WorldWideScience

Sample records for metallic beryllium-7 target

  1. Metallic beryllium-7 target of small diameter

    CERN Document Server

    Zyuzin, A Yu; Vincent, J S; Buckley, K R; Bateman, N P; Snover, K A; Csandjan, J M; Steiger, T D; Adelberger, E G; Swanson, H E

    1999-01-01

    The stellar sup 7 Be(p, gamma) sup 8 B reaction rate has the largest uncertainty among all nuclear reaction rates in the standard solar model. However, the solar neutrino flux predicted for the majority of proposed and existing solar neutrino detectors is directly dependent on the rate of sup 7 Be(p, gamma) sup 8 B reaction. The existing solar neutrino detectors measure rate of sup 8 B decay neutrinos that is too low. This constitutes largely the solar neutrino problem. Existing measurements of the sup 7 Be(p, gamma) sup 8 B reaction rate disagree with one another, indicating the need for more precise experiments. To provide the required targets a new procedure for sup 7 Be production, separation and target manufacturing has been developed. First, a lithium target has been designed for sup 7 Be production at TRIUMF's 13 MeV cyclotron. The lithium target has been extensively tested at 50 mu A proton beam current yielding 8.1 MBq/mu A h of sup 7 Be. An adsorption filtration technique has been developed for sup ...

  2. Temporal variability of beryllium-7 fallout in southwest UK.

    Science.gov (United States)

    Taylor, A; Keith-Roach, M J; Iurian, A R; Mabit, L; Blake, W H

    2016-08-01

    Cosmogenic beryllium-7 has been widely employed as a sediment tracing tool and continued development of its use as a soil erosion tracer requires knowledge of fallout temporal dynamics. Data regarding beryllium-7 fallout in the UK are scarce and here the authors provide a record of beryllium-7 fallout in southwest England spanning a two-year period. A monthly fallout record was developed for Plymouth, UK using regular rainfall sampling to determine beryllium-7 rainfall activity concentration (Bq L(-1)) and deposition flux (Bq m(-2)). Data showed a general tendency for higher activity during the spring/summer months and lower activity in the autumn/winter months. Comparison with data for other UK sites (Chilton and Aberporth) for the same period found significant differences in (7)Be activity in rainwater and lower variability in Plymouth than Chilton and Aberporth. Total deposition was largely controlled by rainfall in Plymouth although regression coefficients suggested greater importance of other atmospheric controls at the Chilton and Aberporth sites. Use of a deposition proportion to rainfall proportion ratio identified periods when deposition was influenced by varying (7)Be activity in rainfall. Broad ranges in ratios were found for Chilton and Aberporth and this has implications for sediment tracer studies requiring estimates of (7)Be deposition flux across months or seasons. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Measurements of the fallout flux of beryllium-7 and its variability in the soil

    OpenAIRE

    Andrello, Avacir Casanova; Appoloni, Carlos Roberto

    2010-01-01

    The aim of this study was to examine the beryllium-7 behavior in the soil. Natural variability of beryllium-7 concentration was calculated to be about 23% (relative standard deviation), and the depth distribution could be approximated by an exponential decay in bare soil, with an average penetration depth in the soil about 1 cm. The nuclide was not found below 2 cm depth, which confirmed its utilization to infer the erosion processes as a tracer of soil surface. The maximum beryllium-7 concen...

  4. Beryllium-7 deposition to terrestrial vegetation in Tennessee

    International Nuclear Information System (INIS)

    Mahoney, L.A.

    1984-04-01

    Measurements of natural beryllium-7 ( 7 Be) were made in field vegetation and rainwater at the Department of Energy's Oak Ridge Reservation throughout the months of July 1982 to June 1983. Laboratory experiments were also conducted on the adsorption and desorption of 7 Be, cesium-137 ( 137 Cs), lead-210 ( 210 Pb), and iodine-131 ( 131 I) to the foliage of fescue, 3 varieties of beans, and loblolly pine. The field loss of artificially applied 7 Be to field fescue was also measured. The weathering half-life (T/sub W/) was found to be 36.5 days during November-January 1982-1983; no difference was found in the loss of 7 Be during the months March-May 1983, T/sub W/ = 38.5 days. The loss of sulfur-35 ( 35 S) was studied concurrently with the spring loss of 7 Be; the T/sub W/ for 35 S was much smaller, equal to 18.4 days. The interception fraction, r, was determined experimentally in the field using the flux of 7 Be in rainwater incident upon clover; the mean value was 0.172. Total deposition velocities were estimated using monthly 7 Be rainwater concentrations and quarterly air concentrations; the yearly average was 1.66 cm/sec. An equation for predicting vegetation concentrations was derived for 7 Be from the US Nuclear Regulatory Commission's Guide 1.109. Generic and site-specific values for deposition rate, interception fraction, effective half-life, exposure time, and biomass density were summarized separately and the derived equation was employed to make predictions of monthly 7 Be vegetation concentrations. These predictions were compared to actual field observations. With the exception of the month of May, both generic and site-specific predictions were found to underestimate the actual 7 Be vegetation concentrations. 44 refs., 9 figs., 15 tabs

  5. Wet deposition and soil content of Beryllium - 7 in a micro-watershed of Minas Gerais (Brazil).

    Science.gov (United States)

    Esquivel L, Alexander D; Moreira, Rubens M; Monteiro, Roberto Pellacani G; Dos Santos, Anômora A Rochido; Juri Ayub, Jimena; Valladares, Diego L

    2017-04-01

    Beryllium-7 ( 7 Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7 Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7 Be content in soil shows a marked variation throughout the year. Minimum 7 Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7 Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7 Be deposition was observed in rain water. A good agreement between 7 Be soil content and 7 Be atmospheric deposition was noticed, mainly in wet months. 7 Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Beryllium-7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California

    Science.gov (United States)

    Kaste, James M.; Elmore, Andrew J.; Vest, Kimberly R.; Okin, Gregory S.

    2011-05-01

    Beryllium-7 is a potentially powerful tracer of atmospheric deposition and recent sediment transport, but the quantity and distribution of 7Be on arid landscapes have not been described. We measured 7Be in soil, vegetation, and dust in Owens Valley, California, and describe its distribution in aridisols and mollisols to evaluate its potential as a sediment tracer in desert environments. Beryllium-7 in vegetation and the upper few cm of soil is low but detectable (>20 Becquerels [Bq] m-2). Surface inventories of 7Be at sites on the valley floor vary by a factor of five between the end of the rainy season (April) and the end of the dry season (November). In mollisols, live grasses hold ˜50 Bq 7Be m-2, which is on the order of half of the total springtime surface inventory. We find that within-site variability at the 5 m scale is 5 to 22% (1 relative standard error) and can be explained by localized rain shadowing and erosion, but between site variability at the km scale can be explained by differences in rainfall. Our alpine site has more than triple the inventory that is predicted from the rainfall-7Be flux relationship that we generate using our springtime soil measurements and previously reported deposition data. Dust deposition does not appear to contribute significantly to 7Be inventories, but anomalously high 7Be on the eastern flank of the Sierras may be explained by a higher altitude air mass source and better scavenging efficiency of snow.

  7. El Nino / Southern Oscillation and beryllium-7 (7Be Concentration in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Gennady F. Batrakov

    2013-01-01

    Full Text Available The influence of El Nino / Southern Oscillation (ENSO on the atmospheric concentration of beryllium-7 (7Be in five points situated in South America: Guayaquil, Lima, Anafagasta, Puerto Montt and Punta Arens was investigated. By using correlation analysis it was found that significant statistical relationship between the variability of concentration of 7Be and variability of indices NINO 1+2 and NINO 3 take place in Guayaquil and Puerto Montt. In these cities during the period 1967–1998 yr. there was increased of statistical relationships between the variability of concentration of 7Be and variation of the indices. The results indicate that ENSO most significant effect on the atmospheric concentration of the isotope in the regions located in the subequatorial and subtropical climatic belts. Moreover, such an effect on the time interval 1967–1998 yr., the second half of which corresponds to the period of modern global warming, has increased significantly

  8. Determination of Beryllium-7 in Water Hyacinth Using Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Yimchalam, Nopporn; Chankow, Nares; Yangchauy, Udon

    2009-07-01

    Full text: Beryllium-7 (7 B e) is a cosmogenic radionuclide produced in the upper atmosphere and enters the lower atmosphere by atmospheric circulation processes. About 90% of 7 B e decays directly through electron capture to 7 L i at ground state and about 10% to 7 L i at 1 s t excited state followed by 477.6 keV gamma-ray emission with a half-life of 53.3 days. The aim of this research was to measure 7 B e activity in environmental samples including water and aquatic plants. From the preliminary investigation by measurement of the 477.6 keV gamma-ray peak, 7 B e could be found in fresh Water Hyacinth samples. Thus, Water Hyacinth samples were then collected at different times of the year 2007 - 2008 in an area of Bang Khaen campus of Kasetsart University for determination of 7 B e activity using a HPGe detector. It was found that 7 B e specific activity was about 4-7 Bq/kg in the samples collected in rainy season during August-October 2007 and in June 2008 but could not detect in dry seasons i.e. summer and winter. The specific activity of 7 B e in Water Hyacinth sample depended on rainfalls as expected

  9. Radiochemical determination of Beryllium-7 in a fission-product mixture containing many inorganic salts

    International Nuclear Information System (INIS)

    Prigent, Y.; Van Kote, F.

    1969-01-01

    A radiochemical method is described for analysing beryllium-7 in a mixture of fission products containing many inorganic salts. By studying the influence of various parameters it has been possible to speed up the decontamination on an anionic resin using an HCl isopropanol mixture, as proposed by KORKISCH- and al. Be(OH) 2 is first precipitated in the presence of E.D.T.A.; the main contaminants are then fixed on Dowex 1 x 10 in 12 M HCl and on Dowex 1 x 8 in a 3 M HCl (20 per cent)-isopropanol (80 per cent) (vol/vol) mixture. The Be, which is not fixed, is precipitated by NH 4 H 2 PO 4 in the presence of E.D.T.A., ignited as Be 2 P 2 O 7 , filtered, weighed, and analyzed by gamma spectrometry. The method makes it possible to dose 4 samples in 16 hours with a chemical yield of 80 per cent, using a 4 day-old fission product solution. The overall decontamination factor, exceeds 10 8 . (authors) [fr

  10. SPH simulation of liquid metal target dynamics

    CERN Document Server

    Massidda, L; Massidda, Luca

    2010-01-01

    An implementation of the smoothed particle hydrodynamics (SPH) method to study the dynamics of liquid metal targets under the effect of high power proton beams is presented The accuracy of the method is verified through the comparison of numerical simulations with experimental results on liquid mercury performed in ISOLDE/CERN The results are in good agreement and allow to have a better insight on the physics of the phenomenon (C) 2010 Elsevier B V All rights reserved

  11. Evaluation of historical sedimentation in the power plant lake by the measurement of cesium-137 and beryllium-7

    Energy Technology Data Exchange (ETDEWEB)

    Patrocinio Junior, Antonio Carlos; Andrello, Avacir Casanova; Carvalho, Diogo Vieira; Appoloni, Carlos Roberto [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text: Soil erosion and sedimentation have been widely studied as one of the most serious environmental problems. The eroded sediment transported to water bodies leads to losses such as silting of rivers, lakes and irrigation canals. An unconventional approach that has stood out is the use of radionuclides as tracers of sediment to estimate soil redistribution rates by erosion and siltation. The cesium-137, lead-210 unsupported and beryllium-7 have been used successfully as tracers. In order to evaluate the depositional historic and obtain information about the erosion of a lake of a mini-hydroelectric plant in the Londrina city, PR, the gamma spectrometry technique was applied to survey the profile of cesium-137 and beryllium-7 present in sediments in the lake. Four points were sampled along the lake (U1, U2, U3 and U4). Although it was not possible to collect all the sedimentation profile the distribution of cesium-137 until the depth of sediment collected is similar to the distribution of annual rainfall from 1982. The sedimentation rate for a few points could be determined. The sedimentation rate in the points U3 and U4 was approximately 1.6 cm/year. In the point U2 was found that the sedimentation rate is approximately 1.2 cm/year. The analysis for U1 revealed that in this area there is a great disturbance of these sediments that not allowed obtaining a recent sedimentation rate. The methodology was adequate for its intended purposes. More future studies are needed to take data throughout the reservoir, and improve representatively of erosion and sedimentation that occurred in the basin along the lake since the implementation of this. (author)

  12. Cosmogenic beryllium-7 in soil, rainwater and selected plant species to evaluate the vegetal interception of atmospheric fine particulate matter.

    Science.gov (United States)

    Saleh, Ibrahim H; Abdel-Halim, Aly A

    2018-03-12

    Beryllium-7 is a radionuclide produced in the upper atmosphere by cosmic-ray spallation with ions of carbon, oxygen and nitrogen. It is one of radionuclides that can be used to trace the fine particulate matter of 2.5-µm diameter (PM 2.5 ) and smaller. In this work, 7 Be was determined in leaves of 10 plant species collected from streets, parks and open land and in 5 consecutive rains over Alexandria, Egypt. 7 Be levels were also measured in soil covered by each type of plant as well as in the nearest uncovered soil to be reference values to determine its intercepted amount and consequently PM 2.5 . The lowest interception, 17.7 %, was by Ficus elastica L., while Ficus retusa L. intercepted about 45 %. Radiologically, the annual effective dose due to the usage of Thymelea hirsute plant leaves as a medicine and Nicotiana glauca Graham for smoking were 0.013 and 0.66 µSv, respectively. The observed levels in rainwater indicated that 7 Be decreased consecutively from 3.1 Bq kg -1 in the first rain to 0.71 Bq kg -1 in the last one during the 2016/2017 rain season. The wet deposition of 7 Be is less than 1 % of its total deposition on the ground.

  13. Beryllium-7 measurements of wind erosion on sloping fields in the wind-water erosion crisscross region on the Chinese Loess Plateau.

    Science.gov (United States)

    Zhang, Jiaqiong; Yang, Mingyi; Deng, Xinxin; Liu, Zhang; Zhang, Fengbao; Zhou, Weiying

    2018-02-15

    Soil erosion is complex in the wind-water erosion crisscross region of the Chinese Loess Plateau, as interleaving of wind and water erosion occurs on both temporal and spatial scales. It is difficult to distinguish wind erosion from the total erosion in previous studies due to the untraceable of aeolian particles and the limitation of feasible methods and techniques. This study used beryllium-7 measurements to study wind erosion in the wind-water erosion crisscross region on the Chinese Loess Plateau arms to delineate wind erosion distribution, to analyze its implication to erosive winds and surface microrelief, and to determine correlations between erosion rates and slope gradients. Results obtained using beryllium-7 measurements based on observation plots were verified with saltating particle collection method, and were also verified on a field scale. Results indicated that the effective resultant erosion wind was from northward, which was proved by the eight-directional distributed saltating particles. The microrelief of the ground surface contributed to the formation of high or low erosion centers. Wind erosion rates increased with a linear (R 2 ≥0.95) or exponential (R 2 ≥0.83) fitting increase in the slope gradients as reported in previous studies. Compared to wind erosion on field scale, both the plots and fields exhibited similar distribution patterns in wind erosion isolines. We also determined that the wind erosion rate for two fields estimated, based on equations developed from plot scale was acceptable. This study validates the feasibility of beryllium-7 measurements for soil-wind erosion field experiments and the potential to expand this approach to real field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Heavy density liquid metal spallation target studies for Indian ADS

    Indian Academy of Sciences (India)

    Considering the neutron yield, thermal-hydraulics and radiation damage issues, we are proposing to develop spallation target based on heavy density liquid metals like lead and lead-bismuth-eutectic (LBE). Both window and windowless target configurations are presently being studied. In view of the various advantages ...

  15. Preparation of self-supporting thin metal target films

    International Nuclear Information System (INIS)

    Wang Xiuying; Ge Suxian; Yin Jianhua; Yin Xu; Jin Genming

    1989-01-01

    The preparation method and equipment for thin metal self-supporting target without oil contamination are described. The influence of target films contaminated by oil vapor on accuracy of nuclear-physics experimental data are also discussed. The analytical results on carbon content in the prepared films of three elements show that the equipment is very effective for eliminating contamination

  16. Metallic and nonmetallic coatings for ICF targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Crane, J.K.; Hsieh, E.J.; Meyer, S.F.

    1981-01-01

    Some fusion targets designed to be driven by 0.35 to 1 μm laser light are glass spheres coated with layers of various materials such as hydrocarbons, fluorocarbons, beryllium, copper, gold, platinum, etc. The glass shell, which is filled with gas, liquid or solid deuterium-tritium fuel, must have remarkably good surface and wall thickness uniformity. Methods for depositing the various materials will be discussed. They include plasma polymerization, electro-deposition, sputtering and evaporation. Many of the difficulties encountered in the coating processes are the result of coating on free spheres with very small radii - 35 to 500 micrometers. Several means of overcoming the problems will be described and experimental results presented

  17. 44gSc from metal calcium targets for PET

    DEFF Research Database (Denmark)

    Severin, Gregory; Gagnon, K.; Engle, J. W.

    2012-01-01

    A low-cost and efficient method for producing pre-clinical scale quantities of 44gSc is presented. Production involves proton irradiation of natural unenriched calcium metal followed by rapid separation of radioscandium from the target using hydroxmate functionalized resin.© 2012 American Institu...

  18. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  19. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  20. Effects of pulsed power input into a liquid metal target

    CERN Document Server

    Ni, L; Spitzer, H

    1999-01-01

    In order to validate the computations of stress generated in the target container by the sudden input of a large amount of power in the liquid metal of a high-power spallation target, first experimental investigations were carried out in an international collaboration. Temperature and beam profile measurements showed that up to 61% of the incoming beam power was deposited in the target. The spatial power distribution was reconstructed from the experimental data. A computational model with consideration of fluid-structure interface was employed to simulate the pressure waves in the liquid and the resulting dynamic stress on the container. The maximum stress on the container was found to be 13.6 MP. Although experimental data are still very preliminary, a comparison of the measured stress and deformation data with the computational results showed reasonable agreement in the amplitudes, which are the most important data for engineering design. Although the methods developed to measure the strain on the target su...

  1. Specific capture of uranyl protein targets by metal affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Basset, C.; Dedieu, A.; Guerin, P.; Quemeneur, E.; Meyer, D.; Vidaud, C. [CEA Valrho, DSV, IBEB, Serv Biochim et Toxicol Nucl, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO{sub 2}{sup 2+}) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of amino-phosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. (authors)

  2. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  3. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  4. The EURISOL Multi Megawatt Target Station, a liquid metal target for a High Power spallation source.

    CERN Document Server

    Kharoua, C; Blumenfeld, L; Milenkovich, R; Wagner, W; Thomsen, K; Dementjevs, S; Platacis, E; Kravalis, K; Zik, A

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research in nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2013.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with particular attention to the coupled neutronic of the liquid converter and the overall performance of the facility, which will sustain fast neutr...

  5. Estimating projectile perpendicular impact velocity on metal sheet targets from the shape of the target hole.

    Science.gov (United States)

    Tsach, Tsadok; Landau, Eliezer; Shor, Yaron; Volkov, Nikolai; Chaikovsky, Alan

    2009-01-01

    The correlation between bullet hole shapes in metal and projectile impact velocity was examined. A series of shots were fired from an M-16A1 assault rifle of 5.56 mm caliber toward a 1-mm thick metal target. All shots were fired at a perpendicular angle to the metal sheets, and the velocity was measured just before the projectile hit the target. Velocities ranged between 400 and 900 m/sec. From the replica of the shooting hole, a perpendicular plane was created, showing the symmetrical properties of the hole. The best mathematical equation describing the shape of the entrance hole was the exponential function in the form: Y x = A + Be kx. The empirical equation of the hole defined using the regression method is: Y x,V = 8.268/V 0.578018 e(0.584x/V0.005). This equation describes the general shape of shooting holes created by velocities ranging from 440 to 750 m/sec. From this equation, one can estimate the bullet velocity when it hits the target.

  6. Cross sections of deuteron induced nuclear reactions on metal targets

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ditroi, F.; Takacs, S.

    2005-01-01

    Integral excitation functions for the production of residual nuclides with light charged particles are basic data for different applications. The proton induced nuclear reactions are the most widely used and their cross section data are extensively studied. For practical applications these reactions are followed in importance by deuteron induced reactions. Due to the stripping process the production yield of the deuteron induced reactions is significant. High intensity deuteron beams can be produced relatively simply by accelerators. Deuteron induced reactions play an important role in secondary fast neutron sources, in thin layer activation technology, etc. The search of the literature shows that the cross section database for deuteron induced reactions is very poor (very few data above 15-20 MeV). No systematical study has been performed earlier. In addition the published data (except for a few well measured monitor and medically important reactions) show large discrepancies. To meet the requirements of these applications we performed a systematical experimental study of deuteron induced activation cross sections for different targets up to 50 MeV deuteron energy during the last years. Here we summarize the results for the most widely used technological materials: i.e. for metals. The targets were irradiated with external beams of the cyclotrons of Debrecen, Brussels and Sendai, Residual nuclei were measured by X- and gamma-spectrometry without chemical separation. The investigation includes a few hundred reactions induced on the following 20 target elements: Al, Ti, Fe, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Te, W, Ir, Pt, Pb. A significant part of the measured data is new. The measured excitation functions were compared with the theory by using the ALICE-IPPE and TALYS codes. For a few elements, isotopic cross sections were measured on highly enriched targets ( 100 Mo, 122,123 Te, 114 Cd) for medical radioisotope production Applications in the field of

  7. Preparation of microcellular foam in cylindrical metal targets

    International Nuclear Information System (INIS)

    Apen, P.G.; Armstrong, S.V.; Moore, J.E.; Espinoza, B.F.; Gurule, V.; Gobby, P.L.; Williams, J.M.

    1992-01-01

    The preparation of microcellular foam in cylindrical gold targets is described. The goal cylinders were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing trimethylolpropanetriacrylate (TMPTA). Low density, microcellular polymeric foam was prepared by in situ photopolymerization of the TMPTA solution. Foam preparation was extremely sensitive to metal ion contaminants. In particular, copper ions left behind from the leaching process inhibit polymerization and must be removed in order to obtain uniform, non-shrinking foams. A study on the effects of potential contaminants and polymerization inhibitors on TMPTA photopolymerization is presented. In addition, a procedure for the effective leaching and cleaning of gold cylinders is described

  8. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  9. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun; Wang Jiaxiang

    2012-01-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  10. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  11. Experimental study of liquid-metal target designs of accelerating-controlled systems

    International Nuclear Information System (INIS)

    Iarmonov, Mikhail; Makhov, Kirill; Novozhilova, Olga; Meluzov, A.G.; Beznosov, A.V.

