhevitina, Elena; Khomyakov, Andrew; Taydakov, Ilya; Avetissov, Igor

    2017-08-01

    The stability of the luminescent properties of new hybrid materials based on 8-oxyquinoline metal (Li, Rb, Sr) complexes and Eu complex with phenanthroline and low-melting Pb-based inorganic glass matrixes under conditions of prolonged exposure under ambient conditions and heating above the glass transition temperature of the matrix’s has been investigated.

  10. Laser Additive Manufacturing of Metal Matrix Composites

    OpenAIRE

    Mertens, Anne

    2016-01-01

    Current trends in the mechanics and energy industries impose increasing demands on metallic materials, combining elevated service temperatures and severe mechanical solicitations. Metal matrix composite coatings with ceramic reinforcements are good candidates in view of fulfilling the requirements for an improved mechanical durability, and for other complex functions (e.g. self-lubrication, biocompatibility...). First of all, this paper provides an introduction to metal matrix compos...

  11. Oxidation behaviour of metallic glass foams

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, B.R. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States)], E-mail: bbarnard@utk.edu; Liaw, P.K. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States); Demetriou, M.D.; Johnson, W.L. [Department of Materials Science, Keck Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-08-15

    In this study, the effects of porosity on the oxidation behaviour of bulk-metallic glasses were investigated. Porous Pd- and Fe-based bulk-metallic glass (BMG) foams and Metglas ribbons were studied. Oxidizing experiments were conducted at 70 deg. C, and around 80 deg. C below glass-transition temperatures, (T{sub g}s). Scanning-electron microscopy/energy-dispersive spectroscopy (SEM/EDS) studies revealed little evidence of oxidation at 70 deg. C. Specimens exhibited greater oxidation at T{sub g} - 80 deg. C. Oxides were copper-based for Pd-based foams, Fe-, Cr-, and Mo-based for Fe-based foams, and Co-based with borosilicates likely for the Metglas. Pd-based foams demonstrated the best oxidation resistance, followed by Metglas ribbons, followed by Fe-based foams.

  12. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  13. Optically-transparent oxide fibre-reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Desimone, D.; Dlouhý, Ivo; Lee, W. E.; Koch, D.; Horvath, J.; Boccaccini, A. R.

    2010-01-01

    Roč. 356, 44-49 (2010), s. 2591-2597 ISSN 0022-3093 R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture toughness * glas matrix composites * light transmittance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.483, year: 2010

  14. Nuclear waste storage container with metal matrix

    Science.gov (United States)

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  15. Nuclear waste storage container with metal matrix

    International Nuclear Information System (INIS)

    Sump, K.R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties

  16. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    Science.gov (United States)

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  17. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    When used with a suitable form of dialectic screening functions, this potential has also been found to yield good results in computing the SSP of (Ni33Zr67)1–x ..... superconducting nature. Hence, (Ni33Zr67)1–xMx. (M = Ti, V, Co, Cu) ternary metallic glasses exhibit super- conducting nature in the present case. When we.

  18. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  19. Corrosion resistant metallic glasses for biosensing applications

    Science.gov (United States)

    Sagasti, Ariane; Lopes, Ana Catarina; Lasheras, Andoni; Palomares, Verónica; Carrizo, Javier; Gutierrez, Jon; Barandiaran, J. Manuel

    2018-04-01

    We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods) of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties) and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni) composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18), widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T), magnetostriction (11.5 ppm) and ΔE effect (6.8 %) values, as well as corrosion potential (-0.25 V), current density (2.54 A/m2), and polarization resistance (56.22 Ω.cm2) that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  20. Chemical segregation in metallic glass nanowires

    International Nuclear Information System (INIS)

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2014-01-01

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales

  1. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  2. Friction behavior of glass and metals in contact with glass in various environments

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  3. Fracture behaviour of hybrid glass matrix composites: thermal ageing effects

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, D. N.; Atiq, S.; Boccaccini, A. R.

    2003-01-01

    Roč. 34, č. 12 (2003), s. 177-1185 ISSN 1359-835X R&D Projects: GA AV ČR IAA2041003; GA MŠk ME 491 Institutional research plan: CEZ:AV0Z2041904 Keywords : glass matrix * hybrid composites * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.131, year: 2003 http://www.sciencedirect.com

  4. A machine learning approach for the classification of metallic glasses

    Science.gov (United States)

    Gossett, Eric; Perim, Eric; Toher, Cormac; Lee, Dongwoo; Zhang, Haitao; Liu, Jingbei; Zhao, Shaofan; Schroers, Jan; Vlassak, Joost; Curtarolo, Stefano

    Metallic glasses possess an extensive set of mechanical properties along with plastic-like processability. As a result, they are a promising material in many industrial applications. However, the successful synthesis of novel metallic glasses requires trial and error, costing both time and resources. Therefore, we propose a high-throughput approach that combines an extensive set of experimental measurements with advanced machine learning techniques. This allows us to classify metallic glasses and predict the full phase diagrams for a given alloy system. Thus this method provides a means to identify potential glass-formers and opens up the possibility for accelerating and reducing the cost of the design of new metallic glasses.

  5. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  6. Role of diffusion in glass formation and crystallization in metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Banerjee, S.

    1999-01-01

    A considerable amount of interest has been generated with the advent of metallic glasses produced by rapid solidification earlier and bulk metallic glasses in recent times. Diffusion has a very important role to play during glass formation. The nucleation and growth of crystals in the metallic melt involves diffusion of atoms and these two processes need to be suppressed for formation of a glassy phase. Slower diffusion rates are particularly important in the case of alloys undergoing bulk metallic glass formation. Crystallization involves the nucleation and growth of crystals in the glassy solid. The nature of diffusion occurring during crystallization depends on the mode of crystallization. Whereas primary crystallization involves long range diffusion, atomic jumps across the crystal/glass interface occur during polymorphic crystallization. In this paper, an attempt has been made to describe the role of factors governing the rate of diffusion during glass formation and crystallization in metallic glasses. (author)

  7. Microlevel thermal effects in metal matrix composites

    Science.gov (United States)

    Herakovich, Carl T.

    1990-01-01

    A method for studying the influence of thermal effects on the inelastic response of metal matrix composites is reviewed. A micromechanics approach based upon the method of cells is shown to be quite versatile for studying a variety of materials response phenomena. Yielding and inelastic response of the composite are predicted as functions of thermal stresses, yielding of the matrix, and imperfect fiber/matrix bonding. Results are presented in the form of yield surfaces and nonlinear stress-strain curves for unidirectional and laminated boron/aluminum and silicon-carbide/titanium.

  8. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  9. Structural study of conventional and bulk metallic glasses during annealing

    International Nuclear Information System (INIS)

    Pineda, E.; Hidalgo, I.; Bruna, P.; Pradell, T.; Labrador, A.; Crespo, D.

    2009-01-01

    Metallic glasses with conventional glass-forming ability (Al-Fe-Nd, Fe-Zr-B, Fe-B-Nb compositions) and bulk metallic glasses (Ca-Mg-Cu compositions) were studied by synchrotron X-ray diffraction during annealing throughout glass transition and crystallization temperatures. The analysis of the first diffraction peak position during the annealing process allowed us to follow the free volume change during relaxation and glass transition. The structure factor and the radial distribution function of the glasses were obtained from the X-ray measurements. The structural changes occurred during annealing are analyzed and discussed.

  10. Effects of argon ion irradiation on nucleation and growth of silver nanoparticles in a soda-glass matrix

    Directory of Open Access Journals (Sweden)

    P. Gangopadhyay

    2011-09-01

    Full Text Available The present article explores an experimental study for nucleation and non-equilibrium growth of silver nanoparticles in a soda-glass matrix. Ion-irradiation induced recoiling of silver atoms with argon ions (at energy 100 keV facilitates nucleation as well as growth of the silver nanoparticles in the soda-glass matrix. Small growth of the silver nanoparticles in the soda-glass matrix has been experimentally observed after the irradiation with higher fluences of the argon ions. Role of the argon ions for the evolution of the silver nanoparticles in the soda-glass matrix has been elucidated in the present report. With increase of the argon-ion fluences, while slight athermal growth of the silver nanoparticles has been estimated, drastic increase in the optical responses and Rutherford backscattering (RBS yields of the silver nanoparticles have been observed in the sample with the maximum fluences. Possible correlations of increase of argon-ion fluences and the observed experimental results (optical and RBS, in particular have been explained in this article. Although it has been demonstrated using the silver metal film on a soda-glass substrate as a model example, the non-equilibrium approach of nucleation and ion-beam controlled growth of metal nanoparticles in a matrix should be applicable to other immiscible systems as well.

  11. Micromechanical Modeling of Woven Metal Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  12. Stochastic metallic-glass cellular structures exhibiting benchmark strength.

    Science.gov (United States)

    Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L

    2008-10-03

    By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.

  13. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Kadhim Al-Sahlani

    2017-09-01

    Full Text Available Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles’ strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF. The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20–0.26 g/cm3, the resulting foam exhibits a low density (1.03–1.19 g/cm3 that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70–80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa.

  14. Application of Fe-based metallic glasses in wastewater treatment

    International Nuclear Information System (INIS)

    Lin Bao; Bian Xiufang; Wang Pan; Luo Guanping

    2012-01-01

    Highlights: ► We found the Fe-based metallic glasses have potential application in wastewater treatment. ► The corrosion on the surface of Fe-based metallic glasses is related to the application. ► We set a new theory to explain the process of degredation organic metters with Fe-based metallic glasses. - Abstract: This work pioneered the use of the Fe 78 Si 9 B 13 metallic glass ribbons in wastewater treatment. Fe 78 Si 9 B 13 metallic glass was employed to remediate wastewater contaminated with a mixture of organic dyes. The removal rate of chemical oxygen demand (COD) with Fe 78 Si 9 B 13 metallic glass and metallic Fe 0 was up to 23 ± 0.93% in 30 min and 21 ± 0.67% with in 45 min, respectively. The dosage of Fe-based metallic glass was only 1/25 of that of metallic Fe 0 to obtain equivalent effects. The mechanism of wastewater treatment through Fe-based metallic glasses is discussed.

  15. Fundamental mechanical and microstructural observations in metallic glass coating production

    NARCIS (Netherlands)

    Matthews, D.T.A.; Ocelik, V.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The production of a wide range of metallic Glass Forming Alloys (GFA) has been investigated by several processing routes including simple arc-casting and melt-spinning to form Bulk Metallic Glasses (BMG). The concepts surrounding such alloys have been directed towards the production of thick (> 300

  16. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  17. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  18. Fast DNA sieving through submicrometer cylindrical glass capillary matrix.

    Science.gov (United States)

    Cao, Zhen; Yobas, Levent

    2014-01-07

    Here, we report on DNA electrophoresis through a novel artificial sieving matrix based on the highly regular submicrometer cylindrical glass capillary segments alternatingly arranged with wells. Such round capillaries pose a higher-order confinement resulting in a lower partition coefficient and greater entropic energy barrier while limiting the driving field strength to a small fraction of the applied electric field. In return, the separation can be performed at high average field strengths (up to 1.6 kV/cm) without encountering the field-dependent loss of resolving power. This leads to fast DNA sieving as demonstrated here on the capillaries of 750 nm in diameter. The 600 bp to 21 kbp long chains are shown to resolve within 4 min after having undergone a fairly limited number of entropic barriers (128 in total). The capillary matrix also exhibits a critical field threshold below which DNA bands fail to launch, and this occurs at a considerably greater magnitude than in other matrixes. The submicrometer capillaries are batch-fabricated on silicon through a fabrication process that does not require high-resolution advanced lithography or well-controlled wafer bonding techniques to define their critical dimension.

  19. Developing and Characterizing Bulk Metallic Glasses for Extreme Applications

    Science.gov (United States)

    Roberts, Scott Nolan

    Metallic glasses have typically been treated as a "one size fits all" type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs. Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing

  20. Metallic Glasses as Potential Reinforcements in Al and Mg Matrices: A Review

    Directory of Open Access Journals (Sweden)

    S. Jayalakshmi

    2018-04-01

    Full Text Available Development of metal matrix composites (MMCs with metallic glass/amorphous alloy reinforcements is an emerging research field. As reinforcements, metallic glasses with their high strength (up to ~2 GPa and high elastic strain limit (~2% can provide superior mechanical properties. Being metallic in nature, the glassy alloys can ensure better interfacial properties when compared to conventional ceramic reinforcements. Given the metastable nature of metallic glasses, lightweight materials such as aluminum (Al and magnesium (Mg with relatively lower melting points are suitable matrix materials. Synthesis of these advanced composites is a challenge as selection of processing method and appropriate reinforcement type (which does not allow devitrification of the metallic glass during processing is important. Non-conventional techniques such as high frequency induction sintering, bidirectional microwave sintering, friction stir processing, accumulative roll-bonding, and spark plasma sintering are being explored to produce these novel materials. In this paper, an overview on the synthesis and properties of aluminum and magnesium based composites with glassy reinforcement produced by various unconventional methods is presented. Evaluation of properties of the produced composites indicate: (i retention of amorphous state of the reinforcement after processing; (ii significant improvement in hardness and strength; (iii improvement/retention of ductility; and (iv high wear resistance and low coefficient of friction. Further, a comparative understanding of the properties highlights that the selection of the processing method is important in producing high performance composites.

  1. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  2. Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Churyumov

    2012-12-01

    Full Text Available Metallic glasses demonstrate unique properties, including large elastic limit and high strength, which make them attractive for practical applications. Unlike crystalline alloys, metallic glasses, in general, do not exhibit a strain hardening effect, while plastic deformation at room temperature is localized in narrow shear bands. Room-temperature mechanical properties and deformation behavior of bulk metallic glassy samples and the crystal-glassy composites are reviewed in the present paper.

  3. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  4. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  5. Clustered field evaporation of metallic glasses in atom probe tomography.

    Science.gov (United States)

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  7. Ultra-short pulsed laser engineered metal-glass nanocomposites

    CERN Document Server

    Stalmashonak, Andrei; Abdolvand, Amin

    2013-01-01

    Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local opti...

  8. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from...... may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition...... and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k(B)/atom indicates apparent...

  9. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  10. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Steindler, M J

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented.

  11. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    Smith, Don D.

    2005-01-01

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  12. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  13. Polyamorphism in Yb-based metallic glass induced by pressure

    Science.gov (United States)

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.; Wang, Luhong; Liu, Haozhe

    2017-04-01

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.

  14. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  15. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  16. Nucleation of metals by redox processes in glass molten media

    International Nuclear Information System (INIS)

    Laurent, Y.; Turmel, J.M.; Verdier, P.

    1997-01-01

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N 3- ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO 2 and V 2 O 5 gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  17. Wear rate optimization of Al/SiCnp/e-glass fibre hybrid metal matrix composites using Taguchi method and genetic algorithm and development of wear model using artificial neural networks

    Science.gov (United States)

    Bongale, Arunkumar M.; Kumar, Satish; Sachit, T. S.; Jadhav, Priya

    2018-03-01

    Studies on wear properties of Aluminium based hybrid nano composite materials, processed through powder metallurgy technique, are reported in the present study. Silicon Carbide nano particles and E-glass fibre are reinforced in pure aluminium matrix to fabricate hybrid nano composite material samples. Pin-on-Disc wear testing equipment is used to evaluate dry sliding wear properties of the composite samples. The tests were conducted following the Taguchi’s Design of Experiments method. Signal-to-Noise ratio analysis and Analysis of Variance are carried out on the test data to find out the influence of test parameters on the wear rate. Scanning Electron Microscopic analysis and Energy Dispersive x-ray analysis are conducted on the worn surfaces to find out the wear mechanisms responsible for wear of the composites. Multiple linear regression analysis and Genetic Algorithm techniques are employed for optimization of wear test parameters to yield minimum wear of the composite samples. Finally, a wear model is built by the application of Artificial Neural Networks to predict the wear rate of the composite material, under different testing conditions. The predicted values of wear rate are found to be very close to the experimental values with a deviation in the range of 0.15% to 8.09%.

  18. Ceramic-glass-metal seal by microwave heating

    Science.gov (United States)

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  19. Immobilization of krypton in a metal matrix

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1987-01-01

    The report presents the work carried out on the immobilization of krypton in a metallic matrix by combined ion implantation and sputtering. The process has been successfully tested using 100 curies of fully active krypton in order to demonstrate that the process operates in the radiation levels which will be obtained with active gas at a reprocessing plant. A design study for a plant for fuel reprocessing has shown that the process can be simply operated, without requiring shielded cells. These results, which complete the development programme, indicate that the process is ideal for the containment of kripton arising from the processing of nuclear fuel and that the product will retain the gas under normal storage conditions and also during simulated accident conditions

  20. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  1. Multifunctional Metal Matrix Composite Filament Wound Tank Liners, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal Matrix Composite (MMC) materials offer tremendous potential for lightweight propellant and pressurant tankage for space applications. Thin MMC liners for COPVs...

  2. Glass ceramic-to-metal seals

    Science.gov (United States)

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  3. Antimicrobial thin films based on ayurvedic plants extracts embedded in a bioactive glass matrix

    Science.gov (United States)

    Floroian, L.; Ristoscu, C.; Candiani, G.; Pastori, N.; Moscatelli, M.; Mihailescu, N.; Negut, I.; Badea, M.; Gilca, M.; Chiesa, R.; Mihailescu, I. N.

    2017-09-01

    Ayurvedic medicine is one of the oldest medical systems. It is an example of a coherent traditional system which has a time-tested and precise algorithm for medicinal plant selection, based on several ethnopharmacophore descriptors which knowledge endows the user to adequately choose the optimal plant for the treatment of certain pathology. This work aims for linking traditional knowledge with biomedical science by using traditional ayurvedic plants extracts with antimicrobial effect in form of thin films for implant protection. We report on the transfer of novel composites from bioactive glass mixed with antimicrobial plants extracts and polymer by matrix-assisted pulsed laser evaporation into uniform thin layers onto stainless steel implant-like surfaces. The comprehensive characterization of the deposited films was performed by complementary analyses: Fourier transformed infrared spectroscopy, glow discharge optical emission spectroscopy, scanning electron microscopy, atomic force microscopy, electrochemical impedance spectroscopy, UV-VIS absorption spectroscopy and antimicrobial tests. The results emphasize upon the multifunctionality of these coatings which allow to halt the leakage of metal and metal oxides into the biological fluids and eventually to inner organs (by polymer use), to speed up the osseointegration (due to the bioactive glass use), to exert antimicrobial effects (by ayurvedic plants extracts use) and to decrease the implant price (by cheaper stainless steel use).

  4. Quantitative determination of copper in a glass matrix using double pulse laser induced breakdown and electron paramagnetic resonance spectroscopic techniques.

    Science.gov (United States)

    Khalil, Ahmed A I; Morsy, Mohamed A

    2016-07-01

    A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Metal nanoparticle-doped coloured films on glass and ...

    Indian Academy of Sciences (India)

    In a program on the development of metal (e.g. Au, Ag, Cu and their alloy) nanoparticles in sol{gel derived films, attempts were made to synthesize different coloured coatings on glasses and plastics. The absorption position of surface plasmon resonance (SPR) band arising from the embedded metal nanoparticles was ...

  6. Real-Time Investigation of Solidification of Metal Matrix Composites

    Science.gov (United States)

    Kaukler, William; Sen, Subhayu

    1999-01-01

    Casting of metal matrix composites can develop imperfections either as non- uniform distributions of the reinforcement phases or as outright defects such as porosity. The solidification process itself initiates these problems. To identify or rectify the problems, one must be able to detect and to study how they form. Until, recently this was only possible by experiments that employed transparent metal model organic materials with glass beads to simulate the reinforcing phases. Recent results obtained from a Space Shuttle experiment (using transparent materials) will be used to illustrate the fundamental physics that dictates the final distribution of agglomerates in a casting. We have further extended this real time investigation to aluminum alloys using X-ray microscopy. A variety of interface-particle interactions will be discussed and how they alter the final properties of the composite. A demonstration of how a solid-liquid interface is distorted by nearby voids or particles, particle pushing or engulfment by the interface, formations of wormholes, Aggregation of particles, and particle-induced segregation of alloying elements will be presented.

  7. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  8. Preparation, thermal stability, and magnetic properties of Fe-Zr-Mo-W-B bulk metallic glass

    International Nuclear Information System (INIS)

    Liu, D.Y.; Sun, W.S.; Wang, A.M.; Zhang, H.F.; Hu, Z.Q.

    2004-01-01

    A bulk metallic glass (BMG) cylinder of Fe 60 Co 8 Zr 10 Mo 5 W 2 B 15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (T g ), crystallization temperature (T x ), supercooled liquid region (ΔT x ) between T g and T x , and reduced glass transition temperature T rg (T g /T m ) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases α-Fe, ZrFe 2 , Fe 3 B, MoB 2 , Mo 2 FeB 2 , and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Moessbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. α-Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses

  9. Platinum group metal particles aggregation in nuclear glass melts under the effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hanotin, Caroline [CEA Marcoule, DEN/MAR/DTCD/SECM/LDMC, Bagnols-sur-Cèze, F-30207 (France); Puig, Jean [Laboratoire PROMES-CNRS, UPR 8521, Font-Romeu Odeillo, F-66120 (France); Neyret, Muriel, E-mail: muriel.neyret@cea.fr [CEA Marcoule, DEN/MAR/DTCD/SECM/LDMC, Bagnols-sur-Cèze, F-30207 (France); Marchal, Philippe [Laboratoire Réactions et Génie des Procédés (LRGP-GEMICO), Université de Lorraine-CNRS, UMR 7274, Nancy F-54001 (France)

    2016-08-15

    The viscosity of simulated high level radioactive waste glasses containing platinum group metal particles is studied over a wide range of shear stress, as a function of the particles content and the temperature, thanks to a stress imposed rheometer, coupled to a high-temperature furnace. The system shows a very shear thinning behavior. At high shear rate, the system behaves as a suspension of small clusters and individual particles and is entirely controlled by the viscosity of the glass matrix as classical suspensions. At low shear rate, above a certain fraction in platinum group metal particles, the apparition of macroscopic aggregates made up of chains of RuO{sub 2} particles separated by thin layers of glass matrix strongly influences the viscosity of the nuclear glass and leads, in particular, to the apparition of yield stress and thixotropic effects. The maximum size of these clusters as well as their effective volume fraction have been estimated by a balance between Van der Waals attractive forces and hydrodynamic forces due to shear flow. We showed experimentally and theoretically that this aggregation phenomenon is favored by an increase of the temperature, owing to the viscosity decrease of the glass matrix, leading to an unusual increase of the suspension viscosity. - Highlights: • The macroscopic aggregates made up of RuO{sub 2} particles strongly influence the nuclear glass viscosity. • The maximum size of clusters as well as their effective volume fraction can be estimated. • This aggregation phenomenon is favored by an increase of the temperature. • A viscosity model as a function of the PGM content, volume fraction and shear stress is proposed.

  10. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  11. Separation of matrix alloy and reinforcement from aluminum metal ...

    Indian Academy of Sciences (India)

    TECS

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addi- tion has been theoretically predicted .... zero and the salt fluxes have only little solubility in the matrix metal, separation of the matrix ... aluminum melt with SiC at this temperature did not exceed. 30 min. In order to change the ...

  12. Study of structural and spectroscopic behavior of Sm3+ ions in lead-zinc borate glasses containing alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Babu, S.; Rajeswara Reddy, B.; Ratnakaram, Y. C.

    2017-06-01

    High luminescence behavior of rare earth inorganic glasses have a variety of uses in the industry. In the past few decades, rare earth ions with characteristic photonics applications are being hosted by heavy metal oxide glasses. Among the rare earth ions Sm3+ ion has features which make it apt for high density optical storage. The authors of the paper have experimented to synthesize Sm3+ doped glasses. In this regard a new series of borate glasses doped with 1 mol% Sm3+ ion are developed by using melt-quenching technique. XRD, FTIR, optical absorption, luminescence techniques are used to study the various characteristics of Sm3+ ion in the present glass matrices. The XRD spectra confirms the amorphous nature of glasses. Further, the researchers have used differential thermal analysis to study the glass transition temperature. The structural groups in the prepared glasses are studied using Fourier transform infrared spectra. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) have been computed. Based on these Judd-Ofelt intensity parameters, radiative properties such as radiative probabilities (Arad), branching ratios (β), and radiative life time (τR) are calculated. The excitation spectra of Sm3+ doped lithium heavy metal borate glass matrix is recorded under the emission wavelength of 600 nm. The emission spectra are recorded under 404 nm excitation wavelength. From various emission transitions, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 bands could be of interest for various applications. The decay profiles of 4G5/2 level exhibit single exponential nature in all the prepared glass matrices. The potassium glass matrix exhibits higher quantum efficiency than the other glass matrices. Finally, by going through these several spectroscopic characterizations, it is concluded that the prepared Sm3+ doped lead-zinc borate glasses might be useful for visible light applications.

  13. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  14. Electrochemical and Friction Characteristics of Metallic Glass Composites at the Microstructural Length-scales.

    Science.gov (United States)

    Ayyagari, Aditya; Hasannaeimi, Vahid; Arora, Harpreet; Mukherjee, Sundeep

    2018-01-17

    Metallic glass composites represent a unique alloy design strategy comprising of in situ crystalline dendrites in an amorphous matrix to achieve damage tolerance unseen in conventional structural materials. They are promising for a range of advanced applications including spacecraft gears, high-performance sporting goods and bio-implants, all of which demand high surface degradation resistance. Here, we evaluated the phase-specific electrochemical and friction characteristics of a Zr-based metallic glass composite, Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 , which comprised roughly of 40% by volume crystalline dendrites in an amorphous matrix. The amorphous matrix showed higher hardness and friction coefficient compared to the crystalline dendrites. But sliding reciprocating tests for the composite revealed inter-phase delamination rather than preferred wearing of one phase. Pitting during potentiodynamic polarization in NaCl solution was prevalent at the inter-phase boundary, confirming that galvanic coupling was the predominant corrosion mechanism. Scanning vibration electrode technique demonstrated that the amorphous matrix corroded much faster than the crystalline dendrites due to its unfavorable chemistry. Relative work function values measured using scanning kelvin probe showed the amorphous matrix to be more electropositive, which explain its preferred corrosion over the crystalline dendrites as well as its characteristic friction behavior. This study paves the way for careful partitioning of elements between the two phases in a metallic glass composite to tune its surface degradation behavior for a range of advanced applications.

  15. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  16. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...

  17. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  18. Design of Cu8Zr5-based bulk metallic glasses

    DEFF Research Database (Denmark)

    Yang, L.; Xia, J.H.; Wang, Q.

    2006-01-01

    Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary syste...

  19. Metal nanoparticle doped coloured coatings on glasses and plastics ...

    Indian Academy of Sciences (India)

    Wintec

    applicable to glass and plastic substrates (Medda et al. 2005a, b; Pal and De 2005; De and De 2006a; Pal and De. 2007a). The manufacturing process involves preparation of sols using suitable metal organic precursors (e.g. alkoxides or functionalized alkoxides also known as in- organic–organic hybrid precursors) and ...

  20. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  1. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    National Research Council Canada - National Science Library

    Coburn, William

    1998-01-01

    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  2. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  3. CdS/CdSSe quantum dots in glass matrix

    Indian Academy of Sciences (India)

    CdSSe and melted at 1200–1300°C. The glass samples were transparent and pale yellow in colour due to presence of CdS/CdSSe tiny nano crystal (Q-dots). in situ growth of CdS/CdSSe nano crystals imparts the yellow/orange/red colour to ...

  4. Effect of solubility YAG:Nd nanocrystals in glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Szysiak, A., E-mail: agnieszka.szysiak@itme.edu.pl [Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Stepien, R. [Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Ryba-Romanowski, W.; Solarz, P. [Institute of Low Temp. and Struct. Research, Polish Ac. Sc., P.O. Box 1410, 50-950 Wroclaw (Poland); Mirkowska, M.; Lipinska, L.; Pajaczkowska, A. [Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland)

    2011-10-15

    Highlights: {yields} The mixture of borate glass powder and YAG:5%Nd{sup 3+} nanocrystals was prepared. {yields} The samples were formed into pallets and annealed at different temperatures. {yields} The luminescence properties of composites depends crucially on annealing temperature. -- Abstract: The nanocomposites of Y{sub 3}Al{sub 5}O{sub 12}:Nd{sup 3+} (YAG:Nd) incorporated in borate glass were obtained. The single phase of YAG:Nd nanocrystals were obtained by sol-gel method. The borate glass was melted first and ground up then mixed with the nanocrystals. The samples were formed into pellets under pressure and were annealed in temperatures from the range 550-800 {sup o}C. The X-ray diffraction patterns show that together with increasing the temperature the contribution of Y{sub 3}Al{sub 5}O{sub 12} phase decreases and the new YBa{sub 3}B{sub 9}O{sub 19} phase is observed. The luminescence measurements indicates that the band structures and distribution of band intensities of glass-YAG:Nd nanocrystal composites depends crucially on annealing temperature.

  5. Separation of matrix alloy and reinforcement from aluminum metal ...

    Indian Academy of Sciences (India)

    TECS

    . The application of metal matrix composites (MMCs) in many engineering components has increased over the last few years, particularly in the automobile industry as drive shafts, engine and brake components (Chawla and Chawla. 2006).

  6. Laser Assisted Machining of Metal Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Metal matrix composites (MMC's) are of great interest in aerospace applications where their high specific strength provides a weight saving alternative to standard...

  7. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained usin...

  8. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  9. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    International Nuclear Information System (INIS)

    Bailey, Nicholas P.; Schioetz, Jakob; Jacobsen, Karsten W.

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact, the splitting temperature for the Cu-Cu RDF is well above T g . The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k B /atom indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates

  10. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  11. Significantly enhanced memory effect in metallic glass by multistep training

    Science.gov (United States)

    Li, M. X.; Luo, P.; Sun, Y. T.; Wen, P.; Bai, H. Y.; Liu, Y. H.; Wang, W. H.

    2017-11-01

    The state of metastable equilibrium glass can carry an imprint of the past and exhibit memory effect. As a hallmark of glassy dynamics, memory effect can affect glassy behavior as it evolves further upon time. Even though the physical picture of the memory effect has been well studied, it is unclear whether a glass can recall as many pieces of information as possible, and if so, how the glass will accordingly behave. We report that by fractionizing temperature interval, inserting multistep aging protocols, and optimizing the time of each temperature step, i.e., by imposing a multistep "training" on a prototypical P d40N i10C u30P20 metallic glass, the memory of the trained glass can be significantly strengthened, marked by a pronounced augment in potential energy. These findings provide a new guide for regulating the energy state of glass by enhancing the nonequilibrium behaviors of the memory effect and offer an opportunity to develop a clearer physical picture of glassy dynamics.

  12. Fatigue-Testing Apparatus for Metal Matrix Composites

    Science.gov (United States)

    Westfall, Leonard J.; Petrasek, Donald W.

    1987-01-01

    Thermal and mechanical load cycling simulated in realistic fatigue tests. Efficient joining of metal matrix composite components to supporting structures is major concern facing users of these materials. Lewis Research Center designed and developed two thermal/mechancical fatigue test facilities, one to test metal matrix composite specimens and another to test compostite/metal attachment bond joints. Thermal/mechanical fatigue facility designed for testing metal matrix composites permits specimen-temperature excursions with controlled heating and loading rates. Second facility designed to test composite/metal attachment bond joints and to permit heating to maximum temperature of 1,400oC (760oC) within 10 min and cooling to 300oF (150oC) within 3 min. Facility has unique capabilities not found in other laboratories.

  13. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  14. Melting, solidification, remelting, and separation of glass and metal

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending.

  15. Structure and properties of transition metal-metalloid glasses based on refractory metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x < x/sub c/ (metalloid poor glasses) vacancy-like defects form, which are characterized by the excess volume which they contribute to the glass. Another, as yet unspecified defect appears to form in glasses with x > x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration.

  16. Relaxation processes and physical aging in metallic glasses

    Science.gov (United States)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with

  17. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties

    International Nuclear Information System (INIS)

    Bregadiolli, Bruna A.; Souza, Ernesto R.; Sigoli, Fernando A.; Caiut, Jose M.A.; Alencar, Monica A.S.; Benedetti, Assis V.; Nalin, Marcelo

    2012-01-01

    Silver containing heavy metal oxide glasses and glass ceramics of the system WO 3 -SbPO 4 -PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment. (author)

  18. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Bruna A. Bregadiolli

    2012-01-01

    Full Text Available Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.

  19. Toughening effects quantification in glass matrix composite reinforced by alumina platelets

    Czech Academy of Sciences Publication Activity Database

    Kotoul, M.; Pokluda, J.; Šandera, P.; Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2008-01-01

    Roč. 56, č. 12 (2008), s. 2908-2918 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA106/06/0724 Institutional research plan: CEZ:AV0Z20410507 Keywords : glass matrix composites * crack deflection * fracture surface toughness * residual stresses Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.729, year: 2008

  20. Crack resistance curve in glass matrix composite reinforced by long SiC fibres

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Kotoul, M.; Vysloužil, T.; Chlup, Zdeněk; Boccaccini, A. R.

    2008-01-01

    Roč. 43, č. 13 (2008), s. 4022-4030 ISSN 0022-2461 R&D Projects: GA ČR(CZ) GA106/05/0495; GA ČR(CZ) GA106/06/0724 Institutional research plan: CEZ:AV0Z20410507 Keywords : glass matrix compositze * Nicalon fibres * fracture toughness * toughening prediction Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.181, year: 2008

  1. Direct Observation on the Evolution of Shear Banding and Buckling in Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite

    Science.gov (United States)

    Chen, J. H.; Chen, Y.; Jiang, M. Q.; Chen, X. W.; Fu, H. M.; Zhang, H. F.; Dai, L. H.

    2014-11-01

    The evolution of micro-damage and deformation of each phase in the composite plays a pivotal role in the clarification of deformation mechanism of composite. However, limited model and mechanical experiments were conducted to reveal the evolution of the deformation of the two phases in the tungsten fiber reinforced Zr-based bulk metallic glass composite. In this study, quasi-static compressive tests were performed on this composite. For the first time, the evolution of micro-damage and deformation of the two phases in this composite, i.e., shear banding of the metallic glass matrix and buckling deformation of the tungsten fiber, were investigated systematically by controlling the loading process at different degrees of deformation. It is found that under uniaxial compression, buckling of the tungsten fiber occurs first, while the metallic glass matrix deforms homogeneously. Upon further loading, shear bands initiate from the fiber/matrix interface and propagate in the metallic glass matrix. Finally, the composite fractures in a mixed mode, with splitting in the tungsten fiber, along with shear fracture in the metallic glass matrix. Through the analysis on the stress state in the composite and resistance to shear banding of the two phases during compressive deformation, the possible deformation mechanism of the composite is unveiled. The deformation map of the composite, which covers from elastic deformation to final fracture, is obtained as well.

  2. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  3. Structural disorder in metallic glass-forming liquids.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  4. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  5. Synthesis and growth of HgI{sub 2} nanocrystals in a glass matrix: Heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Condeles, J. F., E-mail: condeles@fisica.uftm.edu.br, E-mail: ricssilva@yahoo.com.br; Silva, R. S., E-mail: condeles@fisica.uftm.edu.br, E-mail: ricssilva@yahoo.com.br [Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, 38025-180, Uberaba, MG (Brazil); Silva, A. C. A.; Dantas, N. O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlandia, 38400-902, Uberlândia, MG (Brazil)

    2014-08-14

    Mercury iodide (HgI{sub 2}) nanocrystals (NCs) were successfully grown in a barium phosphate glass matrix synthesized by fusion. Growth control of HgI{sub 2} NCs was investigated by Atomic Force Microscopy (AFM), Optical Absorption (OA), Fluorescence (FL), and X-ray diffraction (XRD). AFM images reveal the formation of HgI{sub 2} nanocrystals in host glass matrix. HgI{sub 2} NCs growth was evidenced by an OA and FL band red-shift with increasing annealing time. XRD measurements revealed the β crystalline phase of the HgI{sub 2} nanocrystals.

  6. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2005-01-01

    Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation is obse...... is observed in the glassy matrix when the thickness reduction exceeds 89%. Once the phase separation occurs, the microhardness of the specimen increases drastically, indicating the existence of work hardening by severe plastic deformation of the metallic glass.......Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation...

  7. Development of a glass matrix for vitrification of sulphate bearing high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Thorat, Vidya; Ramchandran, M.; Amar Kumar; Ozarde, P.D.; Raj, Kanwar; Das, D.

    2004-07-01

    High level radioactive liquid waste (HLW) is generated during reprocessing of spent nuclear fuel. In the earlier reprocessing flow sheet ferrous sulphamate has been used for valancy adjustment of Pu from IV to III for effective separation. This has resulted in generation of HLW containing significance amount of sulphate. Internationally borosilicate glass matrix has been adopted for vitrification of HLW. The first Indian vitrification facility at Waste Immobilislition Plant (WIP), Tarapur a five component borosilicate matrix (SiO 2 :B 2 O 3 :Na 2 O : MnO : TiO 2 ) has been used for vitrification of waste. However at Trombay HLW contain significant amount of sulphate which is not compatible with standard borosilicate formulation. Extensive R and D efforts were made to develop a glass formulation which can accommodate sulphate and other constituents of HLW e.g., U, Al, Ca, etc. This report deals with development work of a glass formulations for immobilization of sulphate bearing waste. Different glass formulations were studied to evaluate the compatibility with respect to sulphate and other constituents as mentioned above. This includes sodium, lead and barium borosilicate glass matrices. Problems encountered in different glass matrices for containment of sulphate have also been addressed. A glass formulation based on barium borosilicate was found to be effective and compatible for sulphate bearing high level waste. (author)

  8. An electron microscopy appraisal of tensile fracture in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M. [Department of Applied Physics, Netherlands Institute for Metals Research and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); De Hosson, J.Th.M. [Department of Applied Physics, Netherlands Institute for Metals Research and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)], E-mail: j.t.m.de.hosson@rug.nl

    2008-05-15

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, {delta}, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting.

  9. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  10. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Duwez, P.; Bakos, L.; Seres, Z.; Bogancs, J.; Nazarov, V.M.

    1979-12-01

    The surface boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses was measured by neutron activation analysis on both sides of the ribbon samples. It was found that the boron concentration is always higher at the bright side of the ribbon than that at the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. Range values of alpha-particles for some characteristic compositions of metallic glasses are tabulated. A mathematical technique for the deconvolution of experimental data is described and the listing of the Fortran program is enclosed. (author)

  11. Serrated magnetic properties in metallic glass by thermal cycle

    International Nuclear Information System (INIS)

    Ri Myong-Chol; Sohrabi, Sajad; Ding Da-Wei; Wang Wei-Hua; Dong Bang-Shao; Zhou Shao-Xiong

    2017-01-01

    Fe-based metallic glasses (MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe 78 Si 9 B 13 glassy ribbon. The values of magnetic induction (or magnetic flux density) B and coercivity H c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall, increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry. (paper)

  12. On a solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.

    2009-01-09

    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combinations of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage and previous attempts to solve this problem have been largely disappointing. Here we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semi-solid processing is used to optimize the volume fraction, morphology, and size of second phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of {approx} 2 {micro}m, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude making these 'designed' composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems.

  13. Metal-glass based composites for application in TBC-systems

    Science.gov (United States)

    Mack, D. E.; Vaßen, R.; Stöver, D.; Gross, S. M.

    2006-12-01

    A new type of thermal barrier coating (TBC) based on metal-glass composite (MGC) consisting of an ordinary container glass and a NiCoCrAlY-alloy has been recently presented. This TBC material provides the possibility to easily adjust its thermal expansion coefficient to match the substrate by changing the metal to glass ratio of the composite. Vacuum plasma spraying (VPS) has been applied as a possible technologies for deposition of MGC coatings. Isothermal oxidation tests were carried out in air at temperatures of 950, 1000, and 1050 °C, respectively. Thermal cycling tests were carried out by applying a temperature gradient across the sample thickness by heating with an open flame of natural gas followed by removal of the burner and air cooling. Changes in the microstructure were examined by means of microscopy, microanalysis, and x-ray powder diffraction. For long-time annealing at high temperatures, a progressive degradation of the glass matrix as well as oxidation of the metal phases cannot be fully suppressed up to now. By lowering the effective temperature at the MGC layer when used as an intermediate layer, the degradation of the MGC can be reduced without losing its advanced features with respect to creeping and gas-tightness. Additional concepts for improved oxidation resistance of the MGC based on suitable heat treatments and on alternative glass compositions have been developed, and primary results are shown. Evaluation of results from isothermal oxidation experiments and from thermal cycling in burner-rig facilities validates a clear improvement of the lifetime of the coatings compared with earlier results.

  14. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    showed that a series of ternary Mg–Cu–Dy bulk metallic glasses (BGMs) with a diameter of 4–8 mm were suc- cessfully fabricated in the system with ... rods with the maximum diameter of 6–16 mm are fabri- cated by copper-mold casting .... some minor secondary event, resulting in a large melting point of about 65 K, which ...

  15. Soft Ferromagnetic Bulk Metallic Glasses with Enhanced Mechanical Properties

    OpenAIRE

    Ramasamy, Parthiban

    2018-01-01

    Fe-based bulk metallic glasses (BMGs) have gained considerable interest due to their excellent soft magnetic properties with high saturation magnetization, high electrical resistivity, very good corrosion resistance, low materials cost, extremely high mechanical strength and hardness. In spite of having excellent strength, Fe-based BMGs are not used as structural materials in service, so far. The major obstacle is their inherent brittleness under mechanical loading, once a crack is developed ...

  16. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were. 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D23 of the second and third lines of the. Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display ...

  17. Metallic glass alloys of Zr, Ti, Cu and Ni

    Science.gov (United States)

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  18. Abnormal devitrification behavior and mechanical response of cold-rolled Mg-rich Mg-Cu-Gd metallic glasses

    International Nuclear Information System (INIS)

    Lee, J.I.; Kim, J.W.; Oh, H.S.; Park, J.S.; Park, E.S.

    2016-01-01

    Abnormal devitrification behavior and mechanical response of Mg 75 Cu 15 Gd 10 (relatively strong glass former with higher structural stability) and Mg 85 Cu 5 Gd 10 (relatively fragile glass former with lower structural stability) metallic glasses, fabricated by repeated forced cold rolling, have been investigated. When metallic glasses were cold-rolled up to a thickness reduction ratio of ∼33%, the heat of relaxation (ΔH relax. ) below T g of the cold-rolled specimens was reduced, which indicates the formation of local structural ordering via cold rolling due to stress-induced relaxation. The local structural ordering results in abnormal devitrification behavior, such as higher resistance of glass-to-supercooled liquid transition and delayed growth, in the following heat treatment due to increased nuclei density and pinning site. In particular, the fragility index, m, could assist in understanding structural stability and local structural variation by mechanical processing as well as compositional tuning. Indeed, we examine the shear avalanche size to rationalize the variation of the deformation unit size depending on the structural instability before and after cold rolling. The deformation mode in Mg 85 Cu 5 Gd 10 metallic glass might change from self-organized critical state to chaotic state by cold rolling, which results in unique hardening behavior under the condition for coexisting well distributed local structural ordering and numerous thinner shear deformed areas. These results would give us a guideline for atomic scale structural manipulation of metallic glasses, and help develop novel metallic glass matrix composites with optimal properties through effective mechanical processing as well as heat treatment.

  19. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  20. Effect of static pre-loading on fracture toughness of Nicalon fibre glass matrix composite

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Chawla, K. K.; Kulkarmi, R.; Koopman, M.; Boccaccini, A. R.

    č. 367 (2004), s. 17-23 ISSN 0921-5093 R&D Projects: GA AV ČR IAA2041003; GA MŠk ME 491 Institutional research plan: CEZ:AV0Z2041904 Keywords : Nicalon fibre * glass matrix composite * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.445, year: 2004

  1. glasses

    Indian Academy of Sciences (India)

    materials and electrochemical batteries.8 Rare earth metal ions when added to borate act as network modifiers and change the properties of glasses. In rare earth ... room temperature to 600◦C. For electrical measurements, samples were polished and conducting silver paste was deposited on both sides. The sample area ...

  2. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  3. Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing

    International Nuclear Information System (INIS)

    Tai, K. P.; Wang, L. T.; Liu, B. X.

    2007-01-01

    Four Ni-Nb metallic glasses are obtained by ion beam mixing and their compositions are measured to be Ni 77 Nb 23 , Ni 55 Nb 45 , Ni 31 Nb 69 , and Ni 15 Nb 85 , respectively, suggesting that a composition range of 23-85 at. % of Nb is favored for metallic glass formation in the Ni-Nb system. Interestingly, diffraction analyses show that the structure of the Nb-based Ni 31 Nb 69 metallic glass is distinctly different from the structure of the Nb-based Ni 15 Nb 85 metallic glass, as the respective amorphous halos are located at 2θ≅38 and 39 deg. To explore an atomic scale description of the Ni-Nb metallic glasses, an n-body Ni-Nb potential is first constructed with an aid of the ab initio calculations and then applied to perform the molecular dynamics simulation. Simulation results determine not only the intrinsic glass forming range of the Ni-Nb system to be within 20-85 at. % of Nb, but also the exact atomic positions in the Ni-Nb metallic glasses. Through a statistical analysis of the determined atomic positions, a new dominant local packing unit is found in the Ni 15 Nb 85 metallic glass, i.e., an icositetrahedron with a coordination number to be around 14, while in Ni 31 Nb 69 metallic glasses, the dominant local packing unit is an icosahedron with a coordination number to be around 12, which has been reported for the other metallic glasses. In fact, with increasing the irradiation dose, the Ni 31 Nb 69 metallic glasses are formed through an intermediate state of face-centered-cubic-solid solution, whereas the Ni 15 Nb 85 metallic glass is through an intermediate state of body-centered-cubic-solid solution, suggesting that the structures of the constituent metals play an important role in governing the structural characteristics of the resultant metallic glasses

  4. Friction welding of bulk metallic glasses to different ones

    International Nuclear Information System (INIS)

    Shoji, Takuo; Kawamura, Yoshihito; Ohno, Yasuhide

    2004-01-01

    For application of bulk metallic glasses (BMGs) as industrial materials, it is necessary to establish the metallurgical bonding technology. The BMGs exhibit high-strain-rate superplasticity in the supercooled liquid state. It has been reported that bulk metallic glasses were successfully welded together by friction, pulse-current, explosion and electron-beam methods. In this study, friction welding of the BMGs to different ones were tried for Pd 40 Ni 40 P 20 , Pd 40 Cu 30 P 20 Ni 10 , Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 BMGs. Successful welding was obtained in the combinations of the Pd 40 Ni 40 P 20 and Pd 40 Cu 30 P 20 Ni 10 BMGs, and the Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 ones. No crystallization was observed and no visible defect was recognized in the interface. The joining strength of the welded BMGs was the same as that of the parent BMG or more. BMGs seem to be successfully welded to the different ones with a difference below about 50 K in glass transition temperature

  5. Heterogeneities in metallic glasses. Atomistic computer simulations on the structure and mechanical properties of copper-zirconium alloys and composites

    International Nuclear Information System (INIS)

    Brink, Tobias

    2017-01-01

    The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the

  6. Heterogeneities in metallic glasses. Atomistic computer simulations on the structure and mechanical properties of copper-zirconium alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Brink, Tobias

    2017-07-01

    The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the

  7. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point

    Science.gov (United States)

    Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun

    2018-03-01

    The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.

  8. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    Science.gov (United States)

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  9. Proposed framework for thermomechanical life modeling of metal matrix composites

    Science.gov (United States)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed

  10. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  11. Fe-based bulk metallic glasses used for magnetic shielding

    Science.gov (United States)

    Şerban, Va; Codrean, C.; Uţu, D.; Ercuţa, A.

    2009-01-01

    The casting in complex shapes (tubullar) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small adittion of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  12. Pressure-induced elastic anomaly in a polyamorphous metallic glass

    Science.gov (United States)

    Zeng, Qiaoshi; Zeng, Zhidan; Lou, Hongbo; Kono, Yoshio; Zhang, Bo; Kenney-Benson, Curtis; Park, Changyong; Mao, Wendy L.

    2017-05-01

    The pressure-induced transitions discovered in metallic glasses (MGs) have attracted considerable research interest offering an exciting opportunity to study polyamorphism in densely packed systems. Despite the large body of work on these systems, the elastic properties of the MGs during polyamorphic transitions remain unclear. Here, using an in situ high-pressure ultrasonic sound velocity technique integrated with x-ray radiography and x-ray diffraction in a Paris-Edinburgh cell, we accurately determined both the compressional and shear wave velocities of a polyamorphous Ce68Al10Cu20Co2 MG up to 5.8 GPa. We observed elastic anomalies of a MG with minima (at ˜1.5 GPa) in the sound velocities, bulk modulus, and Poisson's ratio during its polyamorphic transition. This behavior was discussed in comparison to the elastic anomalies of silica glass and crystalline Ce.

  13. Fe-based bulk metallic glasses used for magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Va; Codrean, C; UTu, D [Politehnica University of Timisoara, Depart for Materials Science and Welding, 1, M. Viteazu Bvd., 300222, Timisoara (Romania); ErcuTa, A, E-mail: serban@mec.upt.r [West University of Timisoara, Faculty of Physics, 4, Vasile Parvan Bdv., Timisoara 300223 (Romania)

    2009-01-01

    The casting in complex shapes (tubular) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small addition of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  14. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  15. Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition

    DEFF Research Database (Denmark)

    Mattern, N.; Hermann, H.; Roth, S.

    2003-01-01

    The thermal behavior of the structure of Pd40Cu30Ni10P20 bulk metallic glass has been investigated in situ through the glass transition by means of high-temperature x-ray synchrotron diffraction. The dependence of the x-ray structure factor S(q) of the Pd40Cu30Ni10P20 glass on temperature follows...... the Debye theory up to the glass transition with a Debye temperature theta=296 K. Above the glass transition temperature T-g, the temperature dependence of S(q) is altered, pointing to a continuous development of structural changes in the liquid with temperature. The atomic pair correlation functions g......(r) indicate changes in short-range-order parameters of the first and the second neighborhood with temperature. The temperature dependence of structural parameters is different in glass and in supercooled liquid, with a continuous behavior through the glass transition. The nearest-neighbor distance decreases...

  16. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  17. Metal oxide films on glass and steel substrates

    CERN Document Server

    Sohi, A M

    1987-01-01

    in the pH8 electrolyte supports the view that the rate limiting reduction reaction is possibly oxygen (or water) reduction although some contribution from an organic 'impurity' cannot be ruled out. Coatings of Fe sub 3 O sub 4 on mild steel have been prepared by CVD using pneumatic spraying techniques and the corrosion behaviour of coated electrodes in organic-phosphate electrolyte (pH8) has been examined. A variety of thin (10-1000nm) metal oxide films have been deposited on flat glass substrates by the pyrolysis of an aerosol of metal acetylacetonates in a suitable carrier. The optical characteristics and thickness of the films have been measured and particular interest has centered on the use of a novel pin on disc apparatus to measure the physical durability of such thin films. Characteristic friction/penetration force traces have been established for 1st Series transition metal oxide films and some ranking in terms of 'hardness' established. The use of SnO sub 2 - coated glass for electrodes in a light m...