    2011-01-01

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 10 5 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  12. Modeling film uniformity and symmetry in ionized metal physical vapor deposition with cylindrical targets

    International Nuclear Information System (INIS)

    Lu Junqing; Yang Lin; Yoon, Jae Hong; Cho, Tong Yul; Tao Guoqing

    2008-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed to investigate deposition uniformity and symmetry for cylindrical target sputtering in low pressure (below 0.1 Pa) ionized Cu physical vapor deposition. The model predictions indicate that as the distance from the cylindrical target to wafer increases, the metal film thickness becomes more uniform across the wafer and the asymmetry of the metal deposits at the wafer edge increases significantly. These trends are similar to those for planar targets. To minimize the asymmetry, the height of the cylindrical target should be kept at a minimum. For cylindrical targets, the outward-facing sidewall of the trench could receive more direct Cu fluxes than the inward-facing one when the target to wafer distance is short. The predictions also indicate that increasing the diameter of the cylindrical target could significantly reduce the asymmetry in metal deposits at the wafer edge and make the film thickness more uniform across the wafer

  13. Thermal Hydraulic and Structural Analysis of Liquid Metal Target System

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Chung, Chang Hyun

    2002-01-01

    A subcritical transmutation reactor research is in progress for treatment of spent fuel. The subcritical transmutation reactor needs target system to produce high-energy neutrons. In target system, beam window is subject to high thermal field, because it interacts with high energy proton beam. In this study, target was designed based on thermal-hydraulic analysis, and thermal-structural analysis of window was performed. Preliminary design and mechanical analysis of liquid Pb-Bi target and 9Cr-2WVTa window were performed. Target was designed in a way to decrease window temperature. Installation of diffuse plate which has higher porosity in central zone was considered. Temperature and stress of window were analyzed varying minimum window thickness, beam power, and coolant flow rate. Thermal-bending stress was generated in window because of temperature gradient along the thickness of window. Coolant flow rate had insignificant effect on window stresses. It can be concluded that the target and window can be used in transmutation reactor operating condition (1 GeV, 6.78 mA). In this study, only static analysis has been made. But, accelerator beam trip can frequently occur in accelerator operation, so window and target container dynamic stress analysis will be needed. Furthermore, study about corrosion or irradiation characteristics of window will be needed in designing target and window. (authors)

  14. Heavy density liquid metal spallation target studies for Indian ADS ...

    Indian Academy of Sciences (India)

    to tens of mA) interacts with the target, which is located in the core and produces spallation neutrons (~1019/s) that diffuse into the reactor and drive the reactor. The spallation target module is the most innovative component of the ADS. It constitutes the physical interface between the accelerator and the sub-critical reactor.

  15. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  16. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  17. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  18. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  19. Heavy density liquid metal spallation target studies for Indian ADS ...

    Indian Academy of Sciences (India)

    mercury and LBE experimental facilities are presently being set up. Along with these facilities, computational tools related to spallation physics (FLUKA) and CFD are being developed, and the existing ones are utilized to design the entire target loop as well as sub-systems. In this presentation the details of these activities ...

  20. Heavy density liquid metal spallation target studies for Indian ADS ...

    Indian Academy of Sciences (India)

    An R&D programme has been initiated to address various physics and technology issues of ADS target. Under this programme, mercury and LBE experimental facilities are presently being set up. Along with these facilities, computational tools related to spallation physics (FLUKA) and CFD are being developed, and the ...

  1. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  2. Targeted Structural Optimization with Additive Manufacturing of Metals

    Science.gov (United States)

    Burt, Adam; Hull, Patrick

    2015-01-01

    The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.

  3. EURISOL-DS Multi-MW Target: Design of the EURISOL Liquid metal loop

    CERN Document Server

    K. Samec (PSI)

    A Mercury loop capable of evacuating 2.7 MW of the 4 MW deposited in the Eurisol liquid metal neutron spallation target is described in the present design study.The study takes into account the effects on the loop of temperature, pressure, irradiation, liquid metal corrosion, including both steady state operations and normal transients. Accidental conditions are only briefly alluded to in the form of a description of the protection barriers and envisaged mitigation strategies.

  4. Magnetron target designs to improve wafer edge trench filling in ionized metal physical vapor deposition

    International Nuclear Information System (INIS)

    Lu Junqing; Yoon, Jae-Hong; Shin, Keesam; Park, Bong-Gyu; Yang Lin

    2006-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed. The model was validated based on the agreement between the model predictions and the reported experimental values for the asymmetric metal deposition at trench sidewalls near the wafer edge for a 200 mm wafer. This model could predict the thickness of the metal deposits across the wafer, the symmetry of the deposits on the trench sidewalls at any wafer location, and the angular distributions of the metal fluxes arriving at any wafer location. The model predictions for the 300 mm wafer indicate that as the target-to-wafer distance is shortened, the deposit thickness increases and the asymmetry decreases, however the overall uniformity decreases. Up to reasonable limits, increasing the target size and the sputtering intensity for the outer target portion significantly improves the uniformity across the wafer and the symmetry on the trench sidewalls near the wafer edge

  5. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    Energy Technology Data Exchange (ETDEWEB)

    Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  6. Metal nano-particles modernized layers and those with polymers for laser thermonuclear targets

    Science.gov (United States)

    Akimova, I. V.; Akunets, A. A.; Borisenko, N. G.; Chaurasia, S.; Gromov, A. I.; Kaur, C.; Munda, D. S.; Orekhov, D. S.; Orekhov, A. S.; Sklizkov, G. V.; Tolokonnikov, S. M.; Rao, U.; Rastogi, V.

    2017-10-01

    The manufacturing and precision monitoring methods of the layers as promising direct and indirect targets for Inertial confinement fusion (ICF) are under study, as well as their application in the experiments. The metal-containing foams with a density that is several times or several orders of magnitude smaller than the full-density material of the same composition are of interest for higher laser light conversion into X-rays and for better energy delivery into the target in direct and indirect interaction schemes. Such targets are developed and provided. We report the interaction of Nd: glass laser with a low-density bismuth and gold targets. The plasma dynamics and X-ray emissions were observed using multiframe optical shadowgraphy and an X-ray streak camera. Enhanced X-ray intensities and festoon plasma flame are observed from the metal low-density layers.

  7. Interaction between a bubble and a metal target for underwater laser propulsion.

    Science.gov (United States)

    Qiang, Hao; Chen, Jun; Han, Bing; Pan, Yunxiang; Zhang, Hongchao; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2017-04-10

    Optical beam deflection and high-speed photographic methods are employed to investigate the interaction mechanism between a laser-induced bubble and a metal target for underwater laser propulsion. A preliminary theory is proposed to reveal the step increases of the kinetic energy transferred to the target during the process of increasing the incident laser energy. This theory also helps to explain the increasing coupling efficiency with incident laser energy for underwater laser propulsion.

  8. Ionization and excitation of some atomic targets and metal oxides by ...

    Indian Academy of Sciences (India)

    We have calculated total inelastic and total ionization cross-sections for collisions of electrons on atomic targets oxygen (O), aluminium (Al) and copper (Cu) and metal oxides AlO and Al2O, at impact energies from near excitation threshold to 2000 eV. A complex (optical) energy-dependent interaction potential is used to ...

  9. Effects of thermal shocks on the release of radioisotopes and on molten metal target vessels

    CERN Document Server

    Lettry, Jacques; Benedikt, Michael; Catherall, R; Cyvoct, G; Fabich, A; Georg, U; Gilardoni, S S; Jonsson, O; Ravn, H L; Sgobba, Stefano; Bauer, G; Bruchertseifer, H; Graber, T; Gudermann, C; Ni, L; Rastani, R

    2003-01-01

    The ISOLDE pulsed proton beam peak power amounts to 500 MW during the 2.4 ms proton pulse. The fraction of the proton pulse energy deposited in the target material is at the origin of severe thermal shocks. Quantitative measurement of their effect on the release of radioelements from ISOLDE targets was obtained by comparison of release profiles measured under different proton beam settings. The thermal shock induced in liquids (Pb, Sn, La) lead to mechanical failure of ISOLDE molten metal target vessels. Failure analysis is presented and discussed in the light of the response of mercury samples submitted to the ISOLDE beam and monitored by high-speed optical systems.

  10. Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study

    Directory of Open Access Journals (Sweden)

    Barker James

    2008-06-01

    Full Text Available Abstract Background Considerable research has been directed towards the roles of metal ions in nutrition with metal ion toxicity attracting particular attention. The aim of this study is to measure the levels of metal ions found in selected beverages (red wine, stout and apple juice and to determine their potential detrimental effects via calculation of the Target Hazard Quotients (THQ for 250 mL daily consumption. Results The levels (mean ± SEM and diversity of metals determined by ICP-MS were highest for red wine samples (30 metals totalling 5620.54 ± 123.86 ppb followed by apple juice (15 metals totalling 1339.87 ± 10.84 ppb and stout (14 metals totalling 464.85 ± 46.74 ppb. The combined THQ values were determined based upon levels of V, Cr, Mn, Ni, Cu, Zn and Pb which gave red wine samples the highest value (5100.96 ± 118.93 ppb followed by apple juice (666.44 ± 7.67 ppb and stout (328.41 ± 42.36 ppb. The THQ values were as follows: apple juice (male 3.11, female 3.87, stout (male 1.84, female 2.19, red wine (male 126.52, female 157.22 and ultra-filtered red wine (male 110.48, female 137.29. Conclusion This study reports relatively high levels of metal ions in red wine, which give a very high THQ value suggesting potential hazardous exposure over a lifetime for those who consume at least 250 mL daily. In addition to the known hazardous metals (e.g. Pb, many metals (e.g. Rb have not had their biological effects systematically investigated and hence the impact of sustained ingestion is not known.

  11. Metal oxide targets produced by the polymer-assisted deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A., E-mail: mitch@berkeley.ed [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ashby, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gates, Jacklyn M. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stavsetra, Liv [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gregorich, Kenneth E.; Nitsche, Heino [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-02-11

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  12. Metal oxide targets produced by the polymer-assisted deposition method

    International Nuclear Information System (INIS)

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2010-01-01

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  13. Accumulation of Long-lived activity in heavy metal liquid targets

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The calculations and analysis of the accumulation of radioactive nuclei and long-lived activity in heavy metal liquid targets were performed. The dominating contributions to the total radioactivity of radionuclides resulting from fission, spallation reactions and radiative capture by target nuclei for various irradiation and cooling times were calculated and analyzed. The most important parts of neutron and proton spectra were determined that give the dominant contributions to the total and partial activity of the targets. The contributions of fission products to the target activity and partial activities of main long-lived fission products were evaluated. The results of the calculations are compared with the data on Energy Amplifier Project. (Author) 12 refs

  14. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    International Nuclear Information System (INIS)

    Biederman, H.; Holland, L.

    1983-01-01

    Fluorocarbon films have been prepared by plasma polymerization of CF 4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF 4 [25%]-argon[75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF 4 [87%]-argon[13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF 4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined. (orig.)

  15. Development of dissolution process for metal foil target containing low enriched uranium

    International Nuclear Information System (INIS)

    Srinivasan, B.; Hutter, J.C.; Johnson, G.K.; Vandegrift, G.F.

    1994-01-01

    About six times more low enriched uranium (LEU) metal is needed to produce the same quantity of 99 Mo as from a high enriched uranium (HEU) oxide target, under similar conditions of neutron irradiation. In view of this, the post-irradiation processing procedures of the LEU target are likely to be different from the Cintichem process procedures now in use for the HEU target. The authors have begun a systematic study to develop modified procedures for LEU target dissolution and 99 Mo separation. The dissolution studies include determination of the dissolution rate, chemical state of uranium in the solution, and the heat evolved in the dissolution reaction. From these results the authors conclude that a mixture of nitric and sulfuric acid is a suitable dissolver solution, albeit at higher concentration of nitric acid than in use for the HEU targets. Also, the dissolver vessel now in use for HEU targets is inadequate for the LEU target, since higher temperature and higher pressure will be encountered in the dissolution of LEU targets. The desire is to keep the modifications to the Cintichem process to a minimum, so that the switch from HEU to LEU can be achieved easily

  16. Heavy metal ions in wines: meta-analysis of target hazard quotients reveal health risks

    Directory of Open Access Journals (Sweden)

    Petróczi Andrea

    2008-10-01

    Full Text Available Abstract Background Metal ions such as iron and copper are among the key nutrients that must be provided by dietary sources. Numerous foodstuffs have been evaluated for their contributions to the recommended daily allowance both to guide for satisfactory intake and also to prevent over exposure. In the case of heavy metal ions, the focus is often on exposure to potentially toxic levels of ions such as lead and mercury. The aim of this study is to determine target hazard quotients (THQ from literature reports giving empirical levels of metal ions in table wines using the reference upper safe limit value. Contributions to the THQ value were calculated for seven metal ions along with total values for each wine. Results The THQ values were determined as ranges from previously reported ranges of metal ion concentrations and were frequently concerningly high. Apart from the wines selected from Italy, Brazil and Argentina, all other wines exhibited THQ values significantly greater than one indicating levels of risk. The levels of vanadium, copper and manganese had the highest impact on THQ measures. Typical potential maximum THQ values ranged from 50 to 200 with Hungarian and Slovakian wines reaching 300. THQ values for a sample of red and white wines were high for both having values ranging from 30 to 80 for females based on a 250 mL glass per day. Conclusion The THQ values calculated are concerning in that they are mainly above the safe level of THQ

  17. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    Science.gov (United States)

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  18. The Beryllium 7 Depth Distribution Study

    International Nuclear Information System (INIS)

    Jalal Sharib; Zainudin Othman; Dainee Nor Fardzila Ahmad Tugi

    2014-01-01

    The aim of this paper is to study the evolution of 7Be depth distribution in a soil profile. The soil samples have been collected by using plastic core in bare area in Bangi, Malaysia. Each of the soil core samples has been sectioned into 2 mm increments to a depth of 4 cm and the samples are subsequently oven dried at 45°C and gently disaggregated. The sample is passed through a < 2 mm sieve and packed into plastic pot for 7Be analysis using gamma spectrometry with a 24 hour count time. From the findings, show the 7Be depth penetration from this study decreases exponentially with depth and is confined within the top few centimeters and similar with other works been reported. The further discussion for this findings will be presented in full paper. (author)

  19. Thermal hydraulic numerical investigation of the heavy liquid metal free surface of MYRRHA spallation target experimental

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.

    2015-01-01

    The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load

  20. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    Science.gov (United States)

    Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Makhlaj, V. A.; Solyakov, D. G.; Tereshin, V. I.; Wuerz, H.

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  1. Scientific activity within the targeted research project: Metallic, ceramic and organic nanomaterials: processing - structure - properties - applications

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kurzydlowski, K.

    2003-01-01

    In november 2000 Polish State Committee for Scientific Research (KBN) launched a Targeted Research Project 'Metallic, ceramic and organic nanomaterials: processing - structure - properties - applications'. The structural materials, covered by the project, comprise analysis of the suitability of heavy deformation routes for nanocrystallization of metals and alloys, Al-based glass-ceramics, ceramic matrix nanocomposites, gradient materials. Also surface engineering methods and polymer matrix nanocomposites are studied. Novel methods for the processing and compacting of nanomaterials are also researched. Among functional materials: materials for batteries soft and hard magnetic materials and nanomaterials, giant magnetoresistance and light emitting materials are studied. Basic phenomena such as mechanics of superplastic deformation of ceramics, demagnetization processes in ferromagnetic nanomaterials, transport processes in ionic conductivity materials are also investigated. Overview of the main research direction and selected achievements of the project are presented. (author)

  2. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H.

    2002-01-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks

  3. PRODUCTION OF CATHODES AND HIGH PURITY TARGETS OF CHEMICALLY ACTIVE METALS BY MEANS OF ELECTRONIC-RAY MELTING

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2007-01-01

    Full Text Available The technical process of production and restoration of worn cathodes and targets of chemically active metals (Ti, Zr, V and others with the help of cathode ray in vacuum is developed. Regenerating of worn cathodes, targets is carried out by means of insertion in chill of worn base and successive cathode ray deposition on certain places of required quantity of metal (from 2 till 50mm.

  4. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    International Nuclear Information System (INIS)

    Sinha, Prabal K.; Ghosh, A. S.

    2006-01-01

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10 -16 -10 -4 a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature

  5. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  6. Evaluation of target power supplies for krypton storage in sputter-deposited metals

    International Nuclear Information System (INIS)

    Greenwell, E.N.; McClanahan, E.D.; Moss, R.W.

    1986-04-01

    Implantation of 85 Kr in a growing sputtered metal deposit has been studied for the containment of 85 Kr recovered from the reprocessing of spent nuclear fuel. PNL, as part of DOE's research program for 85 Kr storage, has developed krypton trapping storage devices (KTSDs) in a range of sizes for ''cold'' and radioactive testing. The KTSD is a stainless steel canister that contains a sputtering target for depositing an amorphous rare-earth transition metal on the inner wall and simultaneously implanting low-energy krypton ions in the growing deposit. This report covers the design requirements for the target power supply and the description, testing and evaluation of three basic designs. The designs chosen for evaluation were: (1) a standard commercial power supply with an external PNL-designed current interrupter, (2) a commercially manufactured power supply with an integral series-type interrupter, and (3) a commercially manufactured power supply with an integral shunt-type interrupter. The units were compared on the basis of performance, reliability, and life-cycle cost. 8 refs., 9 figs., 2 tabs

  7. EURISOL Multi-MW Target: Investigation of the hydrodynamics of liquid metal (Hg) jet

    CERN Document Server

    Freibergs, J

    In order to develop a windowless target it is necessary to investigate the hydrodynamics of liquid metal (Hg) jet. On the basis of the schematic layout of a high-power target module presented in Ref. [2], and the parameters of the windowless target (speed of the mercury jet up to 30 m/s, diameter of jet 10-20 mm and length of jet about 1 m), a first estimation of the parameters of the main components of a Hg-loop has been obtained by the Institute of Physics, University of Latvia. A preliminary engineering design of a functional Hg-loop to be constructed soon is also proposed. A simplified water stand has been developed with the ability of testing different Hg-nozzle configurations. The tests carried out showed that the kinetic energy of the jet is so high that the coaxial water flow at contact point is transformed into small bubbles (spray). The characteristics of the jet were shown to depend on the pressure of the stand.

  8. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    International Nuclear Information System (INIS)

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  9. Reconstruction of Colloidal Spheres by Targeted Etching: A Generalized Self-Template Route to Porous Amphoteric Metal Oxide Hollow Spheres.

    Science.gov (United States)

    Pan, Jia Hong; Bai, Yuqing; Wang, Qing

    2015-04-21

    Despite the significant progress in developing various synthetic strategies for metal oxide hollow spheres (h-MO), the so-far explored materials are mostly chemically inert metal oxides. Very few attempts have been made for amphoteric metal oxides such as Al2O3 and ZnO due to the difficulties in the control of the dissolution and recrystallization process. Herein, a facile self-template route to the synthesis of amphoteric h-MO with tunable size and shell thickness is developed by targeted etching via an acid-base reaction. With the protection of polyvinylpyrrolidone (PVP) on the surface, the interior of metal oxide solid colloidal spheres (c-MOs) that possess radially divergent structures could be selectively etched with acid/alkali as an etchant, forming h-MO of Al2O3 and ZnO. Our results also show that a wide variety of metal oxide colloidal spheres can be potential self-templates for targeted etching, which paves the way for developing a generalized strategy for the synthesis of various metal oxide hollow spheres.

  10. Comparative studies of liquid metals for an alternative divertor target in a fusion reactor

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Tafalla, D.; Martin-Rojo, A. B.; Pastor, I.; Ochando, M. A.; Medina, F.; Zurro, B.; McCarthy, K. J.; the TJ-II Team

    2017-12-01

    Two liquid metals (LM), Li and LiSn (20:80 at), presently considered as alternative materials for the divertor target of a fusion reactor, have been exposed to the plasma in a capillary porous system (CPS) arrangement in TJ-II. A negligible perturbation of the plasma has been recorded in both cases, even when stellarator plasmas are particularly sensitive to high Z elements due to the tendency to central impurity accumulation. The surface temperature of the LM CPS samples (made of a tungsten mesh impregnated in SnLi or Li) has been measured during the plasma pulse with ms resolution by pyrometry and the thermal balance during heating and cooling has been used to obtain the thermal parameters of the SnLi and Li CPS arrangements. Temperatures as high as 1150 K during TJ-II plasma exposure were observed for the LiSn solid case. Strong changes in the thermal conductivity of the alloy were recorded in the cooling phase at temperatures close to the nominal melting point. The deduced values for the thermal conductivity of the LiSn alloy/CPS sample were significantly lower than those predicted from their individual components.

  11. Targeting triple negative breast cancer cells by N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their metal complexes

    Science.gov (United States)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.

  12. Computational and experimental studies of the flow field near the beam entrance window of a liquid metal target

    International Nuclear Information System (INIS)

    Geža, Vadims; Milenković, Rade Ž.; Kapulla, Ralf; Dementjevs, Sergejs; Jakovičs, Andris; Wohlmuther, Michael

    2014-01-01

    Highlights: • Water model of liquid metal target for validation of CFD models was built. • PIV measurements showed flow features in the region near beam entrance window. • The zones with high turbulence kinetic energy were distinguished. • Reasonable agreement between modeling and PIV data was obtained. - Abstract: After the first world liquid metal target has been successfully operated at the SINQ facility at the Paul Scherrer Institut (PSI) for 6 months. The idea of having a reliable target with a bypass flow for cooling the beam entrance window, but with the bypass flow not driven by a separate pump, was examined within the project called LIMETS (Liquid Metal Target for SINQ). In designing of liquid metal targets, turbulence modelling is of high importance due to lack in methods for measuring the spatial distribution of flow and turbulence characteristics. In this study, validation of different turbulence models were performed in water model with hemispherical geometry using particle image velocimetry (PIV) technique. Two components of water flow velocity in plexiglas container with inner radius of 88 mm were measured in different cross sections, with the velocities varying from 1 to 10 m/s. Numerical calculations using large eddy simulation (LES) approach and Reynolds averaged Navier–Stokes (RANS) models were carried out to validate their applicability and study performance issues. Mean velocity and turbulence kinetic energy data were used for comparison of PIV and calculation results. Reasonable agreement was obtained for mean velocity data, with some discrepancies due to the limited length of the inlet tube. However, several discrepancies in turbulence characteristics were found in numerical results, especially in RANS model calculations

  13. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target

    Science.gov (United States)

    Chen, X. W.; Chen, G.

    2012-08-01

    In the present paper, the penetration experiments of tungsten-fiber/metallic-glass matrix composite material bullets into 45# steel targets are conducted by employing H25 artillery. In which, an experimental technique of sub-caliber penetration is constructed. The quasi static and dynamic behaviours of tungsten-fiber/metallic-glass matrix composite material are also experimental investigated. The self-sharpening phenomenon of composite material is observed. Integrated with metallographic analysis, the failure modes of tungsten-fiber/metallic-glass matrix composite material are identified systemically and compared with the quasi-static and dynamic material tests. It includes four failure modes, i.e., shear fracture of tungsten fiber, brittle fracture of tungsten fiber and shear fracture of metallic glass matrix as well as melting of tungsten fiber and metallic glass matrix. Comparatively, three failure mechanisms of tungsten fiber in the bullet nose are also identified, i.e., shear fracture, splitting fracture and bending or/and buckling. Finally, the mechanism of self-sharpening behaviour of tungsten-fiber/metallic-glass matrix composite material is discussed.

  14. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target

    Directory of Open Access Journals (Sweden)

    Chen X.W.