  18. Investigation of Partially Crystalline Zr77Ni23 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Amra Salčinović Fetić

    2016-08-01

    Full Text Available This paper presents the results of an extensive research of partially crystalline Zr77Ni23 metallic glass (indicated numbers refer to atomic percentages. The partially crystalline Zr77Ni23 samples were prepared by melt-spinning using a device constructed in the Metal Physics Laboratory, Faculty of Science in Sarajevo. XRD pattern shows crystalline peaks which correspond to an orthorhombic structure of Zr3Ni superimposed on an amorphous pattern. Homogeneity and chemical composition were investigated using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX. Crystallization was studied by differential scanning calorimetry (DSC. DSC analysis indicated a simple thermally activated process. Overall activation energy of the crystallization was calculated using Kissinger's model for nonisothermal process and compared with those given by the Augis-Bennett model. By monitoring of the electrical resistance in the temperature range 80 – 270 K a small and negative thermal coefficient of electrical resistance was observed. This means that electrical resistance varies slightly with temperature and it makes this metallic glass suitable for application in electronic circuits for which this property is an important requirement.

  19. Effect of fiber content on the properties of glass fiber-phenolic matrix composite

    International Nuclear Information System (INIS)

    Zaki, M.Y.; Shahid, M.R.; Subhani, T.; Sharif, M.N.

    2003-01-01

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts /components related to electronic and aerospace industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make parts/components of new designs. In the present research, thermosetting phenolic plastic was reinforced with E-glass fiber in different fiber-to-resin ratios to produce composites of different compositions. Mechanical and electrical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  20. Approaches to the accurate characterization of high purity metal fluorides and fluoride glasses

    Science.gov (United States)

    Beary, E. S.; Paulsen, P. J.; Rains, T. C.; Ewing, K. J.; Jaganathan, J.; Aggarwal, I.

    1990-11-01

    The analytical challenges posed by the measurement of trace contaminants in high purity metal fluorides require that innovative chemical preparation procedures be used to enhance existing instrumental techniques. The instrumental techniques used to analyze these difficult matrices must be sensitive enough to detect extremely low levels of trace impurities, and the background interferences derived from the matrix (metal fluoride or glass) must be minimized. A survey of analytical techniques that have the necessary characteristics to analyze these materials will be given. In addition, means of controlling the chemical blank will be presented. Mass and atomic spectrometric techniques will be discussed, specifically graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analytical procedures using GFAAS and ICP-MS have been developed to determine sub ppb (part per billion) levels of contaminants in high purity fluoride materials.

  1. Bulk Metallic Glasses and Their Composites: A Brief History of Diverging Fields

    Directory of Open Access Journals (Sweden)

    Douglas C. Hofmann

    2013-01-01

    Full Text Available Bulk metallic glasses (BMGs and their derivative metal matrix composites (BMGMCs are emerging high-performance engineering materials that are on the precipice of widespread commercialization. This review article discusses the origin of these materials and how their applications and research focus have divided into two distinct fields, one primarily focused on the plastic-like processability of BMGs and the other on the enhanced fracture mechanics of BMGMCs. Although the materials are of similar composition and origin, it is argued that their implementation will be widely varying due to their different processing requirements and intended uses. BMGs will likely find use as plastic-replacement components in cosmetic applications (e.g., watches, cell phones, biomedical implants while BMGMCs will be used in structural applications (e.g., golf clubs, hardware for defense, energy absorbing structures.

  2. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage....../disadvantage that BMGs flow readily into small features and asperities in the dies and molds. Whilst useful for replicating patterned surfaces, this quite often makes non-destructive removal of components quite difficult, with disproportionate extraction forces and specialized tools required to overcome friction...

  3. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  4. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  5. The Effect of Cutting Speed in Metallic Glass Grinding

    International Nuclear Information System (INIS)

    Serbest, Erdinc; Bakkal, Mustafa; Karipcin, Ilker; Derin, Bora

    2011-01-01

    In this paper, the effects of the cutting speed in metallic glass grinding were investigated in dry conditions. The results showed that grinding forces decrease as grinding energy increase with the increasing cutting speeds. The present investigations on ground surface and grinding chips morphologies -shows that material removal and surface formation of the BMG are mainly due to the ductile chip deformation and ploughing as well as brittle fracture of some particles from the edges of the tracks. The roughness values obtained with the Cubic Boron Nitride wheels are acceptable for the grinding operation.

  6. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Bakos, L.; Duwez, P.; Bogancs, J.; Nazarov, V.M.

    1980-01-01

    The boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses is measured by neutron activation analysis on both surfaces of the ribbon samples. It is found that the boron concentration is always higher on the bright side of the ribbon than that on the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. (author)

  7. Effects of neutron irradiation on a superconducting metallic glass

    International Nuclear Information System (INIS)

    Kramer, E.A.; Johnson, W.L.; Cline, C.

    1979-06-01

    The effects of fast neutron irradiation on a superconducting metallic glass (Mo 6 Ru 4 ) 82 B 18 have been studied. Following irradiation to a total fluence of 10 19 n/cm 2 , T/sub c/ increases from 6.05 K to 6.19 K, and the width of the transition decreases sharply. The density of the material decreases by 1.5%, and the x-ray scattering intensity maxima are broadened. An improvement in the ductility of the samples is observed which together with the other observations suggests the production of defects having atomic scale dimensions and characterized by excess volume

  8. Physical factors controlling the ductility of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [Central South University, China; Liu, Chain T [ORNL; Zhang, Z. [University of Tennessee, Knoxville (UTK); Keppens, V. [University of Tennessee, Knoxville (UTK)

    2008-01-01

    In order to identify key physical factor controlling the deformation and fracture behavior of bulk metallic glasses (BMGs), we compiled and analyzed the elastic moduli and compressive ductility for BMGs. In addition, new modulus data were generated in the critical ranges in order to facilitate the analysis. We have found that the intrinsic ductility of BMGs can be correlated with the bulk-to-shear modulus ratio B/G according to Pugh's [Philos. Mag. 45, 823 (1954) ] rule. In some individual BMG systems, for example, Fe based, the relationship seems to be very clear. The physical meaning of this correlation is discussed in terms of atomic bonding and connectivity.

  9. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  10. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  11. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    Science.gov (United States)

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Direct conversion of plutonium metal, scrap, residue, and transuranic waste to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Malling, J.F.; Rudolph, J.

    1995-01-01

    A method for the direct conversion of metals, ceramics, organics, and amorphous solids to borosilicate glass has been invented. The process is called the Glass Material Oxidation and Dissolution System (GMODS). Traditional glass-making processes can convert only oxide materials to glass. However, many wastes contain complex mixtures of metals, ceramics, organics, and amorphous solids. Conversion of such mixtures to oxides followed by their conversion to glass is often impractical. GMODS may create a practical method to convert such mixtures to glass. Plutonium-containing materials (PCMS) exist in many forms, including metals, ceramics, organics, amorphous solids, and mixtures thereof. These PCMs vary from plutonium metal to filters made of metal, organic binders, and glass fibers. For storage and/or disposal of PCMS, it is desirable to convert PCMs to borosilicate glass. Borosilicate glass is the preferred repository waste form for high-level waste (HLW) because of its properties. PCMs converted to a transuranic borosilicate homogeneous glass would easily pass all waste acceptance and storage criteria. Conversion of PCMs to a glass would also simplify safeguards by conversion of heterogeneous PCMs to homogeneous glass. Thermodynamic calculations and proof-of-principle experiments on the GMODS process with cerium (plutonium surrogate), uranium, stainless steel, aluminum, Zircaloy-2, and carbon were successfully conducted. Initial analysis has identified potential flowsheets and equipment. Major unknowns remain, but the preliminary data suggests that GMODS may be a major new treatment option for PCMs

  13. Study of inelastic deformation mechanisms in metal glass volume

    International Nuclear Information System (INIS)

    Bakaj, S.A.; Neklyudov, I.M.; Savchenko, V.I.; Ehkert, Yu.

    2001-01-01

    The results of investigations of the mechanical properties and internal friction of the bulk amorphous alloy Zr 53.5 Ti 5 Cu 17.5 Ni 14.6 Al 10.4 within the temperature range from the room temperature up to glass-transition temperature are reported. The yield stress and transition from homogeneous to inhomogeneous plastic deformation are investigated. The temperature dependence of low-frequency internal friction, Q -1 (T), in the amplitude-independent limit of oscillations is obtained. The temperature range within which the homogeneous plastic deformation is observed under compression stress is determined. The superplasticity of the amorphous alloy is revealed at the temperature which is 100K lower than the glass-transition temperature. The lowest temperature, at which the superplasticity is revealed, turns to be an edge of the temperature range where Q -1 (T) increases fast. The microscopic nature of the observed phenomena are interpreted on the base of the polycluster model of the metallic glasses

  14. Impact of spatial dimension on structural ordering in metallic glass.

    Science.gov (United States)

    Hu, Yuan-Chao; Tanaka, Hajime; Wang, Wei-Hua

    2017-08-01

    Metallic glasses (MGs) have so far attracted considerable attention for their applications as bulk materials. However, new physics and applications often emerge by dimensional reduction from three dimensions (3D) to two dimensions (2D). Here, we study, by molecular dynamics simulations, how the liquid-to-glass transition of a binary Cu_{50}Zr_{50} MG is affected by spatial dimensionality. We find clear evidence that crystal-like structural ordering controls both dynamic heterogeneity and slow dynamics, and thus plays a crucial role in the formation of the 2DMG. Although the 2DMG reproduces the dynamical behaviors of its 3D counterpart by considering Mermin-Wagner-type fluctuations specific to 2D, this atomic-scale structural mechanism is essentially different from that for the 3DMG in which icosahedral clusters incompatible with crystallographic symmetry play a key role in glassy behaviors. Our finding provides a structural mechanism for the formation of 2DMGs, which cannot be inferred from the knowledge of 3DMGs. The results suggest a structural basis for the glass transition in 2DMG and provide possible explanations for some previous experimental observations in ultrathin film MGs.

  15. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    Science.gov (United States)

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  16. Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F.; Sarwer, W. [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Kamran, M.; Mumtaz, M. [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Krenn, H. [Institute of Physics, Karl-Franzens University Graz, Universitätsplatz 5, A-8010 Graz (Austria); Letofsky-Papst, I. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, A-8010 Graz (Austria)

    2016-06-01

    Surface effects in cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles dispersed in a silica (SiO{sub 2}) matrix were studied by using AC and DC magnetization. Nanoparticles with different concentration of SiO{sub 2} were synthesized by using sol–gel method. Average crystallite size lies in the range 25–34 nm for different SiO{sub 2} concentration. TEM image showed that particles are spherical and elongated in shape. Nanoparticles with higher concentration of SiO{sub 2} exhibit two peaks in the out-of-phase ac-susceptibility. First peak lies in the high temperature regime and corresponds to average blocking temperature of the nanoparticles. Second peak lies in the low temperature regime and is attributed to surface spin-glass freezing in these nanoparticles. Low temperature peak showed SiO{sub 2} concentration dependence and was vanished for large uncoated nanoparticles. The frequency dependence of the AC-susceptibility of low temperature peak was fitted with dynamic scaling law which ensures the presence of spin-glass behavior. With increasing applied DC field, the low temperature peak showed less shift as compared to blocking peak, broaden, and decreased in magnitude which also signifies its identity as spin-glass peak for smaller nanoparticles. M–H loops showed the presence of more surface disorder in nanoparticles dispersed in 60% SiO{sub 2} matrix. All these measurements revealed that surface effects become strengthen with increasing SiO{sub 2} matrix concentration and surface spins freeze in to spin-glass state at low temperatures. - Highlights: • Surface effects in CoFe{sub 2}O{sub 4} nanoparticles dispersed in a SiO{sub 2} matrix were studied. • Out-of-phase AC-susceptibility exhibits two peaks for SiO{sub 2} coated nanoparticles. • First peak corresponds to average blocking temperature. • Second peak is attributed to surface spin-glass freezing • The spin-glass behavior depends upon the SiO{sub 2} matrix concentration.

  17. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    Science.gov (United States)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  18. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    Science.gov (United States)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  19. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    Science.gov (United States)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  20. Structurally enhanced anelasticity in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Caron, A.; Wunderlich, R.; Gu, L.; Fecht, H.-J.

    2011-01-01

    Research highlights: → The authors reports on the occurrence of mesostructure in the Zr 63-x Cu 24 Al x Ni 10 Co 3 with a length scale in the 250-400 nm range, depending on the aluminum content. → The frequency dependence of the longitudinal sound velocity correlates with the measured mesostructural lengths while interpreting the ultrasonic data with the thermoelastic model. → It appears that the mesostructural length scale is a governing parameter for the mechanical behavior of this alloys system. → The present work first demonstrates the interplay of mesostructure and mechanical behavior of metallic glasses. -- Atomic force acoustic microscopy was used to image bulk metallic glasses of composition Zr 63-x Cu 24 Al x Ni 10 Co 3 with 8 < x < 15. The elastic contrast was modulated on a length scale of 250-400 nm. A similar modulation was identified by transmission electron microscopy. Using the thermoelastic, model a good correlation between the observed anelasticity and the evidenced mesostructure was obtained.

  1. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  2. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  3. Molecular dynamics study of a nuclear waste glass matrix with plutonium

    International Nuclear Information System (INIS)

    Meis, C.; Delaye, J.M.; Ghaleb, D.

    1999-01-01

    Molecular dynamics simulation techniques were applied to model the incorporation of plutonium in the French nuclear waste glass matrix. Born-Mayer-Huggins analytical potentials were established to characterize short-range interactions between Pu-O and Pu-Pu pairs; the potentials were fitted to the structural properties of plutonium dioxide in the light of a recent experimental study showing that plutonium is found as Pu(IV) in the glass. The transferability of the established potentials to the glass structure is discussed, and the potential parameters are further refined by molecular dynamics simulations in an aluminoborosilicate glass to obtain mean Pu-O interatomic distances and first-neighbor coordination numbers matching the experimental values as closely as possible. Previously published Born-Mayer-Huggins potentials supplemented by Stillinger-Weber three-body terms were used for oxygen-cation and cation-cation interactions. The difficulties encountered in establishing a Pu-O potential that provides satisfactory results in both oxides and glasses are also discussed

  4. Incorporation of defects into the central atoms model of a metallic glass

    International Nuclear Information System (INIS)

    Lass, Eric A.; Zhu Aiwu; Shiflet, G.J.; Joseph Poon, S.

    2011-01-01

    The central atoms model (CAM) of a metallic glass is extended to incorporate thermodynamically stable defects, similar to vacancies in a crystalline solid, within the amorphous structure. A bond deficiency (BD), which is the proposed defect present in all metallic glasses, is introduced into the CAM equations. Like vacancies in a crystalline solid, BDs are thermodynamically stable entities because of the increase in entropy associated with their creation, and there is an equilibrium concentration present in the glassy phase. When applied to Cu-Zr and Ni-Zr binary metallic glasses, the concentration of thermally induced BDs surrounding Zr atoms reaches a relatively constant value at the glass transition temperature, regardless of composition within a given glass system. Using this 'critical' defect concentration, the predicted temperatures at which the glass transition is expected to occur are in good agreement with the experimentally determined glass transition temperatures for both alloy systems.

  5. Densification and strain hardening of a metallic glass under tension at room temperature.

    Science.gov (United States)

    Wang, Z T; Pan, J; Li, Y; Schuh, C A

    2013-09-27

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  6. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  7. Fundamental Study on Laser Interaction with Metal Matrix Nanocomposites

    OpenAIRE

    Ma, Chao

    2015-01-01

    The objective of this study is to significantly advance the fundamental understanding of laser interaction with metal matrix nanocomposites (MMNCs) and to overcome the fundamental limits of current laser processing techniques by tuning heat transfer and fluid flow using nanoparticles.Ultrasonic assisted electrocodeposition was used to prepare MMNCs samples (e.g., Ni/Al2O3) for laser melting experiments. Microstructural study showed that uniform distribution and dispersion of nanoparticles wer...

  8. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  9. Nondestructive Characterization of Two-Phase Metal-Matrix Materials

    Science.gov (United States)

    1991-12-01

    to a time standard. The alloys 1100. 3003. 5052 , 6061. and 2024. Aluminium specific technique may utilise a standin,-wave pat- alloys that contain...obtained for rolled ferritic steel sheets, rolled ferritic steel plates and for extruded metal-matrix composites of the aluminium alloys Al-8091, Al-7064...and Salama Table 1. Chemical composition of aluminium alloyvs and volhme percentage of SiC reinforcement of the MNIC-specimens Alloying Elements Alloy

  10. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    ... ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations.

  11. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  12. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  13. High pressure die casting of Fe-based metallic glass.

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  14. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...... a rounded vertex on the yield surface. The full three dimensional model is used to study effects of deviations from equal transverse tension in directions perpendicular to the fibers. (C) 1998 Acta Metallurgica Inc....

  15. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  16. Optimizing chemistry of bulk metallic glasses for improved thermal stability

    International Nuclear Information System (INIS)

    Dulikravich, G S; Egorov, I N; Colaco, M J

    2008-01-01

    Thermo-mechanical-physical properties of bulk metallic glasses (BMGs) depend strongly on the concentrations of each of the chemical elements in a given alloy. The proposed methodology for simultaneously optimizing these multiple properties by accurately determining proper concentrations of each of the alloying elements is based on the use of computational algorithms rather than on traditional experimentation, expert experience and intuition. Specifically, the proposed BMG design method combines an advanced stochastic multi-objective evolutionary optimization algorithm based on self-adapting response surface methodology and an existing database of experimentally evaluated BMG properties. During the iterative computational design procedure, a relatively small number of new BMGs need to be manufactured and experimentally evaluated for their properties in order to continuously verify the accuracy of the entire design methodology. Concentrations of the most important alloying elements can be predicted so that new BMGs have multiple properties optimized in a Pareto sense. This design concept was verified for superalloys using strictly experimental data. Thus, the key innovation here lies in arriving at the BMG compositions which will have the highest glass forming ability by utilizing an advanced multi-objective optimization algorithm while requiring a minimum number of BMGs to be manufactured and tested in order to verify the predicted performance of the predicted BMG compositions

  17. Bond length deviation in CuZr metallic glasses

    Science.gov (United States)

    Peng, Chuan-Xiao; Şopu, Daniel; Song, Kai-Kai; Zhang, Zhen-Ting; Wang, Li; Eckert, Jürgen

    2017-11-01

    We define a structural parameter, called atomic bond length deviation (BL Di ), to characterize structural heterogeneity of CuZr melt and metallic glass (MG). Molecular dynamics simulations have been performed to explore the average BL Di of the system evolution with temperature during C u64Z r36 and C u50Z r50 MGs formation and the correlation between BL Di and thermal relaxation/local atomic shear strain upon compressive loading. The results indicate that BL Di contains both symmetrical characteristic and volumetric information of the short-range order clusters while symmetry seems to play a more important role in relaxation and deformation events; the fast decreasing of average BL Di near above the glass transition temperature Tg with decreasing temperature corresponds to the sharp increase of the number of full icosahedra while the shear transformation zones or single jump events have a high propensity to originate from those regions with the higher BL Di clusters. Additionally, the system average BL Di can also be accessed experimentally, through the radial distribution function.

  18. Mechanical and Structural Investigation of Porous Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Baran Sarac

    2015-06-01

    Full Text Available The intrinsic properties of advanced alloy systems can be altered by changing their microstructural features. Here, we present a highly efficient method to produce and characterize structures with systematically-designed pores embedded inside. The fabrication stage involves a combination of photolithography and deep reactive ion etching of a Si template replicated using the concept of thermoplastic forming. Pt- and Zr-based bulk metallic glasses (BMGs were evaluated through uniaxial tensile test, followed by scanning electron microscope (SEM fractographic and shear band analysis. Compositional investigation of the fracture surface performed via energy dispersive X-ray spectroscopy (EDX, as well as Auger spectroscopy (AES shows a moderate amount of interdiffusion (5 at.% maximum of the constituent elements between the deformed and undeformed regions. Furthermore, length-scale effects on the mechanical behavior of porous BMGs were explored through molecular dynamics (MD simulations, where shear band formation is observed for a material width of 18 nm.

  19. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses

    Science.gov (United States)

    Wang, D. P.; Yang, Y.; Niu, X. R.; Lu, J.; Yang, G. N.; Wang, W. H.; Liu, C. T.

    2017-06-01

    Using the method of contact resonance ultrasonic actuation (CRUA), we observed evidence of local structural rejuvenation at the surface of metallic glasses (MGs), arising from the increase of the vibration amplitude of the atoms after the resonance actuation. By adjusting the CRUA parameters, the size, pattern, and extent of the rejuvenated zones could be tailored. Nanoindentation tests revealed suppressed nucleation of shear bands after CRUA, originating from the homogenization of the local structure induced by the ultrasonic vibration. Compared with the structural homogenization from annealing, this method will not sacrifice the concentration of the free volume for the local structural constraint. These results are useful to understand the evolution of the microstructure and local structural rejuvenation of MGs, as well as the design of MGs with improved plasticity from the nanoscale to the microscale.

  20. Borosilicate glass as a matrix for immobilization of SRP high-level waste

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Approximately 22 million gallons of high-level radioactive defense waste are currently being stored in large underground tanks located on the Savannah River Plant (SRP) site in Aiken, South Carolina. One option now being considered for long-term management of this waste involves removing the waste from the tanks, chemically processing the waste, and immobilizing the potentially harmful radionuclides in the waste into a borosilicate glass matrix. The technology for producing waste glass forms is well developed and has been demonstrated on various scales using simulated as well as radioactive SRP waste. Recently, full-scale prototypical equipment has been made operational at SRP. This includes both a joule-heated ceramic melter and an in-can melter. These melters are a part of an integrated vitrification system which is under evaluation and includes a spray calciner, direct liquid feed apparatus, and various elements of an off-gas system. Two of the most important properties of the waste glass are mechanical integrity and leachability. Programs are in progress at SRL aimed at minimizing thermally induced cracking by carefully controlling cooling cycles and using ceramic liners or coatings. The leachability of SRP waste glass has been studied under many different conditions and consistently found to be low. For example, the leachability of actual SRP waste glass was found to be 10 -6 to 10 -5 g/(cm 2 )(day) initially and decreasing to 10 -9 to 10 -8 g/(cm 2 )(day) after 100 days. Waste glass is also being studied under anticipated storage conditions. In brine at 90 0 C, the leachability is about 5 x 10 -8 g/(cm 2 )(day) after 60 days. The effects of other geological media including granite, basalt, shale, and tuff are also being studied as part of the multibarrier isolation system

  1. Bulk metallic glasses and high entropy alloys for reprocessing applications

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Jayaraj, J.

    2016-01-01

    Recent breakthroughs in materials engineering have generated complex alloys that retain a glassy state in bulk form (bulk metallic glasses or BMGs) via ingot casting. High corrosion resistance is expected for BMGs (amorphous) as they are free from defects associated with the crystalline state such as grain boundaries, dislocations and stacking faults. Compared with conventional alloys containing one or two principal elements, the recently developed HEAs are usually composed of five or more elements with equimolar or near equimolar elemental fractions, which forms single solid solution phase. These HEAs exhibit excellent microstructural stability with better mechanical, wear and corrosion resistance properties as they are essentially single phase. Reprocessing of spent fuel from the fast breeder reactor involves the use of high concentration of (11.5 M) nitric acid under boiling conditions for the dissolution of the fuel. Conventional AISI type 304LSS and nitric acid grade 304L stainless steel would undergo inter-granular corrosion under these conditions and cannot be used for the fabrication of dissolver vessel. Currently titanium is used and zirconium alloys are proposed for future dissolver applications. Thus searching for newer materials with higher corrosion resistance suggests metallic glasses and HEAs for critical components of the dissolver application. Several Zr-based glassy alloys with different microstructural states and Ni-Nb based glassy alloys and TiZrHfNbTa HEA were cast and characterized for microstructure and corrosion resistance in nitric acid medium. From these studies, factors such as the corrosive environment (nitric acid, chloride and fluoride), and the presence of passivating elements in the alloy were emphasized for better corrosion resistance of BMGs and HEA. Attempts were also made to prepare coatings of Zr-and Ni-based glassy alloys on 304LSS by laser based deposition technique and their corrosion properties were evaluated. (author)

  2. Selection of the Composition with High Glass Forming Ability in Zr-Cu-Ni-Al Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yajuan Sun

    2014-01-01

    Full Text Available Three new Zr-Cu-Ni-Al bulk metallic glasses were developed through appropriate mixing of three binary eutectics Zr38.2Cu61.8, Zr51Al49, and Zr64Ni36. By suppressing solidification of competing crystalline phases, a new glass forming alloy Zr51Cu24.22Ni14.06Al10.72 with the critical diameter of up to 10 mm is obtained.

  3. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  4. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...... glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG. ©2007 American Institute of Physics...

  5. Examining metallic glass formation in LaCe:Nb by ion implantation

    Directory of Open Access Journals (Sweden)

    Sisson Richard

    2017-01-01

    Full Text Available In order to combine niobium (Nb with lanthanum (La and cerium (Ce, Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. Using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  6. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  7. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  8. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  9. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  10. Barium borosilicate glass - a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Sengupta, P.; Kumar, Amar; Das, D.; Kale, G.B.; Raj, Kanwar

    2006-01-01

    Borosilicate glass formulations adopted worldwide for immobilization of high-level radioactive liquid waste (HLW) is not suitable for sulphate bearing HLW, because of its low solubility in such glass. A suitable glass matrix based on barium borosilicate has been developed for immobilization of sulphate bearing HLW. Various compositions based on different glass formulations were made to examine compatibility with waste oxide with around 10 wt% sulfate content. The vitrified waste product obtained from barium borosilicate glass matrix was extensively evaluated for its characteristic properties like homogeneity, chemical durability, glass transition temperature, thermal conductivity, impact strength, etc. using appropriate techniques. Process parameters like melt viscosity and pour temperature were also determined. It is found that SB-44 glass composition (SiO 2 : 30.5 wt%, B 2 O 3 : 20.0 wt%, Na 2 O: 9.5 wt% and BaO: 19.0 wt%) can be safely loaded with 21 wt% waste oxide without any phase separation. The other product qualities of SB-44 waste glass are also found to be on a par with internationally adopted waste glass matrices. This formulation has been successfully implemented in plant scale

  11. Structure Analyses of Fe-based Metallic Glasses by Electron Diffraction

    Directory of Open Access Journals (Sweden)

    Akihiko Hirata

    2010-12-01

    Full Text Available Nanoscale structural information of amorphous structures has become obtainable by using nanobeam electron diffraction in combination with high resolution imaging. In addition, accurate radial distribution function analysis using energy filter has also become available to know averaged amorphous structures. In this paper, we introduce some applications of these techniques, especially to several Fe-based metallic glasses. On the basis of these results, we discuss a relationship between the glass structure and the glass stability in Fe-based metallic glasses

  12. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.M. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chang, C.T. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Chang, Z.Y.; Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shen, B.L.; Inoue, A. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-07-28

    In this work, quaternary Fe{sub 72-x}M{sub x}Y{sub 6}B{sub 22} (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe{sub 68}Mo{sub 4}Y{sub 6}B{sub 22} cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions.