    2012-08-01

    Full Text Available In the present paper, the penetration experiments of tungsten-fiber/metallic-glass matrix composite material bullets into 45# steel targets are conducted by employing H25 artillery. In which, an experimental technique of sub-caliber penetration is constructed. The quasi static and dynamic behaviours of tungsten-fiber/metallic-glass matrix composite material are also experimental investigated. The self-sharpening phenomenon of composite material is observed. Integrated with metallographic analysis, the failure modes of tungsten-fiber/metallic-glass matrix composite material are identified systemically and compared with the quasi-static and dynamic material tests. It includes four failure modes, i.e., shear fracture of tungsten fiber, brittle fracture of tungsten fiber and shear fracture of metallic glass matrix as well as melting of tungsten fiber and metallic glass matrix. Comparatively, three failure mechanisms of tungsten fiber in the bullet nose are also identified, i.e., shear fracture, splitting fracture and bending or/and buckling. Finally, the mechanism of self-sharpening behaviour of tungsten-fiber/metallic-glass matrix composite material is discussed.

  15. EURISOL-DS Multi-MW Target Preliminary Study of the Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Herrera-Martínez, A; CERN. Geneva. AB Department

    2006-01-01

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1]. A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA [2]. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimal target dimensions were also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLU...

  16. Automatic system of production, transfer and processing of coin targets for the production of metallic radioisotopes

    Science.gov (United States)

    Pellicioli, M.; Ouadi, A.; Marchand, P.; Foehrenbacher, T.; Schuler, J.; Dick-Schuler, N.; Brasse, D.

    2017-05-01

    The work presented in this paper gathers three main technical developments aiming at 1) optimizing nuclide production by the mean of solid targets 2) automatically transferring coin targets from vault to hotcell without human intervention 3) processing target dilution and purification in hotcell automatically. This system has been installed on a ACSI TR24 cyclotron in Strasbourg France.

  17. Proceedings of Soil Decon '93: Technology targeting radionuclides and heavy metals

    International Nuclear Information System (INIS)

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document

  18. Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

  19. Structural integrity of heavy liquid-metal target installed in spallation neutron facility. Part 4: Consideration by fracture mechanics of target container window

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Haga, Katsuhiro; Kaminaga, Masanori; Hino, Ryutaro

    2004-01-01

    Developments of the neutron scattering facility is carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (mercury) target used as a spallation neutron source in a MW-class neutron scattering facility, static and dynamic stress (including pressure wave in mercury) behaviors due to the incident of 1MW-pulsed proton beam (Maximum heat density is 461W/cc) were analyzed. In the analyses, two type target containers with semi-cylindrical type and flat-type beam windows were used as analytical models. As a result, it is confirmed that the stress generated by the pressure wave becomes the largest at the center of the beam window, and the flat-type beam window is more advantageous from the structural viewpoint than the semi-cylindrical type beam window. It has been understood that the stress generated in the beam window by the pressure wave can be treated as the secondary stress. Then, it has been understood that the stress and the stress range generated in the target window were bellow the allowable stress level defined by the standard of JIS on the maximum stress and fatigue strength. It has been experimentally confirmed that a cavitation was generated by generating the negative pressure in mercury near the target beam window and a collapse of cavitation damaged to the target container material, as pits. Then, the fracture mechanical analyses were carried out on the pit and a crack on pit tip. Consequently, it was clarified that the crack would not propagate because the inner surface of the beam window was become the compressive stress field due to the steady state thermal stress. Moreover, the evaluation technique of the cavitation which would be needed in the future was summarized. (author)

  20. Experimental study of hydrodynamics of target system construction with liquid metallic coolant on water models

    International Nuclear Information System (INIS)

    Beznosov, A.; Davidov, D.; Khokhlov, D.

    2001-01-01

    This paper is about experimental study of hydrodynamics of target system construction with a spherical beam window (membrane). The visualization of current and current velocity fields in energy release area was considered. The findings are used to optimize the geometrical characteristics of target system. Also report contains the information about functioning accelerator-driven system, description it principle circuit and description of basic requirements what the target design should satisfy. (authors)

  1. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    Science.gov (United States)

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents.

  2. Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes.

    Science.gov (United States)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N(3)-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Emerging protein targets for metal-based pharmaceutical agents : An update

    NARCIS (Netherlands)

    de Almeida, Andreia; Oliveira, Bruno L.; Correia, Joao D. G.; Soveral, Graca; Casini, Angela

    2013-01-01

    The peculiar chemical properties of metal-based drugs impart innovative pharmacological profiles to this class of therapeutic and diagnostic agents, most likely in relation to novel molecular mechanisms still poorly understood. However, inorganic drugs have been scarcely considered for medicinal

  4. Separation of carrier-free hafnium and lutetium radionuclides produced in 16O activated terbium metal target

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Banerjee, Kakoli; Nayak, Dalia; Ramaswami, A.; Das, N.R.

    2000-01-01

    Charged particle activation with ∼88 MeV 16 O 7+ beam on natural terbium metal foil leads to the production of the short lived carrier-free radioisotopes 170,171 Ta and their corresponding daughter products 170,171 Hf and 170,171 Lu in the target matrix. Liquid-liquid extraction with HDEHP diluted in cyclohexane was carried out for the separation of 170,171 Hf and 170,171 Lu from the bulk terbium in an aqueous HCl medium

  5. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    Megawatt pilot target experiment (MEGAPIE) is an initiative launched by Commisariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) together with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source SINQ for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories

  6. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    Science.gov (United States)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  7. Formation and damping of a shock wave induced by laser in a metallic target

    International Nuclear Information System (INIS)

    Cottet, F.

    1981-01-01

    In the first part of this work, a numerical simulation of the formation and of the damping of the shock wave induced in a solid target by a laser impulse is developed. It allows to interpret the experimental obtained in the second part of the study. Two series of experiments have been realized. An iron target metallographic study is intended to verify if laser shocks produce effects comparable with conventional shocks, particularly a deformation by albite twinning the existence of which is related to the shock amplitude and its evolution during the propagation in the target. Macles observation become a possible mean to estimate the value of the induced pressures. Another experiment series has been realized to determine more directly the shock parameters. Piezoelectric cermets have been used to detect a shock-wave passage and to measure the time taken to go through targets of variable thickness. The numerical solution allows, afterwards, to deduce the maximum pressure of the induced shock. The most part of the tests have been done on copper targets, the behaviour of which is well known in a large pressure domain. Some tests have been realized on aluminium and iron targets [fr

  8. Investigation of radiation characteristics of laser plasma on a surface of metal targets

    Science.gov (United States)

    Anikeev, Boris V.; Khaydukov, Evgeny V.; Khramov, Vladimir N.; Sevost'yanov, Andrey V.; Zatrudina, Rimma S.

    2007-06-01

    Results of numerical model operation of the x-ray radiation spectra and values of the magnetic field induction of the laser plasma received on aluminium and copper targets under action of USP are presented in this work. In calculations the mathematcial model including combined equations of ideal magnetohydrodynamics in vie of tranpsor ot laser radiation and a self-radiation of laser plasm, supplemented by equations of state and tabulared absorption constant was used. Calculations have shown the oscillation of the x-rays in a pectral rang 1-10 keV with intensity up to 10 11 W/cm2. It is revealed that the accoutn of a heating of plasma by the laser USP changes sharply the morphology of a powerful shock plams wave. Calucation has shown that near to a surface of a target there is an oscillation of spontaneous magnetic fields with an induction about 5•10 7 Gs. And medial value of a magnetic field induction on a copper target in 1. times is more than on an aluminium target. The electron concnetration in laser plams on a copper target, on the average, in 1.3 times is more than on an aluminium target. The velocity of a motion of front of laser plama is ovservationally estimaed at an optical breakdown in atmosphere which ahs made quantity about 7.5•10 6cm/s.

  9. Note: study of extreme ultraviolet and soft x-ray emission of metal targets produced by laser-plasma-interaction.

    Science.gov (United States)

    Mantouvalou, I; Jung, R; Tuemmler, J; Legall, H; Bidu, T; Stiel, H; Malzer, W; Kanngiesser, B; Sandner, W

    2011-06-01

    Different metal targets were investigated as possible source material for tailored laser-produced plasma-sources. In the wavelength range from 1 to 20 nm, x-ray spectra were collected with a calibrated spectrometer with a resolution of λ/Δλ = 150 at 1 nm up to λ/Δλ = 1100 at 15 nm. Intense line emission features of highly ionized species as well as continuum-like spectra from unresolved transitions are presented. With this knowledge, the optimal target material can be identified for the envisioned application of the source in x-ray spectrometry on the high energy side of the spectra at about 1 keV. This energy is aimed for because 1 keV-radiation is ideally suited for L-shell x-ray spectroscopy with nm-depth resolution. © 2011 American Institute of Physics

  10. Liquid nanodroplet formation through phase explosion mechanism in laser-irradiated metal targets.

    Science.gov (United States)

    Mazzi, Alberto; Gorrini, Federico; Miotello, Antonio

    2015-09-01

    Some quantitative aspects of laser-irradiated pure metals, while approaching phase explosion, are still not completely understood. Here, we develop a model that describes the main quantities regulating the liquid-vapor explosive phase transition and the expulsion of liquid nanodroplets that, by solidifying, give rise to nanoparticle formation. The model combines both a thermodynamics description of the explosive phase change and a Monte Carlo simulation of the randomly generated critical vapor bubbles. The calculation is performed on a set of seven metals (Al, Fe, Co, Ni, Cu, Ag, and Au) which are frequently used in pulsed laser ablation experiments. Our final predictions about the size distribution of the liquid nanodroplets and the number ratio of liquid/vapor ejected atoms are compared, whenever possible, with available molecular dynamics simulations and experimental data.

  11. Design of a liquid metal target loop for a high power spallation

    CERN Document Server

    Andreas Vetter (PSI)

    Diplomarbeit zur Erlangung des Grades Diplom-IngenieurTechnische Universität BerlinThis thesis shows the lay-out of the liquid metal loop, which is designed to evacuate 3.0 MW of thermal power. It describes the function and sizing of the piping and components. The thesis deals with the choice of the pump, the expansion tank/gas separator and the heat exchanger using water as cooling fluid as well as instrumentation.

  12. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    Science.gov (United States)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  13. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    International Nuclear Information System (INIS)

    Bazylev, B.; Wuerz, H.

    2002-01-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs

  14. Cytoplasmic membrane is the target organelle for transition metal mediated damage induced by paraquat in Escherichia coli

    International Nuclear Information System (INIS)

    Kohen, R.; Chevion, M.

    1988-01-01

    Bacterial survival indicates that copper or iron is an essential mediator in paraquat toxicity in Escherichia coli. In this study the authors have identified the cytoplasmic membrane as a target organelle in metal-mediated paraquat toxicity and have demonstrated the complete correlation of the membrane damage with the levels of adventitious copper (or iron). The extent of membrane damage was related by use of four parameters: (a) the level of cellular ATP, (b) the level of cellular potassium, (c) the cellular capacity to accumulate and retain radiolabeled leucine, and (d) the cellular integrity as reflected by transmission electron microscopy (TEM). Exposure of bacterial cells to a combination of paraquat and copper caused a marked decline in parameters a, b, and c. This decline was found to occur in parallel with, or even to precede, the sharp loss of survival of E. coli under the same conditions. Likewise, TEM micrographs clearly indicated alternations in cellular structure that possibly reflect sites of detachment of the cytoplasmic membrane from the bacterial capsule. In contradistinction, copper alone or paraquat alone could not bring about similar changes in cellular structure. These findings are in accord with the suggested site-specific metal-mediated Haber-Weiss mechanism for paraquat toxicity and support our notion that specific chelators of transition metals could reduce or prevent the biological deleterious effects of this herbicide

  15. Damage induced by swift heavy ions in a pure metallic target: iron. Experimental results and numerical simulation

    International Nuclear Information System (INIS)

    Legrand, P.

    1993-01-01

    The damage induced when a high energy deposition occurs in the electronic system of a pure metal (Ag, Co, Fe, Ni, Pd, Pt, Ti, W, Zr) has been investigated using two methods: low temperature swift heavy ion (O, Ar, Kr, Xe, Pb, u) irradiations and computer simulations by molecular dynamics. Irradiations reveal that up to now, it is only in iron, titanium, cobalt and zirconium targets that high levels of energy deposition in electronic excitations lead to a new mechanism of defect creation in addition to the effects of elastic collisions. This mechanism might be the Coulomb explosion: the incident ion creates in its wake a cylinder of highly ionized matter; Coulomb repulsions of short duration in metallic targets could then set a great number of neighbouring atoms into motion and lead to permanent atomic displacements. Using molecular dynamics, we confirm that atomic displacements can indeed occur when neighbouring perturbated atoms receive even a very small amount of kinetic energy (≤ 1 eV). This happens only if the repulsive movements are collective and coherent. Defect creation and annealing of preexisting defects which occur in iron at different energy deposition levels are successfully simulated. An original empirical N-body potential, allowing a realistic description of the bulk properties of the body centered cubic iron, is used. (author). refs., figs., tabs

  16. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    CERN Document Server

    Milenković, Rade Ž; Platacis, Ernests; Flerov, Aleksej; Samec, Karel; Dementjevs, Sergejs; Manfrin, Enzo; Thomsen, Knud; 10.1016/j.nima.2009.05.136

    2009-01-01

    Structural-hydraulictestsoftheEuropeanIsotopeSeparationOn-Line(EURISOL)neutronconverter target mock-up,namedMErcuryTargetEXperiment1(METEX1),havebeenconductedbyPaulScherrer Institut(PSI,Switzerland)incooperationwithInstituteofPhysicsoftheUniversityofLatvia(IPUL, Latvia).PSIproceededwithextensivethermal-hydraulicandstructuralcomputationalstudies,followed by thetargetmock-uptestscarriedoutonthemercuryloopatIPUL. One ofthemaingoalsoftheMETEX1testistoinvestigatethehydraulicandstructuralbehaviour of theEURISOLtargetmock-upforvariousinletflowconditions(i.e.massflowrates)and,inparticular, for nominaloperatingflowrateandpressureinthesystem.Theexperimentalresultswereanalysedby advancedtime–frequencymethodssuchasShort-TimeFourierTransforminordertocheckthe vibration characteristicsofthemock-upandtheresonancerisk.Theexperimentalresults(obtainedin METEX 1),whichincludeinletflowrate,pressureofthecovergas,totalpressureloss,structural acceleration,soundandstraindata,werejointlyanalysedtogetherwithnumericaldataobtainedfrom ...

  17. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Spallation Neutron Source Division, Villigen-PSI (Switzerland); Salvatores, M. [CEA Cadarache, Direction des Reacteurs Nucleaires, Saint-Paul-lez-Durance Cedex (France); Heusener, G. [Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung, Karlsruhe (Germany)

    2001-03-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  18. Ionization and excitation of some atomic targets and metal oxides by ...

    Indian Academy of Sciences (India)

    tering from the three atomic targets chosen presently. Total ionization cross- sections (TICS) in e–O scattering were measured by Thompson et al [5], while John- son et al [2] performed experimental-cum-model studies on the VUV excitation– emission processes. The measured TICS of e–Al system have been due to Freund.

  19. Effects study on the thermal stresses in a LEU metal foil annular target.

    Science.gov (United States)

    Govindarajan, Srisharan G; Solbrekken, Gary L

    2015-09-01

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal-mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-01-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter. (author)

  1. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-10-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

  2. Review of JAEA activities on the IFMIF liquid lithium target in FY2006

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Miyashita, Makoto; Sugimoto, Masayoshi; Chida, Teruo; Furuya, Kazuyuki; Yoshida, Eiichi; Hirakawa, Yasuhi; Miyake, Osamu; Hirabayashi, Masaru; Ara, Kuniaki

    2008-03-01

    Engineering Validation Design and Engineering Design Activity (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) is under going. IFMIF is an accelerator-based Deuterium-Lithium (D-Li) neutron source to produce intense high energy neutrons and a sufficient irradiation volume for testing candidate materials for fusion reactors. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid Li flow with a speed of 20 m/s. In target system, nuclear heating due to neutron causes thermal stress especially on a back-wall of the target assembly. In addition, radioactive species such as beryllium-7, tritium and activated corrosion products are generated. In this report, thermal stress analyses of the back-wall, mechanical tests on weld specimen made of the back-wall material, estimations of beryllium-7 behavior and worker dose at the IFMIF Li loop and consideration on major EVEDA tasks are summarized. (author)

  3. Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target.

    Science.gov (United States)

    Nishiuchi, M; Sakaki, H; Maeda, S; Sagisaka, A; Pirozhkov, A S; Pikuz, T; Faenov, A; Ogura, K; Kanasaki, M; Matsukawa, K; Kusumoto, T; Tao, A; Fukami, T; Esirkepov, T; Koga, J; Kiriyama, H; Okada, H; Shimomura, T; Tanoue, M; Nakai, Y; Fukuda, Y; Sakai, S; Tamura, J; Nishio, K; Sako, H; Kando, M; Yamauchi, T; Watanabe, Y; Bulanov, S V; Kondo, K

    2014-02-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ∼10(21) W cm(-2), the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M).

  4. Targeted Construction of Light-Harvesting Metal-Organic Frameworks Featuring Efficient Host-Guest Energy Transfer.

    Science.gov (United States)

    Zhao, Xiaoyu; Song, Xiaoyu; Li, Yang; Chang, Ze; Chen, Long

    2018-02-14

    Metal-organic frameworks (MOFs) have emerged as promising light-harvesting platforms for energy-transfer materials. However, the targeted construction of MOFs with desirable photophysical properties and pore structures is still a challenge. Herein, 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethene (tppe) is selected as the ligand for the construction of light-harvesting MOFs due to its highly emissive and rigid backbone, which could benefit the light-harvesting performance of the MOFs. Three MOFs (MOFs 1-3) were obtained on the basis of different metal centers (Zn 2+ and Cd 2+ ) and carboxylate building blocks. The complete structure characterization of the MOFs helps the illustration of the principles for structure tuning of this system. All three MOFs exhibit strong tppe-originated photoluminescence emission, with quantum yields as high as 47.6%. The fluorescence quantum yield and time-resolved fluorescence studies reveal that a remarkable energy-transfer efficiency (up to 96%) was achieved in this system. These results clearly indicate tppe-MOFs could be promising light-harvesting materials.

  5. Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity That Targets Metal Ion Homeostasis.

    Science.gov (United States)

    Mohammad, Haroon; Elghazawy, Nehal H; Eldesouky, Hassan E; Hegazy, Youssef A; Younis, Waleed; Avrimova, Larisa; Hazbun, Tony; Arafa, Reem K; Seleem, Mohamed N

    2018-03-09

    Globally, invasive fungal infections pose a significant challenge to modern human medicine due to the limited number of antifungal drugs and the rise in resistance to current antifungal agents. A vast majority of invasive fungal infections are caused by species of Candida, Cryptococcus, and Aspergillus. Novel antifungal molecules consisting of unexploited chemical scaffolds with a unique mechanism are a pressing need. The present study identifies a dibromoquinoline compound (4b) with broad-spectrum antifungal activity that inhibits the growth of pertinent species of Candida (chiefly C. albicans), Cryptococcus, and Aspergillus at a concentration of as low as 0.5 μg/mL. Furthermore, 4b, at a subinhibitory concentration, interfered with the expression of two key virulence factors (hyphae and biofilm formation) involved in C. albicans pathogenesis. Three yeast deletion strains ( cox17Δ, ssa1Δ, and aft2Δ) related to metal ion homeostasis were found to be highly sensitive to 4b in growth assays, indicating that the compound exerts its antifungal effect through a unique, previously unexploited mechanism. Supplementing the media with either copper or iron ions reversed the strain sensitivity to 4b, further corroborating that the compound targets metal ion homeostasis. 4b's potent antifungal activity was validated in vivo, as the compound enhanced the survival of Caenorhabditis elegans infected with fluconazole-resistant C. albicans. The present study indicates that 4b warrants further investigation as a novel antifungal agent.

  6. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  7. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211

    Energy Technology Data Exchange (ETDEWEB)

    O’Hara, Matthew J.; Krzysko, Anthony J.; Niver, Cynthia M.; Morrison, Samuel S.; Owsley, Stanley L.; Hamlin, Donald K.; Dorman, Eric F.; Scott Wilbur, D.

    2017-04-01

    Astatine-211 (211At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy of blood borne and metastatic cancers, as well as treatment of tumor remnants after surgical resections. The isolation of trace quantities of 211At, produced within several grams of a Bi metal cyclotron target, involves a complex, multi-step procedure: (1) Bi metal dissolution in strong HNO3, (2) distillation of the HNO3 to yield Bi salts containing 211At, (3) dissolution of the salts in strong HCl, (4) solvent extraction of 211At from bismuth salts with diisopropyl ether (DIPE), and (5) back-extraction of 211At from DIPE into NaOH, leading to a purified 211At product. Step (1) has been addressed first to begin the process of automating the onerous 211At isolation process. A computer-controlled Bi target dissolution system has been designed. The system performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized 211At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (HNO3 concentration and influent flow rate) were optimized prior to evaluation of the system performance on replicate cyclotron irradiated targets. The results indicate that the system performs reproducibly, having nearly quantitative release of 211At from irradiated targets, with cumulative 211At recoveries that follow a sigmoidal function. The predictable nature of the 211At release profile allows the user to tune the system to meet target processing requirements.

  8. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    Science.gov (United States)

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  9. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  10. D- production by multiple charge-transfer collisions in metal-vapor targets. [1 to 50 keV D/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.

    1977-09-01

    A beam of D/sup -/ions can be produced by multiple charge-transfer collisions of a D/sup +/ beam in a thick metal-vapor target. Cross sections and equilibrium charge-state fractions are presented and discussed.

  11. Analytical models for development of high performance metal targets irradiated in IPEN-CNEN/SP Cyclone 30 and Cyclone 18 cyclotrons

    International Nuclear Information System (INIS)

    Oliveira, Henrique Barcellos de

    2009-01-01

    Analytical models were developed that describe the basic elements for metal targets irradiation in cyclotrons. Important parameters such as maximum beam current value and thermal power deposited on target were obtained and compared with practical situations. In an unprecedented way, were determined analytically the features found in intense thermal transient situations, when high protons concentrations in a small region of the beam cause intense temperature gradients in small regions of the target. Comparing with results found in the literature showed that the developed models are satisfactory, in view of all limitations of the proposed model. (author)

  12. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    Science.gov (United States)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  13. Mass balance approaches to assess critical loads and target loads of heavy metals for terrestrial and aquatic ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.; Posch, M.

    2015-01-01

    Critical loads of heavy metals address not only ecotoxicological effects on organisms in soils and surface waters, but also food quality in view of public health. A critical load for metals is the load resulting at steady state in a metal concentration in a compartment (e.g. soil solution, surface

  14. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study.

    Science.gov (United States)

    Shih, Cheng-Yu; Shugaev, Maxim V; Wu, Chengping; Zhigilei, Leonid V

    2017-08-03

    The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh-Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles emerging

  15. The excitation functions of 4s-4p and 3d-4p transitions in Ni atoms sputtered from metallic targets by Ar+ ions

    International Nuclear Information System (INIS)

    Dabrowski, P.; Gabla, L.; Pedrys, R.

    1981-01-01

    The intensities of spectral lines corresponding to 4s-4p and 3d-4p transitions in Ni atoms sputtered from metallic targets by Ar + ions were measured. The energy of primary ions was varied from 4 keV to 10 keV. Both single crystal and polycrystalline targets were used at various temperatures including ferromagnetic and paramagnetic phases. The excitation functions calculated from experimental data can be explained only by the assumption that the promotion of the electrons occurs during energetic binary collisions of atomic particles in the solid. (orig.)