  13. Nonlinear response and avalanche behavior in metallic glasses

    Science.gov (United States)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  14. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Simmons, C.J.; Simmons, J.H.; Macedo, P.B.; Litovitz, T.A.

    1982-01-01

    A process is reported for reacting a porous silicate or borosilicate glass or silica gel with alkali metal cations, Group lb cations and/or ammonium cations bonded to the silicon through divalent oxygen linkages on the internal surfaces of the pores. Ion exchange of the cations with toxic or radioactive cations was possible resulting in a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. The ion exchange reaction may be done successfully with acidic, neutral or alkaline pH solutions. The aim of the immobilization is for permanent storage of hazardous materials such as Hg 2+ , Hg + , Cd 2+ , Tl + , Pb 2+ and radioactive cations

  15. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  16. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  17. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  18. Drilling of metal matrix composites: cutting forces and chip formation

    International Nuclear Information System (INIS)

    Songmene, V.; Balout, B.; Masounave, J.

    2002-01-01

    Particulate metal matrix composites (MMCs) are known for their low weight and their high wear resistance, but also for the difficulties encountered during their machining. New aluminium MMCs containing with both soft lubricating graphite particles and hard particles (silicon carbide or alumina) with improved machinability were developed. This study investigates the drilling of these composites as compared to non-reinforced aluminium. The microstructure of chip, the cutting forces, the shear angles and the friction at tool-chip interface are used to compare the machinability of these composites. It was found that, during drilling of this new family of composites, the feed rate, and the nature of reinforcing particles govern the cutting forces. The mathematical models established by previous researchers for predicting the cutting forces when drilling metals were validated for these composites. The reinforcing particles within the composite help for chip segmentation, making the composite more brittle and easy to shear during the cutting process. (author)

  19. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  20. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  1. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  2. Siderophile element fractionation in meteor crater impact glasses and metallic spherules

    Science.gov (United States)

    Mittlefehldt, David W.; See, T. H.; Scott, E. R. D.

    1993-01-01

    Meteor Crater, Arizona provides an opportunity to study, in detail, elemental fractionation processes occurring during impacts through the study of target rocks, meteorite projectile and several types of impact products. We have performed EMPA and INAA on target rocks, two types of impact glass and metallic spherules from Meteor Crater. Using literature data for the well studied Canyon Diablo iron we can show that different siderophite element fractionations affected the impact glasses than affected the metallic spherules. The impact glasses primarily lost Au, while the metallic spherules lost Fe relative to other siderophile elements.

  3. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  4. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  5. Tensile behavior of Cu50Zr50 metallic glass nanowire with a B2 crystalline precipitate

    Science.gov (United States)

    Sepulveda-Macias, Matias; Amigo, Nicolas; Gutierrez, Gonzalo

    2018-02-01

    A molecular dynamics study of the effect of a single B2-CuZr precipitate on the mechanical properties of Cu50Zr50 metallic glass nanowires is presented. Four different samples are considered: three with a 2, 4 and 6 nm radii precipitate and a precipitate-free sample. These systems are submitted to uniaxial tensile test up to 25% of strain. The interface region between the precipitate and the glass matrix has high local atomic shear strain, activating shear transformation zones, which concentrates in the neighborhood of the precipitate. The plastic regime is dominated by necking, and no localized shear band is observed for the samples with a 4 and 6 nm radii precipitate. In addition, the yield stress decreases as the size of the precipitate increases. Regarding the precipitate structure, no martensitic phase transformation is observed, since neither the shear band hit the precipitate nor the stress provided by the tensile test is enough to initiate the transformation. It is concluded that, in contrast to the case when multiple precipitates are present in the sample, a single precipitate concentrates the shear strain around its surface, eventually causing the failure of the nanowire.

  6. Quantitative micro-Raman analysis of volcanic glasses: influence and correction of matrix effects

    Science.gov (United States)

    Di Muro, Andrea

    2014-05-01

    Micro-Raman spectroscopy, even though a very promising micro-analytical technique, is still not used to routinely quantify volatile elements dissolved in glasses. Following an original idea of Galeener and Mikkelsen (1981) for the quantification of hydroxyl (OH) in silica glass, several quantitative procedures have been recently proposed for the analysis of water, sulphur and carbon in natural glasses (obsidians, pumices, melt inclusions). The quantification of a single analyte requires the calibration of the correlation between the intensity I (height or area) of the related Raman band, normalized or not to a reference band RB, and the analyte concentration. For the analysis of alumino-silicate glasses, RB corresponds to one of the two main envelopes (LF and HF) related to the vibration of the glass network. Calibrations are linear, provided the increase in the analyte concentration does not dramatically affect RB intensity. Much attention has been paid to identify the most appropriate spectral treatment (spectra reduction; baseline subtraction; etc) to achieve accurate measurement of band intensities. I here show that the accuracy of Raman procedures for volatile quantification critically depends on the capability in predicting and in taking into account the influence of multiple matrix effects, which are often correlated with the average polymerization degree of the glass network. A general model has been developed to predict matrix effects affecting micro-Raman analysis of natural glasses. The specific and critical influence of iron redox state and pressure are discussed. The approach has been extensively validated for the study of melt inclusions and matrices spanning a broad range of compositions and dissolved volatile contents. References Analytical procedures Mercier, M, Di Muro, A., Métrich, N., Giordano, D., Belhadj, O., Mandeville, C.W. (2010) Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions

  7. Behavior of uranium and its surrogates in molten aluminosilicate glasses in contact with liquid metals

    International Nuclear Information System (INIS)

    Chevreux, Pierrick

    2016-01-01

    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and could also reduce them into the metallic form. In this work, we focus on the behavior of uranium and its surrogates, namely hafnium and neodymium, in aluminosilicate glasses from the Na 2 O-CaO-SiO 2 -Al 2 O 3 system melted in highly reducing conditions. The first step consists in comparing the hafnium and uranium solubilities in the glass as functions of redox conditions and glass composition. A methodology has been set up and a specific device has been used to control the oxygen fugacity and the alkali content of the glass. The results show that uranium is far less soluble in the glass than hafnium (Hf(IV)) in reducing conditions. The uranium solubility ranges from 4 to 7 wt% UO 2 for an oxygen fugacity below 10 -14 atm at 1250 C-1400 C. Uranium oxidation states have been investigated by X-ray absorption spectroscopy (XANES). It has been pointed out that U(IV) is the main form in the glass for such imposed oxygen fugacities. The second step of this work is to identify the glass-metal interaction mechanisms in order to determine the localization of uranium and its surrogates (Nd, Hf) in the glass-metal system. Mechanisms are mostly ruled by the presence of metallic aluminum and are similar for uranium, neodymium and hafnium. Glass-metal interaction kinetics demonstrate that uranium and its surrogates can temporarily be reduced into the metallic form for particular conditions. A re-oxidation occurs with time which is in good agreement with thermodynamics. Regarding uranium, the re

  8. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  9. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  10. Bulk Mechanical Properties Testing of Metallic Marginal Glass Formers

    Directory of Open Access Journals (Sweden)

    Thien Q. Phan

    2016-01-01

    Full Text Available We developed a unique three-point bend testing apparatus to measure bulk mechanical properties of a model metallic glass alloy (SAM2X5 with nominal composition Fe49.7Cr17.1Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 prepared by spark plasma sintering. The relatively large sample sizes in the present work allowed for the preparation of test specimens with a macroscale cross section (in the millimeter range with well-controlled sample dimensions closer to standardized tests. Wire saw cutting allowed for a relatively sharp notch radius (3x smaller than previous studies and minimal sample damage. We determined that Young’s modulus and notch fracture toughness measured by our three-point bending apparatus are 230 GPa and 4.9 MPa·m1/2. Also, Vickers indentation and flexure testing provided consistent results for Young’s modulus. Indentation fracture toughness measured by Vickers indentation produced values at least 50% lower than by flexure. The microscale mechanical properties testing technique presented in this work and subsequent analyses are applicable to specimens of other compositions or ones prepared by other methods.

  11. Friction and wear of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  12. Properties of polyamorphous Ce75Al25 metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Q.-S.; Struzhkin, Viktor V.; Fang, Y. Z.; Gao, C. X.; Luo, H. B.; Wang, X. D.; Lathe, C.; Mao, Wendy L.; Wu, F. M.; Mao, Ho-kwang; Jiang, J. Z.

    2010-08-17

    The thermal stability and electronic transport properties of polyamorphous Ce{sub 75} Al{sub 25} metallic glass (MG) have been investigated using in situ high-pressure, high-temperature, energy-dispersive synchrotron x-ray diffraction and in situ high-pressure and low-temperature, four-probe resistance measurements. The results are compared with the properties of La{sub 75} Al{sub 25} MG. The pressure dependence of the crystallization temperature and resistance of the Ce{sub 75} Al{sub 25} MG exhibited turning points at the polyamorphic transition pressure, 1.5 GPa, and they clearly presented different behaviors below and above 1.5 GPa. In contrast, no turning points were observed in the La{sub 75} Al{sub 25} MG (La has no 4f electron). Additionally, the pressure-tuned temperature coefficient of resistance of the Ce{sub 75} Al{sub 25} MG was observed. These results revealed switchable properties in the polyamorphous Ce{sub 75} Al{sub 25} MG that are linked with 4f electron delocalization.

  13. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Kawashima, A.; Inoue, A.; Fecht, H.-J.

    2011-01-01

    We report on the anelastic behavior of a cyclically loaded Zr 62.5 Fe 5 Cu 22.5 Al 10 bulk metallic glass well below its yield strength. The dynamic mechanical behavior of the glass is discussed on the basis of its structural and thermodynamic properties before and after tests. We show how the kinetically frozen anelastic deformation accumulates at room temperature and causes a structural relaxation and densification of the glass and further leads to its partial crystallization.

  14. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry

    CERN Document Server

    Auffray, Etiennette; Dafinei, I; Fay, J; Lecoq, P; Mares, J A; Martini, M; Mazé, G; Meinardi, F; Moine, B; Nikl, M; Pédrini, C; Poulain, M; Schneegans, M; Tavernier, Stefaan; Vedda, A

    1996-01-01

    The article is an overview of the research activity performed in the framework of the Crystal Clear Collaboration to produce scintillating glasses. The manufacturing of heavy metal fluoride glasses doped with Ce3+ is discussed. The luminescence and scintillation characteristics as well as the radiation hardness properties are extensively studied in the case of Ce doped fluorohafnate , found to be the most convenient glass scintillator for high energy physics applications.

  15. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

    Directory of Open Access Journals (Sweden)

    Arnaud Caron

    2015-08-01

    Full Text Available We combine non-contact atomic force microscopy (AFM imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111 and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111 are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.

  16. Pressure effect on crystallization temperature in Zr70Pd30 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jeppesen, S; Saida, J.

    2004-01-01

    The pressure effect on amorphous-to-quasicrystalline-to-intermetallic phase transformations in a Zr70Pd30 metallic glass has been investigated by in situ x-ray diffraction measurements using synchrotron radiation. It is found that the glass crystallizes in two steps: (1) amorphous-to-icosahedral ...

  17. Determining the fracture resistance of fibre-reinforced glass matrix composites by means of the chevron-notch flexural technique

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, A. R.; Kern, H.; Dlouhý, Ivo

    2001-01-01

    Roč. 308, 1/2 (2001), s. 111-117 ISSN 0921-5093 R&D Projects: GA ČR GV101/96/K264 Institutional research plan: CEZ:AV0Z2041904 Keywords : glass matrix composites * fracture toughness * chevron notch test Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.978, year: 2001

  18. Net Shaping of Multifunctional Bulk Metallic Glass Containers and Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  19. Thermoplastic forming of bulk metallic glasses for precision robotics components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  20. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

  1. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  2. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  3. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    Science.gov (United States)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  4. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    Science.gov (United States)

    Aji, D. P. B.; Johari, G. P.

    2014-12-01

    Consequences of increase in structural fluctuations on heating Pd40Ni10Cu30P20 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the Tg (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (-dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-Tg feature and a rapid rise at T near Tg. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  5. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  6. An interatomic potential for studying CuZr bulk metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Kenoufi, Abdel; Bailey, Nicholas

    2007-01-01

    The mechanical properties of BMGs are remarkably different from the ones of ordinary metallic alloys due to the atomic level disorder in the glassy state. Unlike crystalline materials plastic deformation in metallic glasses cannot be caused by lattice defects but takes place through atomic......-scale deformation events and may furthermore involve localization through formation of shear bands. In this paper, an Effective Medium Theory (EMT) potential optimized for modeling the mechanical and thermodynamic properties of CuZr bulk metallic glass is studied. The late transition metals crystallizing in close......-packed structures, and their alloys, while still allowing simulations with millions of atoms is discussed....

  7. Microstructural evolution and homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Yuan, Z.Z.; Li, D.X.

    2014-01-01

    Highlights: • Stress–strain behaviors of the BMGCs are strain rate and temperature dependent. • Micro-crystals are compressed to concave polygon in shape and align in line. • Nano-crystals nuclear and aggregate during high temperature deformation. • Deformation behavior is governed by homogeneous flow of the amorphous matrix. - Abstract: The high temperature compression behavior of Cu 40 Zr 44 Ag 8 Al 8 rods with 6 mm in diameter was investigated and compared with the literature data. Microstructure of the as-cast rods were characterized by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscope in the composites state with microscale Al 3 Zr particles embedded in the amorphous matrix. Deformation results show that the stress–strain behaviors of the bulk metallic glass composites (BMGCs) are strain rate and temperature dependent. In addition, SEM observations reveal that the initially spherical and randomly distributed microscale particles in the amorphous matrix deform to concave polygon in shape and align perpendicular to the load direction during the compression. Meanwhile nano-crystals precipitate continuously from the matrix and aggregate during deformation. Rheological analysis show that the BMGCs exhibit a transition from Newtonian to non-Newtonian in flow behavior dependent on the stain rate. Particles in the amorphous matrix have reinforcement effect on the BMGCs, but the deformation behavior is still dominated by the homogeneous flow of the amorphous matrix phase

  8. Microstructural evolution and homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Y., E-mail: zhangxiangyun86@163.com; Yuan, Z.Z.; Li, D.X.

    2014-12-25

    Highlights: • Stress–strain behaviors of the BMGCs are strain rate and temperature dependent. • Micro-crystals are compressed to concave polygon in shape and align in line. • Nano-crystals nuclear and aggregate during high temperature deformation. • Deformation behavior is governed by homogeneous flow of the amorphous matrix. - Abstract: The high temperature compression behavior of Cu{sub 40}Zr{sub 44}Ag{sub 8}Al{sub 8} rods with 6 mm in diameter was investigated and compared with the literature data. Microstructure of the as-cast rods were characterized by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscope in the composites state with microscale Al{sub 3}Zr particles embedded in the amorphous matrix. Deformation results show that the stress–strain behaviors of the bulk metallic glass composites (BMGCs) are strain rate and temperature dependent. In addition, SEM observations reveal that the initially spherical and randomly distributed microscale particles in the amorphous matrix deform to concave polygon in shape and align perpendicular to the load direction during the compression. Meanwhile nano-crystals precipitate continuously from the matrix and aggregate during deformation. Rheological analysis show that the BMGCs exhibit a transition from Newtonian to non-Newtonian in flow behavior dependent on the stain rate. Particles in the amorphous matrix have reinforcement effect on the BMGCs, but the deformation behavior is still dominated by the homogeneous flow of the amorphous matrix phase.

  9. Composition Range and Glass Forming Ability of Ternary Ca-Mg-Cu Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    .... The maximum thickness at which an alloy remains fully amorphous, glass transition temperature, crystallization temperature, temperature interval of the super-cooled region, solidus and liquidus...

  10. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix.

    Science.gov (United States)

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew J; Rudd, Chris D; Walker, Gavin S; Scotchford, Colin A

    2013-09-01

    Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.

  11. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires

    International Nuclear Information System (INIS)

    Magagnosc, D.J.; Kumar, G.; Schroers, J.; Felfer, P.; Cairney, J.M.; Gianola, D.S.

    2014-01-01

    Ion irradiation of thermoplastically molded Pt 57.5 Cu 14.3 Ni 5.7 P 22.5 metallic glass nanowires is used to study the relationship between glass structure and tensile behavior across a wide range of structural states. Starting with the as-molded state of the glass, ion fluence and irradiated volume fraction are systematically varied to rejuvenate the glass, and the resulting plastic behavior of the metallic glass nanowires probed by in situ mechanical testing in a scanning electron microscope. Whereas the as-molded nanowires exhibit high strength, brittle-like fracture and negligible inelastic deformation, ion-irradiated nanowires show tensile ductility and quasi-homogeneous plastic deformation. Signatures of changes to the glass structure owing to ion irradiation as obtained from electron diffraction are subtle, despite relatively large yield strength reductions of hundreds of megapascals relative to the as-molded condition. To reconcile changes in mechanical behavior with glass properties, we adapt previous models equating the released strain energy during shear banding to a transit through the glass transition temperature by incorporating the excess enthalpy associated with distinct structural states. Our model suggests that ion irradiation increases the fictive temperature of our glass by tens of degrees – the equivalent of many orders of magnitude change in cooling rate. We further show our analytical description of yield strength to quantitatively describe literature results showing a correlation between severe plastic deformation and hardness in a single glass system. Our results highlight not only the capacity for room temperature ductile plastic flow in nanoscaled metallic glasses, but also processing strategies capable of glass rejuvenation outside of the realm of traditional thermal treatments

  12. The Evolution of Microstructures and the Properties of Bulk Metallic Glass with Consubstantial Composition Laser Welding

    Directory of Open Access Journals (Sweden)

    Pingjun Tao

    2016-09-01

    Full Text Available A Zr55Cu30Ni5Al10 plate-like bulk metallic glass (BMG was prepared using copper mold suction casting. Additionally, alloy powders with the same nominal composition were synthesized. The alloy powders were welded or melted to the cleaned surface of the BMG with a laser beam acceleration voltage of 60 kV, a beam current range from 60 to 100 mA, a welding speed of 60 mm/s, as well as an impulse width of 3.0 ms. The effect of consubstantial composition welding on the microstructures and properties was investigated. The molten and subsequently solidified metallic mixtures remain an amorphous structure, but the enthalpy of the welded or melted position varies due to the combination of the micro-structural relaxation and nano-crystals precipitated during the energy inputs. The surface layers of the BMG can be significantly intensified after welding processes; however, the heat-affected zones (HAZs exhibit a slight degradation in mechanical properties with respect to the BMG matrix. This study has important reference value for specialists working on the promotion of applications of BMGs.

  13. Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Michael Gerard; Ince, Rabia; Yukselici, Mehmet Hikmet; Allahverdi, Cagdas

    2011-07-01

    The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nanoparticles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He-Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He-Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

  14. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, ...

  15. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  16. Shear testing of fiber reinforced metal matrix composites

    Science.gov (United States)

    Pindera, Marek-Jerzy

    1989-01-01

    This paper outlines the elements of a combined experimental/analytical methodology for accurate shear characterization of unidirectional composites in the linear and nonlinear range, with particular attention devoted to metal matrix composites. It is illustrated that consistent results can be obtained for a large class of composites from two commonly employed shear test methods currently in use by composites researchers when the influence of various factors that affect the determination of the actual shear response is properly analyzed. These factors include the effects of material anisotropy, specimen geometry, manner of load introduction, and test fixture design on the stress and deformation fields in the test section of off-axis and Iosipescu specimens. Common errors associated with the measurement of deformation fields and calculation of stress fields are discussed and quantified. Particular problems in the determination of the shear response of unidirectional boron/aluminum using the Iosipescu test are illustrated and discussed.

  17. Leveraging metal matrix composites to reduce costs in space mechanisms

    Science.gov (United States)

    Nye, Ted; Claridge, Rex; Walker, Jim

    1994-01-01

    Advanced metal matrix composites may be one of the most promising technologies for reducing cost in structural components without compromise to strength or stiffness. A microlight 12.50 N (2.81 lb), two-axis, solar array drive assembly (SADA) was made for the Advanced Materials Applications to Space Structures (AMASS) Program flight experiment. The SADA had both its inner and outer axis housings fabricated from silicon carbide particulate reinforced alumimun. Two versions of the housings were made. The first was machined from a solid billet of material. The second was plaster cast to a near net shape that required minimal finish machining. Both manufacturing methods were compared upon completion. Results showed a cost savings with the cast housing was possible for quantities greater than one and probable for quantities greater than two. For quantities approaching ten, casting resulted in a reduction factor of almost three in the cost per part.

  18. Solid State Non-powder Process for Boron Nitride Nanotube Metal Matrix Composite, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Boron nitride nanotube (BNNT) reinforced metal matrix composites (MMCs) provide potential for advanced lightweight high stiffness structures that are critical for...

  19. Spatially resolved distribution function and the medium-range order in metallic liquid and glass

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiaowei; Wang, Cai-Zhuang; Hao, Shaogang; Kramer, Matthew; Yao, Yongxin; Mendelev, Mikhail; Napolitano, Ralph; Ho, Kai-Ming

    2011-12-23

    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu{sub 64.5}Zr{sub 35.5} alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe 'Bergman triacontahedron' packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  20. Spatially resolved distribution function and the medium-range order in metallic liquid and glass.

    Science.gov (United States)

    Fang, X W; Wang, C Z; Hao, S G; Kramer, M J; Yao, Y X; Mendelev, M I; Ding, Z J; Napolitano, R E; Ho, K M

    2011-01-01

    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu(64.5)Zr(35.5) alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe "Bergman triacontahedron" packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  1. Metal matrix composites for sustainable lotus-effect surfaces.

    Science.gov (United States)

    Nosonovsky, Michael; Hejazi, Vahid; Nyong, Aniedi E; Rohatgi, Pradeep K

    2011-12-06

    The lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. However, such surfaces require micropatterning, which is extremely vulnerable to even small wear rates. This limits the applicability of the lotus effects to situations when wear is practically absent. To design sustainable superhydrophobic surfaces, we suggest using metal matrix composites (MMCs) with hydrophobic reinforcement in the bulk of the material, rather than only at its surface. Such surfaces, if properly designed, provide roughness and heterogeneity needed for superhydrophobicity. In addition, they are sustainable, since when the surface layer is deteriorated and removed due to wear, hydrophobic reinforcement and roughness remains. We present a model and experimental data on wetting of MMCs. We also conducted selected experiments with graphite-reinforced MMCs and showed that the contact angle can be determined from the model. In order to decouple the effects of reinforcement and roughness, the experiments were conducted for initially smooth and etched matrix and composite materials. © 2011 American Chemical Society

  2. Machinability study of Al-TiC metal matrix composite

    Directory of Open Access Journals (Sweden)

    Siddappa P. N.

    2018-01-01

    Full Text Available Aluminum Metal Matrix Composites have emerged as an advanced class of structural materials have a combination of different, superior properties compared to an unreinforced matrix, which can result in a number of service benefits such as increased strength, higher elastic moduli, higher service temperature, low CTE, improved wear resistance, high toughness, etc. The excellent mechanical properties of these materials together with weight saving makes them very attractive for a variety of engineering applications in aerospace, automotive, electronic industries, etc. Hence, these materials provide as alternative substitutes for conventional engineering materials when specific mechanical properties necessary for required applications. In this work an attempt is made to study the machining parameters of Al6061/TiC MMC. The composite is developed by reinforcing TiC particles in varying proportions of 3, 6, 9 and 12 % weight fractions to the Al6061 matric alloy through stir casting technique. Cutting forces were measured by varying cutting speed and feed rate with constant depth of cut for different % weight fractions. The results showed that the cutting force increases with the increase of feed rate and decreases with the increase of cutting speed for all the weight fractions. Cutting parameters were optimized using Taguchi technique.

  3. Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, Hesham; Marzouk, Samier

    2003-05-26

    Longitudinal and transverse ultrasonic waves velocities in lead tungsten tellurite glasses have been measured using the pulse-echo method at 5 MHz frequency and at room temperature (300 K). The elastic properties; longitudinal modulus, shear modulus, Young's modulus, bulk modulus and Poisson's ratio together with the microhardness, softening temperature, and Debye temperature are found to be rather sensitive to the glass composition. Information about the structure of the glass can be deduced after calculating the average stretching force constant and the average ring size. A comparison between the experimental elastic moduli data obtained in this study and those calculated theoretically by other models has been discussed.

  4. A statistically designed matrix to evaluate solubility, impurity tolerance, and thermal stability of plutonium-bearing glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Meaker, T.F.; Edwards, T.B.; McIntyre, D.S.

    1997-01-01

    In support of the Department of Energy's (DOE) Office of Fissile Material Disposition (OFDM) Program, Westinghouse Savannah River Company (WSRC) is evaluating a unique lanthanide borosilicate glass to immobilize excess plutonium and other heavy metals. The lanthanide borosilicate (LaBS) glass system met all FY96 programmatic planning objectives. Those objectives were focused on (1) demonstrating 10 wt% Pu solubility, and (2) meeting preliminary product performance criteria. Although 10 wt% Pu solubility was demonstrated with product performance exceeding high level waste glasses based on PCT results, the LaBS system was not optimized

  5. Absence of isotope effect of diffusion in a metallic glass

    International Nuclear Information System (INIS)

    Heesemann, A.; Raetzke, K.; Faupel, F.; Hoffmann, J.; Heinemann, K.

    1995-01-01

    The isotope effect E = d ln(D)/d ln (1/√m) of Co diffusion in structurally relaxed Co 86 Zr 14 and Co 81 Zr 19 glasses has been measured by means of a radiotracer technique. Within experimental accuracy no isotope effect was detected (E < 0.04). This suggests a highly cooperative diffusion mechanism. The connection between diffusion and collective low-frequency relaxations in glasses is discussed. (orig.)

  6. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.

    Science.gov (United States)

    Xu, Jian; Wu, Dong; Hanada, Yasutaka; Chen, Chi; Wu, Sizhu; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2013-12-07

    Space-selective metallization of the inside of glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating is demonstrated. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures inside photosensitive glass. Then, femtosecond laser ablation followed by electroless metal plating enables flexible deposition of patterned metal films on desired locations of not only the top and bottom walls but also the sidewalls of fabricated microfluidic structures. A volume writing scheme for femtosecond laser irradiation inducing homogeneous ablation on the sidewalls of microfluidic structures is proposed for sidewall metallization. The developed technique is used to fabricate electrofluidics in which microelectric components are integrated into glass microchannels. The fabricated electrofluidics are applied to control the temperature of liquid samples in the microchannels for the enhancement of chemical reactions and to manipulate the movement of biological samples in the microscale space.

  7. Confinement of InO3, InO6, and InBO3 clusters in a glass matrix

    International Nuclear Information System (INIS)

    Faraci, Giuseppe; Pennisi, Agata R.; Puglisi, Rosaria; Balerna, Antonella; Pollini, Ivano

    2002-01-01

    We report on the formation and detection of molecular aggregates of InO x (x=3,6) in a glass matrix. This result was achieved by simple melting of In 2 O 3 in a B 2 O 3 matrix, at dilution 0.05%. At higher concentrations, we have been able to confine clusters of the mixed compound InBO 3 , obtaining quantum dots of the indium borate embedded in the substrate. The average size of these agglomerates, evaluated in about 30 A, does not change, increasing the dilution in the range 0.3-2.0 %. These results are of particular importance for the confinement of quantum dots in a glass matrix. The characterization of the samples was performed by extended x-ray-absorpion fine-structure and x-ray-diffraction spectroscopies

  8. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    Science.gov (United States)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  9. Metal matrix composites synthesis, wear characteristics, machinability study of MMC brake drum

    CERN Document Server

    Natarajan, Nanjappan; Davim, J Paulo

    2015-01-01

    This book is dedicated to composite materials, presenting different synthesis processes, composite properties and their machining behaviour. The book describes also the problems on manufacturing of metal matrix composite components. Among others, it provides procedures for manufacturing of metal matrix composites and case studies.

  10. PALS investigations of matrix Vycor glass doped with molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model

    Directory of Open Access Journals (Sweden)

    Gorgol Marek

    2015-12-01

    Full Text Available A thermal stability of three materials: undoped reference Vycor glass, glass filled with ROT-305 red dye, and silver nanoparticles was investigated by positron annihilation lifetime spectroscopy (PALS in a broad temperature range (from 93 to 473 K. The attempt of pore size calculations from the ortho-positronium lifetime data was performed using the extended Tao-Eldrup (ETE model. Below room temperature, a significant decrease in lifetime values of the longest-lived component was found for all the samples. This effect could not be explained by thermal shrinkage of the material and is probably caused by interaction of o-Ps with a Vycor glass matrix. The greatest discrepancy from the ETE model predictions was observed for the reference glass. Doping the base material with dye molecules and silver nanoparticles resulted in similar small decrease in this discrepancy. After reheating the samples to the room temperature, the PALS components returned to the initial values. In the temperature range of 293–473 K, quite good agreement between PALS results and the ETE model predictions was observed for the reference glass and the glass incorporated with dye molecules. The observed small discrepancy in this range could possibly be partly explained by thermal expansion of the material. For the glass doped with silver nanoparticles, a significant change in PALS parameters was observed in the temperature range from 403 to 473 K.

  11. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    Science.gov (United States)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-04-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  12. Flexible strain sensors with high performance based on metallic glass thin film

    Science.gov (United States)

    Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.

    2017-09-01

    Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.

  13. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    Directory of Open Access Journals (Sweden)

    Subramanian B

    2015-10-01

    Full Text Available Balasubramanian Subramanian,1 Sundaram Maruthamuthu,2 Senthilperumal Thanka Rajan1 1Electrochemical Material Science Division, 2Corrosion and Materials Protection Division, Central Electrochemical Research Institute, Karaikudi, India Abstract: Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.% of approximately 1.5 µm and 3 µm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. Keywords: thin film metallic glasses, sputtering, biocompatibility, corrosion, antimicrobial activity

  14. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  15. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Yang, Weiming; Sun, Baoan; Zhao, Yucheng; Li, Qiang; Hou, Long; Luo, Ning; Dun, Chaochao; Zhao, Chengliang; Ma, Zhanguo; Liu, Haishun; Shen, Baolong

    2016-01-01

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe 50 Ni 30 P 13 C 7 glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe 50 Ni 30 P 13 C 7 metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  16. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang, Xiang; Sun, Bingli; Zhao, Na; Li, Qian; Hou, Jianhua; Feng, Weina

    2014-01-01

    Highlights: • Wetting behavior of four polymer melts on Pd-based bulk metallic glass was investigated. • From results, in general, the contact angle of polymer on Pd-based BMG decreases with temperature increasing. • We find a critical temperature for each polymer, above this temperature, contact angle on Pd-based BMG does not decrease with temperature increasing. • Surface free energy of Pd-based BMG was estimated by Owens–Wendt method. - Abstract: The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd 40 Cu 30 Ni 10 P 20 bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens–Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding

  17. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weiming [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Sun, Baoan [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Zhao, Yucheng, E-mail: zhaoyc1972@163.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Li, Qiang [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Hou, Long; Luo, Ning [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Dun, Chaochao [Department of Physics, Wake Forest University, Winston Salem, NC 27109 (United States); Zhao, Chengliang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Ma, Zhanguo [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Shen, Baolong [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-08-15

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  18. Experimental design and process analysis for acidic leaching of metal-rich glass wastes.

    Science.gov (United States)

    Tuncuk, A; Ciftci, H; Akcil, A; Ognyanova, A; Vegliò, F

    2010-05-01

    The removal of iron, titanium and aluminium from colourless and green waste glasses has been studied under various experimental conditions in order to optimize the process parameters and to decrease the metal content in the waste glass by acidic leaching. Statistical design of experiments and ANOVA (analysis of variance) were performed in order to determine the main effects and interactions between the investigated factors (sample ratio, acid concentration, temperature and leaching time). A full factorial experiment was performed by sulphuric acid leaching of glass for metal removal. After treating, the iron content was 530 ppm, corresponding to 1880 ppm initial concentration of Fe(2)O(3) in the original colourless sample. This result is achieved using 1M H(2)SO( 4) and 30% sample ratio at 90(o)C leaching temperature for 2 hours. The iron content in the green waste glass sample was reduced from 3350 ppm initial concentration to 2470 ppm after treating.

  19. Spall and Damage Behavior of Intrinsically-Reinforced Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Kennedy, Greg; Hofmann, Douglas; Thadhani, Naresh

    2013-06-01

    We have performed uniaxial-strain plate-impact experiments to study the strength and spall damage of bulk metallic glass-matrix composites (BMGMCs). BMGMCs counteract the brittle nature of monolithic BMGs through in-situ formed crystalline dendrites which increases toughness and ductility. Applications for micrometeoroid shielding, kinetic energy penetrators (KEP) and armor shielding raises the question of the dynamic stability of BMGMCs. Multicomponent Ti-based BMGMCs were investigated using uniaxial-strain plate-impact experiments to examine the phase stability of the dendrite-reinforced BMGMCs under high pressure and their high strain-rate deformation and failure response. The experiments involve impact of 303 stainless steel flyer plate on 303 stainless steel sample holder containing two BMGMC samples at varying velocities. The Hugoniot Elastic Limit (HEL) and the spall strength of the BMGMC samples was determined using velocity interferometry system for any reflector (VISAR). Post-mortem microstructural characterization is done the on the recovered sample and correlated with the measured damage response. The results obtained to date will be presented.

  20. Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Yang, B.; Saksl, K.

    2003-01-01

    Structural stability of a Cu60Ti20Zr20 metallic glass under-pressure up to 4.5 GPa was investigated by x-ray diffraction. The sample exhibited a supercooled liquid region of 33 K and a ratio of the glass-transition temperature to the liquidus temperature of 0.63. The glass crystallized in two......, structure crystalline phase with a spacing group P6(3)/mmc (194) and lattice parameters a = 5.105 Angstrom and c = 8.231 Angstrom. Both crystallization temperatures increased with pressure having a slope of 19 K/GPa. The increase of the first crystallization temperature with increasing pressure in the glass...... can be explained by the suppression of atomic mobility. No significant structural change was detected in the Cu60Ti20Zr20 glass annealed,in vacuum at 697 K for I h as compared to the as-prepared sample from x-ray diffraction. measurements....

  1. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  2. Study of film semiconductor glass-metal interfaces by nuclear methods

    International Nuclear Information System (INIS)

    Wehr, Muryel.

    1979-01-01

    The use of nuclear method analysis, particularly α particles and Li + ions elastic backscattering permitted to study the glass chalcogenide-metal interdiffusion submitted to thermal and electric stresses. The 8 MeV alpha particles are of a great interest, they increase five times the depth of the gold analysis in glasses compared with the 3,5 MeV alpha particles [fr

  3. Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield

    DEFF Research Database (Denmark)

    Manonara, S. R.; Hanagodimath, S. M.; Gerward, Leif

    2011-01-01

    Gamma ray exposure buildup factors for three Heavy Metal Oxide (HMO) glass systems, viz. PbO-Bi2O3-B2O3, PbO-B2O3, and Bi2O3-B2O3 glasses are presented. The computations were done by interpolation method using the Geometric Progression fitting formula and ANSI/ANS-6.4.3 library for the energy range...

  4. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  5. Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature

    Science.gov (United States)

    Gupta, Pradeep; Yedla, Natraj

    2017-12-01

    In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

  6. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    Science.gov (United States)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  7. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100-x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-03-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  8. Proposed Testing to Assess the Accuracy of Glass-To-Metal Seal Stress Analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Robert S.; Emery, John M; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.; Gibson, Cory S; Bencoe, Denise N.

    2014-09-01

    The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.

  9. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  10. Effect of surface oxidation on the nm-scale wear behavior of a metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Sharma, P.; Inoue, A.; Shluger, A.; Fecht, H.-J.

    2011-01-01

    Metallic glasses are good candidates for applications in micromechanical systems. With size reduction of mechanical components into the micrometer and submicrometer range, the native surface oxide layer starts playing an important role in contact mechanical applications of metallic glasses. We use atomic force microscopy to investigate the wear behavior of the Ni 62 Nb 38 metallic glass with a native oxide layer and with an oxide grown after annealing in air. After the annealing, the wear rate is found to have significantly decreased. Also the dependency of the specific wear on the velocity is found to be linear in the case of the as spun sample while it follows a power law in the case of the sample annealed in air. We discuss these results in relation to the friction behavior and properties of the surface oxide layer obtained on the same alloy.

  11. Effect of structural relaxation of metallic glasses on positron annihilation parameters

    International Nuclear Information System (INIS)

    Tian Decheng; Xiong Liangyue; Tang Zhongxun; Xu Yinhua

    1987-07-01

    The results of a comparative study of positron lifetime and a Doppler broadening line-shape parameter for two metallic glasses are presented. The change of lifetime τ-bar and the S-parameter for these two metallic glasses are shown to have a common feature, i.e. at the initial stage of structural relaxation, τ-bar presents a peak-form as a function of annealing time or temperature while the S-parameter decreases monotonically. A possible mechanism is proposed for explaining the peak-form of τ-bar which has been observed in many metallic glasses; the initial rise and the following decrease of τ-bar are attributed to the homogenization of defects taking place during the structural relaxation. The monotonic behaviour of the S-parameter seems to indicate that the annihilation of positrons in free state with the high momentum core electrons is negligible. (author). 8 refs, 2 figs

  12. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    Science.gov (United States)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  13. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  14. Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Andersen, Ulrik Grønbjerg; Thyssen, Anders

    2010-01-01

    The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar...... simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation...... is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation...

  15. Linking structure to fragility in bulk metallic glass-forming liquids

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-01-01

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  16. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    2014-07-01

    Full Text Available The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log.

  17. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    and then exothermic reactions due to crystallization. The glass temperature, Tg, the onset temperature of the cry- stallization, Tx, the supercooled liquid region, ΔTx = Tx – Tg for the alloys are listed in table 1. With increasing. Mg content from 55 to 70 and decreasing Cu content from. 32 to 17, Tg decreased from 445⋅67 K to ...

  18. Optical absorption characteristics of neutron irradiated heavy metal fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.S.; Banerjee, P.K.; Pereira, J.M.T.; Gedam, S.G.

    1987-10-15

    Samples of ZBLA and HBLA glasses were subjected to various fluences of neutron irradiation, and the spectral dependence of optical absorption was measured before and after irradiation. The IR edge was found to be unaffected by neutron irradiation for the fluences used. However, a red shift occurred at the UV edge which slightly recovered after three weeks.

  19. Glass as a matrix for SRP high-level defense waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; Bibler, N.E.; Dukes, M.D.; Plodinec, M.J.

    1980-01-01

    Work done at Savannah River Laboratory and elsewhere that has led to development of glass as a candidate for solidifying Savannah River Plant waste is summarized. Areas of development described are glass formulation and fabrication, and leaching and radiation effects

  20. Formation and growth of semiconductor PbTe nanocrystals in a borosilicate glass matrix

    International Nuclear Information System (INIS)

    Craievich, A.F.; Alves, O.L.; Barbosa, L.C.

    1997-01-01

    Pb- and Te-doped borosilicate glasses are transformed by appropriate heat treatment into a composite material consisting of a vitreous matrix in which semiconductor PbTe nanocrystals are embedded. This composite exhibits interesting non-linear optical properties in the infrared region, in the range 10-20000 A. The shape and size distribution of the nanocrystals and the kinetics of their growth were studied by small-angle X-ray scattering (SAXS) during in situ isothermal treatment at 923 K. The experimental results indicate that nanocrystals are nearly spherical and have an average radius increasing from 16 to 33 A after 2 h at 923 K, the relative size dispersion being time-invariant and approximately equal to 8%. This investigation demonstrates that the kinetics of nanocrystal growth are governed by the classic mechanism of atomic diffusion. The radius of nanocrystals, deduced by applying the simple Efros and Efros (1982) model using the energy values corresponding to the exciton peaks of optical absorption spectra, does not agree with the average radius determined by SAXS. (orig.)

  1. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yurii M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-01-31

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  2. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    International Nuclear Information System (INIS)

    Kiselev, Yurii M

    2009-01-01

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  3. Ultrasound-induced crystallization around the glass transition temperature for Pd40Ni40P20 metallic glass

    International Nuclear Information System (INIS)

    Ichitsubo, Tetsu; Matsubara, Eiichiro; Kai, Satoshi; Hirao, Masahiko

    2004-01-01

    We have found that crystallization of a Pd 40 Ni 40 P 20 bulk metallic glass is accelerated in the vicinity of the glass transition temperature T g when it is subjected to sub/low-MHz frequency ultrasonic vibration. Resonance frequencies and internal frictions have been measured with the electromagnetic acoustic resonance (EMAR) technique. In the initial heating process of an as-cast glassy sample, the resonance frequencies jump up just above T g under ultrasonic excitation, which is attributed to nano-crystallization that is confirmed by the X-ray diffraction profile. However, such a notable change is not observed without ultrasonic vibration. The irregular Λ-shaped internal-friction peaks are also observed prior to the abrupt crystallization. This rapid crystallization is considered to be caused by a stochastic resonance, in which the jump frequency of atoms matches the frequency of the interatomic-potential change by the ultrasonic vibration

  4. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime...

  5. Local structural mechanism for frozen-in dynamics in metallic glasses

    Science.gov (United States)

    Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.

    2018-04-01

    The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.

  6. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants

    Directory of Open Access Journals (Sweden)

    Omar Rodriguez

    2017-10-01

    Full Text Available In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn2+, which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro. Keywords: Biomedical engineering, Materials science

  7. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  8. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component & Systems Analysis; Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano; Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Organic Materials Science; Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Transportation System Analysis

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  9. Friction and surface chemistry of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  10. Kondo effect and non-Fermi liquid behavior in metallic glasses containing Yb, Ce, and Sm

    Science.gov (United States)

    Huang, B.; Yang, Y. F.; Wang, W. H.

    2013-04-01

    The low temperature properties of metallic glasses containing different concentrations of ytterbium, cerium, and samarium are studied. It is found that the Kondo effect caused by exchange interactions between the conduction and 4f electrons and non-Fermi liquid behavior appear in the strongly disordered alloys. We study the origins for these unique features and demonstrate that the found Kondo effect is inherited from the crystalline counterparts. The results might have significance on investigating the strong electron-electron interaction systems with structural disorder and be helpful for designing new metallic glasses with functional properties.

  11. Synthesis and mechanical properties of Fe–Nb–B thin-film metallic glasses

    International Nuclear Information System (INIS)

    Yao, J.H.; Hostert, C.; Music, D.; Frisk, A.; Björck, M.; Schneider, J.M.

    2012-01-01

    Fe–Nb–B thin-film metallic glasses (TFMGs) were synthesized via a combinatorial sputtering approach to probe the property–composition correlation. The boron content was found to dominate the mechanical properties of the TFMGs. The ∼10% smaller strength of Fe–Nb–B TFMGs compared to existing bulk metallic glass with similar composition may be attributed to the absence of a network-like structure based on (Fe,M) 23 B 6 phase due to the extreme quenching conditions employed.

  12. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  13. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  14. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  15. Optical properties of 3d transition metal ion-doped sodium borosilicate glass

    International Nuclear Information System (INIS)

    Wen, Hongli; Tanner, Peter A.

    2015-01-01

    Graphical abstract: Photographs of undoped (SiO 2 ) 50 (Na 2 O) 25 (B 2 O 3 ) 25 (SiNaB) glass and transition metal ion-doped (TM) 0.5 (SiO 2 ) 49.5 (Na 2 O) 25 (B 2 O 3 ) 25 glass samples. - Highlights: • 3d transition metal ion (from Ti to Zn) doped SiO 2 -Na 2 O-B 2 O 3 glasses. • Optical properties of doped glasses investigated. • V(IV,V); Cr(III, VI); Mn(II,III); Fe(II,III); Co(II); Ni(II); Cu(II) by XANES, DRS. • Strong visible absorption but only vanadium ion gives strong emission in glass. - Abstract: SiO 2 -Na 2 O-B 2 O 3 glasses doped with 3d-transition metal species from Ti to Zn were prepared by the melting-quenching technique and their optical properties were investigated. The X-ray absorption near edge spectra of V, Cr, and Mn-doped glasses indicate that the oxidation states of V(IV, V), Cr(III, VI) and Mn(II, III) exist in the studied glasses. The oxidation states revealed from the diffuse reflectance spectra of the glasses are V(IV, V), Cr(III, VI), Mn(III), Fe(II, III), Co(II), Ni(II), and Cu(II). Most of the 3d transition element ions exhibit strong absorption in the visible spectral region in the glass. Under ultraviolet excitation, the undoped sodium borosilicate glass produces weak and broad emission, while doping of vanadium introduces strong and broad emission due to the V(V) charge transfer transition. Only weak emission is observed from Ti(IV), Mn(II), Fe(III) and Cu(II), partly resulting from the strong electron–phonon coupling of the 3d-electrons and the relatively high phonon energy of the studied glass host, with the former leading to dominant nonradiative relaxation based on multiphonon processes for most of the 3d excited states

  16. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    Science.gov (United States)

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  17. Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Grobelny, Lukasz; Pisarska, Joanna; Lisiecki, Radoslaw; Ryba-Romanowski, Witold

    2011-01-01

    Highlights: → Heavy metal glasses doubly doped with Yb 3+ and Er 3+ were examined. → NIR luminescence at about 1530 nm and green and red up-conversion spectra were detected. → The unusual large spectral linewidth nearly close to 110 nm for 4 I 13/2 - 4 I 15/2 transition of Er 3+ ions in Yb-Er co-doped lead borate glass was obtained. → Long-lived NIR luminescence was detected in lead germanate glass. → The NIR luminescence and up-conversion phenomena strongly depend on stretching vibrations of glass host. - Abstract: Selected heavy metal glasses containing Yb 3+ and Er 3+ ions have been studied. Near-infrared luminescence spectra at 1.53 μm and up-conversion spectra of Er 3+ ions were registered under excitation of Yb 3+ ions by 975 nm diode laser line. The luminescence bands correspond to 4 I 13/2 - 4 I 15/2 (NIR), 4 S 3/2 - 4 I 15/2 (green) and 4 F 9/2 - 4 I 15/2 (red) transitions of Er 3+ , respectively. The optical transitions of rare earth ions have been examined as a function of glass host. The unusual large spectral linewidth nearly close to 110 nm for 4 I 13/2 - 4 I 15/2 transition of Er 3+ ions in Yb-Er co-doped lead borate glass was obtained, whereas long-lived NIR luminescence at 1.53 μm was detected in lead germanate glass. The NIR luminescence and up-conversion phenomena strongly depend on stretching vibrations of glass host, which was confirmed by FT-IR spectroscopy.

  18. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  19. glasses

    Indian Academy of Sciences (India)

    composed of VO5 pyramids. The vanadates-based glasses show semiconducting ..... the composition 1 mol% of CeO2. The AC conductivity obeys a power law. The glass samples exhibit typical inor- ganic semiconducting behaviour. The activation energy and conductivity at room temperature were found to be 0.09 eV ...

  20. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2017-05-21

    We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically

  1. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S.

    2017-05-01

    We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically

  2. Development of Compositionally Graded Metallic Glass Alloys with Desirable Properties

    Science.gov (United States)

    2016-06-01

    required dynamic material properties were available in the literature (Mashimo et al 2006). The material was assumed to be elastically isotropic with a...properties were calibrated to samples taken from the Koyna dam and serve as an archetype material for simulation of concrete structures under...reported in literature , Cu64.5Zr35.5.16,18 We further deduce that the maximum laser line ener- gy for this optimal composition, above which a glass is not

  3. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  4. On the atomic structure of Zr60Cu20Fe20 metallic glass

    Science.gov (United States)

    Kaban, I.; Jóvári, P.; Stoica, M.; Mattern, N.; Eckert, J.; Hoyer, W.; Beuneu, B.

    2010-10-01

    The structure of Zr60Cu20Fe20 metallic glass has been studied with high-energy x-ray diffraction, neutron diffraction and extended x-ray absorption spectroscopy and modelled with the reverse Monte Carlo simulation technique. It is found that Cu and Fe atoms prefer Zr as a nearest neighbour. The mean interatomic distance between Cu/Fe and Zr atoms in the glass is remarkably shorter than the sum of the respective atomic radii. The coordination numbers for Cu/Fe-Cu/Fe pairs are very close to each other, suggesting a regular distribution of Cu and Fe atoms in the Zr60Cu20Fe20 metallic glass.

  5. A pseudopotential approach to the superconducting state properties of metallic glass Ca70Mg30

    International Nuclear Information System (INIS)

    Sharma, Ritu; Sharma, K.S.

    1997-01-01

    The superconducting state properties of the metallic glass Ca 70 Mg 30 have been investigated in the BCS-Eliashberg-McMillan framework by extending this theory to the binary metal glasses. Pseudo ions with average properties have been considered to replace both types of ions in the system. Values of the superconducting state parameters, namely electron - phonon coupling strength (λ), Coloumb pseudopotential (μ*), transition temperature (T c ), isotope effect exponent (α) and interaction strength (N 0 V) have been worked out using Ashcroft's potential and the linear potential due to Sharma and Kachhava along with six different forms of dielectric screening. The form factors directly obtained from the screened pseudopotential of Veljkovic and Slavic have also been used to explicitly observe the effect of the dielectric screening on T c , α and N 0 V through μ*. The results obtained established the presence of a superconducting phase in Ca 70 Mg 30 glass. (author)

  6. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    The source used was 57Co in Rh matrix. The samples were placed perpendicular to the γ-ray direction. Recorded spectra were fitted using the. NORMOS computer code developed by Brand [14]. The fittings used restricted D13 = 3, where D13 is the ratio of the intensities of the lines one and three in the magnetic sextuplet.

  7. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  8. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Science.gov (United States)

    Hegde, Vinod; Wagh, Akshatha; Hegde, Hemanth; Vishwanath, C. S. Dwaraka; Kamath, Sudha D.

    2017-05-01

    The present study explores a new borate family glasses based on 10ZnO-5Na2O-10Bi2O3-(75 - x) B2O3- xEu2O3 ( x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu3+ concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm-1 region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO4 units with rise in europium content which confirmed the `network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω2,Ω4) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu3+ ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm.

  9. Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite

    International Nuclear Information System (INIS)

    Wang, Q.; Chiang, F.P.