  16. Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer

    Science.gov (United States)

    Shugaev, Maxim V.; Shih, Cheng-Yu; Karim, Eaman T.; Wu, Chengping; Zhigilei, Leonid V.

    2017-09-01

    The effect of spatial confinement by a solid or liquid overlayer on short pulse laser-induced surface microstructure modification is investigated in a series of large-scale atomistic simulations performed for Ag targets irradiated in the regime of melting and resolidification, below the thresholds for laser spallation and ablation. For Ag targets with free surfaces, the formation of a nanocrystalline region with random crystallographic grain orientation is observed under irradiation conditions leading to the generation of numerous sub-surface voids that slow down the solidification process. When no voids are generated, the resolidification produces grains misoriented with respect to the bulk of the target by just several degrees and separated from each other by low angle grain boundaries or dislocation walls. The presence of a liquid or solid overlayer suppresses nucleation of sub-surface voids, provides an additional pathway for cooling through the heat conduction to the overlayer, and facilitates the formation of nanocrystalline structure in a region of the metal target adjacent to the overlayer. Moreover, the stabilizing effect of the solid overlayer may result in an incomplete melting of metal in the vicinity of the interface, making it possible for grains growing from the interface to retain ;memory; of the target orientation and to produce nanocrystalline interfacial region with small misorientation of grains with respect to the bulk of the target. In all simulations, the nanocrystalline layers generated by laser processing of single crystal Ag targets are characterized by a high density of stacking faults, twin boundaries, and point defects produced in the course of the rapid resolidification.

  17. Experimental study about the influence of adhesive stiffness to the bonding strengths of adhesives for ceramic/metal targets

    Directory of Open Access Journals (Sweden)

    W. Seifert

    2016-04-01

    The experimental results indicate that the damage behavior of the ceramic/metal composites depends on the absolute elongation of the adhesive layer. This can be controlled either by the thickness or the stiffness of the bonding layer.

  18. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn–Ta metal-sintered target

    International Nuclear Information System (INIS)

    Muto, Y.; Nakatomi, S.; Oka, N.; Iwabuchi, Y.; Kotsubo, H.; Shigesato, Y.

    2012-01-01

    Ta-doped SnO 2 films were deposited on glass substrate (either unheated or heated at 200 °C) by reactive magnetron sputtering with a Sn–Ta metal-sintered target using a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system precisely controlled the flow of the reactive and sputtering gases (O 2 and Ar, respectively) by monitoring either discharge impedance or the plasma emission of the atomic O* line at 777 nm. The planar target was connected to the switching unit, which was operated in unipolar pulse mode. Power density on the target was maintained at 4.4 W cm −2 during deposition. The lowest obtained resistivity for the films deposited on heated substrate was 6.4 × 10 −3 Ωcm, where the deposition rate was 250 nm min −1 .

  19. Studies on the reactive pulsed-magnetron sputtering of ITO from metallic targets; Untersuchungen zum reaktiven Pulsmagnetronsputtern von ITO von metallischen Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gnehr, W.M.

    2006-06-15

    The thesis deals with a reactive sputter process for the deposition of ITO- films. In contrast to the usual technique, the sputter targets consists of indium-tin-alloy instead of ceramic ITO. All experiments were conducted on an inline coater with 600 mm target-width. The process is stabilized by a control loop based on optical emission detection. The experiments prove, that this control loop guarantees a long term stability of the outcomes of the coating process.Process parameters, that are crucial for the optical and electrical properties of the deposited thin films are identified and studied. Among them are the flow of oxygen and the substrate temperature but also less obvious parameters such as the distance between target and substrate.Througout the work the focus is on the film deposition with pulsed plasmas. Novel bipolar DC pulse- and pulse package generators are employed for the deposition.In order to shed some light onto the influence of certain pulse parameters on the outcome of a particular coating process, a Monte-Carlo-Simulation of the particle flow in pulsed plasmas is developed. This simulation yields the distribution of particles and their respective energies on deliberately placed planes in the process chamber. Particles under investigation are both sputtered species and neutral sputter gas atoms reflected at the target. The results of this simulation provide an explanation for the influence of certain pulse parameters on the outcome of the coating process. The further investigations deal with the influence of the construction of the process chamber on the coating process. For this purpose, locally resolved optical spectra are recorded. In order to analyse these spectra, a novel connected fit algorithm is developed.This algorithm yields the distribution of certain fitparameters on the substrate. Provided the most complex of the discussed parametrizations of the dielectric function are used, these can be crucial properties such as the carrier

  20. 2-periodic metal-organic frameworks (MOFs) as supermolecular building layers (SBLs) for making targeted 3-periodic MOFs

    KAUST Repository

    Eddaoudi, Mohamed

    2015-09-22

    Embodiments of the present disclosure provide for chemical assemblies, multidimensional metal-organic frameworks (MOFs), supermolecular building layers (SBLs), inorganic molecular building blocks (MBBs), organic MBBs (designed ligands), methods of making each, and methods of using each, and the like. In an embodiment, the composition can be used in catalysis, separations, gas storage, and drug delivery.

  1. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    Science.gov (United States)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  2. The use of macro and micro proton beams to study the variation in PIXE yield from metal targets insulated with PTFE, glass and nylon

    International Nuclear Information System (INIS)

    Pillay, A.E.

    1999-01-01

    Proton beams of diameters of 3 mm and 3 μm, were used to observe the differences in PIXE yield from pure metal targets encapsulated with PTFE, glass (macor) and nylon. The beam energy was kept constant at 700 keV. Beam currents varied from about 200 pA with the microbeam and between 1-10 nA with the macrobeam. Considerable enhancement was observed mainly with the use of PTFE, up to about a factor of 18 with the macrobeam and 306 with the microbeam. (author)

  3. Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengli; Yuan, Jinhong [Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Zhang, Hui [Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Deng, Xin [Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637 (United States); Ma, Mi [Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Zhang, Haiyan, E-mail: hyz@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China)

    2016-01-25

    Highlights: • mCusF is specifically targeted to different subcellular compartments in Arabidopsis. • Plants expressing vacuole-targeted mCusF exhibit strongest Zn resistance. • All transgenic lines accumulate more Zn under Zn exposure. • All transgenic lines enhance root-to-shoot translocation of Cd. • Metal homeostasis is improved in mCusF plants under Cd exposure. - Abstract: The periplasmic protein CusF acts as a metallochaperone to mediate Cu resistance in Escherichia coli. CusF does not contain cysteine residues and barely binds to divalent cations. Here, we addressed effects of cysteine-substitution mutant (named as mCusF) of CusF on zinc/cadmium (Zn/Cd) accumulation and resistance. We targeted mCusF to different subcellular compartments in Arabidopsis. We found that plants expressing vacuole-targeted mCusF were more resistant to excess Zn than WT and plants with cell wall-targeted or cytoplasmic mCusF. Under long-term exposure to excess Zn, all transgenic lines accumulated more Zn (up to 2.3-fold) in shoots than the untransformed plants. Importantly, plants with cytoplasmic mCusF showed higher efficiency of Zn translocation from root to shoot than plants with secretory pathway-targeted-mCusF. Furthermore, the transgenic lines exhibited enhanced resistance to Cd and significant increase in root-to-shoot Cd translocation. We also found all transgenic plants greatly improved manganese (Mn) and iron (Fe) homeostasis under Cd exposure. Our results demonstrate heterologous expression of mCusF could be used to engineer a new phytoremediation strategy for Zn/Cd and our finding also deepen our insights into mechanistic basis for relieving Cd toxicity in plants through proper root/shoot partitioning mechanism and homeostatic accumulation of Mn and Fe.

  4. Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting

    International Nuclear Information System (INIS)

    Yu, Pengli; Yuan, Jinhong; Zhang, Hui; Deng, Xin; Ma, Mi; Zhang, Haiyan

    2016-01-01

    Highlights: • mCusF is specifically targeted to different subcellular compartments in Arabidopsis. • Plants expressing vacuole-targeted mCusF exhibit strongest Zn resistance. • All transgenic lines accumulate more Zn under Zn exposure. • All transgenic lines enhance root-to-shoot translocation of Cd. • Metal homeostasis is improved in mCusF plants under Cd exposure. - Abstract: The periplasmic protein CusF acts as a metallochaperone to mediate Cu resistance in Escherichia coli. CusF does not contain cysteine residues and barely binds to divalent cations. Here, we addressed effects of cysteine-substitution mutant (named as mCusF) of CusF on zinc/cadmium (Zn/Cd) accumulation and resistance. We targeted mCusF to different subcellular compartments in Arabidopsis. We found that plants expressing vacuole-targeted mCusF were more resistant to excess Zn than WT and plants with cell wall-targeted or cytoplasmic mCusF. Under long-term exposure to excess Zn, all transgenic lines accumulated more Zn (up to 2.3-fold) in shoots than the untransformed plants. Importantly, plants with cytoplasmic mCusF showed higher efficiency of Zn translocation from root to shoot than plants with secretory pathway-targeted-mCusF. Furthermore, the transgenic lines exhibited enhanced resistance to Cd and significant increase in root-to-shoot Cd translocation. We also found all transgenic plants greatly improved manganese (Mn) and iron (Fe) homeostasis under Cd exposure. Our results demonstrate heterologous expression of mCusF could be used to engineer a new phytoremediation strategy for Zn/Cd and our finding also deepen our insights into mechanistic basis for relieving Cd toxicity in plants through proper root/shoot partitioning mechanism and homeostatic accumulation of Mn and Fe.

  5. Experimental and numerical analysis of the flow in contraction nozzles of the liquid metal targets for Super-FRS

    Energy Technology Data Exchange (ETDEWEB)

    Stoppel, L.; Stieglitz, R.; Daubner, M.; Fellmoser, F. [Forschungszentrum Karlsruhe GmbH, Karlsruhe (DE). Inst. fuer Kern- und Energietechnik (IKET); Gordeev, S. [Forschungszentrum Karlsruhe GmbH, Karlsruhe (DE). Inst. fuer Reaktorsicherheit (IRS)

    2008-07-01

    The trend towards higher beam intensities in accelerator applications enforces the development of free surface targets in order to ensure a safe heat removal of the deposited beam energy. In the heavy-ion synchrotron facility FAIR of GSI a wide range of particle energies will be used for the production of fragments by projectile fragmentation at the fragment separator Super-FRS. For the highest power densities envisaged, a windowless vertical liquid-Li-jet-target with a rectangular shape is considered. In order to capture the whole beam dimensions within the lithium jet the variation of the jet depth over a height of 50 mm in vertical direction should not exceed more than {+-} 1%. This demands nozzle design of the target ensuring a uniform velocity profile at the nozzle exit at a simultaneously low turbulence intensity. The nozzle shape influences significantly the stability of the jet leaving the bounded duct flow. Here, mainly the turbulence distribution within the boundary layer is of importance. This extremely crucial boundary condition at the nozzle exit is a prerequisite for a reliable target operation and thus the subject of this combined experimental and numerical study. In a previous study the main parameters influencing the jet flow were elaborated, while this investigation focuses on optical velocity measurements within the boundary layer at prototypical velocities. The experimental data are compared to numerical simulations in order to validate limits of commonly used turbulence models for this type of application. (orig.)

  6. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    Science.gov (United States)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  7. Structure of the I-SceI nuclease complexed with its dsDNA target and three catalytic metal ions

    DEFF Research Database (Denmark)

    Prieto, Jesús; Redondo, Pilar; Merino, Nekane

    2016-01-01

    Saccharomyces cerevisiae has been purified after overexpression in Escherichia coli and its crystal structure has been determined in complex with its target DNA. In order to evaluate the number of ions that are involved in the cleavage process, thus determining the catalytic mechanism, crystallization......Homing endonucleases are highly specific DNA-cleaving enzymes that recognize and cleave long stretches of DNA. The engineering of these enzymes provides instruments for genome modification in a wide range of fields, including gene targeting. The homing endonuclease I-SceI from the yeast...... coefficient suggested the presence of two protein-DNA complexes in the asymmetric unit. The crystals diffracted to a resolution limit of 2.9 Å using synchrotron radiation. From the anomalous data, it was determined that three cations are involved in catalysis and it was confirmed that I-SceI follows a two...

  8. Experimental Investigation of Proton Induced Thermal Shocks and Magnetohydrodynamic Effects in Molten Metal Pion Production Targets for a Neutrino Factory

    CERN Document Server

    Schaffarzick, D

    2001-01-01

    Neutrinos are one of the basic subatomic particles among electrons, protons and many more, which build all matter. Neutrinos appear in three different types. Sources of neutrinos are the sun and nuclear power plants. But the type of neutrinos created there is not exactly known and the type changes between their creation to their detection, so only assumptions can be made. This change of type is called “neutrino oscillation”. In order to enable the nuclear physisists to find out more about the neutrinos and the neutrino oscillation, a neutrino factory will be built which will produce a high intensity neutrino beam with exactly known parameters like number of particles and type of neutrinos. This neutrino beam can then be used to investigate the properties of the neutrinos at near and far detectors. In cooperation with other laboratories CERN has started a study of some of the many technological challenges of a neutrino factory. A major issue of the facility is the pion production target where p...

  9. EURISOL-DS Multi-MW Target: Study of the WTF Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Cyril Kharoua, Yacine Kadi (CERN)Erik Platacis, Kalvis Kravalis (IPUL)

    This technical note summarises the design calculations and experiments performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) for the WTF (Windowless Transverse Film) mercury converter.A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the flow velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA.Many experiments have been performed at IPUL to optimise an inlet nozzle capable to create a stable film. The experimental program followed to design the film former will be detailed in this report.The results of these calculations are addressing the baseline parameters. Particularly, a 1 GeV proton beam with a sigma ~2 mm Gaussian distribution impacting on a 4x30x40cm long target. The very high power density requires about 5m/s velocity in the region where the heat deposition is maximum.

  10. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  11. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    Science.gov (United States)

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Theoretical investigations of a viscous flow in rotational symmetry hollow jet nozzles with respect to a design of a flowing liquid metal target for a neutron spallation source

    International Nuclear Information System (INIS)

    Felsch, K.O.; Piesche, M.; Veith, W.

    1981-04-01

    The object of this theoretical study is the laminar and turbulent swirl free flow of a viscous incompressible medium in a rotation symmetric hollow jet nozzle whose geometrical configuration incorporates the technical conception of a molten metal target. Of interest is the construction of the nozzle in such a form that the wall boundaries reflect the natural frictional movement of the flow, i.e. the contours of the nozzle are trimmed by the interaction of the viscosity, momentum, gravity and surface tension forces. The mathematical treatment is based on an integral method. For laminar flow higher order polynomials were chosen and for turbulent flow the power of law of 1/7. As well as this the wall shear stresses in the turbulent flow region have to conform to the laws of pipe flow and in particular, to a modified form of Blasius' resistance law. The essential factors which are obtained from this study are the geometrical relationship between the average nozzle radius and the initial width of the fluid film, the exit angle and the Reynolds, Weber and Froude numbers as the characteristic geometric and physical flow parameters. (orig.) [de

  13. Proton-induced production and radiochemical isolation of44Ti from scandium metal targets for44Ti/44Sc generator development.

    Science.gov (United States)

    Radchenko, Valery; Engle, Jonathan W; Medvedev, Dmitri G; Maassen, Joel M; Naranjo, Cleo M; Unc, George A; Meyer, Catherine A L; Mastren, Tara; Brugh, Mark; Mausner, Leonard; Cutler, Cathy S; Birnbaum, Eva R; John, Kevin D; Nortier, F Meiring; Fassbender, Michael E

    2017-07-01

    Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44g Sc is the 44 Ti/ 44g Sc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44 Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44 Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44 Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44 Ti via anion exchange sorption in concentrated HCl results in a 44 Tc/Sc separation factor of 10 2 -10 3 . A second, cation exchange based step in HCl media is then applied for 44 Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44 Ti recovery with an overall Ti/Sc separation factor of ≥10 6 . Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Facile synthesis of highly biocompatible folic acid-functionalised SiO2 nanoparticles encapsulating rare-earth metal complexes, and their application in targeted drug delivery.

    Science.gov (United States)

    Xu, Xiuling; Hu, Fan; Shuai, Qi

    2017-11-14

    Mesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC 2 @SiO 2 -FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microwave method was used to synthesise five RC cores based on 4-chlorophenoxyacetic acid, and their crystal structures were further confirmed using X-ray diffraction. The five RC cores have the following chemical formulae: [Er 2 (p-CPA) 6 (H 2 O) 6 ] RC 1 , [Ho 2 (p-CPA) 6 (H 2 O) 6 ] RC 2 , [Sm(p-CPA) 3 (H 2 O)] RC 3 , [Pr(p-CPA) 3 (H 2 O)]·3H 2 O RC 4 and [Ce(p-CPA) 3 (H 2 O) 2 ]·2H 2 O RC 5 . The carboxyl groups showed two kinds of coordination modes, namely μ 2 -η 1 :η 1 and μ 2 -η 1 :η 2 , among RC 1 -RC 5 . The flexible -OCH 2 COO- spacer group, which can undergo rotation of its C-O and C-C bonds, offered great potential for structural diversity. In vivo experiments revealed that the nanospheres exhibited no obvious cytotoxicity on HepG2 cells and 293 T cells, even at concentrations of up to 80 μg mL -1 . Nevertheless, all of the RC cores showed a certain degree of anti-tumour efficacy; in particular, RC 2 showed the strongest cytotoxicity against HepG2 cells. Interestingly, the cytotoxicity of all of the RC 2 @SiO 2 -FA nanospheres was higher than that of lone RC 2 . These types of FA-targeted mesoporous silica nanocarriers can be used for the delivery of anti-tumour RC, and provide a basis for the further study of affordable non-platinum-based complexes.

  15. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  16. Processes for the production of ultra-pure metals from oxide and their cold rolling to ultra-thin foils for use as targets and as reference materials

    International Nuclear Information System (INIS)

    Clifford, S.; Guo-ji, Xu; Ingelbrecht, C.; Pomeroy, M.J.

    2002-01-01

    A wide variety of metals have been reduced from their oxides with high (>90%) yields using metallothermic reduction, hydrogen reduction or electrowinning. The high yields during metallothermic reduction were achieved by careful design of the collector and crucible orifice. Whilst each of the three techniques gave rise to reasonably (>99%) pure metals, subsequent carefully controlled vacuum distillation, using a system with especially designed crucible, baffle and collector systems, resulted in ultra-high-purity metals being produced. Using a stainless steel pack rolling technique, metals derived either directly from the reduction routes or following subsequent distillation could be rolled to foils thinner than previously reported in the literature in the majority of cases

  17. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs)

    OpenAIRE

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Yohannes, Yared Beyene; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metal and metalloid contamination in food resulting from mining is of major concern due to the potential risk involved. Food consumption is the most likely route of human exposure to metals. This study was therefore to assess metals in different organs and different animal species near gold mines used for human consumption (free-range chicken, goat and sheep) in Tarkwa, Ghana, and to estimate the daily intake and health risk. The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and...

  18. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Le Garrec, J.-L.; Mitchell, J.B.A. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Carvou, E. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Menneveux, J.; Yu, J. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ouf, F.-X. [Institut de Radioprotection et de Sureté Nucléaire IRSN/PSN-RES/SCA/LPMA BP 68, 91192 Gif-Sur-Yvette (France); Carles, S. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Potin, V.; Pillon, G.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Perez, J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Marco de Lucas, M.C., E-mail: delucas@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); and others

    2016-06-30

    Highlights: • NPs formed in a plasma-plume during laser irradiation of metals (Al, Ti, Ag) were studied. • In situ SAXS and ex situ TEM, XRD and Raman spectra were measured. • NPs size decreased when increasing the O{sub 2} fraction in a controlled O{sub 2}+N{sub 2} atmosphere. • The oxidation of metal NPs in the plasma restricts the increase of the size of the NPs. - Abstract: The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O{sub 2}–N{sub 2} gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2–5 nm range. A decrease of the NPs size with increasing the O{sub 2} percentage in the O{sub 2}–N{sub 2} gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  19. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  20. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  1. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  2. Metals and metal derivatives in medicine.

    Science.gov (United States)

    Colotti, Gianni; Ilari, Andrea; Boffi, Alberto; Morea, Veronica

    2013-02-01

    Several chemical elements are required by living organisms in addition to the four elements carbon, hydrogen, nitrogen and oxygen usually present in common organic molecules. Many metals (e.g. sodium, potassium, magnesium, calcium, iron, zinc, copper, manganese, chromium, molybdenum and selenium) are known to be required for normal biological functions in humans. Disorders of metal homeostasis and of metal bioavailability, or toxicity caused by metal excess, are responsible for a large number of human diseases. Metals are also extensively used in medicine as therapeutic and/or diagnostic agents. In the past 5000 years, metals such as arsenic, gold and iron have been used to treat a variety of human diseases. Nowadays, an ever-increasing number of metal-based drugs is available. These contain a broad spectrum of metals, many of which are not among those essential for humans, able to target proteins and/or DNA. This mini-review describes metal-containing compounds targeting DNA or proteins currently in use, or designed to be used, as therapeutics against cancer, arthritis, parasitic and other diseases, with a special focus on the available information, often provided by X-ray studies, about their mechanism of action at a molecular level. In addition, an overview of metal complexes used for diagnosing diseases is presented.

  3. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment

    International Nuclear Information System (INIS)

    Remaili, Timothy M.; Simpson, Stuart L.; Amato, Elvio D.; Spadaro, David A.; Jarolimek, Chad V.; Jolley, Dianne F.

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53–100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment. - Highlights: • Bioturbation intensity modifies metal exposure and outcomes of sediment bioassays. • Sediment fluxes of Cu decrease and Mn and Zn increase with increased bioturbation. • Strong correlations between bioaccumulated and dissolved Cd, Cr, Pb, Zn, Cu and Ni. • Weak correlations between bioaccumulated and particulate metals. - This study investigated the impact of sediment bioturbation intensity on metal bioavailability and toxicity to aquatic organisms, and the implications of this to toxicity test design.

  4. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.; Potin, V.; Andrzejewski, H.; Marco de Lucas, M. C.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Avenue A. Savary, BP 47870-21078 Dijon Cedex (France); Le Garrec, J.-L.; Carles, S.; Mitchell, J. B. A. [Institut de Physique de Rennes, UMR 6251 CNRS-Universite de Rennes 1, 35042 Rennes Cedex (France); Hallo, L. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Perez, J. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Decloux, J. [Kaluti System, Optique et Laser, Centre Scientifique d' Orsay, 91400 Orsay (France)

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  5. First observation of beryllium-7 solar neutrinos with KamLAND

    Science.gov (United States)

    Keefer, Gregory J.

    2009-09-01

    The international KamLAND collaboration operates a 1 kton liquid scintillation detector in the Kamioka mine in Gifu, Japan. KamLAND's main scientific results are the precision measurement of the solar Dm 2 12 = 7.58[Special characters omitted.] (stat) [Special characters omitted.] (syst) and tan 2 [straight theta] 12 = 0.56[Special characters omitted.] (stat) [Special characters omitted.] (syst) utilizing reactor n e and first evidence for the observation of geologically produced anti-neutrinos. In an effort to extend KamLAND's scientific reach, extensive research has been performed on preparing a spectroscopic measurement of 7 Be solar n e s. This work provides the first inclusive analysis of KamLAND's backgrounds below 1 MeV. 85 Kr and 210 Pb, dissolved in KamLAND liquid scintillator, were found to be the dominant source of low energy backgrounds. The concentration of these ultra-trace contaminants were determined to be 10 -20 g/g. This is more than 6 orders of magnitude lower than commercially available ultra-pure liquids. To attain a signal-to-background ratio suitable for the detection of 7 Be solar n e s, the concentration of these contaminants had to be reduced by 5 orders of magnitude. A comprehensive study of 210 Pb removal was undertaken over the course of this thesis. This work further covers techniques for the removal of 220 Rn, 222 Rn and their daughter nuclei from liquid scintillator at concentrations of 10^-18 g/g. Purification techniques studied in this work include water extraction, isotope exchange, adsorption, and distillation. These laboratory studies guided the design and implementation of a large scale purification system in the Kamioka mine. The purification system's design and operation is discussed in detail as well as specific experiments devised to control scintillator quality and radio-purity. The purification system's effectiveness in removing radioactive trace impurities is analyzed in detail. The total scintillator purified over two years of operation was more than 4.6 ktons. It is shown here that the KamLAND collaboration has successfully reduced the 85 Kr activity of the scintillator by a factor of 2.6 × 10^4 while 210 Bi was reduced by a factor 2 × 10^3 . Due to the success in reducing the intrinsic backgrounds through multiple purifications, this work provides the first evidence for a 7 Be solar n e signal in KamLAND. The presented analysis covers 5.448 kton-days of exposure time. While the current work is not yet providing a robust measurement of the 7 Be solar n e flux, the presence of 7 Be solar n e is shown to be statistically preferred over a null hypothesis.

  6. A Monte Carlo approach to Beryllium-7 solar neutrino analysis with KamLAND

    Science.gov (United States)

    Grant, Christopher Peter

    Terrestrial measurements of neutrinos produced by the Sun have been of great interest for over half a century because of their ability to test the accuracy of solar models. The first solar neutrinos detected with KamLAND provided a measurement of the 8B solar neutrino interaction rate above an analysis threshold of 5.5 MeV. This work describes efforts to extend KamLAND's detection sensitivity to solar neutrinos below 1 MeV, more specifically, those produced with an energy of 0.862 MeV from the 7Be electron-capture decay. Many of the difficulties in measuring solar neutrinos below 1 MeV arise from backgrounds caused abundantly by both naturally occurring, and man-made, radioactive nuclides. The primary nuclides of concern were 210Bi, 85Kr, and 39Ar. Since May of 2007, the KamLAND experiment has undergone two separate purification campaigns. During both campaigns a total of 5.4 ktons (about 6440 m3) of scintillator was circulated through a purification system, which utilized fractional distillation and nitrogen purging. After the purification campaign, reduction factors of 1.5 x 103 for 210Bi and 6.5 x 10 4 for 85Kr were observed. The reduction of the backgrounds provided a unique opportunity to observe the 7Be solar neutrino rate in KamLAND. An observation required detailed knowledge of the detector response at low energies, and to accomplish this, a full detector Monte Carlo simulation, called KLG4sim, was utilized. The optical model of the simulation was tuned to match the detector response observed in data after purification, and the software was optimized for the simulation of internal backgrounds used in the 7Be solar neutrino analysis. The results of this tuning and estimates from simulations of the internal backgrounds and external backgrounds caused by radioactivity on the detector components are presented. The first KamLAND analysis based on Monte Carlo simulations in the energy region below 2 MeV is shown here. The comparison of the chi2 between the null hypothesis and the existence of the 7Be solar neutrino signal in the data shows a change of 27.9 units, providing evidence that the signal is statistically favored. This analysis reports a measured interaction rate from 7Be solar neutrinos of R = 343.3 +/- 65.0(stat) +/- 99.2(syst) events/(kton·day), which corresponds to a total flux of phi = (3.41 +/- 1.18) x 109 cm-2s-1. The 7Be solar neutrino flux reported in this work is only the second measurement made of this quantity worldwide. It provides an important cross-check of the Borexino experiment. The flux measurement reported here agrees within 1sigma with the standard solar model predictions thus validating our basic understanding of solar fusion reaction processes.

  7. Beryllium-7 in Usnea antarctica Du Rietz from the Machu Picchu Antarctic Research Station

    International Nuclear Information System (INIS)

    Osores, Jose; Gonzales, Susana

    2013-01-01

    Concentrations of Be-7 in Usnea antarctica (lichen) collected during the austral summer of 2013 in the Antarctic Scientific Station 'Machu Picchu' were determined by high resolution gamma spectrometry, obtaining values between 366.5 and 515.1 Becquerels per kilogram dry weight. The analysis of variance shows no significant difference in the concentrations of Be-7 between sampling areas located at different heights. The average value of Be-7 for 2013 is significantly higher to other sampling years, except for 1996. (authors).

  8. Lead-210 and Beryllium-7 fallout rates on the southeastern coast of Brazil.

    Science.gov (United States)

    Sanders, Christian J; Smoak, Joseph M; Cable, Peter H; Patchineelam, Sambasiva R; Sanders, Luciana M

    2011-12-01

    Total ²¹⁰Pb and ⁷Be fallout rates were measured on the coastal region of Niteroi, Brazil. The monthly depositional flux of ²¹⁰Pb and ⁷Be varied by a factor of 26, from 1.7 to 43.3 mBq cm⁻² year⁻¹ and ∼27, from 7.5 to 203.5 mBq cm⁻² year⁻¹, respectively. The relatively large oscillations in the depositional flux of ²¹⁰Pb at this study site were likely due to variations in air mass sources, while the ⁷Be fluctuations may be driven by a combination of weather conditions. Local geology could support the periodic high fluxes of ²¹⁰Pb from continental air masses, as shifting oceanic wind sources were affirmed by the uncorrelated ²¹⁰Pb and ⁷Be fallout activities and ⁷Be/²¹⁰Pb ratios. The ²¹⁰Pb atmospheric deposition was found to be in agreement with local sediment inventories, an important consideration in geochemical studies that estimate sedimentation processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Temporal changes of beryllium-7 and lead-210 in ground level air in Serbia

    Directory of Open Access Journals (Sweden)

    Janković Marija M.

    2014-01-01

    Full Text Available 7Be, 210Pb and 137Cs activity concentrations in ground level air at five monitoring stations (MS Vinča, Zeleno Brdo, Zaječar, Vranje and Zlatibor in Serbia were determined during the period from May 2011. to September 2012., as part of the project monitoring of Serbia. Activity of the radionuclides in air was determined on an HPGe detector (Canberra, relative efficiency 20 % by standard gamma spectrometry. Concentrations of cosmogenic 7Be, ranged from 1.5 to 8.8 mBq m-3 and exhibit maxima in the spring/summer period. The maximum concentrations for 210Pb were generally obtained in the fall for all investigated locations, and concentrations were in range 3.6 - 30 × 10-4 Bq m-3. The activity concentrations of anthropogenic 137Cs in ground level air, during the observed period, were at level 0.3 - 8 μBq m-3. The variations in 7Be/210Pb activity ratio for the investigated stations are also presented. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  10. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment.

    Science.gov (United States)

    Remaili, Timothy M; Simpson, Stuart L; Amato, Elvio D; Spadaro, David A; Jarolimek, Chad V; Jolley, Dianne F

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53-100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Influence of plasma-induced energy deposition effects, the equation of state, thermal ionization, pulse shaping, and radiation on ion-beam-driven expansions of plane metal targets

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1986-01-01

    In a previous paper by Long and Tahir [Phys. Fluids 29, 275 (1986)], the motion of plane targets irradiated by ion beams whose energy deposition was assumed to be independent of the ion energy, and the temperature and density of the plasma, was analyzed. In this paper, the analytic solution is extended in order to include the effects of a temperature-and density-dependent energy deposition as a result of electron excitation, an improved equation of state, thermal ionization, a pulse shape, and radiation losses. The change in the energy deposition with temperature and density leads to range shortening and an increased power deposition in the target. It is shown how the analytic theory can be used to analyze experiments to measure the enhanced energy deposition. In order to further analyze experiments, numerical simulations are presented which include the plasma-induced effects on the energy deposition. It is shown that since the change in the range is due to both decrease in density and the increase in temperature, it is not possible to separate these two effects in present experiments. Therefore, the experiments which measure the time-dependent energy of the ions emerging from the back side of a plane target do not as yet measure the energy loss as a function of the density and temperature of the plasma or of the energy of the ion, but only an averaged loss over certain ranges of these physical quantities

  12. Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding*

    Science.gov (United States)

    Huang, Yiping; Nokhrin, Sergiy; Hassanzadeh-Ghassabeh, Gholamreza; Yu, Corey H.; Yang, Haojun; Barry, Amanda N.; Tonelli, Marco; Markley, John L.; Muyldermans, Serge; Dmitriev, Oleg Y.; Lutsenko, Svetlana

    2014-01-01

    The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1–3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell. PMID:25253690

  13. EURISOL-DS Multi-MW Target Preliminary Study of the WTF(Windowless Transverse Film) Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Cyril Kharoua, Yacine Kadi, Karel Samec, Roberto Rocca

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the WTF (Windowless Transverse Film) mercury converter. A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the mercury velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA [2]. The results of these calculations show the baseline parameters, which will be used for the detailed design. Particularly, with a 1 GeV proton beam with a ~2 mm Gaussian distribution on a 4x30x40cm long target and with a 5m/s velocity at the peak power density region seems a suitable solution.

  14. Eurisol-DS Multi MW Target Preliminary Study of the Windlowless Transverse Film (WTF) Liquid Metal Proton-to Neutron Converter

    CERN Document Server

    Kadi, Y; Rocca, R; Samec, K

    2008-01-01

    This technical note summarises the design calculations performed within Task#2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) for the WTF (Windowless Transverse Film) mercur converter. A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the mercury velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA. The results of these calculations show the baseline parameters, which will be used for the detailed design. Particularly, with a 1 GeV proton beam with a $\\sigma$ ~2 mm Gaussian distribution on a 4x30x40cm long target and with a 5m/s velocity at the peak power density region seems a suitable solution.

  15. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    Science.gov (United States)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce

  16. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  17. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  18. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  19. Search for Two Categories of Target Produces Fewer Fixations to Target-Color Items

    Science.gov (United States)

    Menneer, Tamaryn; Stroud, Michael J.; Cave, Kyle R.; Li, Xingshan; Godwin, Hayward J.; Liversedge, Simon P.; Donnelly, Nick

    2012-01-01

    Searching simultaneously for metal threats (guns and knives) and improvised explosive devices (IEDs) in X-ray images is less effective than 2 independent single-target searches, 1 for metal threats and 1 for IEDs. The goals of this study were to (a) replicate this dual-target cost for categorical targets and to determine whether the cost remains…

  20. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo......M hip implant. A Danish surveillance programme has been initiated addressing these problems....

  1. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  2. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2004-01-01

    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets

  3. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  4. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  5. Metallic coating of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  6. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  7. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  8. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-03-03

    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  9. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  10. Targets for the production of radioisotopes and method of assembly

    Science.gov (United States)

    Quinby, Thomas C.

    1976-01-01

    A target for preparation of radioisotopes by nuclear bombardment, and a method for its assembly are provided. A metallic sample to be bombarded is enclosed within a metallic support structure and the resulting target subjected to heat and pressure to effect diffusion bonds therebetween. The bonded target is capable of withstanding prolonged exposure to nuclear bombardment without thermal damage to the sample.

  11. Elemental metals for environmental remediation: lessons from hydrometallurgy

    OpenAIRE

    Crane, R. A.; Noubactep, C.

    2012-01-01

    In the mining industry, the separation of economically valuable metals from gangue materials is a well established process. As part of this field, hydrometallurgy uses chemical fluids (leachates) of acidic or basic pH to dissolve the target metal(s) for subsequent concentration, purification and recovery. The type and concentration of the leach solution is typically controlled to allow selective dissolution of the target metal(s), and other parameters such as oxidation potentia...

  12. Metal lagging

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1974-01-01

    The metal lagging described is characterized by the fact that it is formed of closed sacks composed of an elastic metal mass, compressed in an outer envelope made of a fine mesh metal fabric. The metal mass is composed of stainless steel wool stuffed into the envelope. This lagging is particularly intended for the thermal protection of the end slab of LMFBR type reactors [fr

  13. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  14. Targets and processes for fabricating same

    Science.gov (United States)

    Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko

    2016-05-17

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  15. Oxide Fiber Targets at ISOLDE

    CERN Document Server

    Köster, U; Carminati, D; Catherall, R; Cederkäll, J; Correia, J G; Crepieux, B; Dietrich, M; Elder, K; Fedosseev, V; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Georg, U; Giles, T; Joinet, A; Jonsson, O C; Kirchner, R; Lau, C; Lettry, Jacques; Maier, H J; Mishin, V I; Oinonen, M; Peräjärvi, K; Ravn, H L; Rinaldi, T; Santana-Leitner, M; Wahl, U; Weissman, L

    2003-01-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxyde fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxyde fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce...

  16. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  17. VLSI metallization

    CERN Document Server

    Einspruch, Norman G; Gildenblat, Gennady Sh

    1987-01-01

    VLSI Electronics Microstructure Science, Volume 15: VLSI Metallization discusses the various issues and problems related to VLSI metallization. It details the available solutions and presents emerging trends.This volume is comprised of 10 chapters. The two introductory chapters, Chapter 1 and 2 serve as general references for the electrical and metallurgical properties of thin conducting films. Subsequent chapters review the various aspects of VLSI metallization. The order of presentation has been chosen to follow the common processing sequence. In Chapter 3, some relevant metal deposition tec

  18. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  19. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    Science.gov (United States)

    Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  20. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  1. Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China

    Science.gov (United States)

    Pan, Jing; Yang, Yong-Liang; Zhang, Gan; Shi, Jing-Lei; Zhu, Xiao-Hua; Li, Yong; Yu, Han-Qing

    2011-07-01

    Near-surface atmospheric aerosol samples were collected at the sampling frequency of 2-3 d per week for one year from August 2006 to August 2007 at a low latitude station in Tianhe District, Guangzhou, Guangdong Province of southern China. The samples were analyzed for cosmogenic nuclide 7Be and persistent organic pollutants, i.e. organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The annual average 7Be concentration was 2.59 mBq m -3, with the maximum occurred in May (8.45 mBq m -3) and minimum in late August and early September (0.07 mBq m -3). Winter and spring were the seasons in which the 7Be concentrations were high while summer and autumn were the lower 7Be seasons. Spring peaks in 7Be in the near-surface atmospheric aerosols may have associated with the "spring leak maximum" episode. The annual average ∑OCPs concentration was 345.6 pg m -3, ∑ 33PCBs 317.6 pg m -3, and ∑ 31PBDEs 609.0 pg m -3. The variation trends in the time-series of 7Be, OCPs, PCBs, and PBDEs in near-surface atmospheric aerosol showed both common features and differences. Significant correlations ( R2 = 0.957 and 0.811. respectively, p = 0.01) were observed between the monthly average 7Be concentrations and those of ∑PCBs and ∑PBDEs in summer, autumn, and early winter. The difference between the seasonal variation features of OCPs and PCBs (and PBDEs) could be attributed to the different source functions and physical-chemical properties which could control the behaviors of these compounds in air-aerosol partitions as well as atmospheric transport.

  2. Beryllium-7 in near-surface atmospheric aerosols in mid-latitude (40 deg N) city Beijing, China

    International Nuclear Information System (INIS)

    Keyan Tan; Yongliang Yang; Xiaohua Zhu; Shu Chen; Xingchun Jiao; Nan Gai; Yi Huang

    2013-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been used to measure the activity of 7 Be in near-surface atmospheric aerosols at sampling frequency of 3 days week for 1 year from August 2009 to July 2010 at Beijing in the mid-latitude region of East Asia monsoon. The measurements indicate that the average concentration of 7 Be was 8.39 ± 0.49 mBq m -3 , which was significantly higher than values reported for other cities in the East Asia monsoon region and in the world during the same period. The maximum and minimum of the weekly means of 7 Be concentration were observed in September and May, respectively. The 7 Be concentrations varied in accordance with the monsoon phases. Low but frequent wet precipitation may have caused lower 7 Be observed in July when southeasterly was prevailing. Higher seasonal mean of 7 Be concentrations in autumn could be attributed to the abnormal atmospheric circulation in autumn 2009. (author)

  3. Metal-metal interactions among dietary toxic and essential trace metals in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Elsenhans, B.; Schmolke, G.; Kolb, K.; Stokes, J.; Forth, W.

    1987-12-01

    Exposure to toxic and essential metals is thought to be reflected by corresponding metal concentrations in tissues. However, toxic and essential metals may influence each other in regard to their retention in the body. Therefore, a basic diet containing four toxic metals (As 7, Cd 9, Ni 13, and Pb 20 ppm) and adequate amounts of essential metals was fed to rats for 2 weeks. Test groups received the basic diet with increasing concentrations of one of the toxic metals (up to 90 ppm As, 180 ppm Cd, 365 ppm Ni, and 394 ppm Pb). As, Cd, Ni, Pb, Cu, Fe, Mn, and Zn were determined by atomic emission spectroscopy in liver, kidney, intestine, brain, muscle, bone, skin, hair, and blood. A linear relationship between diet and tissue concentration is observed for As and Ni in the kidney, for Cd in the liver, and for Pb in the bone. In other tissues saturation was observed. While Cd-Fe interactions were common to most of the tissues, other interactions were detected only in specific tissues, e.g., As-Cu in the kidney, Cd-Zn in the liver, and As-Mn, Cd-Mn, or Ni-Cu in the intestine. Increases of renal Pb and intestinal Cd by dietary Ni, and a decrease in bone As by dietary Pb were the most pronounced interactions between the toxic metals. The results demonstrate that potential target organs for the evaluation of metal exposure need to be carefully analyzed for interfering metal-metal interactions.

  4. Oxide fiber targets at ISOLDE

    DEFF Research Database (Denmark)

    Köster, U.; Bergmann, U.C.; Carminati, D.

    2003-01-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxide fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some...... contact points. The experience with various oxide fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils......, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process...

  5. Time domain electromagnetic metal detectors

    International Nuclear Information System (INIS)

    Hoekstra, P.

    1996-01-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved

  6. Heavy metal

    African Journals Online (AJOL)

    of spawning, resistance to diseases and social acceptability (Pillay, 1993). This study aimed at determining the carbohydrate reserves and heavy metal accumulation of the Nile tilapia, Oreochromis miloticus after treatment with heavy metals such as lead, copper and zinc. 2. Materials and Methods. Test organism: Nile tilapia ...

  7. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  8. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  9. Metal detector technology data base

    Energy Technology Data Exchange (ETDEWEB)

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  10. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2017-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  11. Accelerator target

    Science.gov (United States)

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  12. Metals 2000

    Energy Technology Data Exchange (ETDEWEB)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  13. Metal carbides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the viewpoint of general crystal chemistry principles and on the base of modern data the structural chemistry of metal carbides is presented. The classification deviding metal carbides into 4 groups depending on chemical and physical properties is presented. The features of the crystal structure of carbides of alkali alkaline earth, transition, 4 f- and 5f-elements and their effect on physical and chemical properties are considered

  14. Phase transfer synthesis of N,N'(1,2-phenylene)bis-hippuricamide tethered metal based functionalized nanoparticles: A study on some novel microbial targeting peptide-mimic nanoparticles

    International Nuclear Information System (INIS)

    Raman, N.; Sudharsan, S.

    2011-01-01

    This paper presents the novel synthesis of peptide, N,N'(1,2-phenylene)bis-hippuricamide tethered metal [Cu(II), Zn(II), Ni(II) and Co(II)] based functionalized nanoparticles via modified Brust-Schiffrin methodology. The growth, organic composition and morphology of these functionalized nanoparticles have been evaluated by UV-Vis, FT-IR spectroscopy and scanning electron microscopy. They are structurally and thermally characterized by X-ray diffraction and thermogravimetric analysis. Moreover, the interfacial dealings of these functionalized nanoparticles with Calf-thymus DNA and pUC19 DNA reveal that the functionalized nanoparticles of cobalt is an effective DNA damaging agent under physiological conditions. This has been supported by its efficient antimicrobial character against few fungal and bacterial strains, thereby steering its way towards biomedical applications as a metal based nanocarrier.

  15. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  16. Metal imaging in neurodegenerative diseases

    Science.gov (United States)

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  17. Blood metal ion concentrations in metal-on-metal total hip arthroplasty.

    Science.gov (United States)

    Ohtsuru, Tadahiko; Morita, Yuji; Murata, Yasuaki; Shimamoto, Shuji; Munakata, Yutaro; Kato, Yoshiharu

    2017-05-01

    The hip placement with a metal-on-metal (MOM) bearing has been used for both surface replacement and total hip arthroplasty (THA). Use of MOM bearing for hip replacement reduces the wear compared to conventional bearings. We prospectively assessed 30 patients who underwent unilateral MOM THA. A control group of 30 patients who underwent metal-on-polyethylene THA using the implants as the other group, except for bearing, were accessed. Blood samples were collected preoperatively and at 3- , 6- , 9- , 12- , 15- , 18- , and 24-month intervals. Changes in mean blood metal ion concentration were compared between the MOM and metal-on-polyethylene groups. A statistically significant positive correlation was observed between blood cobalt and chromium concentrations in all of the patients. The mean blood ion concentrations of the MOM were significantly higher than those of the metal-on-polyethylene. A statistically significant negative correlation was found between maximum blood cobalt concentration and cup version angle. The maximum blood chromium concentrations in the patients who had larger cup version angles were more likely to decrease. We considered that cup version angle is one of the factors that have the greatest effect on blood metal ion concentration, and the target cup version angle that did not induce an increase in blood metal ion concentrations was approximately 20°.

  18. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  19. Novel metals and metal complexes as platforms for cancer therapy.

    Science.gov (United States)

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping

    2010-06-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.

  20. Gene expression influences on metal immunomodulation

    International Nuclear Information System (INIS)

    Lynes, Michael A.; Fontenot, Andrew P.; Lawrence, David A.; Rosenspire, Allen J.; Pollard, K. Michael

    2006-01-01

    Heavy metals in the environment originate from both human activities and natural processes. Exposure to these metals can result in important changes to immune activity. Depending on the metal and dose, these changes can result in enhanced immune function, diminished immune responses, or altered responses that produce autoimmune disease. One of the intriguing aspects of these various phenomena are the multiple points of interaction with cellular machinery at which metals elicit these changes. The individual sections of this review serve to underscore the variety of targets that can be altered by exposure to heavy metals, and provide some comparisons between the effects of specific heavy metals on the immune system. These observations may ultimately lead us to a comprehensive understanding of the mechanisms by which metals alter the immune system, and may enable the development of countermeasures to offset these effects

  1. metal alkoxides

    Indian Academy of Sciences (India)

    substituent effects in the head-to-tail double insertion reactions observed ... an internal standard. The yield of diphenyl carbodii- mide was further verified by isolating it as diphenyl urea after hydrolysis. The organic fraction obtained in the catalytic metathesis .... insertion of PhNCO into metal alkoxide 1a to generate. Table 1.