    1994-01-01

    The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003(microm). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation

  10. Influence of low-temperature annealing on magnetic properties of (Nd0.625Ni0.375)85Al15 metallic glass

    International Nuclear Information System (INIS)

    Xu Feng; Wang Zhiming; Chen Guang; Jiang Jianzhong; Du Youwei

    2008-01-01

    After a review of the selection process of (Nd 0.625 Ni 0.375 ) 85 Al 15 as a metallic glass with a relatively high glass-forming ability, we investigate the influences of its phase transitions by duplicating the heating process of the isochronal thermal analysis with low-temperature annealings. The structure, thermal stability and magnetic properties are characterized. And the influences on magnetic properties are particularly discussed with emphasis. Both the annealing processes, to the glass-transition temperature and to the onset temperature of crystallization, bring about a higher coercivity of the sample and a higher freezing temperature of the spin-glass-state. For the sample annealed to the onset temperature of crystallization, the influence is quite obvious and is ascribed to the formation of ferrimagnetic Nd 7 Ni 3 phase, as detected by XRD. For the sample annealed to the glass-transition temperature, the indistinct influence is further identified with the analysis of the frequency dependence of the spin-glass-state, and it is mainly attributed to the change of the short-range order in the amorphous matrix

  11. Crystallization Kinetics of Two Metallic Glasses by Mossbauer Spectroscopy.

    Science.gov (United States)

    1981-03-07

    144 (1977). 4. Fukamichi, K., et al. " Invar -type New Ferromagnetic Amorphous Fe-B Alloys ," Solid State Communications, 23(12): 955-958 (September 1977...of two amorphous iron alloys , Fe 8020 and Fe80 P6 . C 3.5B0* The objectives of this study were: i) to anneal the glasses at various temperatures, 2...nuclei. In this study, it was used to examine the crystallization characteristics of Fe80B20 and Fe8 0 P6 .5C3 . B1 0 amorphous alloys . These materials

  12. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    Science.gov (United States)

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  13. Variation of Hardness and Modulus across thickness of Zr-Cu-Al Metallic Glass Ribbons

    Science.gov (United States)

    Z. Humberto Melgarejo; J.E. Jakes; J. Hwang; Y.E. Kalay; M.J. Kramer; P.M. Voyles; D.S. Stone

    2012-01-01

    We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus...

  14. On the nature of low temperature internal friction peaks in metallic glasses

    NARCIS (Netherlands)

    Khonik, VA; Spivak, LV

    Low temperature (30 metallic glass Ni60Nb40 subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar

  15. Scratch test induced shear banding in high power laser remelted metallic glass layers

    NARCIS (Netherlands)

    Matthews, D. T. A.; Ocelik, V.; de Hosson, J. Th. M.

    Laser remelted surface layers of a Cu-based metallic glass forming alloy have been produced with fully amorphous depths up to 350 mu m for single track widths of around 1.3 mm and have been checked by transmission of synchrotron radiation. They have been subjected to indentation hardness and scratch

  16. Non-newtonian deformation of co-based metallic glass at low stresses

    NARCIS (Netherlands)

    Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav

    2000-01-01

    The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)

  17. Structural Changes in Deformed Soft Magnetic Ni-Based Metallic Glass

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    The effects of intensive plastic deformation of the soft magnetic metallic glass Ni Si 13 on the structural relaxation were examined. The enthalpy changes studied by differential scanning calorimetry revealed that the intensive plastic deformation was associated with the partial structural

  18. Deformation-strengthening during rolling Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Hu, Yuyan

    2007-01-01

    Mechanical strength evolutions during rolling the Cu60Zr20Ti20 bulk metallic glass (BMG) at room temperature (RT) and cryogenic temperature (CT) have been investigated by measuring the microhardness. The hardness slightly increases during the initial rolling stage as a result of the gradually...

  19. Removal of platinum group metals contained in molten glass using copper

    International Nuclear Information System (INIS)

    Uruga, Kazuyoshi; Sawada, Kayo; Arita, Yuji; Enokida, Youichi; Yamamoto, Ichiro

    2007-01-01

    Removal of platinum group metals (PGMs) such as Pd, Ru, and RuO 2 from molten glass by using various amounts of liquid Cu was done as a basic study on a new vitrification process for a high-level radio-active waste. We prepared two types of borosilicate glasses containing PGMs and Cu, respectively. These glasses were mixed together and heated at 1,473 K for 4h in Ar atmosphere. More than 95% of Pd were removed as a spherical metal button composed of Pd-Cu alloy when Cu was added in an amount 0.5 times the weight of Pd. Nearly 95% of Ru was also removed as a spherical button with 2.5-5 times as much Cu addition as Ru in weight. Ruthenium oxide was reduced to metallic Ru by a reaction with Cu in the molten glass. The removal fraction was increased by increasing the amount of Cu and reached 63% when Cu addition was 7.5 times as much as RuO 2 in weight. By addition of Si as a reducing agent, nearly 90% of Pd and Ru were removed with Cu and Si metal composites even under O 2 :Ar=20:80 (v/v) condition. (author)

  20. Formation of a metallic glass by thermal decomposition of Fe(CO)5

    DEFF Research Database (Denmark)

    Wonterghem, Jacques van; Mørup, Steen; Charles, Stuart W.

    1985-01-01

    Iron pentacarbonyl has been thermally decomposed in an organic liquid. Mössbauer spectroscopy and x-ray diffraction studies show that the sample contains small particles of a metallic glass. Annealing of the particles at 523 K results in crystallization of the particles into a mixture of α-Fe and χ...

  1. In situ compression study of taper-free metallic glass nanopillars

    NARCIS (Netherlands)

    Kuzmin, O.V.; Pei, Y.T.; Hosson, J.T.M. De

    2011-01-01

    Because tapering leads to inevitable artifacts in the analyses of compression experiments on micrometer sized pillars, in this study taper-free nanosized pillars of Zr-based metallic glass of Zr61.8Cu18Ni10.2Al10 composition with diameter ranging from 600 to 90 nm were fabricated. These pillars were

  2. A macro-micromechanics analysis of a notched metal matrix composite

    Science.gov (United States)

    Bigelow, Catherine A.; Naik, Rajiv A.

    1992-01-01

    Macro- and micromechanics analysis were conducted to determine the matrix and fiber behaviors near the notch in a center-notched metal-matrix composite. In this approach, the macrolevel analysis models the entire notched specimen using a 3D finite element program that uses the vanishing-fiber-diameter model to simulate the elastic-plastic behavior of the matrix and the elastic behavior of the fiber. The microlevel behavior is analyzed using a discrete fiber-matrix model containing one fiber and the surrounding matrix. The viability of this analysis is demonstrated using results for a boron/aluminum monolayer.

  3. High-Temperature Fatigue of a Hybrid Aluminum Metal Matrix Composite

    Science.gov (United States)

    Clark, J. T.; Sanders, P. G.

    2014-01-01

    An aluminum metal matrix composite (MMC) brake drum was tested in fatigue at room temperature and extreme service temperatures. At room temperature, the hybrid composite did not fail and exceeded estimated vehicle service times. At higher temperatures (62 and 73 pct of the matrix eutectic), fatigue of a hybrid particle/fiber MMC exhibited failure consistent with matrix overloading. Overaging of the A356 matrix coupled with progressive fracture of the SiC particles combined to create the matrix overload condition. No evidence of macro-fatigue crack initiation or growth was observed, and the matrix-particle interface appeared strong with no debonding, visible matrix phases, or porosity. An effective medium model was constructed to test the hypothesis that matrix overloading was the probable failure mode. The measured particle fracture rate was fit using realistic values of the SiC Weibull strength and modulus, which in turn predicted cycles to failure within the range observed in fatigue testing.

  4. The fundamental structural factor in determining the glass-forming ability and mechanical behavior in the Cu-Zr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Z.D., E-mail: shaz@ihpc.a-star.edu.sg [Institute of High Performance Computing, 1 Fusionopolis Way, Singapore 138632 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Feng, Y.P. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Li, Y. [Department of Materials Science and Engineering, National University of Singapore, Engineering Drive 1, Singapore 117576 (Singapore)

    2011-05-16

    Research highlights: {yields} A weak but significant hump in trend of the coordinate number and density was observed, respectively. {yields} Our findings indicate our simulation is more accurate to describe the atomic structure of Cu-Zr MGs. The composition-structure-properties correlation was established. {yields} And the effective structural unit for this correlation is the Cu-centered full icosahedra. - Abstract: Using the large-scale atomic/molecular massively parallel simulator, the quantitative composition-structure-properties (including glass-forming ability (GFA) and mechanical behavior) correlations in the Cu-Zr metallic glasses were established. The atomic-level origin of these correlations was tracked down. It was found that the Cu-centered full icosahedron is the microscopic factor that fundamentally influences both GFA and mechanical behavior. Our findings have implications for understanding the nature, forming ability and properties of metallic glasses, and for searching novel metallic glasses with unique functional properties.

  5. The fundamental structural factor in determining the glass-forming ability and mechanical behavior in the Cu-Zr metallic glasses

    International Nuclear Information System (INIS)

    Sha, Z.D.; Feng, Y.P.; Li, Y.

    2011-01-01

    Research highlights: → A weak but significant hump in trend of the coordinate number and density was observed, respectively. → Our findings indicate our simulation is more accurate to describe the atomic structure of Cu-Zr MGs. The composition-structure-properties correlation was established. → And the effective structural unit for this correlation is the Cu-centered full icosahedra. - Abstract: Using the large-scale atomic/molecular massively parallel simulator, the quantitative composition-structure-properties (including glass-forming ability (GFA) and mechanical behavior) correlations in the Cu-Zr metallic glasses were established. The atomic-level origin of these correlations was tracked down. It was found that the Cu-centered full icosahedron is the microscopic factor that fundamentally influences both GFA and mechanical behavior. Our findings have implications for understanding the nature, forming ability and properties of metallic glasses, and for searching novel metallic glasses with unique functional properties.

  6. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  7. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    OpenAIRE

    G. Gumienny

    2012-01-01

    The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive ...

  8. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  9. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available consisted of the hard particles uniformly distributed in the host metal matrix. A strong bond between the particles and matrix was formed in the modified layer. A Rofin Nd: YAG laser was used for injecting the ceramic powder into the substrate...

  10. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  11. Evaluation of the borosilicate glass matrix for the immobilization of actinide waste concentrates

    International Nuclear Information System (INIS)

    Scheffler, K.; Krause, H.

    1978-01-01

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected due to the hydrolysis esp. of plutonium and other mechanisms. Also during melting of HLW glasses an increase of top-to-bottom actinide concentration can take place. Both effects will account for increased actinide concentrations in the glasses. The phenomena of these actinide enrichment processes are studied. Following the investigations on actinide compatibility with HLW glass a research program has been started aiming at the vitrification of special actinide waste concentrates. A hazards evaluation is established on the basis of experimental results for simulated disposal periods of millenia with respect to leaching of actinides and alpha irradiation damage. The chemical compatibility of borosilicate glass with actinides has been determined and basic considerations are drawn for the solidification of different types of alpha-bearing wastes in borosilicate glasses

  12. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  13. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    Science.gov (United States)

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  14. A new method for evaluating structural stability of bulk metallic glasses

    International Nuclear Information System (INIS)

    Zhao, Lei; Jia, Haoling; Xie, Shenghui; Zeng, Xierong; Zhang, Tao; Ma, Chaoli

    2010-01-01

    This paper proposed a new method for evaluating the structural stability of bulk metallic glasses (BMGs) based on dilatometric measurements. During heating in the dilatometric experiments, the BMGs expanded continuously with increasing temperature. When the temperature reached the glass transition temperature (T g ), viscous shrinkage occurred due to the viscosity of material becoming lower. Since the inhomogeneous nature of the metallic glasses at atomic level, the processes of rigid expansion and the viscous shrinkage co-exist in a certain temperature region. The expansion stopped completely at a temperature (named T p here) beyond T g . The values of the temperature region, ΔT gp = T p - T g , and the corresponding time interval (Δt gp ) and the activation energy (E p ) corresponding to the expansion processes, are the reflection of the structural stability of BMGs. Investigating the co-existing processes kinetically and thermodynamically, we can make an insight into the structural stability of metallic glasses. Based on this idea, the thermal expansion behaviors of Mg-, Pd-, Zr-, Ti- and Fe-based BMG were studied, and their structural stability was evaluated by the parameters of ΔT gp , Δt gp and E p .

  15. Deformation in Metallic Glasses Studied by Synchrotron X-Ray Diffraction

    Directory of Open Access Journals (Sweden)

    Takeshi Egami

    2016-01-01

    Full Text Available High mechanical strength is one of the superior properties of metallic glasses which render them promising as a structural material. However, understanding the process of mechanical deformation in strongly disordered matter, such as metallic glass, is exceedingly difficult because even an effort to describe the structure qualitatively is hampered by the absence of crystalline periodicity. In spite of such challenges, we demonstrate that high-energy synchrotron X-ray diffraction measurement under stress, using a two-dimensional detector coupled with the anisotropic pair-density function (PDF analysis, has greatly facilitated the effort of unraveling complex atomic rearrangements involved in the elastic, anelastic, and plastic deformation of metallic glasses. Even though PDF only provides information on the correlation between two atoms and not on many-body correlations, which are often necessary in elucidating various properties, by using stress as means of exciting the system we can garner rich information on the nature of the atomic structure and local atomic rearrangements during deformation in glasses.

  16. Thermal stability and magnetocaloric properties of GdDyAlCo bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hui, X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: huixd01@hotmail.com; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2008-01-25

    Gd{sub 56-x}Dy{sub x}Al{sub 24}Co{sub 20} (x = 16, 20 and 22) bulk metallic glasses (BMGs) alloys with a diameter of 2, 3 and 3 mm, respectively, were prepared by using copper mold casting. These alloys exhibit higher values of the glass transition temperature, crystallization temperature, and activation energy of the glass transition and crystallization, compared with those of other known rare-earth-based BMGs. A maximum magnetic entropy changes of 15.78 J/(kg K) is obtained in Gd{sub 40}Dy{sub 16}Al{sub 24}Co{sub 20}, which is the maximal among all the bulk metallic glasses, and is much larger than those of the known crystalline magnetic refrigerant compound Gd{sub 5}Si{sub 2}Ge{sub 1.9}Fe{sub 0.1} and pure Gd metal. All the three BMG alloys have a broader temperature range of the entropy change peak, resulting in larger refrigerate capacities (RC) than those of conventional crystalline materials. The excellent magnetocaloric properties combining with high thermal stability make them an attractive candidate for magnetic refrigerants in the temperature range of 20-100 K.

  17. A new method for evaluating structural stability of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Jia, Haoling [Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Xie, Shenghui; Zeng, Xierong [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, ShenZhen 518060 (China); Zhang, Tao [Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Ma, Chaoli, E-mail: machaoli@buaa.edu.c [Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2010-08-15

    This paper proposed a new method for evaluating the structural stability of bulk metallic glasses (BMGs) based on dilatometric measurements. During heating in the dilatometric experiments, the BMGs expanded continuously with increasing temperature. When the temperature reached the glass transition temperature (T{sub g}), viscous shrinkage occurred due to the viscosity of material becoming lower. Since the inhomogeneous nature of the metallic glasses at atomic level, the processes of rigid expansion and the viscous shrinkage co-exist in a certain temperature region. The expansion stopped completely at a temperature (named T{sub p} here) beyond T{sub g}. The values of the temperature region, {Delta}T{sub gp} = T{sub p} - T{sub g}, and the corresponding time interval ({Delta}t{sub gp}) and the activation energy (E{sub p}) corresponding to the expansion processes, are the reflection of the structural stability of BMGs. Investigating the co-existing processes kinetically and thermodynamically, we can make an insight into the structural stability of metallic glasses. Based on this idea, the thermal expansion behaviors of Mg-, Pd-, Zr-, Ti- and Fe-based BMG were studied, and their structural stability was evaluated by the parameters of {Delta}T{sub gp}, {Delta}t{sub gp} and E{sub p}.

  18. Study of optical absorption and photoluminescence of quantum dots of CdS formed in borosilicate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitender; Verma, A; Pandey, P K; Bhatnagar, P K; Mathur, P C [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Liu, W; Tang, S H [Department of Physics, National University of Singapore, 119243 (Singapore)], E-mail: jitender_does@yahoo.co.in

    2009-06-15

    Optical absorption and photoluminescence (PL) measurements have been made on the quantum dots (QDs) of CdS grown in a borosilicate glass matrix using a two-step annealing technique. The absorption measurements, made in the energy range of 1.3-3.2 eV, indicate the presence of nonradiative trap centers located in the forbidden gap at an energy level near 1.5 eV. The origin of these traps is attributed to the impurities present in the glass matrix. The PL measurements have been made at an excitation energy of 2.75 eV and it is concluded that the origin of PL is not due to either direct recombination of electrons and holes or deep traps, but that it is the shallow traps which are responsible for the observed PL. The shallow traps are attributed to sulfur vacancies formed at the glass-QD interface. The reason for the observed decrease in PL peak intensity with the increase of annealing time is due to the decrease of surface to volume ratio for QDs of higher size.

  19. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    OpenAIRE

    Basareddy Sujatha; Ramarao Viswanatha; Hanumathappa Nagabushana; Chinnappa Narayana Reddy

    2017-01-01

    Glasses in the system xV2O5·20Li2O·(80 − x) [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50) have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI). The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content o...

  20. Characterization & Modeling of Materials in Glass-To-Metal Seals: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computer Science and Mechanics; Emery, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solid Mechanics; Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Reliability; Antoun, Bonnie R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials; Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Organic Materials Science; Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Reliability

    2014-01-01

    To support higher fidelity modeling of residual stresses in glass-to-metal (GTM) seals and to demonstrate the accuracy of finite element analysis predictions, characterization and validation data have been collected for Sandia’s commonly used compression seal materials. The temperature dependence of the storage moduli, the shear relaxation modulus master curve and structural relaxation of the Schott 8061 glass were measured and stress-strain curves were generated for SS304L VAR in small strain regimes typical of GTM seal applications spanning temperatures from 20 to 500 C. Material models were calibrated and finite element predictions are being compared to measured data to assess the accuracy of predictions.

  1. Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available Revealing the essential structural features of metallic glasses (MGs will enhance the understanding of glass-forming mechanisms. In this work, a feasible scheme is provided where we performed the state-of-the-art synchrotron-radiation based experiments combined with simulations to investigate the microstructures of ZrCu amorphous compositions. It is revealed that in order to stabilize the amorphous state and optimize the topological and chemical distribution, besides the icosahedral or icosahedral-like clusters, other types of clusters also participate in the formation of the microstructure in MGs. This cluster-level co-existing feature may be popular in this class of glassy materials.

  2. In situ EC-AFM study of the effect of nanocrystals on the passivation and pit initiation in an Al-based metallic glass

    International Nuclear Information System (INIS)

    Zhang, S.D.; Liu, Z.W.; Wang, Z.M.; Wang, J.Q.

    2014-01-01

    Highlights: • The nanoscale corrosion on Al-rich glass was characterised by in situ EC-AFM. • The nanocrystals were identified from amorphous matrix by tapping mode AFM. • The formation of corrosion products is associated with the galvanic coupling. • The nanocrystals changed the local structure and component of the passive film. - Abstract: The effect of nanocrystals on pit initiation in metallic glasses is an unresolved issue. The passive film formation and pit initiation in the Al–Ni–Ce metallic glass were investigated using in situ electrochemical atomic force microscope (EC-AFM). The α-Al nanophases were identified from the amorphous matrix based upon the phase imaging in the tapping mode AFM. In the early stage of the passive film formation, the corrosion products Al(OH) 3 formed on the α-Al nanoparticles due to the galvanic coupling. The corrosion products incorporated into the passive film changed the local structure and component of the passive film, lowering its stability

  3. Microstructure characterization of laser-deposited titanium carbide and zirconium-based titanium metal matrix composites

    CSIR Research Space (South Africa)

    Ochonogor, OF

    2012-09-01

    Full Text Available . In this work, the technique is used to fabricate metal matrix composites (MMCs) by using an elementally blended feedstock combining metal and ceramic powders in the melt pool, which melt and solidify to create the required morphology. Ti6Al4V + TiC MMCs were...

  4. Weld microstructure in cast AlSi9/SiC(p metal matrix composites

    Directory of Open Access Journals (Sweden)

    J. Wysocki

    2009-04-01

    Full Text Available Welded joint in cast AlSi9/SiC/20(p metal matrix composite by manual TIG arc welding using AlMg5 filler metal has been described inhis paper. Cooling curves have been stated, and the influence in distribution of reinforced particles on crystallization and weldmicrostructure. Welded joint mechanical properties have been determined: hardness and tensile.

  5. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    Science.gov (United States)

    2009-04-01

    P. Predecki, B. C. Giessen, and N. J. Grant, "New metastable alloy phases of gold, silver, and aluminium ," Trans. Metall. Soc. AIME, vol. 233, pp...Res. Inst. Tohoku University (Sendai), vol. 27A, pp. 127-146, 1979. [50] A. Inoue, A. Kitamura, and T. Masumoto, "The effect of aluminium on... hydrides ," J. Non-Cryst. Sol., vol. 53, pp. 105-122, 1982. [180] K. Togano and K. Tachikawa, "Structure and superconductivity of metastable phases in

  6. Sulfur Solubility Testing and Characterization of LAW Phase 1 Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-24

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analysis results for a series of simulated low-activity waste (LAW) glass compositions. These data will be used in the development of improved sulfur solubility models for LAW glass. A procedure developed at Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study.

  7. Sulfur Solubility Testing and Characterization of Hanford LAW Phase 2, Inner Layer Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Caldwell, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-27

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated low activity waste (LAW) glass compositions. A procedure developed at the Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study. These data will be used in the development of improved sulfur solubility models for LAW glass.

  8. An overview on the conventional and nonconventional methods for manufacturing the metallic glasses

    Directory of Open Access Journals (Sweden)

    Axinte Eugen

    2017-01-01

    Full Text Available Metallic glasses (MGs, first discovered in 1959 at Caltech are currently among the most studied metallic materials. MGs called also glassy metals, amorphous metals, liquid metals, are considered to be among the materials of the future. The “classic” methods for industrialization of MGs are : end-casting in copper molds and protected environment, die forging , atomization for obtaining MG powder ,selective laser melting , imprinting in molds, thermoplastic shaping in the super-cooled temperature region. These methods are suitable for producing high value-added precision components but the problems still exists: expensive tools, limited lifetime of tools and the occurring of crystallization. Actually methods (thermoplastic shaping, casting and die forging are limited by the low flexibility of production and by higher costs of tools and accessories. More suitable methods are greatly desired to machine MGs for their wider applications.

  9. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Lee, Jyh-Wei [Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan (China); Center for Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan (China); Jang, Jason Shian-Ching [Department of Mechanical Engineering, Institute of Materials Science and Engineering, National Central University, Chung-Li, Taiwan (China); Chen, Guo-Ju [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, Taiwan (China)

    2014-06-30

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  10. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    International Nuclear Information System (INIS)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen; Duh, Jenq-Gong; Lee, Jyh-Wei; Jang, Jason Shian-Ching; Chen, Guo-Ju

    2014-01-01

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  11. The tensile failure modes of metal-matrix composite materials

    Science.gov (United States)

    Wright, M. A.; Wills, J. L.

    1974-01-01

    The strengths of individual boron fibers extracted from various as-received and thermally fatigued aluminum alloy matrix materials were measured. The results are described in terms of a Weibull distribution, and strengths of composites fabricated from these fibers are calculated in terms of lower and upper bounds. Tests conducted on composite specimens indicated that strengths approaching the upper bounds can be achieved in composites fabricated by normal diffusion bonding techniques. Cyclic temperature changes effectively reduced the strength values toward the lower bounds. It was concluded that this effect resulted from the degradation of the strength of the fiber-matrix bond.

  12. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt......, and have used these glassy configurations to carry out simulations of plastic deformation. These involved different compositions, temperatures (including zero), and types of deformation (uniaxial strain/pure shear), and yielded stress-strain curves and values of flow stress. Separate simulations were...

  13. Direct observation of shear–induced nanocrystal attachment and coalescence in CuZr-based metallic glasses: TEM investigation

    International Nuclear Information System (INIS)

    Hajlaoui, K.; Alrasheedi, Nashmi H.; Yavari, A.R.

    2016-01-01

    In-situ tensile straining tests were performed in a transmission electron microscope (TEM) to analyse the deformation processes in CuZr-based metallic glasses and to directly observe the phase transformation occurrence. We report evidence of shear induced coalescence of nanocrystals in the vicinity of deformed regions. Nanocrystals grow in shear bands, come into contact, being attached and progressively coalesce under applied shear stress. - Highlights: • In-situ tensile straining test in TEM was investigated on CuZr-Based metallic glass. • Strain induces nanocrystallization and subsequent attachment and coalescence of nanocrystals. • The coalescence of nanocrystals compensates strain softening in metallic glasses.

  14. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    Science.gov (United States)

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  15. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  16. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  17. Application of the atomic absorption technical to available the concentration of silver ions incorporated in glass matrix by ionic exchange process

    International Nuclear Information System (INIS)

    Mendes, E.; Silva, K.F.; Teixeira, A.; Silva, L.; Paula, M.M.S.; Angioletto, E.; Riella, H.G.; Fiori, M. A.

    2009-01-01

    Ion specimens can be incorporated in glasses or natural clays by ionic exchange process with different concentrations dependent of matrix's type and of the ionic exchange parameters. In particular, the incorporation of silver ions presents high interest by its biocidal properties. A compound contending ion silver specimens presents bactericidal and fungicidal properties with effect proportional to ion concentration. This work presents results about application of the atomic absorption technical to determine the silver ion concentration incorporated in a glass matrix by ionic exchange process. The ionic exchange experiments were realized with different AgNO 3 concentration and constant temperature. After ionic exchange process, the glass samples were submitted to characterization by Energy Dispersive X-Ray Spectroscopy and Atomic Absorption Techniques. The comparative results between different techniques showed that atomic absorption technical is adequate to determine ion silver concentration incorporated in the glass matrix after ionic exchange process. (author)

  18. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  19. The supercooled liquid region span of Fe-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ferenc, Jaroslaw, E-mail: jferenc@inmat.pw.edu.p [Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Erenc-Sedziak, Tatiana; Kowalczyk, Maciej; Kulik, Tadeusz [Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland)

    2010-04-16

    This work presents the results of the study of the magnetically soft, iron-based bulk metallic glasses, from the viewpoint of their ability to deform in the supercooled liquid region and to resist the tendency to crystallise. The calorimetric measurements of glass transition and crystallisation temperatures (T{sub g} and T{sub x1} respectively) were employed, accompanied by the measurements of magnetic properties as the monitor of structural changes after heat treatment. It was found that the widest supercooled liquid region was obtained when zirconium was selected as one of the alloying elements, yielding the T{sub x1}-T{sub g} span of about 70 {sup o}C. Also, it was observed that the values of T{sub g} and T{sub x} may be controlled by the proportions of the main elements (Fe, Co, Ni), and the glass forming elements (such as B, Nb, Zr). As a guideline, it is suggested that the glassy Fe-based alloys may be maintained in the supercooled liquid state without crystallisation for several minutes, if T{sub x1}-T{sub g} is wider than 50 {sup o}C. Basing on this estimation, calorimetric measurements may be a good indicator of the ability of bulk metallic glasses to be suitable for superplastic compaction into larger shapes.