  2. Metallic glasses

    NARCIS (Netherlands)

    Schaafsma, Arjen Sybren

    1981-01-01

    It is shown in section 7.1. that the influence of topological disorder on the range of magnetic interactions in ferromagnetic transition metal-metalloid (TM-M) glasses, is much less than often assumed. This is demonstrated via a study of the temperature dependence of the average iron hyperfine field

  3. Modified-Atmospheric Pressure-Matrix Assisted Laser Desorption/Ionization Identification of Friction Modifier Additives Oleamide and Ethoxylated Tallow Amines on Varied Metal Target Materials and Tribologically Stressed Steel Surfaces.

    Science.gov (United States)

    Widder, Lukas; Ristic, Andjelka; Brenner, Florian; Brenner, Josef; Hutter, Herbert

    2015-11-17

    For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.

  4. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  5. Uranium briquettes for irradiation target

    International Nuclear Information System (INIS)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo

    2011-01-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl x dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of 235 U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  6. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  7. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  8. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  9. Sputtering target made by hot isostatic compaction

    International Nuclear Information System (INIS)

    Wright, R.J.; Hecht, R.J.; Fenton, R.J.

    1979-01-01

    In a method of making a cooled sputtering target assembly, material to be sputtered is in powder form which is isostatically hot-pressed in a toroidal metallic container under conditions which promote compaction and bonding of the powder particles to form a dense material. Parts of the container are then removed from the target material except for a remnant around the outer surface of the target material. A cooling jacket is then fabricated and attached around the remnant of the container. The targets specified are made from MCrAlY type alloys where M is Fe, Co or Ni. (U.K.)

  10. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  11. Metal phosphides

    International Nuclear Information System (INIS)

    Uehlls, A.

    1987-01-01

    The structure of phosphides of the most of elements: alkali, alkaline earth, rare earth, transition metals, actinides, indium, beryllium, cadmium forming the variety of formulae and types of structures, is considered. The ways of P atom combination in phosphides vary from single atoms (ions P 3- in compounds of electropositive elements) through one-, two-dimensional complexes P n up to three-dimensional (charged) grids. In all phosphides, containing the systems of bound atoms of phosphorus, certain or all from these atoms form less than three bonds P-P. The formation of one bond P-P by every atom leads to group P 2 found as P 2 4- ion in diphosphides of transition metals with the structure of the pyrite or marcasite type (RuP 2 ). LaP, SmP, ThP, UP, ZrP form structural type NaCl

  12. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    OpenAIRE

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies...

  13. Glassy metals

    CERN Document Server

    Russew, Krassimir

    2016-01-01

    The topics discussed in this book focus on fundamental problems concerning the structural relaxation of amorphous metallic alloys, above all the possibility of studying it on the basis of viscous flow behavior and its relation to rheological anomalies, such as bend stress relaxation, thermal expansion, specific heat, density changes, and crystallization. Most relaxation studies deal with the relaxation changes of a single definite material property, and not with a wider spectrum of physical properties integrated into a common framework. This book shows that it is possible to describe these property changes on the basis of a more comprehensive theoretical understanding of their mechanism.

  14. Mechanochemical processing for metals and metal alloys

    Science.gov (United States)

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  15. Metal-Based PSMA Radioligands

    Directory of Open Access Journals (Sweden)

    Eleni Gourni

    2017-03-01

    Full Text Available Prostate cancer is one of the most common malignancies for which great progress has been made in identifying appropriate molecular targets that would enable efficient in vivo targeting for imaging and therapy. The type II integral membrane protein, prostate specific membrane antigen (PSMA is overexpressed on prostate cancer cells in proportion to the stage and grade of the tumor progression, especially in androgen-independent, advanced and metastatic disease, rendering it a promising diagnostic and/or therapeutic target. From the perspective of nuclear medicine, PSMA-based radioligands may significantly impact the management of patients who suffer from prostate cancer. For that purpose, chelating-based PSMA-specific ligands have been labeled with various diagnostic and/or therapeutic radiometals for single-photon-emission tomography (SPECT, positron-emission-tomography (PET, radionuclide targeted therapy as well as intraoperative applications. This review focuses on the development and further applications of metal-based PSMA radioligands.

  16. Metal filled porous carbon

    Science.gov (United States)

    Gross, Adam F [Los Angeles, CA; Vajo, John J [West Hills, CA; Cumberland, Robert W [Malibu, CA; Liu, Ping [Irvine, CA; Salguero, Tina T [Encino, CA

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  17. Neurotoxicity of metals.

    Science.gov (United States)

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity. © 2015 Elsevier B.V. All rights reserved.

  18. The Sounds of Metal

    DEFF Research Database (Denmark)

    Grund, Cynthia M.

    2015-01-01

    Two, I propose that this framework allows for at least a theoretical distinction between the way in which extreme metal – e.g. black metal, doom metal, funeral doom metal, death metal – relates to its sound as music and the way in which much other music may be conceived of as being constituted...

  19. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from the coextruded product was modeled from experimental and operational data. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes the manufacturing technologies evaluated and presents the model for tritium retention in aluminum clad, aluminum-lithium alloy tritium production targets

  20. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  1. Metal polish poisoning

    Science.gov (United States)

    Metal polishes are used to clean metals, including brass, copper, or silver. This article discusses the harmful effects from swallowing metal polish. This article is for information only. DO NOT use ...

  2. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  3. Medicinal Radiopharmaceutical Chemistry of Metal Radiopharmaceuticals

    Science.gov (United States)

    Saw, Maung Maung

    2012-06-01

    Metal complexes have been used as medicinal compounds. Metals have advantageous features over organic compounds. Significant applications of metal complexes are in the field of nuclear medicine. Radiopharmaceuticals are drugs containing radioisotopes used for diagnostic and therapeutic purposes. The generalized targeting strategy for molecular imaging probe consists of three essential parts: (i) reporter unit or payload, (ii) carrier, and (iii) targeting system. Medicinal radiopharmaceutical chemistry pays special consideration to radioisotopes, as a reporter unit for diagnostic application or as a payload for therapeutic application. Targeting is achieved by a few approaches but the most common is the bifunctional chelator approach. While designing a radiopharmaceutical, a range of issues needs to be considered including properties of metal radioisotopes, bifunctional chelators, linkers, and targeting molecules. Designing radiopharmaceuticals requires consideration of two key words: "compounds of biological interest" and "fit for intended use." The ultimate goal is the development of new diagnostic methods and treatment. Diagnostic metal radiopharmaceuticals are used for SPECT and PET applications. Technetium chemistry constitutes a major portion of SPECT and gallium chemistry constitutes a major portion of PET. Therapeutic radiopharmaceuticals can be constructed by using alpha-, beta minus-, or Auger electron-emitting radiometals. Special uses of medicinal radiopharmaceuticals include internal radiation therapy, brachytherapy, immunoPET, radioimmunotherapy, and peptide receptor radionuclide imaging and therapy.

  4. Design of targeting ligands in medicinal inorganic chemistry.

    Science.gov (United States)

    Storr, Tim; Thompson, Katherine H; Orvig, Chris

    2006-06-01

    This tutorial review will highlight recent advances in medicinal inorganic chemistry pertaining to the use of multifunctional ligands for enhanced effect. Ligands that adequately bind metal ions and also include specific targeting features are gaining in popularity due to their ability to enhance the efficacy of less complicated metal-based agents. Moving beyond the traditional view of ligands modifying reactivity, stabilizing specific oxidation states, and contributing to substitution inertness, we will discuss recent work involving metal complexes with multifunctional ligands that target specific tissues, membrane receptors, or endogenous molecules, including enzymes.

  5. Ballmilling of metal borohydrides for hydrogen storage

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    is to hydrogenate simple compounds such as metalborides and hydrides with the intention of forming a new and more hydrogen rich borohydride. In contrast to mainstream research, the method of synthesis has been based on reactants that are expected to be found in the metal borohydride’s dehydrogenated state....... Specifically, the research undertaken targets CaB6 whose boron is in a octahedral network, or AlB2 whose boron is layered. These compounds were then reactive ball milled with alkali and alkaline earth metal under hydrogen pressure, with the intention of forming metal borohydrides. For CaB6, no clear sign...

  6. Targets and teamwork

    DEFF Research Database (Denmark)

    Skinner, Timothy C.; Lange, Karin S.; Hoey, Hilary

    2017-01-01

    with less disagreement about recommended targets. Multiple regression analysis indicated that teams reporting higher HbA1c targets and more target disagreement had parents reporting higher treatment targets. This seemed to partially account for center differences in Hb1Ac. Conclusions: The diabetes care...

  7. Driver beam-led EURISOL target design constraints

    CERN Document Server

    Noah, Etam; Catherall, Richard; Kadi, Yacine; Kharoua, Cyril; Lettry, Jacques

    2008-01-01

    The EURISOL (European Isotope Separation Online) Design Study is addressing new high power target design challenges. A three-step method [1] was proposed to split the high power linac proton driver beam into one $H^{-}$ branch for the 4 $MW_{b}$ [2] mercury target that produces radioactive ion beams (RIB) via spallation neutroninduced fission in a secondary actinide target and three 100 $kW_{b}$ $H^{+}$ branches for the direct targets producing RIBs via fragmentation and spallation reactions. This scheme minimises transient thermo-mechanical stresses on targets and preserves the cw nature of the driver beam in the four branches. The heat load for oxides, carbides, refractory metal foils and liquid metals is driven by the incident proton driver beam while for actinides, exothermic fission reactions are an additional contribution. This paper discusses the constraints that are specific to each class of material and the target design strategies.

  8. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  9. MicroRNAs as regulators in plant metal toxicity response

    Directory of Open Access Journals (Sweden)

    Ana Belen Mendoza-Soto

    2012-05-01

    Full Text Available Metal toxicity is a major stress affecting crop production. This includes metals that are essential for plants (copper, iron, zinc, manganese, and non-essential metals (cadmium, aluminum, cobalt, mercury. A primary common effect of high concentrations of metals such as aluminum, cooper, cadmium or mercury, is root growth inhibition. Metal toxicity triggers the accumulation of reactive oxygen species leading to damage of lipids, proteins and DNA. The plants response to metal toxicity involves several biological processes that require fine and precise regulation at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs are 21 nucleotides non-coding RNAs that regulate gene expression at the post-transcriptional level. A miRNA, incorporated into a RNA induced silencing complex, promotes cleavage of its target mRNA that is recognized by an almost perfect base complementarity. In plants miRNA regulation has been involved in development and also in biotic and abiotic stress responses. We review novel advances in identifying miRNAs related to metal toxicity responses and their potential role according to their targets. Most of the targets for plant metal-responsive miRNAs are transcription factors. Information about metal-responsive miRNAs in different plants points to important regulatory roles of miR319, miR390, miR393 and miR398. The target of miR319 is the TCP transcription factor, implicated in growth control. MiR390 exerts its action through the biogenesis of trans-acting small interference RNAs that, in turn, regulate auxin responsive factors. MiR393 targets the auxin receptors TIR1/AFBs and a bHLH transcription factor. Increasing evidence points to the crucial role of miR398 and its targets Cu/Zn superoxide dismutases in the control of the oxidative stress generated after high metal copper or iron exposure.

  10. Dichotomous classification of black-colored metal using spectral analysis

    Directory of Open Access Journals (Sweden)

    Abramovich A.O.

    2017-05-01

    Full Text Available The task of detecting metal objects in different environments has always been important. To solve it metal detectors are used. They are designed to detect and identify objects that in their electric or magnetic properties different from the environment in which they are located. The most common among them are the metal detectors of the «detection of very low frequency» type (Very Low Frequency (VLF detectors. They use eddy current testing for detecting metal targets, which solves the problem of dichotomous distinction, that is a problem of splitting (or set into two parts (subsets: black or colored target. The target distinction is performed by a threshold level of the received signal. However, this approach does not allow to identify the type of target, if two samples of different metals are nearby. To overcome the above described limitations we propose another way of distinction based on the use of spectral analysis, which occurs in the metal detector antenna by Foucault current. We show that the problem of dichotomous distinction can be solved in just a measurement of width and area by the envelope of amplitude spectrum (hereinafter spectrum of the received signal. In this regard the laboratory model using eddy current metal detector will combat withdrawal from two samples – steel and copper, located along and calculate its range. The task of distinguishing between metal targets reduced to determining the hit spectra of reference samples obtained spectrum. The ratio between the areas is measured and reference spectra indicates the percentage of specific metals (e.g. two identical samples of different metals lying side by side. Signal processing is performed by specially designed program that compares two spectra along posted samples of black and colored metals with base.

  11. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  12. EURISOL Multi-MW Target: Preliminary Study

    CERN Document Server

    A.Herrera-Martínez and Y.Kadi

    This technical note summarises the design calculations performed within Task #2 of the EURopean Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS).A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimum target dimension was also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLUKA for thes...

  13. Human target acquisition performance

    Science.gov (United States)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  14. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and affect survival and physiological activities of target organisms. Metals in particular have a tendency to accumulate and undergo food chain magnification. Heavy metals affect all groups of organisms ...

  15. Reactivity of Metal-Free and Metal-Associated Amyloid-β with Glycosylated Polyphenols and Their Esterified Derivatives

    Science.gov (United States)

    Korshavn, Kyle J.; Jang, Milim; Kwak, Yeon Ju; Kochi, Akiko; Vertuani, Silvia; Bhunia, Anirban; Manfredini, Stefano; Ramamoorthy, Ayyalusamy; Lim, Mi Hee

    2015-12-01

    Both amyloid-β (Aβ) and transition metal ions are shown to be involved in the pathogenesis of Alzheimer’s disease (AD), though the importance of their interactions remains unclear. Multifunctional molecules, which can target metal-free and metal-bound Aβ and modulate their reactivity (e.g., Aβ aggregation), have been developed as chemical tools to investigate their function in AD pathology; however, these compounds generally lack specificity or have undesirable chemical and biological properties, reducing their functionality. We have evaluated whether multiple polyphenolic glycosides and their esterified derivatives can serve as specific, multifunctional probes to better understand AD. The ability of these compounds to interact with metal ions and metal-free/-associated Aβ, and further control both metal-free and metal-induced Aβ aggregation was investigated through gel electrophoresis with Western blotting, transmission electron microscopy, UV-Vis spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. We also examined the cytotoxicity of the compounds and their ability to mitigate the toxicity induced by both metal-free and metal-bound Aβ. Of the polyphenols investigated, the natural product (Verbascoside) and its esterified derivative (VPP) regulate the aggregation and cytotoxicity of metal-free and/or metal-associated Aβ to different extents. Our studies indicate Verbascoside represents a promising structure for further multifunctional tool development against both metal-free Aβ and metal-Aβ.

  16. Targeted therapies for cancer

    Science.gov (United States)

    ... Kummar S, Murgo AJ, Tomaszewski JE, Doroshow JH. Therapeutic targeting of cancer cells: era of molecularly targeted agents. ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  17. Reflectance Reference Targets (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Spectral reflectance measurements of flat field targets as reference points representative of pseudo-invariant targets as measured by Spectron SE590...

  18. Reflectance Reference Targets (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral reflectance measurements of flat field targets as reference points representative of pseudo-invariant targets as measured by Spectron SE590 spectrophotometer

  19. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  20. TARGET COSTING FUNCTIONS

    OpenAIRE

    OFILEANU Dimi

    2015-01-01

    This article aims to highlight the concept of Target Costing. Based on the characteristics of Target Costing, identified in specialized literature, the article presents its main advantages and disadvantages. Also, a comparison is being made between Target Cost and Traditional Cost (in its traditional form, the cost represents an independent variable on the basis of which the sell price is established; and in the Target Cost form the cost represents a dependent variable which is determined on ...

  1. Targeting outcomes redux

    OpenAIRE

    Coady, David P.; Grosh, Margaret; Hoddinott, John

    2002-01-01

    "...There are sharply divergent views as to how much narrowly targeted interventions actually benefit the poor. These result from differing assessments of three issues: whether better targeting outcomes are likely to be achieved, whether such methods are cost-effective, and whether the living standards of the poor are improved by such targeted interventions. This paper focuses on the first issue. Using a newly constructed database of targeted interventions, it addresses three questions: (1) W...

  2. Statistical evaluation of metal fill widths for emulated metal fill in parasitic extraction methodology

    Science.gov (United States)

    J-Me, Teh; Noh, Norlaili Mohd.; Aziz, Zalina Abdul

    2015-05-01

    In the chip industry today, the key goal of a chip development organization is to develop and market chips within a short time frame to gain foothold on market share. This paper proposes a design flow around the area of parasitic extraction to improve the design cycle time. The proposed design flow utilizes the usage of metal fill emulation as opposed to the current flow which performs metal fill insertion directly. By replacing metal fill structures with an emulation methodology in earlier iterations of the design flow, this is targeted to help reduce runtime in fill insertion stage. Statistical design of experiments methodology utilizing the randomized complete block design was used to select an appropriate emulated metal fill width to improve emulation accuracy. The experiment was conducted on test cases of different sizes, ranging from 1000 gates to 21000 gates. The metal width was varied from 1 x minimum metal width to 6 x minimum metal width. Two-way analysis of variance and Fisher's least significant difference test were used to analyze the interconnect net capacitance values of the different test cases. This paper presents the results of the statistical analysis for the 45 nm process technology. The recommended emulated metal fill width was found to be 4 x the minimum metal width.

  3. Novel extractants with high selectivity for valuable metals in seawater. Calixarene derivatives

    International Nuclear Information System (INIS)

    Kakoi, Takahiko; Goto, Masahiro

    1997-01-01

    Seawater contains various valuable metals such as uranium and lithium. Therefore, attempts are being made to develop highly selective extractants which recognize target metal ions in reclaimed seawater. In this review, we have focused our study on the application of novel cyclic compound calixarene based extractants. A novel host compound calixarene, which is a cyclic compound connecting some phenol rings, is capable of forming several different extractant ring sizes and introducing various kinds of functional groups towards targeting of metal ions in seawater. Therefore, calixarene derivatives are capable of extracting valuable metals such as uranium, alkaline metals, heavy metals, rare earth metals and noble metals selectively by varying structural ring size and functional groups. The novel host compound calixarene has given promising results which line it up as a potential extractant for the separation of valuable metal ions in seawater. (author)

  4. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  5. Thermal Convection on an Ablating Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2015-11-01

    Modeling and analysis of thermal convection of a metallic targets subject to radiative flux is of relevance to various manufacturing processes as well as for the development of protective shields. The present work involves the computational modeling of metallic targets subject to high heat fluxes that are both steady and pulsed. Modeling of the ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity pulsed laser fluence at normal atmospheric conditions is considered. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the convecting melt also participates in the radiative exchange. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser pulse intensity and duration. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  6. Development of distributed target

    CERN Document Server

    Yu Hai Jun; Li Qin; Zhou Fu Xin; Shi Jin Shui; Ma Bing; Chen Nan; Jing Xiao Bing

    2002-01-01

    Linear introduction accelerator is expected to generate small diameter X-ray spots with high intensity. The interaction of the electron beam with plasmas generated at the X-ray converter will make the spot on target increase with time and debase the X-ray dose and the imaging resolving power. A distributed target is developed which has about 24 pieces of thin 0.05 mm tantalum films distributed over 1 cm. due to the structure adoption, the distributed target material over a large volume decreases the energy deposition per unit volume and hence reduces the temperature of target surface, then reduces the initial plasma formalizing and its expansion velocity. The comparison and analysis with two kinds of target structures are presented using numerical calculation and experiments, the results show the X-ray dose and normalized angle distribution of the two is basically the same, while the surface of the distributed target is not destroyed like the previous block target

  7. Radiation blistering in metals and alloys

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1975-01-01

    Radiation blistering in solids has been identified as a process leading to damage and erosion of irradiated surfaces. Some of the major parameters governing the blistering process in metals and some metallic alloys are the type of projectile and its energy, total dose, dose rate, target temperature, channeling condition of the projectile, orientation of the irradiated surface plane, and target material and its microstructure. Experimental results and models proposed for blister formation and rupture are reviewed. The blistering phenomenon is important as an erosion process in applications such as fusion reactor technology (plasma-wall interactions) and accelerator technology (erosion of components and targets). A description of methods for the reduction of surface erosion caused by blistering is included

  8. Glassy metallic plastics

    Science.gov (United States)

    Li, Jianfu; Wang, Junqiang; Liu, Xiaofeng; Zhao, Kun; Zhang, Bo; Bai, Haiyang; Pan, Mingxiang; Wang, Weihua

    2010-03-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature ( T g ˜25°C to 150°C) and low Young’s modulus (˜20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  9. Metal phthalocyanine catalysts

    Science.gov (United States)

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  10. Exploration of the medical periodic table: towards new targets.

    Science.gov (United States)

    Barry, Nicolas P E; Sadler, Peter J

    2013-06-07

    Metallodrugs offer potential for unique mechanisms of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. We discuss recent progress in identifying new target sites and elucidating the mechanisms of action of anti-cancer, anti-bacterial, anti-viral, anti-parasitic, anti-inflammatory, and anti-neurodegenerative agents, as well as in the design of metal-based diagnostic agents. Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis. Examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.

  11. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  12. Marks of Metal Copenhell

    DEFF Research Database (Denmark)

    2015-01-01

    Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet.......Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet....

  13. Nanochemistry of metals

    International Nuclear Information System (INIS)

    Sergeev, Gleb B

    2001-01-01

    The results of studies on the nanochemistry of metals published in recent years are generalised. Primary attention is centred on the methods for the synthesis of nanoparticles and their chemical reactions. The means of stabilisation of nanoparticles which involve individual metals and incorporate atoms of several metals are considered as well as their physicochemical properties. Self-assembling processes of nanoparticles are described. The prospects of using metal nanoparticles in semiconductor devices, catalysis, biology and medicine are discussed. The bibliography includes 165 references.

  14. Bar coded retroreflective target

    Science.gov (United States)

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  15. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  16. A survey of laser plasma target emissions and contamination effects

    Science.gov (United States)

    Andrew, James E.

    2013-11-01

    Since the late 1990s staff at national laboratories have been studying the effects of high energy focussed laser beams [>100J] on a variety of plasma physics targets to understand the disassembly of targets and their effects on target chamber surfaces. Target geometries have included metal foils, polymer foils, metal cylinders or cones, gas bags, metal wires and complex geometries of combinations of the above. The post shot target remnants have been studied by both optical microscopy and scanning electron microscopy. The morphology of exposed targets indicated phase changes and other physical phenomena [shock, spall, crater formation and material ejection]. Pre and post weighing of the targets has been used to determine mass lost from the target. Initially most of the material distribution analysis was performed by catching target by-products with glass or silica witness plates. Spatial and image analysis of micrographs has been used to measure angular distributions of material and its form. Spectrophotometry of the exposed witness plates in the UVVis- NIR region allowed transmission spectra to be determined and the reduction of transmittance at the laser wavelengths of interest. It also allowed estimation of average debris thickness. Shrapnel size and velocity has been studied by capturing fragments in silica aerogels. One unexpected aspect of studying the witness plates was the identification of secondary emissions from solid surfaces close to the irradiated target, this showed that the near environment of the target is also important in determining overall material distributions. We have been fortunate to find interested collaborators at other UK, European and US laboratories that have brought considerable insight into target disassembly processes and palliative measures.