  20. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  1. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Stress-Corrosion Interactions in Zr-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Petre Flaviu Gostin

    2015-07-01

    Full Text Available Stress-corrosion interactions in materials may lead to early unpredictable catastrophic failure of structural parts, which can have dramatic effects. In Zr-based bulk metallic glasses, such interactions are particularly important as these have very high yield strength, limited ductility, and are relatively susceptible to localized corrosion in halide-containing aqueous environments. Relevant features of the mechanical and corrosion behavior of Zr-based bulk metallic glasses are described, and an account of knowledge regarding corrosion-deformation interactions gathered from ex situ experimental procedures is provided. Subsequently the literature on key phenomena including hydrogen damage, stress corrosion cracking, and corrosion fatigue is reviewed. Critical factors for such phenomena will be highlighted. The review also presents an outlook for the topic.

  3. Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation

    Directory of Open Access Journals (Sweden)

    M.Q. Jiang

    2015-08-01

    Full Text Available A theoretical model that takes into account the free-volume aided cooperative shearing of shear transformation zones (STZs is developed to quantitatively understand the ductile-to-brittle transition (DBT of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-type rearrangements to dilatational processes (termed tension transformation zones (TTZs.

  4. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  5. Related Structure Characters and Stability of Structural Defects in a Metallic Glass.

    Science.gov (United States)

    Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng

    2018-03-22

    Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr 50 Cu 50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses.

  6. Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass

    International Nuclear Information System (INIS)

    Wang, G.; Huang, Y.J.; Shagiev, M.; Shen, J.

    2012-01-01

    Highlights: ► Laser welding is introduced to weld Ti-based bulk metallic glass. ► No crystallization and defects are observed in the joint. ► The sound joint exhibits a high tensile strength of 1650 MPa, 93% of the base alloy. ► The mechanism of successful welding is discussed by means of numerical simulations. - Abstract: Ti-based bulk metallic glass (BMG) plates have been successfully welded together by laser welding process. The tensile strength of the welded sample reaches up to 93% of the base material. Based on calculations and numerical simulations, the mechanism of successful welding of the BMG has been discussed in terms of the thermal history of weld fusion zone (WFZ) and heat affected zone (HAZ).

  7. On the nature of low temperature internal friction peaks in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khonik, V.A. [State Pedagogical Univ., Voronezh (Russian Federation); Spivak, L.V. [State Univ., Perm (Russian Federation)

    1996-01-01

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs via formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.

  8. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  9. Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature

    Directory of Open Access Journals (Sweden)

    Chia-Chi Yu

    2016-11-01

    Full Text Available We report the first example of room-temperature rubber-like deformation in thin-film metallic glasses (TFMGs, 260-nm-thick Zr60Cu24Al11Ni5 layers, under ultra-high shear strain. The TFMGs were deposited, with no external heating, on Zr-based bulk metallic glass (BMG and Si(001 substrates by rf magnetron sputtering in a 3 mTorr Ar plasma. Cross-sectional transmission electron microscopy (XTEM analyses and nanoindentation results reveal that the TFMGs undergo an incredibly large shear strain, estimated to be ∼4000%, during fatigue tests, and thickness reductions of up to 61.5%, with no shear-banding or cracking, during extreme nanoindentation experiments extending through the film and into the substrate. TFMG/BMG samples also exhibit film/substrate diffusion bonding during deformation as shown by high-resolution XTEM.

  10. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  11. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    Energy Technology Data Exchange (ETDEWEB)

    Pan Jie; Chen Qi; Li Ning [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu Lin [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-mail: lliu2000@public.wh.hb.cn

    2008-09-08

    The formation of a Fe{sub 43.7}Co{sub 7.3}Cr{sub 14.7}Mo{sub 12.6}C{sub 15.5}B{sub 4.3}Y{sub 1.9} bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 10{sup 5} Pa (10{sup 5} Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed.

  12. Glass

    OpenAIRE

    Parker, K

    2010-01-01

    Audio recording of the sea from the breakwater in Plymouth Sound, by Stuart Moore. Presentations and exhibitions of the film Glass include: Finding Place exhibition, Plymouth (3 > 26 February 2010); University of the West of England's Radical British Screens symposium (3 September 2010); Plymouth University Festival of Research: Materiality and Technology film programme presented by the Centre for Media Art and Design Research (MADr), Jill Craigie Cinema, Plymouth University (14 March 2011); ...

  13. Corrosion Characterization Of ZA-27 Red Mud Metal Matrix Composites In Sodium Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Jayaprakash

    2017-08-01

    Full Text Available The present investigation aims to evaluate the corrosion characteristics of red mud metal in sodium chloride solution. Metal matrix composites MMC are heterogeneous systems containing matrix and reinforcement. Matrix may be alloy or metal or polymer. Reinforcement may be particulate or fiber or whisker. Their physical and mechanical properties can be tailored according to requirement. They are used in automobile aircraft and marine industries because of their increased corrosion resistance. In this study weight loss corrosion tests and Potestiodynamic polarization studies by using potestiostat are conducted on ZA-27 Red Mud metal matrix composites in different concentrated sodium chloride solutions. Both matrix and reinforcements are commercially available. Composites are prepared by liquid melt metallurgy technique using vortex method. Composites containing 2 4 and 6 percent of preheated but uncoated red mud are prepared. Cylindrical specimens and rectangular specimens are machined. Studies are carried out in 0.035 0.352 and 3.5 solutions of sodium chloride. In all the tests the composites were less prone to corrosion than the matrix. Hence the composites can be used in the marine environment.

  14. High level waste containing granules coated and embedded in metal as an alternative to HLW glasses

    International Nuclear Information System (INIS)

    Neumann, W.

    1980-01-01

    Simulated high level waste containing granules were overcoated with pyrocarbon or nickel respectively. The coatings were performed by the use of chemical vapour deposition in a fluidized bed. The coated granules were embedded in an aluminium-silicon-alloy to improve the dissipation of radiation induced heat. The metal-granules-composites obtained were of improved product stability related to the high level waste containing glasses. (orig.) [de

  15. Barkhausen Effect and Acoustic Emission in a Metallic Glass - Preliminary Results

    International Nuclear Information System (INIS)

    Lopez Sanchez, R.; Lopez Pumarega, M.I.; Armeite, M.; Piotrkowski, R.; Ruzzante, J.E.

    2004-01-01

    Magneto Acoustic Emission, which is Barkhausen Noise (BN) and Acoustic Emission (AE), depends on microstructure and existing residual stresses in magnetic materials. Preliminary results obtained by magnetization along two perpendicular directions on a metal glass foil are presented. Signals were analyzed with Statistic, Fast Fourier and Wavelet methods. Results are part of a Joint Research Project of the Faculty of Science, Cantabria University, Spain, and the Elastic Waves Group of the National Atomic Energy Commission, Argentina

  16. On the origin of second-peak splitting in the static structure factor of metallic glasses

    NARCIS (Netherlands)

    van de Waal, B.W.

    1995-01-01

    It is proposed that the splitting of the second peak of the total static structure factor, S(k), of many metallic glasses is essentially the same feature as the indentation at kσ = (9/2)π in the function (sin k σ + α−1 sin kασ), caused by the coincidence of the fourth minimum of the second term with

  17. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  18. Transition-metal ions in Nd-doped glasses: spectra and effects on Nd fluorescence

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Krashkevich, D.

    1985-01-01

    We have measured transition-metal ion (Ti, V, Cr, Mn, Fe, Co, Ni, Cu) spectra and their effects on Nd fluorescence quenching in Nd-doped phosphate and silicate glasses. Our purpose was to determine the maximum allowable impurity content given particular limits on the absorption loss at 1053 nm and the Nd fluorescence quenching rate. To keep the absorption loss -1 the transition-metal impurity content should be kept below 0.5 ppMw. To keep the increase in the Nd fluorescence decay rate below 1%, the impurity content should be 20 cm -3

  19. Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects

    Science.gov (United States)

    Denisov, Dmitry V.; Lőrincz, Kinga A.; Wright, Wendelin J.; Hufnagel, Todd C.; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T.; Dahmen, Karin A.; Schall, Peter

    2017-03-01

    Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.

  20. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    Science.gov (United States)

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  1. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Jinn P., E-mail: jpchu@mail.ntust.edu.tw [Dept. of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Liu, Tz-Yah; Li, Chia-Lin; Wang, Chen-Hao [Dept. of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Jang, Jason S.C. [Dept. of Mechanical Engineering, National Taiwan Central University, Jhongli 32001, Taiwan (China); Chen, Ming-Jen; Chang, Shih-Hsin; Huang, Wen-Chien [Mackay Memorial Hospital, Taipei 10449, Taiwan (China)

    2014-06-30

    Metallic glasses with the disordered atomic structure have unique properties of high strength, high toughness, good corrosion and abrasion resistances. These materials are thus potentially useful for medical application. In this work, we evaluate the antibacterial property and durability of materials sputter-coated with Zr-based (Zr{sub 53}Cu{sub 33}Al{sub 9}Ta{sub 5}) and Cu-based (Cu{sub 48}Zr{sub 42}Ti{sub 4}Al{sub 6}) thin film metallic glasses (TFMGs). Good adhesive coating of Zr-based TFMG on the dermatome gives rise to blade sharpness improvement of ∼ 27%, substantial surface roughness reduction of ∼ 66% and smoother incised wound on the pig skin. As compared to 48.8° on the bare Si wafer, the water contact angles of 119.5° and 106.6° for Zr- and Cu-based TFMGs, respectively, reveal the hydrophobic characteristic of the coated surfaces. The bacterial adhesion of Escherichia coli and Staphylococcus aureus to both Zr- and Cu-based TFMGs is hindered to different extents. - Highlights: • Thin film metallic glass (TFMG) coatings are evaluated for medical application. • Good adhesive TFMG on the dermatome yields blade sharpness improvement of ∼ 27%. • A reduction of ∼ 66% in surface roughness is observed after coating with TFMG. • Water contact angle measurement reveals the hydrophobic characteristic for TFMGs. • Bacterial adhesion of E. coli and S. aureus to TFMGs is hindered.

  2. Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications.

    Science.gov (United States)

    Wang, Zhifeng; Liu, Jiangyun; Qin, Chunling; Yu, Hui; Xia, Xingchuan; Wang, Chaoyang; Zhang, Yanshan; Hu, Qingfeng; Zhao, Weimin

    2015-04-29

    Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC) and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications.

  3. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  4. A molecular dynamics analysis of internal friction effects on the plasticity of Zr65Cu35 metallic glass

    International Nuclear Information System (INIS)

    Feng, Shidong; Qi, Li; Zhao, Fengli; Pan, Shaopeng; Li, Gong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Highlights: • Effects of internal friction on plasticity is investigated at the atomic level. • The simulations allow reproduction of images of internal friction evolution. • The simulation results are in good agreement with experiments and theories. • This simulation can predict the deformation mode with different internal friction. - Abstract: The effects of internal friction (IF) on Zr 65 Cu 35 metallic glass plasticity are investigated through molecular dynamics simulations. Results show that the Voronoi polyhedron 〈0, 3, 6, 3〉 increases as IF increases, thereby effectively inhibiting localized deformation and improving metallic glass plasticity. The simulations allow reproduction of images of IF evolution in metallic glasses subjected to isothermal annealing at 730 K and 850 K respectively, which can help explain the experimental observations. IF could be adjusted by selecting suitable annealing temperatures and cooling rates. The results of this work provide a strong foundation for future metallic glass designs

  5. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  6. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing

    International Nuclear Information System (INIS)

    Henann, David L; Srivastava, Vikas; Taylor, Hayden K; Hale, Melinda R; Hardt, David E; Anand, Lallit

    2009-01-01

    Metallic glasses possess unique mechanical properties which make them attractive materials for fabricating components for a variety of applications. For example, the commercial Zr-based metallic glasses possess high tensile strengths (≈2.0 GPa), good fracture toughnesses (≈10–50 MPa√m) and good wear and corrosion resistances. A particularly important characteristic of metallic glasses is their intrinsic homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic, coupled with their unique mechanical properties, makes them ideal materials for fabricating micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn be used as dies for the hot-embossing of polymeric microfluidic devices. In this paper we consider a commercially available Zr-based metallic glass which has a glass transition temperature of T g ≈ 350 °C and describe the thermoplastic forming of a tool made from this material, which has the (negative) microchannel pattern for a simple microfluidic device. This tool was successfully used to produce the microchannel pattern by micro-hot-embossing of the amorphous polymers poly(methyl methacrylate) (T g ≈ 115 °C) and Zeonex-690R (T g ≈ 136 °C) above their glass transition temperatures. The metallic glass tool was found to be very robust, and it was used to produce hundreds of high-fidelity micron-scale embossed patterns without degradation or failure

  7. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures.

    Science.gov (United States)

    Lee, Seok-Woo; Jafary-Zadeh, Mehdi; Chen, David Z; Zhang, Yong-Wei; Greer, Julia R

    2015-09-09

    To harness "smaller is more ductile" behavior emergent at nanoscale and to proliferate it onto materials with macroscale dimensions, we produced hollow-tube Cu60Zr40 metallic glass nanolattices with the layer thicknesses of 120, 60, and 20 nm. They exhibit unique transitions in deformation mode with tube-wall thickness and temperature. Molecular dynamics simulations and analytical models were used to interpret these unique transitions in terms of size effects on the plasticity of metallic glasses and elastic instability.

  8. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.

    1993-01-01

    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...... for the composite is markedly reduced by the fibre misalignment and the time needed to reach an approximate steady state is elongated due to the strain induced rotation of the short fibres in the matrix....

  9. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  10. Influence of Au addition on magnetic properties of iron oxide in a silica–phosphate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K., E-mail: ksharma_iit@yahoo.co.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Prajapat, C.L. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Meena, Sher Singh [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, M.R. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Montagne, L. [Université Lille Nord de France, UCCS – Unité de Catalyse et Chimie du Solide – UMR CNRS 8181, 59562 Villeneuve d' Ascq Cedex (France); Kothiyal, G.P. [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2013-11-15

    The influence of gold particle addition on structural and magnetic ordering of iron oxide in a glass matrix was studied. The silica–phosphate glasses containing iron oxide and Au were prepared by the melt quench technique. Evolution of crystalline phases was studied by X-ray diffraction (XRD). Magnetic properties were investigated by means of a Superconducting Quantum Interference Device (SQUID) magnetometer and room temperature Mössbauer spectroscopy. The microstructure exhibited the formation of 30–40 nm size particles. The samples showed the formation of magnetite and hematite as major crystalline phases. Magnetic studies revealed the relaxation of magnetic particles. Blocking temperature of investigated sample increased with an increase of Au content implying an increase in the strength of magnetic interactions. Mössbauer spectroscopy has shown the presence of both doublets and magnetic sextets. The magnetization value increased as Au content was increased, which is attributed to the increase in magnetic and structural ordering. - Highlights: • The grains of 30–40 nm size are obtained in glassy matrix. • Assembly of magnetic particles is found influenced by increase in Au content. • The magnetization and coercive field values are increased with an increase in Au content. • Relaxation of magnetic particles is observed.

  11. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    Science.gov (United States)

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  12. A Novel Route for Development of Bulk Al/SiC Metal Matrix Nanocomposites

    Directory of Open Access Journals (Sweden)

    Payodhar Padhi

    2011-01-01

    Full Text Available Addition of nano particles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying, vertex process, and spray deposition and so forth. However, the above processes are expensive. Solidification processing is a relatively cheaper route. During solidification processing, nano particulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano particulate in metal matrix is a challenge. In the present study a noncontact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nanosized SiC particulates in aluminum matrix. In this method, the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by this method.

  13. THERMOPLASTIC MATRIX SELECTION FOR FIBRE METAL LAMINATE USING FUZZY VIKOR AND ENTROPY MEASURE FOR OBJECTIVE WEIGHTING

    Directory of Open Access Journals (Sweden)

    N. M. ISHAK

    2017-10-01

    Full Text Available The purpose of this study is to define the suitable thermoplastic matrix for fibre metal laminate for automotive front hood utilisation. To achieve the accurate and reliable results, the decision making process involved subjective and objective weighting where the combination of Fuzzy VIKOR and entropy method have been applied. Fuzzy VIKOR is used for ranking purpose and entropy method is used to determine the objective weighting. The result shows that polypropylene is the best thermoplastic matrix for fibre metal laminate by satisfying two compromise solutions with validation using least VIKOR index value scored 0.00, compared to low density polyethylene, high density polyethylene and polystyrene. Through a combination of Fuzzy VIKOR and entropy, it is proved that this method gives a higher degree of confidence to the decision maker especially for fibre metal laminate thermoplastic matrix selection due to its systematic and scientific selection method involving MCDM.

  14. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  15. Analysis of atomic mobility in a Cu38Zr46Ag8Al8 bulk metallic glass

    International Nuclear Information System (INIS)

    Qiao, J.C.; Pelletier, J.M.

    2013-01-01

    Highlights: ► Atomic mobility in Cu 38 Zr 46 Ag 8 Al 8 bulk metallic glass have been investigated by DMA. ► Loss factor is directly connected to the energy lost during application of the stress. ► Structural relaxation and crystallization induces a decrease of the atomic mobility. ► The concentration of quasi-point defects links to atomic mobility in metallic glasses. - Abstract: Atomic mobility in as-cast and annealed Cu 38 Zr 46 Ag 8 Al 8 bulk metallic glass samples is analyzed by performing dynamic mechanical analysis. The loss factor is directly connected to the energy lost during application of the stress. Structural relaxation process and crystallization lead to a decrease of the atomic mobility in the bulk metallic glass. A physical model, based on the concept of quasi point defects is introduced, to describe the atomic mobility. Movements in amorphous materials are correlated. The correlation factor χ reflects the atomic mobility in bulk metallic glasses: structural relaxation and crystallization lead to a decrease of χ, implying the reduction of atomic mobility. The evolution of elastic, visco-elastic and viscoplastic components after structural relaxation and partial crystallization state during the mechanical response has been obtained. Compared with as-cast state, structural relaxation induced an increase of elastic component and a decrease of visco-elastic component in the metallic glass.

  16. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  17. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  18. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  19. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model......, in which continuum damage mechanics is incorporated to model fatigue damage evolution. This material model uses a superposition of kinematic and isotropic hardening, and is able to account for the Bauschinger effect as well as ratchetting, mean stress relaxation, and cyclic hardening or softening. The cell...... model represents a material with transversely staggered fibres. With focus on low cyclic fatigue, the effect of different fibre aspect ratios, different triaxial stress states, and balanced as well as unbalanced cyclic loading is studied....

  20. Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dou, Lintao; Liu, Haishun; Hou, Long; Xue, Lin; Yang, Weiming; Zhao, Yucheng; Chang, Chuntao

    2014-01-01

    The effects of Cu substitution for Fe on the glass-forming ability (GFA) and soft magnetic properties for Fe 72−x Cu x B 20 Si 4 Nb 4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) bulk metallic glasses (BMGs) are investigated. It is found that the investigated BMGs exhibit large GFA as well as excellent soft magnetic properties, and proper substitution of Fe by Cu improves the saturation magnetization, coercive force, and effective permeability without obvious deterioration of the GFA. - Highlights: • Fully glassy rods of Fe 72−x Cu x B 20 Si 4 Nb 4 BMGs were produced above 1 mm in diameter. • Investigated BMGs exhibit large glass-forming ability and excellent soft magnetic properties. • Proper Cu substitution improves magnetic properties without obvious deterioration of glass-forming ability

  1. Neutron detector based on Particles of 6Li glass scintillator dispersed in organic lightguide matrix

    Science.gov (United States)

    Ianakiev, K. D.; Hehlen, M. P.; Swinhoe, M. T.; Favalli, A.; Iliev, M. L.; Lin, T. C.; Bennett, B. L.; Barker, M. T.

    2015-06-01

    Most 3He replacement neutron detector technologies today have overlapping neutron-gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron-gamma separation of 3He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. 6Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of 6Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium (6Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of 6Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a true plateau in the counting

  2. Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser

    Science.gov (United States)

    Pan, Yunxiang; Wang, Bin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2013-04-01

    A model containing an inclusion matrix heated by a millisecond laser is proposed to calculate temperature and thermal stress fields of K9-glass using a finite element method. First, the evolution of temperature and thermal stress fields is analyzed. Results show that both the upper and lower surfaces are damaged. K9-glass is primarily damaged by the combination of radial and axial stresses. Calculated damage morphology is mainly determined by radial stress. Then damage morphology evolution with the increase of the incident laser energy is investigated, which shows that damage area spreads inward from both the front and rear surfaces. Finally, experimental results of long-pulse laser damage of K9-glass are analyzed. The comparison of numerical results with experimental observations shows a good correlation in damage morphology, which indicates that the built inclusion matrix model is applicable to long-pulse laser damage in K9-glass.

  3. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications

    Science.gov (United States)

    Lai, J. J.; Lin, Y. S.; Chang, C. H.; Wei, T. Y.; Huang, J. C.; Liao, Z. X.; Lin, C. H.; Chen, C. H.

    2018-01-01

    Tantalum (Ta) is considered as one of the most promising metal due to its high corrosion resistance, excellent biocompatibility and cell adhesion/in-growth capabilities. Although there are some researches exploring the biomedical aspects of Ta and Ta based alloys, systematic characterizations of newly developed Ta-based metallic glasses in bio-implant applications is still lacking. This study employs sputtering approach to produced thin-film Ti-based metallic glasses due to the high melting temperature of Ta (3020 °C). Two fully amorphous Ta-based metallic glasses composed of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 are produced and experimentally characterized in terms of their mechanical properties, bio-corrosion properties, surface hydrophilic characteristics, and in-vitro cell viability and cells attachment tests. Compare to conventional pure Ti and Ta metals, the developed Ta-based metallic glasses exhibit higher hardness and lower modulus which are better match to the mechanical properties of bone. MTS assay results show that Ta-based metallic glasses show comparable cell viability and cell attachment rate compared to that of pure Ti and Ta surface in a 72 h in-vitro test.

  4. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  5. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2016-07-01

    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  6. Impact strength of denture polymethyl methacrylate reinforced with continuous glass fibers or metal wire.

    Science.gov (United States)

    Vallittu, P K; Vojtkova, H; Lassila, V P

    1995-12-01

    The impact strength of heat-cured acrylic resin test specimens that had been reinforced in various ways was compared in this study. Ten rectangular test specimens were fabricated for each test group. The strengtheners included 1.0-mm-diameter steel wire and continuous E-glass fibers. Both notched and unnotched test specimens were tested in a Charpy-type impact test. In a further analysis the concentration of glass fibers in the test specimens was determined and plotted against the impact strength of the test specimens. The results showed that, compared with the unreinforced specimens, both types of reinforcement increased the impact strength of the test specimens considerably (p test specimens reinforced with metal wire and that of the specimens reinforced with glass fiber. The correlation coefficient between the fiber concentration of the test specimens and their impact strength was 0.818 (p < 0.005). Specimens with fiber concentrations greater than 25 wt% yielded to the higher impact strength more readily than those with metal wire reinforcement did.

  7. Elastic properties of superconducting bulk metallic glasses; Elastische Eigenschaften von supraleitenden massiven metallischen Glaesern

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Marius

    2015-07-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  8. CHARACTERIZATION OF SHORT E-GLASS FIBER REINFORCEDGRAPHITE AND BRONZE FILLED EPOXY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. Patil

    2016-03-01

    Full Text Available The mechanical characterization of short E- glass fiber reinforced, graphite and sintered bronze filled epoxy composite was carried out in this study. The aim of the present study was to develop tribological engineering material. In this study the flexural strength, theoretical and experimental density, Hardness and Impact strength of composites was investigated experimentally. The results showed that the increased percentage of graphite (10 to 15%Vol and Eglass fiber (10 to 15%Vol enhanced flexural strength (149 MPa of the composite and the maximum flexural modulus (13.3 GPa and 13.1 GPa was obtained for composite C2 and C5 respectively. Maximum hardness (84 on L scale and impact energy (90 Joule was obtained for the composite C6 with increased percentage of glass fiber and graphite filler. The metallurgical electron microscopic images were discussed to interpret the effect of graphite and sintered bronze on mechanical characterization of composite

  9. Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering

    International Nuclear Information System (INIS)

    Dash, K.; Ray, B.C.; Chaira, D.