  17. Numerical simulation of the intra-annual evolution of beryllium-7 (7Ве) in the surface layer of the Black Sea.

    Science.gov (United States)

    Kremenchutskii, Dmitrii A; Dymova, Olga A; Batrakov, Gennady F; Konovalov, Sergey K

    2018-02-07

    A numerical model simulating the distribution of 7 Ве in the Black Sea was developed and applied to study the spatial and temporal variations in the content of 7 Be in the surface waters. Variations in the distribution of 7 Ве were analyzed for the period from January to December of 2012. The average seasonal content of 7 Ве in the surface layer ranges from 2.2 to 6.2 Bq m -3 . The maximum concentration is typical for the eastern part of the sea in winter to spring, and the minimum concentration is typical for the central and western parts of the sea in summer. The seasonally averaged activity of 7 Ве on suspended matter ranges from 440 to 1560 Bq kg -1 . The highest values are observed in the sea in winter to spring, and the lowest values are typically observed in the central and western parts of the sea in summer. It was revealed that the adsorption of 7 Ве on suspended matter is most significant for the evolution of the content of this radionuclide in shelf waters.

  18. Multiple allergies to metal alloys

    Directory of Open Access Journals (Sweden)

    Mei-Eng Tu

    2011-06-01

    Conclusions: Metal alloys may induce multiple metal allergies. Patients suspected of having a metal allergy should be patch tested with an extended series of metals. We recommend adding palladium and gold, at least, to the standard series.

  19. Business Targets and Compliance

    OpenAIRE

    Albers, Felicitas G.

    2014-01-01

    The finding and setting of a business target is the starting point whenever dealing with corporate governance; the autonomy of companies to define those targets is one constitutive characteristic of any market economy. Regulatory demands as the standardization of the German ‘Unternehmensinteresse’ (interest of the company) in the German stock corporation laws as well as ethical-theoretical approaches in the process of forming targets gain relevance both in theory and practice in the context o...

  20. The ISOLDE target robots

    CERN Multimedia

    Maximilein Brice

    2002-01-01

    ISOLDE targets need to be changed frequently, around 80 times per year. The high radiation levels do not permit this to be done by human hands and the target changes are effected by 2 industrial robots (picture _01). On the left, in the distance, the front-end of the GPS (General Purpose Separator) is seen, while the HRS (High Resolution Separator) is at the right. Also seen are the doors to the irradiated-target storage.

  1. Targeting and Persuasive Advertising

    OpenAIRE

    Egli, Alain (Autor/in)

    2015-01-01

    Firms face a prisoner's dilemma when advertising in a competitive environment. In a Hotelling framework with persuasive advertisingfirms counteract this prisoner's dilemma with targeting. The firms even solve the prisoner's problem if targeted advertising is effective enough. Advertising turns from wasteful competition into profits. This is in contrast to wasteful competition as argument for regulations. A further result is maximum advertising differentiation: thefirms target their advertisin...

  2. Conducting metal oxide and metal nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  3. Target materials for exotic ISOL beams

    CERN Document Server

    Gottberg, A

    2016-01-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices t...

  4. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  5. Targeting the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.

  6. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  7. Development of annular targets for 99MO production-1999

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-01-01

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99 Mo

  8. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  9. Metal stabilization of collagen and de novo designed mimetic peptides

    Science.gov (United States)

    Parmar, Avanish S.; Xu, Fei; Pike, Douglas H.; Belure, Sandeep V.; Hasan, Nida F.; Drzewiecki, Kathryn E.; Shreiber, David I.; Nanda, Vikas

    2017-01-01

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix. PMID:26225466

  10. Production of solid deuterium targets by ion implantation

    International Nuclear Information System (INIS)

    Csikai, J.; Szegedi, S.; Olah, L.; El-Megrab, A.M.; Molla, N.I.; Rahman, M.M.; Miah, R.U.; Habbani, F.; Shaddad, I.

    1997-01-01

    Solid metal, semiconductor and metallic glass samples were irradiated with deuteron atomic ions between 60 and 180 keV incident energies. Accumulation rates of deuterons in different targets were recorded by the detection of protons and neutrons via the 2 H(d,p) and 2 H(d,n) reactions. A simple analytical expression is given to describe the kinetics of the accumulation. The dependence of the reaction rate on the deuteron energy gives information on the concentration profile in addition to the neutron flux density spectra. A varying distortion of the implanted deuteron profiles by a change in the beam energy were also observed for different targets. (orig.)

  11. Metal Detecting in Denmark

    DEFF Research Database (Denmark)

    Dobat, A.S.

    2016-01-01

    Since the early 1980s, metal detector surveying conducted by non-professional volunteers (amateur archaeologists) has contributed significantly to archaeological research and heritage practice in Denmark. Metal detecting has always been legal in Denmark, and official stakeholders have from...... the beginning of metal detector archaeology pursued a liberal model, focusing on cooperation and inclusion rather than confrontation and criminalization. Like no other surveying method, the metal detector has contributed to increasing enormously the amount of data and sites from metal-rich periods. Virtually...... all of the spectacular and ground-breaking discoveries of the past decades are owed to metal detectors in the hands of amateur archaeologists. In order to serve as a contribution to the discussion on the upsides and downsides of liberal metal detector archaeology, this article addresses mainly three...

  12. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    Metal Borohydrides Synthesized from Metal Borides and Metal Hydrides Alexander Fogha, Sanna Sommera, Kasper T. Møllera, T. R. Jensena aCenter for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO) and Chemistry Department, Aarhus University, Langelandsgade 140, DK-8000...... Aarhus C, Denmark email: gallafogh@hotmail.com / sanna-sommer@hotmail.com Magnesium boride, MgB2, ball milled with MH (M = Li, Na, Ca) followed by hydrogenation under high hydrogen pressure, readily forms the corresponding metal borohydrides, M(BH4)x (M = Li, Na, Ca) and MgH2 according to reaction scheme...... and Ca(BH4)2, respectively [3,4]. An attempt to synthesize alkali and alkaline earth metal borohydrides from various borides by ball milling under high hydrogen pressure is presented here. MgB2, AlB2 and CaB6 have been milled with MHx (M = Li, Na, Mg, Ca) at p(H2) = 110 bar for 24 hours. All samples were...

  13. Heavy water jet target and a beryllium target for production of fast neutrons

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Barschall, H.H.; Davis, J.C.

    1975-01-01

    A limitation on the neutron flux obtainable from proton or deuteron induced reactions is the heating of the target by the accelerated charged particles. The heat can be removed more easily if the target moves. The possibility of using a rotating Be target and a heavy water jet as a target for bombardment by 35-MeV deuterons was studied. In a thick Be metal target moving at 10 m/sec through such a beam of 1 cm diameter a temperature pulse of about 300 0 C will be produced by the 0.3 MW beam. The Be target should be able to withstand such a temperature pulse. A Be target suitable for 3 MW of power in a 1 cm diameter beam would require internal cooling and a higher velocity. A free jet of heavy water is also a possible target. Laser photographs of water jets in vacuum show small angles of divergence. The effect of heating by a 0.3 MW beam is probably not important because the temperature rise produced by the beam is small compared to the absolute temperature of the unheated jet. (auth)

  14. Thin Metallic Films from Solvated Metal Atoms.

    Science.gov (United States)

    1987-07-14

    research has developed over the past two decades that deals with the generation of atoms of metals (by metal evaporation, and the interaction of these...Departamento de Quimica , Universidad de Concepcion, Cassilla 3-:, c oncepcion, Chile. -I{ - ~ *~.’JS*~M 4 .~4\\ 821 19 the gold particles were negatively...flocculation were observed, as shown in table a Generally about 0.1 g In was Suspended in 100-200 nl solvent. Several approacies to characterization of

  15. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  16. The CNGS target

    CERN Multimedia

    Patrice Loïez

    2005-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) target ‘magazine’ of five target units. Each unit contains a series of 10-cm long graphite rods distributed over a length of 2 m. It is designed to maximize the number of secondary particles produced and hence the number of neutrinos. One unit is used at a time to prevent over heating.

  17. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  18. Strategic Targeted Advertising

    NARCIS (Netherlands)

    A. Galeotti; J.L. Moraga-Gonzalez (José Luis)

    2003-01-01

    textabstractWe present a strategic game of pricing and targeted-advertising. Firms can simultaneously target price advertisements to different groups of customers, or to the entire market. Pure strategy equilibria do not exist and thus market segmentation cannot occur surely. Equilibria exhibit

  19. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  20. Internal targets for LEAR

    International Nuclear Information System (INIS)

    Kilian, K.; Gspann, J.; Mohl, D.; Poth, H.

    1984-01-01

    This chapter considers the use of thin internal targets in conjunction with phase-space cooling at the Low-Energy Antiproton Ring (LEAR). Topics considered include the merits of internal target operation; the most efficient use of antiprotons and of proton synchrotron (PS) protons, highest center-of-mass (c.m.) energy resolution; highest angular resolution and access to extreme angles; the transparent environment for all reaction products; a windowless source and pure targets; highest luminosity and count rates; access to lowest energies with increasing resolution; internal target thickness and vacuum requirements; required cooling performance; and modes of operation. It is demonstrated that an internal target in conjunction with phase-space cooling has the potential of better performance in terms of the economic use of antiprotons and consequently of PS protons; energy resolution; angular resolution; maximum reaction rate capability (statistical precision); efficient parasitic operation; transparency of the target for reaction products; access to low energies; and the ease of polarized target experiments. It is concluded that all p - experiments which need high statistics and high p - flux, such as studies of rare channels or broad, weak resonance structures, would profit from internal targets

  1. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  2. Advanced Targeted Nanomedicine

    Science.gov (United States)

    Arachchige, Mohan C M; Reshetnyak, Yana K.; Andreev, Oleg A.

    2015-01-01

    Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world. PMID:25615945

  3. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  4. Targeted therapy in lymphoma

    Directory of Open Access Journals (Sweden)

    Cavalli Franco

    2010-11-01

    Full Text Available Abstract Discovery of new treatments for lymphoma that prolong survival and are less toxic than currently available agents represents an urgent unmet need. We now have a better understanding of the molecular pathogenesis of lymphoma, such as aberrant signal transduction pathways, which have led to the discovery and development of targeted therapeutics. The ubiquitin-proteasome and the Akt/mammalian target of rapamycin (mTOR pathways are examples of pathological mechanisms that are being targeted in drug development efforts. Bortezomib (a small molecule protease inhibitor and the mTOR inhibitors temsirolimus, everolimus, and ridaforolimus are some of the targeted therapies currently being studied in the treatment of aggressive, relapsed/refractory lymphoma. This review will discuss the rationale for and summarize the reported findings of initial and ongoing investigations of mTOR inhibitors and other small molecule targeted therapies in the treatment of lymphoma.

  5. The multi megawatt target station integration of the MAFF/PIAFE fission target design

    CERN Document Server

    Kharoua, C; Herrera-Martinez, A; Lettry, J; Ashrafi-Nik, M; Groeschel, F; Samec, K; Zanini, L; Alyakriskiy, O; Barbui, M; Tecchio, Luigi; Freibergs, J; Gross, M; Nebel, F; Thirolf, P; Negoita, F; Serbina, L; Romanets, Y; Vaz, P; Lindroos, M; Kadi, Y

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the liquid converter and fission target (MAFF/PIAFE design like) and the overall performance of the facility, which will sust...

  6. The physical and chemical properties of nanostructured mixed-metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li [Texas A & M Univ., College Station, TX (United States); Goodman, David Wayne [Texas A & M Univ., College Station, TX (United States)

    2016-04-21

    The main targets of this study has been to synthesize well-defined nanoclusters of Ni, Co, Pt, Rh and Pd as well as mixed-metal nanoclusters on ultrathin oxide surfaces and to characterize their detailed morphology using scanning probe techniques. The focus of the research is an understanding of the effects of metal-substrate interactions and overall composition on the structure/stability of single metal and mixed-metal nanoclusters and their catalytic activity.

  7. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    OpenAIRE

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the...

  8. Study on the Properties of Ionized Metal Plasma Methodology on Titanium

    International Nuclear Information System (INIS)

    Leow, M. T.; Hassan, Z.; Lee, K. E.; Omar, G.; Lim, S. P.; Chan, C. F.; Siew, E. T.; Chuah, Z. M.

    2010-01-01

    Ionized Metal Plasma (IMP) deposition was used in depositing metal interconnection of titanium metal film. Inductively coupled plasma (ICP) was attached to chamber wall where it creates an electromagnetic field, thus, ionizing the sputtered metal atoms from target. The film morphology was observed by scanning electron microscope (SEM). Acoustic measurement of titanium film thickness showed that there was a comparable result with film resistance measured by 4-point probe. Results show that higher plasma density would cause tensile properties on the film stress.

  9. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  10. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  11. Adaptive Target Tracking for Underwater Maneuvering Targets.

    Science.gov (United States)

    1979-12-01

    concenetrate on the bearings-only approach. In this method the Observer monitors his bearing to the Source, over a period of time. Usually the Observer must...developed in [ 5] was earlier applied with much success to tracking maneuvering air targets. This approach will now be applied in the underwater environment...April 1977. [11] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970. [12] D. H. Halliday, and R. Resnick, Physics, John Wiley & Sons, Inc., New York, 1966. hI

  12. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing of stainless steel. At the entrance to the target assembly was a scintillator screen, imprinted with circles every 5 mm in radius, which allowed to precisely aim the 26 GeV high-intensity proton beam from the PS onto the centre of the target rod. The scintillator screen was a 1 mm thick plate of Cr-doped alumina. See also 7903034 and 7905091.

  13. Biological targeting of radionuclides

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Glasgow Univ.

    1993-01-01

    Targeted radionuclide therapy in several forms has now been investigated in the clinic for more than 10 years. Despite some promising indications, targeted radiotherapy has not yet had a large impact on cancer therapy. Theoretical analysis shows that tumour cure would not often be expected using existing treatments. Addition of external-beam irradiation appears to be a robust strategy, which is appropriate in a wide range of situations. In future, many new agents will be made available by progress in molecular biology. However, integration of targeted radionuclide therapy with other modalities, especially radiotherapy, may still be required. (Author)

  14. Shiva target irradiation facility

    International Nuclear Information System (INIS)

    Manes, K.R.; Ahlstrom, H.G.; Coleman, L.W.; Storm, E.K.; Glaze, J.A.; Hurley, C.A.; Rienecker, F.; O'Neal, W.C.

    1977-01-01

    The first laser/plasma studies performed with the Shiva laser system will be two sided irradiations extending the data obtained by other LLL lasers to higher powers. The twenty approximately 1 TW laser pulses will reach the target simultaneously from above and below in nested pentagonal clusters. The upper and lower clusters of ten beams each are radially polarized so that they strike the target in p-polarization and maximize absorption. This geometry introduces laser system isolation problems which will be briefly discussed. The layout and types of target diagnostics will be described and a brief status report on the facility given

  15. STANFORD: Internal targets

    International Nuclear Information System (INIS)

    Riordan, Michael

    1989-01-01

    Of burgeoning interest to many nuclear and particle physicists is a storage ring technique for fixed target experiments. It hinges on the use of gas-jet targets, shooting a narrow stream of atoms through a circulating beam of electrons or protons. Pioneered at CERN and the Soviet Novosibirsk Laboratory, more such 'internal targets' are being built or contemplated for storage rings in Europe, the Soviet Union, and the United States. From 9-12 January, physicists from around the world met at the Stanford Linear Accelerator Center (SLAC) to discuss prospects and problems in this expanding field

  16. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  17. Study the Use of Straight Plate Type Target for Molybdenum-99 Production

    International Nuclear Information System (INIS)

    Bambang-Herutomo; Asmedi-Suripto

    2000-01-01

    Target of low enriched uranium for 99 Mo production being developed atthis time is in the form of thin uranium metal foil (125 microns -thick) thatsandwiched between two tubes. To reduce difficulty in foil preparation, useof uranium metal foil thicker than 125 microns via design modification oftarget from tube type to straight plate type is being studied. The proposeddesign of straight plate type target is in the form of uranium metal foilthat sandwiched between two straight plate aluminum cladding. For theirradiation purpose, the plate target is assembled in a box shape targetelement. The results of target dimension optimization (target plate andtarget element) show that the proposed target design is able to use uraniummetal foil with thickness greater than 125 microns, but the increase inthickness is limited by the allowable maximum heat flux, i.e. about 350w/cm 2 . (author)

  18. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  19. Light metal production

    Science.gov (United States)

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  20. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  1. A Scalable Synthesis Pathway to Nanoporous Metal Structures.

    Science.gov (United States)

    Coaty, Christopher; Zhou, Hongyao; Liu, Haodong; Liu, Ping

    2018-01-23

    A variety of nanoporous transition metals, Fe, Co, Au, Cu, and others, have been readily formed by a scalable, room-temperature synthesis process. Metal halide compounds are reacted with organolithium reductants in a nonpolar solvent to form metal/lithium halide nanocomposites. The lithium halide is then dissolved out of the nanocomposite with a common organic solvent, leaving behind a continuous, three-dimensional network of metal filaments that form a nanoporous structure. This approach is applicable to both noble metals (Cu, Au, Ag) and less-noble transition metals (Co, Fe, Ni). The microstructures of these nanoporous transition metals are tunable, as controlling the formation of the metal structure in the nanocomposite dictates the final metal structure. Microscopy studies and nitrogen adsorption analysis show these materials form pores ranging from 2 to 50 nm with specific surface areas from 1.0 m 2 /g to 160 m 2 /g. Our analysis also shows that pore size, pore volume, and filament size of the nanoporous metal networks depend on the mobility of target metal and the amount of lithium halide produced by the conversion reaction. Further, it has been demonstrated that hybrid nanoporous structures of two or more metals could be synthesized by performing the same process on mixtures of precursor compounds. Metals (e.g., Co and Cu) have been found to stabilize each other in nanoporous forms, resulting in smaller pore sizes and higher surface areas than each element in their pure forms. This scalable and versatile synthesis pathway greatly expands our access to additional compositions and microstructures of nanoporous metals.

  2. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  3. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  4. Supported metal alloy catalysts

    Science.gov (United States)

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  5. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  6. Tritium in metals

    International Nuclear Information System (INIS)

    Schober, T.

    1990-01-01

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3 He in the samples. (orig.)

  7. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal-Binding Agents.

    Science.gov (United States)

    Merlot, Angelica M; Kalinowski, Danuta S; Kovacevic, Zaklina; Jansson, Patric J; Sahni, Sumit; Huang, Michael L; Lane, Darius L; Lok, Hiu; Richardson, Des R

    2017-07-05

    Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals have become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anti-cancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role, and changes in homeostasis, of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as anti-tumor agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  9. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  10. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    Science.gov (United States)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  11. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  12. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  13. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  14. Metal weight table

    International Nuclear Information System (INIS)

    1995-03-01

    This book is comprised of two parts about metallic material weight table. the first part deals with steel on weight table of section steel and bar steel, hexagonal steel, equal angle steel, unequal angle steel, channel steel, T steel, H steel, CT steel, light gauge steel, light rail, stainless steel weight calculation, carbon steel pipe for general rescue a circular nail, zinc galvanizing and wire lope. The second part is about nonferrous metal on weight calculation for nonferrous metal nonferrous metal plates, steel pipe, brass copper bar and aluminum.

  15. Exploring Terrorist Targeting Preferences

    National Research Council Canada - National Science Library

    Libicki, Martin C; Chalk, Peter; Sisson, Melanie

    2007-01-01

    ... that reflect the value and vulnerability of each potential target. Yet those buildings, institutions, and icons perceived as being of utmost value to the United States may not be perceived as such to its potential attackers...

  16. Targeting radiation to tumours

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Greater Glasgow Health Board, Glasgow

    1994-01-01

    Biologically targeted radiotherapy entails the preferential delivery of radiation to solid tumours or individual tumour cells by means of tumour-seeking delivery vehicles to which radionuclides can be conjugated. Monoclonal antibodies have attracted attention for some years as potentially selective targeting agents, but advances in tumour and molecular biology are now providing a much wider choice of molecular species. General radiobiological principles may be derived which are applicable to most forms of targeted radiotherapy. These principles provide guidelines for the appropriate choice of radionuclide in specific treatment situations and its optimal combination with other treatment modalities. In future, the availability of gene targeting agents will focus attention on the use of Auger electron emitters whose high potency and short range selectivity makes them attractive choices for specific killing of cancer cells whose genetic peculiarities are known. (author)

  17. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available This research describes a quantitative methodology for deriving optimal exploration target zones based on a probabilistic mineral prospectivity map. In order to arrive at out objective, we provide a plausible answer to the following question: "Which...

  18. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  19. CFD aspects of ADSS target design

    International Nuclear Information System (INIS)

    Shashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2004-03-01

    The preliminary studies on CFD aspects of Accelerator Driven Sub-critical System (ADSS) target design has been presented in this report. The studies involve the thermal hydraulic analysis of the Liquid Metal Spallation Target (LMST) using Lead Bismuth Eutectic (LBE) as the target material. Apart from acting as Spallation medium LBE is used to remove the heat deposited by High Energy Proton Beam. Window of the target ( one side vacuum and other side LBE) has been reported in literature to be the most critical zone where high temperatures are reached. Numerical Simulations are carried out with Artificial Neural Network coupled Computational Fluid Dynamics (CFD) code, Various studies were carried out after the verification and validation of the initial results. Window being, the main parameter to be optimised, various designs of window were tried, along with change in the window material. The best possible combination has been proposed. The thermal hydraulic studies were carried out to arrive at the acceptable operating conditions for the target. (author)

  20. Development of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Park, C.K.

    1998-01-01

    Future nuclear power plants should not only have the features of improved safety and economic competitiveness but also provide a means to resolve spent fuel storage problems by minimizing volume of high level wastes. It is widely believed that liquid metal reactors (LMRs) have the highest potential of meeting these requirements. In this context, the LMR development program was launched as a national long-term R and D program in 1992, with a target to introduce a commercial LMR around 2030. Korea Advanced Liquid Metal Reactor (KALIMER), a 150 MWe pool-type sodium cooled prototype reactor, is currently under the conceptual design study with the target schedule to complete its construction by the mid-2010s. This paper summarizes the KALIMER development program and major technical features of the reactor system. (author)

  1. Targets and special materials

    International Nuclear Information System (INIS)

    Blanc, R.; Bouriant, M.; Richaud, J.P.

    1997-01-01

    The target preparation group supplied a large number of samples to nuclear physicists for experiments using SARA and also other accelerators throughout the world. Particular preparation and projects include: 208 Pb, 116 Cd, 6 LiF, 123 Sb, In and Ta targets, strippers for SARA and GANIL, optical silicone disks for POLDER and GRAAL experiments, active participations for the AMS project and finally filament preparation for the GENEPI project. (authors)

  2. An ISOLDE target unit

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A good dozen different targets are available for ISOLDE, made of different materials and equipped with different kinds of ion-sources, according to the needs of the experiments. Each separator (GPS: general purpose; HRS: high resolution) has its own target. Because of the high radiation levels, robots effect the target changes, about 80 times per year. In the standard unit shown in picture _01, the target is the cylindrical object in the front. It contains uranium-carbide kept at a temperature of 2200 deg C, necessary for the isotopes to be able to escape. At either end, one sees the heater current leads, carrying 700 A. The Booster beam, some 3E13 protons per pulse, enters the target from left. The evaporated isotope atoms enter a hot-plasma ion source (the black object behind the target). The whole unit sits at 60 kV potential (pulsed in synchronism with the arrival of the Booster beam) which accelerates the ions (away from the viewer) towards one of the 2 separators.