    2012-01-01

    Graphical abstract: The evolution of microstructure, density and hardness of Cu–Al 2 O 3 metal matrix composites with different techniques of sintering has been demonstrated here. The effect of sintering atmosphere has also been discussed. Synthesis of microcomposites was carried out by reinforcing 5, 10 and 15 vol.% of alumina powder particle (average size ∼5.71 μm) in copper matrix via conventional sintering using H 2 and N 2 atmospheres. Nanocomposites of 1, 5, 7 vol.% alumina (average size 2 O 3 metal matrix microcomposites and nanocomposites via conventional route and spark plasma sintering routes are studied and compared. Maximum Vickers hardness of 60 and 80 are obtained when the Cu–15 vol.% Al 2 O 3 is conventionally sintered in N 2 and H 2 atmosphere respectively. However, maximum hardness value of 125 is achieved for the Cu–5 vol.% Al 2 O 3 nanocomposite prepared by spark plasma sintering. It has been observed that Cu–Al 2 O 3 metal matrix composite (MMC) shows poor mechanical properties when it is conventionally sintered in N 2 atmosphere than H 2 atmosphere. Highlights: ► Better matrix–reinforcement interfacial bonding and compatibility in hydrogen atmosphere than nitrogen atmosphere. ► An improvement in density and hardness under hydrogen atmosphere than in nitrogen atmosphere is manifested. ► Spark plasma sintering method results in higher density and hardness values than conventional sintering. - Abstract: The evolution of microstructure, density and hardness of Cu–Al 2 O 3 metal matrix composites with different techniques of sintering have been demonstrated here. The effect of sintering atmosphere on the interfacial compatibility of matrix and reinforcement has also been discussed. Synthesis of microcomposites was carried out by reinforcing 5, 10 and 15 vol.% of alumina powder particles (average size ∼5.71 μm) in copper matrix via conventional sintering using N 2, H 2 and Ar atmospheres. Nanocomposites of 1, 5, 7 vol

  10. Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

    Science.gov (United States)

    Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng

    2018-02-01

    Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

  11. Changes in Fracture Micromechanism with Increasing Reinforcement Volume Fraction in Glass Matrix Composite

    Czech Academy of Sciences Publication Activity Database

    Řehořek, Lukáš; Chlup, Zdeněk; Dlouhý, Ivo; Boccaccini, A. R.

    2008-01-01

    Roč. 567-568, - (2008), s. 369-372 ISSN 0255-5476. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GD106/05/H008; GA ČR GP106/05/P119 Institutional research plan: CEZ:AV0Z20410507 Keywords : glass -ceramics * fracture mechanics * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. The Effect of Various Silicate-glass Matrixes on Gold-nanoparticle Formation

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Vindová, P.; Staněk, S.; Vytykačová, S.; Macková, Anna; Malinský, Petr; Mikšová, Romana; Janeček, M.; Pešička, J.; Špirková, J.

    2017-01-01

    Roč. 61, č. 1 (2017), s. 52-58 ISSN 0862-5468 R&D Projects: GA ČR GB14-36566G; GA ČR GA15-01602S; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : glasses * nanoparticles * transmission electron microscopy * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties) Impact factor: 0.439, year: 2016

  13. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Cabral, Stenio Cavalier; Oliveira, Hellen Cristine Prata de; Filgueira, Marcello

    2010-01-01

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  14. Development of scalable methods for the utilization of multi-walled carbon nanotubes in polymer and metal matrix composites

    Science.gov (United States)

    Vennerberg, Danny Curtis

    Multi-walled carbon nanotubes (MWCNTs) have received considerable attention as reinforcement for composites due to their high tensile strength, stiffness, electrical conductivity and thermal conductivity as well as their low coefficient of thermal expansion. However, despite the availability of huge quantities of low-cost, commercially synthesized nanotubes, the utilization of MWCNTs in engineering composites is extremely limited due to difficulties in achieving uniform dispersion and strong interfacial bonding with the matrix. A proven method of enhancing the nanotube-polymer interface and degree of MWCNT dispersion involves functionalizing the MWCNTs through oxidation with strong acids. While effective at laboratory scales, this technique is not well-suited for large-scale operations due to long processing times, poor yield, safety hazards, and environmental concerns. This work aims to find scalable solutions to several of the challenges associated with the fabrication of MWCNT-reinforced composites. For polymer matrix composite applications, a rapid, dry, and cost-effective method of oxidizing MWCNTs with O3 in a fluidized bed was developed as an alternative to acid oxidation. Oxidized MWCNTs were further functionalized with silane coupling agents using water and supercritical carbon dioxide as solvents in order to endow the MWCNTs with matrix-specific functionalities. The effect of silanization on the cure kinetics, rheological behavior, and thermo-mechanical properties of model epoxy nanocomposites were investigated. Small additions of functionalized MWCNTs were found to increase the glass transition temperature, strength, and toughness of the epoxy. In order to achieve composite properties approaching those of individual nanotubes, new approaches are needed to allow for high loadings of MWCNTs. One strategy involves making macroscopic mats of nanotubes called buckypaper (BP) and subsequently infiltrating the mats with resin in processes familiar to

  15. Structure alterations in Al-Y-based metallic glasses with La and Ni addition

    Science.gov (United States)

    Shi, X. M.; Wang, X. D.; Yu, Q.; Cao, Q. P.; Zhang, D. X.; Zhang, J.; Hu, T. D.; Lai, L. H.; Xie, H. L.; Xiao, T. Q.; Jiang, J. Z.

    2016-03-01

    The atomic structures of Al89Y11, Al90Y6.5La3.5, and Al82.8Y6.07Ni8La3.13 metallic glasses have been studied by using high energy X-ray diffraction, X-ray absorption fine structure combined with the ab initio molecular dynamics and reverse Monte Carlo simulations. It is demonstrated that the partial replacement of Y atoms by La has limited improvement of the glass forming ability (GFA), although La atoms reduce the ordering around Y atoms and also the fractions of icosahedron-like polyhedra centered by Al atoms. In contrast, Ni atoms can significantly improve the GFA, which are inclined to locate in the shell of polyhedra centered by Al, Y, and La atoms, mainly forming Ni-centered icosahedron-like polyhedra to enhance the spatial connectivity between clusters and suppress the crystallization.

  16. Heterogeneities in CuZr-based bulk metallic glasses studied by x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X D; Lou, H B; Gong, Y; Jiang, J Z [International Center for New-Structured Materials (ICNSM), Zhejiang University (China); Vainio, U, E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [HASYLAB at DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2011-02-23

    Inhomogeneities in two CuZr-based bulk metallic glasses (BMGs) were studied by using synchrotron radiation x-ray scattering techniques. (Cu{sub 4.5/5.5}Ag{sub 1/5.5}){sub 46}Zr{sub 46}Al{sub 8} BMG was found to be more inhomogeneous than Cu{sub 46}Zr{sub 46}Al{sub 8} BMG on the small length scale, where Cu and Ag atoms form enriched zones. Such heterogeneities are locally favorable for forming close-packed icosahedron-like clusters in three-dimensional space, greatly promoting the glass forming ability of this alloy. Upon annealing near the T{sub g} temperature, the heterogeneities were reduced initially at low temperature and short time annealing, then regenerated again for temperature increase and time extension. The average environment around Zr atoms almost does not change. However, the heterogeneity increases for Cu, Zr and Ag atoms once nanocrystallization happens.

  17. Surface Crystallization in Mg-Based Bulk Metallic Glass during Copper Mold Casting

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-01-01

    Full Text Available The localized crystallization of Mg54Cu28Ag7Y11 bulk metallic glass (BMG in the injection casting process using a copper mold was investigated. It has been found that several crystalline phases were formed close to the as-cast surface but did not exist in the internal part of the BMG plate. It is abnormal that the as-cast surface is partially crystallized with higher cooling rate than that of inside. Overheating of the melt and nucleation induced by the surface of copper mold play key roles in the abnormal crystallization. It is suggested that the function of copper mold to trigger heterogeneous nucleation cannot be totally ignored, although it provides the high cooling rate for the glass formation during casting.

  18. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  19. Non-self-similar cracking in unidirectional metal-matrix composites

    International Nuclear Information System (INIS)

    Rajesh, G.; Dharani, L.R.

    1993-01-01

    Experimental investigations on the fracture behavior of unidirectional Metal Matrix Composites (MMC) show the presence of extensive matrix damage and non-self-similar cracking of fibers near the notch tip. These failures are primarily observed in the interior layers of an MMC, presenting experimental difficulties in studying them. Hence an investigation of the matrix damage and fiber fracture near the notch tip is necessary to determine the stress concentration at the notch tip. The classical shear lag (CLSL) assumption has been used in the present study to investigate longitudinal matrix damage and nonself-similar cracking of fibers at the notch tip of an MMC. It is seen that non-self-similar cracking of fibers reduces the stress concentration at the notch tip considerably and the effect of matrix damage is negligible after a large number of fibers have broken beyond the notch tip in a non-self-similar manner. Finally, an effort has been made to include non-self-similar fiber fracture and matrix damage to model the fracture behavior of a unidirectional boron/aluminum composite for two different matrices viz. a 6061-0 fully annealed aluminum matrix and a heat treated 6061-T6 aluminum matrix. Results have been drawn for several characteristics pertaining to the shear stiffnesses and the shear yield stresses of the two matrices and compared with the available experimental results

  20. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  1. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...

  2. ratio on the deformation behaviour of Fe–Al2O3 metal matrix ...

    Indian Academy of Sciences (India)

    3Department of Mechanical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005,. India. MS received 17 March 2015; accepted 21 March 2016. Abstract. The present paper reports the effect of height to diameter (h/d) ratio on the deformation behaviour of Fe–Al2O3 metal matrix ...

  3. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    1998-01-01

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with referenc...

  4. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  5. Static and Fatigue behavior of Pin-Loaded Metal Matrix Joints

    Science.gov (United States)

    1984-06-01

    NO. NO. NO. NO, 11. TITLE (Include Security Clasification ) Static and Fatigue 62201F 2401 01 79 Rphavinr of Metal Matrix Joints (U) 12. PERSONAL AUTHOR...Specimen Steel Pin I (1/4" Dia.) Steel Plate (1/4" thick) Steel Shims Hydraulic Grip Figure 3 Pin-Bearing Test Assemblage (Note: Not to scale) 26 200 B

  6. Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Saida, Junji; Imafuku, Muneyuki; Sato, Shigeo; Sanada, Takashi; Matsubara, Eiichiro; Inoue, Akihisa

    2007-01-01

    The correlation between the local structure and stability of supercooled liquid state is investigated in the Zr 70 (Ni, Cu) 30 binary and Zr 70 Al 10 (Ni, Cu) 20 (numbers indicate at.%) ternary metallic glasses. The Zr 70 Ni 30 binary amorphous alloy with a low stability of supercooled liquid state has a tetragonal Zr 2 Ni-like local structure around Ni atom. Meanwhile, the Zr 70 Cu 30 binary metallic glass has a different local structure of tetragonal Zr 2 Cu, where we suggest the icosahedral local structure by the quasicrystallization behavior in addition of a very small amount of noble metals. The effect of Al addition on the local structure in the Zr-Ni alloy is also examined. We have investigated that the dominant local structure changes in the icosahedral-like structure from the tetragonal Zr 2 Ni-like local structure by the Al substitution with Ni accompanying with the significant stabilization of supercooled liquid state. It is concluded that the formation of icosahedral local structure contributes to the enhancement of stability of supercooled liquid state in the Zr-based alloys

  7. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  8. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  9. Spectra of matrix isolated metal atoms and clusters. [In rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.

    1977-09-30

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures.

  10. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    Science.gov (United States)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  11. Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    Vipin K. Sharma

    2017-08-01

    Full Text Available The present work deals with the fabrication and tribological testing of an aluminium flyash composite. The metal matrix selected was aluminium and flyash contents in different percentages were reinforced in it to fabricate the required metal matrix composite (MMC. Stir casting method was used to fabricate the MMC with 2–4–6% weight of flyash contents in aluminium. Tribological analysis of the tribo pairs formed between the smooth surfaces of cast iron disc and smooth MMC pin has been considered and friction force and wear of the MMC were investigated by using a Pin-on-disc setup. It was observed that the MMC with 6% weight of flyash content in aluminium matrix results in less wear (0.32 g and 4% weight of flyash content gives the low coefficient of friction (0.12 between the tribopairs of cast iron surface and MMC surface.

  12. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    Science.gov (United States)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  13. Microstructural evolution in WC-Co cermet reinforced - A17075 metal matrix composites by stir casting

    Science.gov (United States)

    Gopal Krishna, U. B.; Ranganatha, P.; Auradi, V.; Mahendra Kumar, S.; Vasudeva, B.

    2016-09-01

    Aluminium metal matrix composites (AMMCs) are preferred because of their enhanced properties like high strength to weight ratio, stiffness and wear resistance. In the present work, an attempt is made to develop cermet (WC-Co) reinforced with Al7075 metal matrix composite by stir casting technique. WC-Co cermet is reduced to an average size of 10μm through ball milling using Alumina as grinding media. Ball milled WC-Co Cermet in an amount of 6 wt. % is used as reinforcement in Al7075 matrix. Microstructural characterization of the prepared composites is carried out using SEM/EDX and XRD studies. X-ray diffraction studies have revealed the peaks corresponding to α-Al, WC, Co and minor Al5W phases. SEM/EDX characterization revealed the uniform distribution of cermet in Al matrix. Further studies also revealed that, addition of WC-Co cermet to Al7075 matrix has resulted in improvement in hardness and Densities of Al7075 matrix.

  14. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Science.gov (United States)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  15. 3D in situ observations of glass fibre/matrix interfacial debonding

    DEFF Research Database (Denmark)

    Martyniuk, Karolina; Sørensen, Bent F.; Modregger, Peter

    2013-01-01

    X-ray microtomography was used for 3D in situ observations of the evolution of fibre/matrix interfacial debonding. A specimen with a single fibre oriented perpendicular to the tensile direction was tested at a synchrotron facility using a special loading rig which allowed for applying a load tran...

  16. Procedure for Matrix Effect Reduction in Metal Analysis Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Al-Eshaikh, M. A.

    2017-09-01

    A procedure for matrix effect reduction is proposed to enhance the precision of quantitative analysis of metal alloys using laser-induced breakdown spectroscopy (LIBS). This procedure is based on a number of successive steps in order to correct the signal fluctuations caused by plasma interaction and the matrix effect. The first step is the selection of optimum parameter settings of the detection system, such as laser power, delay time, and focal distance. The second step is the estimation of the absolute or relative values of impurities on the basis of the internal standard calibration. The third step is the analysis of the metal basis of the alloy used as an internal standard, which requires spectrum averaging, whole integral spectrum normalization, and self-absorption correction. Three sets of metal-based alloys (aluminum, steel, and copper) are used in this investigation as reference standards for calibration and validation. Successive improvements of the quality of calibration curves are observed during the proposed procedure.

  17. In-process assembly of micro metal inserts in a polymer matrix

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard

    2006-01-01

    , have to be established in order to be able to develop new and more integrated micro products. In this paper a method for testing the bonding between micro thickened metal inserts and the polymer matrix they are moulded in is presented. A specific demonstrator has been manufactured by means of a hot...... embossing-like process which allows fast developing time and the possibility of batch process. Different levels of surface roughness and metal insert thickness were applied in a systematic design of experiments. The results show a strong influence of surface texture on bonding strength. The testing......New functionalities and smaller dimensions of micro products can be achieved by means of a higher degree of integration of both materials and components. Smart micro assembly techniques (such as on-the-machine assembly) together with hybrid structures (as metal inserts in polymer matrix...

  18. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-01-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  19. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  20. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating

    OpenAIRE

    Chu, Jinn P.; Yu, Chia-Chi; Tanatsugu, Yusuke; Yasuzawa, Mikito; Shen, Yu-Lin

    2016-01-01

    This paper reports on the use of Zr-based (Zr53Cu33Al9Ta5) thin film metallic glass (TFMG) for the coating of syringe needles and compares the results with those obtained using titanium nitride and pure titanium coatings. TFMG coatings were shown to reduce insertion forces by ?66% and retraction forces by ?72%, when tested using polyurethane rubber block. The benefits of TFMG-coated needles were also observed when tested using muscle tissue from pigs. In nano-scratch tests, the TFMG coatings ...

  1. On the nature of low temperature anomalies of metallic glass inelastic properties

    International Nuclear Information System (INIS)

    Spivak, L.V.; Khonik, V.A.

    1997-01-01

    Low-temperature (30 60 Nb 40 metallic glass (MG) exposed to the preliminary cold deformation via rolling, to high-temperature homogeneous deformation or to electrolytic hydrogen absorption were investigated. Conclusion is made that the published low-temperature peaks of the internal friction in quick-hardened cold-deformed or hydrogen absorbed MGs are of the common dislocation-like nature. Effect of 2 MeV electron irradiation on the temperature dependence of the internal friction and on the elasticity module of hydrogenated specimens was investigated, as well [ru

  2. Discovery of an internal-friction peak in the metallic glass Nb3Ge

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.; Tsuei, C.C.

    1978-01-01

    A well-defined internal-friction peak has been observed near 260 K in amorphous rf-sputtered films of Nb 3 Ge, studied at audio frequencies by a vibrating-reed technique. The characteristics of the peak are consistent with a stress-induced ordering mechanism involving a presently unidentified center which undergoes reorientation by an atomic jump with a sharply defined activation energy of 0.52 eV. The peak appears to be the first example of its type found in a metallic glass

  3. Forming of protective nanostructure coatings on metals and glasses and their properties investigation

    International Nuclear Information System (INIS)

    Deshkovskaya, A.; Lynkov, L.; Nagibarov, A.; Glybin, V.; Richter, E.; Pham, M.

    2013-01-01

    Transparent heat-resistant coatings of 10-30 nm thickness described by (ZrO 2 ) x •(Y 2 O 3 ) y composition are formed on the surface of metals and glasses by thermolysis technique. Produced coatings possess high adhesive strength, high corrosive and abrasive resistance. Nanocrystalline formations are revealed on samples surface, with quantity of these formations depending on basic solution concentration, formed layers number and thermal treatment mode. Ion-beam modification of obtained coatings under mixing mode enables said properties enhancing owing to zirconium oxiboride formation at substrate-coating interface as a result of ion-beam synthesis. (authors)

  4. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  5. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    Science.gov (United States)

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  6. Magnetron deposition of metal-ceramic protective coatings on glasses of windows of space vehicles

    OpenAIRE

    Sergeev, Viktor Petrovich; Panin, Viktor Evgenyevich; Psakhie, Sergey Grigorievich; Chernyavskii, Alexandr; Svechkin, Valerii; Khristenko, Yurii; Kalashnikov, Mark Petrovich; Voronov, Andrei

    2014-01-01

    Transparent refractory metal-ceramic nanocomposite coatings with a high coefficient of elasticrecovery and microhardness on the basis of Ni/Si-Al-N are formed on a glass substrate by the pulse magnetron deposition method. The structure-phase states were investigated by TEM, SEM. It was established that the first layer consists of Ni nanograins with a fcc crystalline lattice, the second layer is two-phase: 5-10 nm nanocrystallites of the AlN phase with the hcp crystalline lattice in amorphous ...

  7. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    Science.gov (United States)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  8. Formation and Mechanical Properties of Pd-Si Binary Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Na Chen

    2014-01-01

    Full Text Available Glassy spherical samples in the diameters up to 10 mm were produced in a binary Pd-Si alloy system. These Pd-Si bulk metallic glasses (BMGs combine high strength of about 1600 MPa and superplasticity of over 70% together. In addition to abundant micrometer-scale shear bands, 10–20 nanometer-sized shear bands were also observed on the side surface of the deformed sample. The excellent ductility shown by the Pd-Si BMGs is suggested to arise from the nanoscale structural inhomogeneity.

  9. Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass

    International Nuclear Information System (INIS)

    Zhang, Chunzhi; Qiu, Nannan; Kong, Lingliang; Yang, Xiaodan; Li, Huiping

    2015-01-01

    Highlights: • Thermodynamic and structural basis for electrochemical response were proposed. • La improves the corrosion resistance by inhibition of the selective dissolution. • Corrosion of the MG responses well with thermodynamic and structural parameters. - Abstract: Cu–Zr based metallic glasses were prepared by hyperquenching strategy to explore the thermodynamic and structural basis for electrochemical response. The thermodynamic parameters and the local atomic structure were obtained. Corrosion resistance in seawater was investigated via potentiodynamic polarization curve. The results indicate that increasing thermodynamic parameter values improves the corrosion resistance. The topological instability represented by the nearest neighbor atomic distance yields same tendency as the corrosion resistance with La addition

  10. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  11. Compression-compression fatigue of Pd43Ni10Cu27P20 metallic glass foam

    Science.gov (United States)

    Wang, Gongyao; Demetriou, Marios D.; Schramm, Joseph P.; Liaw, Peter K.; Johnson, William L.

    2010-07-01

    Compression-compression fatigue testing of metallic-glass foam is performed. A stress-life curve is constructed, which reveals an endurance limit at a fatigue ratio of about 0.1. The origin of fatigue resistance of this foam is identified to be the tendency of intracellular struts to undergo elastic and reversible buckling, while the fatigue process is understood to advance by anelastic strut buckling leading to localized plasticity (shear banding) and ultimate strut fracture. Curves of peak and valley strain versus number of cycles coupled with plots of hysteresis loops and estimates of energy dissipation at various loading cycles confirm the four stages of foam-fatigue.

  12. Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    Science.gov (United States)

    Lissenden, Cliff J.; Arnold, Steven M.

    1996-01-01

    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.

  13. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  14. Interfacial bonding and friction in silicon carbide (filament)-reinforced ceramic- and glass-matrix composites

    International Nuclear Information System (INIS)

    Bright, J.D.; Shetty, D.K.

    1989-01-01

    This paper reports interfacial shear strength and interfacial sliding friction stress assessed in unidirectional SiC-filament-reinforced reaction-bonded silicon nitride (RBSN) and borosilicate glass composites and 0/90 cross-ply reinforced borosilicate glass composite using a fiber pushout test technique. The interface debonding load and the maximum sliding friction load were measured for varying lengths of the embedded fibers by continuously monitoring the load during debonding and pushout of single fibers in finite-thickness specimens. The dependences of the debonding load and the maximum sliding friction load on the initial embedded lengths of the fibers were in agreement with nonlinear shear-lag models. An iterative regression procedure was used to evaluate the interfacial properties, shear debond strength (τ d ), and sliding friction stress (τ f ), from the embedded fiber length dependences of the debonding load and the maximum frictional sliding load, respectively. The shear-lag model and the analysis of sliding friction permit explicit evaluation of a coefficient of sliding friction (μ) and a residual compressive stress on the interface (σ 0 ). The cross-ply composite showed a significantly higher coefficient of interfacial friction as compared to the unidirectional composites

  15. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties; Preparacao de vidros e vitroceramicas de oxidos de metais pesados contendo prata: propriedades opticas, estruturais e eletroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Bregadiolli, Bruna A. [Departamento de Fisica, Faculdade de Ciencias, Universidade Estadual Paulista, Bauru - SP (Brazil); Souza, Ernesto R.; Sigoli, Fernando A. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas - SP (Brazil); Caiut, Jose M.A. [Departamento de Quimica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto - SP (Brazil); Alencar, Monica A.S.; Benedetti, Assis V. [Instituto de Quimica, Universidade Estadual Paulista, Araraquara - SP (Brazil); Nalin, Marcelo, E-mail: mnalin@ufscar.br [Departamento de Quimica, Universidade Federal de Sao Carlos, SP, (Brazil)

    2012-07-01

    Silver containing heavy metal oxide glasses and glass ceramics of the system WO{sub 3}-SbPO{sub 4} -PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment. (author)

  16. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties.

    Science.gov (United States)

    Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L

    2016-09-28

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B 2 O 3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn 2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb 2+ and Bi 3+ induce cluster formation, resulting in PbO n - and BiO n -pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, F M-O . A linear correlation between glass transition temperature (T g ) and F M-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant F M-O , though for cations of similar force constant the fraction of tetrahedral borate units (N 4 ) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses

  17. Thermal expansion of Pd-based metallic glasses by ab initio methods and high energy X-ray diffraction.

    Science.gov (United States)

    Evertz, Simon; Music, Denis; Schnabel, Volker; Bednarcik, Jozef; Schneider, Jochen M

    2017-11-16

    Metallic glasses are promising structural materials due to their unique properties. For structural applications and processing the coefficient of thermal expansion is an important design parameter. Here we demonstrate that predictions of the coefficient of thermal expansion for metallic glasses by density functional theory based ab initio calculations are efficient both with respect to time and resources. The coefficient of thermal expansion is predicted by an ab initio based method utilising the Debye-Grüneisen model for a Pd-based metallic glass, which exhibits a pronounced medium range order. The predictions are critically appraised by in situ synchrotron X-ray diffraction and excellent agreement is observed. Through this combined theoretical and experimental research strategy, we show the feasibility to predict the coefficient of thermal expansion from the ground state structure of a metallic glass until the onset of structural changes. Thereby, we provide a method to efficiently probe a potentially vast number of metallic glass alloying combinations regarding thermal expansion.

  18. Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Kelton, K F

    2017-01-01

    The liquid phase remains poorly understood. In many cases, the densities of liquids and their crystallized solid phases are similar, but since they are amorphous they lack the spatial order of the solid. Their dynamical properties change remarkably over a very small temperature range. At high temperatures, near their melting temperature, liquids flow easily under shear. However, only a few hundred degrees lower flow effectively ceases, as the liquid transforms into a solid-like glass. This temperature-dependent dynamical behavior is frequently characterized by the concept of kinetic fragility (or, generally, simply fragility). Fragility is believed to be an important quantity in glass formation, making it of significant practical interest. The microscopic origin of fragility remains unclear, however, making it also of fundamental interest. It is widely (although not uniformly) believed that the dynamical behavior is linked to the atomic structure of the liquid, yet experimental studies show that although the viscosity changes by orders of magnitude with temperature, the structural change is barely perceptible. In this article the concept of fragility is discussed, building to a discussion of recent results in metallic glass-forming liquids that demonstrate the presumed connection between structural and dynamical changes. In particular, it becomes possible to define a structural fragility parameter that can be linked with the kinetic fragility. (topical review)

  19. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing.

    Science.gov (United States)

    Bordeenithikasem, Punnathat; Liu, Jingbei; Kube, Sebastian A; Li, Yanglin; Ma, Tianxing; Scanley, B Ellen; Broadbridge, Christine C; Vlassak, Joost J; Singer, Jonathan P; Schroers, Jan

    2017-08-02

    The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (R C ). Despite its key role in MG research, experimental challenges have limited measured R C to a minute fraction of known glass formers. We present a combinatorial approach to directly measure R C for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct R C measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au 56 Cu 27 Si 17 as the alloy with the highest GFA. In general, this method enables measurements of R C over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation.

  20. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    Science.gov (United States)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.