  3. Laser targets: introduction

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1985-01-01

    The laser target design group was engaged in three main tasks in 1984: (1) analyzing Novette implosion and hohlraum-scaling data, (2) planning for the first experiments on Nova, and (3) designing laboratory x-ray laser targets and experiments. The Novette implosion and hohlraum scaling data are mostly classified and are therefore not discussed in detail here. The authors achieved average final/initial pusher pr ratios of about 50, some 3 times higher than the value achieved in the best Shiva shots. These pr values imply a fuel compression to 100 times liquid density, although this figure and other aspects of the experiments are subject to further interpretation because of detailed questions of target symmetry and stability. Their main long-term goal for Nova is to produce a so-called hydrodynamically equivalent target (HET) - that is, a target whose hydrodynamic behavior (implosion velocity, convergence ratio, symmetry and stability requirements, etc.) is very much like that of a high-gain target, but one that is scaled down in size to match the energy available from Nova and is too small to achieve enough hot-spot pr to ignite the cold, near-Fermi-degenerate fuel around it. Their goal for Nova's first year is to do experiments that will teach them how to achieve the symmetry and stability conditions required by an HET

  4. Argus target chamber

    International Nuclear Information System (INIS)

    Rienecker, F. Jr.; Glaros, S.S.; Kobierecki, M.

    1975-01-01

    A target chamber for application in the laser fusion program must satisfy some very basic requirements. (1) Provide a vacuum on the order of 10 -6 torr. (2) Support a microscopically small target in a fixed point in space and verify its location within 5 micrometers. (3) Contain an adjustable beam focusing system capable of delivering a number of laser beams onto the target simultaneously, both in time and space. (4) Provide access for diagnostics to evaluate the results of target irradiation. (5) Have flexibility to allow changes in targets, focusing optics and number of beams. The ARGUS laser which is now under construction at LLL will have a target chamber which meets these requirements in a simple economic manner. The chamber and auxiliary equipment are described, with reference to two double beam focusing systems; namely, lenses and ellipsoidal mirrors. Provision is made for future operation with four beams, using ellipsoidal mirrors for two-sided illumination and lens systems for tetragonal and tetrahedral irradiation

  5. Metal-on-Metal Hip Resurfacing Arthroplasty

    Science.gov (United States)

    Sehatzadeh, S; Kaulback, K; Levin, L

    2012-01-01

    Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the

  6. Silicon metal-semiconductor-metal photodetector

    Science.gov (United States)

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  7. Preparation of 235U target by electrodeposition

    International Nuclear Information System (INIS)

    Chen Qiping; Zhong Wenbin; Li Yougen

    2004-12-01

    A target for the production of fission 99 Mo in a nuclear reactor is composed of an enclosed, cylindrical vessel. Preferable vessel is comprised of stainless steel, having a thin, continuous, uniform layer of 235 U integrally bonded to its inner walls. Two processes are introduced for electrodepositing uranium on to the inner walls of the vessel. One processes is electrodepositing UO 2 from UO 2 (NO 3 ) 2 -(NH 4 ) 2 CO 4 ·H 2 O solution; the other is electrodepositing pure uranium metal from molten salt. Its plating efficiency and plating quantity from a molten bath is higher than UO 2 from the aqueous system. (authors)

  8. Micromachining of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-01-01

    Many experiments conducted on today's largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron

  9. Hazard and risk assessment of human exposure to toxic metals using in vitro digestion assay

    Directory of Open Access Journals (Sweden)

    Hani A. Alhadrami

    2016-10-01

    Full Text Available Clean-up targets for toxic metals require that the site be “fit for purpose”. This means that targets are set with respect to defined receptors that reflect intended land-use. In this study, the likely threat of human exposure to toxic metals has been evaluated by simulating the human digestion process in vitro. The effects of key attributes (i.e. sample fraction size, pH, Kd and total metal concentrations on the bioavailability of Cu and Ni were also investigated. Total metal concentration was the key explanatory factor for Cu and Ni bioavailability. A comparative ranking of metal concentrations in the context of tolerable daily intakes for Cu and Ni confirmed that the pH has the greatest impact on metals bioavailability. Rapid screening of key attributes and total toxic metal doses can reveal the relative hazard imposed on human, and this approach should be considered when defining threshold values for human protection.

  10. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Henan Key Laboratory of Advanced Non-ferrous Metals, Luoyang 471003, China; School of Materials Science and Engineering, Henan University of Science and Technology, ...

  11. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    between amounts of metals in the aquatic insects and the surrounding water medium,. Materials and methods indicating that most of the accumulated. Test animals metals were from the water medium. Tympanotonus fuscatus var. radula L. The significance of bioaccumulation. (Periwinkle) (Mollusca; Gastropoda, studies lies ...

  12. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  13. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  14. Marks of Metal

    DEFF Research Database (Denmark)

    2015-01-01

    Udstilling på Mediemuseet med fokus på den visuelle side af heavy metal: Logoer, pladecovers og lignende.......Udstilling på Mediemuseet med fokus på den visuelle side af heavy metal: Logoer, pladecovers og lignende....

  15. Virus templated metallic nanoparticles

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  16. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM

    International Nuclear Information System (INIS)

    GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

    2001-01-01

    A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II

  17. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  18. Metal borohydrides and derivatives

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Haarh Jepsen, Lars; Schouwink, Pascal

    2017-01-01

    review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery......A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest...... major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4 -, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we...

  19. Metals and Neurodegeneration

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  20. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  1. Burglar Target Selection

    Science.gov (United States)

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  2. The Sinuous Target

    Energy Technology Data Exchange (ETDEWEB)

    Zwaska, R. [Fermilab

    2015-06-01

    We report on the concept for a target material comprised of a multitude of interlaced wires of small dimension. This target material concept is primarily directed at high-power neutrino targets where the thermal shock is large due to small beam sizes and short durations; it also has applications to other high-power targets, particularly where the energy deposition is great or a high surface area is preferred. This approach ameliorates the problem of thermal shock by engineering a material with high strength on the micro-scale, but a very low modulus of elasticity on the meso-scale. The low modulus of elasticity is achieved by constructing the material of spring-like wire segments much smaller than the beam dimension. The intrinsic bends of the wires will allow them to absorb the strain of thermal shock with minimal stress. Furthermore, the interlaced nature of the wires provides containment of any segment that might become loose. We will discuss the progress on studies of analogue materials and fabrication techniques for sinuous target materials.

  3. Beamed Energy Propulsion by Means of Target Ablation

    International Nuclear Information System (INIS)

    Rosenberg, Benjamin A.

    2004-01-01

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded

  4. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  5. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  6. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  7. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  8. Extractive decontamination of heavy metals from CCA contaminated ...

    African Journals Online (AJOL)

    user

    of metal extracted at the contact time of 6 h were 10.41, 12.50, 17.71 and 18.75 mg/kg As using oxalic, malonic, citric and ... Levels of the metals in the decontaminated soil after 6 h of washing were found to be below the target value for all ...... recovery of uranium DAE-BRNS Biennial Symposium on Emerging. Trends in ...

  9. Setting reference targets

    International Nuclear Information System (INIS)

    Ruland, R.E.

    1997-04-01

    Reference Targets are used to represent virtual quantities like the magnetic axis of a magnet or the definition of a coordinate system. To explain the function of reference targets in the sequence of the alignment process, this paper will first briefly discuss the geometry of the trajectory design space and of the surveying space, then continue with an overview of a typical alignment process. This is followed by a discussion on magnet fiducialization. While the magnetic measurement methods to determine the magnetic centerline are only listed (they will be discussed in detail in a subsequent talk), emphasis is given to the optical/mechanical methods and to the task of transferring the centerline position to reference targets

  10. LANSCE target calculations

    International Nuclear Information System (INIS)

    Grisham, D.L.; Brown, R.D.

    1989-01-01

    The LANSCE target operates at a beam current of 30 microamps. We present here the results of the finite-element calculations for the temperatures and stresses in the present target operated at 100 microamps. The calculations were run using the ABAQUS finite-element code. All finite-element codes require as input both the boundary conditions for the material being heated, and such material properties as the thermal conductivity, specific heat, and the elastic modulus. For the LANSCE target, the boundary conditions involve knowing the power deposition from the beam, and the heat transfer coefficients between the tungsten-alloy cylinder and the cooling water. We believe that these numbers are quite well established. 5 refs., 6 figs

  11. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  12. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  13. Heavy metals and the origin of life

    Science.gov (United States)

    Nriagu, J.

    2003-05-01

    The functional value of heavy metals in proto-cells was immense and involved critical roles in catalysis of molecular synthesis, translation, electrical neutrality and conduction, energy capture, cross-linking and precipitation (stabilizers of protective cell walls), and to a limited extent, osmotic pressure control. Metals must have modulated the evolutionary choices of the types of building blocks, such as ribose sugars as a constituent of RNA, or the the chirality and enantiopurity of many biomolecules. The formation of an enclosing membrane led to intracellular prokaryotic life (believed to have originated in an anaerobic environment) and much enhanced control over primary metabolism, the uptake and incorporation of heavy metals and the management of biomolecules (especially RNA, DNA and proteins) that were formed. Cells of the most primitive organisms (archaebacteria) reveal complex mechanisms designed specifically to deal with selective pressures from metal-containing environments including intra- and extra-cellular sequestration, exclusion by cell wall barrier, removal through active efflux pumps, enzymatic detoxification, and reduction in sensitivity of cellular targets to metal ions. Adaptation to metals using a variety of chromosomal, and transposon and plasmid-mediated systems began early in the evolution of life on Earth. Recent studies, however, show that the roles played by many heavy metals have changed over time. Divalent lead, for instance, has relinquished its unique catalytic role in the conversion of carbohydrates into ribose in the prebiotic world. The putative elements that dominated the primordial biochemistry were V, Mo, W, Co, Fe(II) and Ni; with the development of oxygenated atmosphere, these elements gave way to Zn, Cu and Fe(Ill) in their metabolic functions.

  14. Framework for Metals Risk Assessment

    Science.gov (United States)

    The Framework for Metals Risk Assessment is a science-based document that addresses the special attributes and behaviors of metals and metal compounds to be considered when assessing their human health and ecological risks.

  15. Fine target of deuterium

    International Nuclear Information System (INIS)

    Diaz Diaz, J.; Granados Gonzalez, C. E.; Gutierrez Bernal, R.

    1959-01-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm 2 thick is obtained. (Author) 1 refs

  16. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling. In this picture, the 26 GeV high-intensity beam from the PS enters from the right, where a scintillator screen, with circles every 5 mm in radius, permits precise aim at the target centre. See also 7903034 and 7905094.

  17. Targets and tactics

    DEFF Research Database (Denmark)

    Woo, V; Shestakova, M V; Ørskov, C

    2008-01-01

    BACKGROUND: The incidence of type 2 diabetes is reaching pandemic proportions, impacting patients and healthcare systems across the globe. Evidence suggests that a majority of patients are not achieving recommended blood glucose targets resulting in an increased risk of micro- and macro-vascular ......BACKGROUND: The incidence of type 2 diabetes is reaching pandemic proportions, impacting patients and healthcare systems across the globe. Evidence suggests that a majority of patients are not achieving recommended blood glucose targets resulting in an increased risk of micro- and macro...... diabetes has never been more compelling; with a clear focus on strategies for glycaemic control, the impact of the diabetes pandemic can be limited....

  18. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  19. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  20. Method for producing metallic microparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  1. Nanoporous metal-carbon composite

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  2. Computational Modeling of Ablation on an Irradiated Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  3. Development of LEU targets for 99Mo production and their chemical processing status 1989

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Chamberlain, D.B.; Hoh, J.C.; Streets, E.W.; Vogler, S.; Thresh, H.R.; Domagala, R.F.; Wiencek, T.C.; Matos, J.E.

    1991-01-01

    Most of the world's supply of Tc-99m for medical purposes is currently produced from Mo-99 derived from the fissioning of high enriched uranium (HEU). Substitution of low enriched uranium (LEU) silicide fuel for the HEU alloy and aluminide fuels used in current target designs will allow equivalent Mo-99 yields with no change in target geometries. Substitution of uranium metal will also allow the substitution of LEU for HEU. Efforts performed in 1989 focused on (1) fabrication of a uranium metal target by Hot Isostatic Pressing uranium metal foil to zirconium, (2) experimental investigation of the dissolution step for U 3 Si 2 targets, allowing us to present a conceptual design for the dissolution process and equipment, and (3) investigation of the procedures used to reclaim irradiated uranium from Mo-production targets, allowing us to further analyze the waste and by-product problems associated with the substitution of LEU for HEU. (orig.)

  4. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Directory of Open Access Journals (Sweden)

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  5. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    Science.gov (United States)

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  6. Metal accumulation in plants with added economical value grown on metal contaminated soils: sustainable use of these soils for bio-energy production and possibilities for phyto extraction

    International Nuclear Information System (INIS)

    Vangronsveld, J.; Boulet, J.; Weyens, N.; Meers, E.; Meiresonne, L.; Colpaert, J.; Thewys, T.; Lelie, D. van der; Carleer, R.; Ruttens, A.

    2009-01-01

    Phyto remediation has been proposed as an economic alternative for remediation of metal contaminated soils. It can be applied over extended surface areas and targets the bioavailable soil fraction of heavy metals, which is the most relevant fraction from an environmental risk assessment perspective. The most important drawback is the long remediation period required (years to decades). (Author)

  7. Targeted Therapy for Melanoma

    International Nuclear Information System (INIS)

    Quinn, Thomas; Moore, Herbert

    2016-01-01

    The research project, entitled ''Targeted Therapy for Melanoma,'' was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203 Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg 11 )CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212 Pb labeled DOTA-Re(Arg 11 )CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212 Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  8. Targets of curcumin

    Science.gov (United States)

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  9. Targeted Therapy for Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Thomas [Alphamed, Jackson, TN (United States); Moore, Herbert [Alphamed, Jackson, TN (United States)

    2016-12-05

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  10. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    determine their targets on the cell. The newly discovered antibodies will then be engineered for utility as new highly specific drugs and diagnostics in...are from the aldo-keto reductase family (AKRs). Remarkably, 3 of the top 10 genes with induction in the mesenchymal TES2b cells Figure 1. Amino

  11. ISOLDE back on target

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    Today, Friday 1 August, the ISOLDE installation, supplied by the beams of the PS Booster, restarted its physics programme. After a shutdown of almost a year and a half, there was a real buzz in the air as the first beam of protons hit the target of the first post-LS1 ISOLDE experiment.   One of the new target-handling robots installed by ISOLDE during LS1. Many improvements have been made to the ISOLDE installation during LS1. One of the main projects was the installation of new robots for handling the targets (see photo 1). “Our targets are bombarded by protons from the PS Booster’s beams and become very radioactive,” explains Maria Jose Garcia Borge, spokesperson for the ISOLDE collaboration. “They therefore need to be handled carefully, which is where the robots come in. The robots we had until now were already over 20 years old and were starting to suffer from the effects of radiation. So LS1 was a perfect opportunity to replace them with more moder...

  12. Target Chamber Manipulator

    Science.gov (United States)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  13. Catalytic Metallodrugs: Substrate-Selective Metal Catalysts as Therapeutics.

    Science.gov (United States)

    Yu, Zhen; Cowan, James A

    2017-10-12

    Metal complexes that catalyze inactivation and degradation of biomolecular targets can be developed into novel therapeutics (catalytic metallodrugs) against a variety of diseases. Despite recent advances in the field, a lack of substrate selectivity is a major hindrance to the development of catalytic metallodrugs for application in clinical practice. Improved targeting can minimize nonselective activity and the potential for side effects. Herein, we focus on recent developments toward novel metal catalysts that exhibit substrate selectivity against a variety of therapeutically relevant biomolecules. Design strategies for developing selective catalytic metallodrugs are also highlighted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  15. Metal recovery via geobiotechnology

    International Nuclear Information System (INIS)

    Hedrich, Sabrina; Schippers, Axel

    2017-01-01

    Specialized acidophilic bacteria and archaea are able to extract valuable metals such as copper, gold, cobalt, nickel, zinc, and uranium from sulfide ores. This process is known as bioleaching and its application in the mining industry as biomining. Laboratory studies also demonstrated bioleaching of oxide ores such as laterites and of mining residues such as mine tailings as well as metal recycling from waste (secondary mining). Metals being leached have to be recovered from acidic polymetallic solutions (mine and process waters) which is possible via biosorption or biomineralisation.

  16. Therapies targeting inflammation after stent implantation.

    Science.gov (United States)

    Okura, Hiroyuki; Takagi, Tsutomu; Yoshida, Kiyoshi

    2013-07-01

    Since the introduction of coronary vessel scaffold by metallic stent, percutaneous coronary intervention has become widely performed all over the world. Although drug-eluting stent technology has further decrease the incidence of in-stent restenosis, there still remaining issues related to stent implantation. Vessel inflammation is one of the causes that may be related to stent restenosis as well as stent thrombosis. Therefore, systemic therapies targeting inflammation emerged as adjunctive pharmacological intervention to improve outcome. Statins, corticosteroids, antiplatelets, and immunosuppresive or anti-cancer drugs are reported to favorably impact outcome after bare-metal stent implantation. In type 2 diabetic patients, pioglitazone may be the most promising drug that can lower neointimal proliferation and, as a result, lower incidence of restenosis and target lesion revascularization. On the other hand, several new stent platforms that might decrease inflammatory response after drug-eluting stent implantation have been introduced. Because durable polymer used in the first generation drug-eluting stents are recognized to be responsible for unfavorable vessel response, biocompatible or bioabsorbable polymer has been introduce and already used clinically. Furthermore, polymer-free drug-eluting stent and bioresorbable scaffold are under investigation. Although vessel inflammation may be reduced by using these new drug-eluting stents or scaffold, long-term impact needs to be investigated further.

  17. Thermal Convection on an Irradiated Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2016-11-01

    The present work involves the computational modeling of metallic targets subject to steady and high intensity heat flux. The ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity laser fluence at normal atmospheric conditions is modelled. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the melt. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser intensity. The relevance of the findings to various manufacturing processes as well as for the development of protective shields is discussed. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  18. Progress in heavy ion-driven target fabrication and injection

    Science.gov (United States)

    Goodin, D. T.; Nobile, A.; Alexander, N. B.; Gallix, R.; Maxwell, J. L.; Petzoldt, R. W.; Rickman, W. S.; Valmianski, E. I.

    2005-05-01

    The target for an Inertial Fusion Energy (IFE) power plant is compressed and heated to fusion conditions by the driver beams. The "Target Fabrication Facility" (TFF) of a 1000 MW(e) IFE power plant must supply over 500,000 targets per day. The target is then injected into the target chamber at a rate of 5-10 Hz and tracked precisely so the driver beams can be directed to the target. The feasibility of developing successful fabrication and injection methodologies at the low cost required for energy production (about $0.25/target, about 10 4 less than current costs) is a critical issue for inertial fusion. The technologies for producing Heavy Ion Fusion (HIF) targets have significant overlaps and synergisms with current-day inertial fusion experimental targets and with laser fusion (direct drive) IFE targets. Capsule formation and characterization, permeation filling, and layering of the DT using a cryogenic fluidized bed are common methodologies shared between laser fusion and HIF. Specific to HIF targets are the techniques for fabricating and assembling the hohlraum components. We will report on experimental progress with the Laser-assisted Chemical Vapor Deposition (LCVD) technique to produce "micro-engineered" low-density metallic foams for the hohlraum, and calculations of hohlraums materials performance during handling. Fiber growth by LCVD in arrays has been demonstrated for the first time, important to achieve the volume production needed for IFE. We have also evaluated a variety of hohlraum material selections, with consideration of target physics, cost, ES&H, activation, and compatibility with the molten salt coolant. These materials include selections for once-through and for recycle scenarios. We have performed a cost analysis for an " nth-of-a-kind" Target Fabrication Facility using our current assumptions about the production processes. Some of these scenarios result in future target manufacturing costs consistent with economical electricity production.

  19. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  20. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  1. Triple Point Topological Metals

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2016-07-01

    Full Text Available Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.

  2. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  3. Ferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  4. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  5. Quasicrystalline metallic adlayers

    Indian Academy of Sciences (India)

    ugc

    Quasicrystalline metallic adlayers. S. R. Barman. UGC-DAE Consortium for Scientific Research, Indore. 23rd Mid-year Meeting of the Indian Academy of Sciences,. July 13-14, 2012,. Indian Institute of Science, Bangalore.

  6. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  7. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available of hydrogen in metals processing and treatment identified, and mechanisms for hydrogen entry into a ferritic surface are discussed. The differences between hydrogen attack of ferritic steels and copper alloys are contrasted, and an unusual case study...

  8. Micro metal forming

    CERN Document Server

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  9. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Administrator

    -known Hall–Petch relationship predicts that the strength or hardness of conventional metal alloys increases with decreasing grain sizes. However, the rela- tionship fails when the grain size is down to nanometers as many experimental results ...

  10. PRODUCTION OF HAFNIUM METAL

    Science.gov (United States)

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  11. Metal-Semiconductor Contacts

    Science.gov (United States)

    Pugh, D. I.

    Metal-semiconductor contacts display a range of electrical characteristics from strongly rectifying to ohmic, each having its own applications. The rectifying properties of metal points on metallic sulphides were used extensively as detectors in early radio experiments, while during the second world war the rectifying point contact diode became important as a frequency detector and low level microwave radar detector [1]. Since 1945 the development of metal semiconductor contacts has been stimulated by the intense activity in the field of semiconductor physics and has remained vital in the ohmic connection of semiconductor devices with the outside world. The developments in surface science and the increased use of Schottky barriers in microelectronics has lead to much research with the aim of obtaining a full understanding of the physics of barrier formation and of current transport across the metal-semiconductor interface. Large gain spin electronic devices are possible with appropriate designs by incorporating ferromagnetic layers with semiconductors such as silicon [2]. This inevitably leads to metal-semiconductor contacts, and the impact of such junctions on the device must be considered. In this section we aim to look simply at the physical models that can be used to understand the electrical properties that can arise from these contacts, and then briefly discuss how deviations of these models can occur in practical junctions.

  12. Metals in fungal virulence.

    Science.gov (United States)

    Gerwien, Franziska; Skrahina, Volha; Kasper, Lydia; Hube, Bernhard; Brunke, Sascha

    2018-01-01

    Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies. © FEMS 2017.

  13. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  14. Aquaporin-2 membrane targeting

    DEFF Research Database (Denmark)

    Olesen, Emma T B; Fenton, Robert A

    2017-01-01

    The targeting of the water channel aquaporin-2 (AQP2) to the apical plasma membrane of kidney collecting duct principal cells is regulated mainly by the antidiuretic peptide hormone arginine vasopressin (AVP). This process is of crucial importance for the maintenance of body water homeostasis....... In this brief review we assess the role of cyclic adenosine monophosphate (cAMP) and discuss the emerging concept that type 2 AVP receptor (V2R)-mediated AQP2 trafficking is cAMP-independent. the ability of the kidney to concentrate the urine and thereby maintain body water homeostasis depends on targeting....... For example, 1) stimulation with the nonspecific AC activator forskolin increases AQP2 membrane accumulation in a mouse cortical collecting duct cell line [e.g., Norregaard et al. (16)]; 2) cAMP increases CD water permeability (15); 3) the cAMP-activated protein kinase A (PKA) can phosphorylate AQP2 on its...

  15. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven

    2017-04-01

    We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic

  16. Protein targeting protocols

    National Research Council Canada - National Science Library

    Clegg, Roger A

    1998-01-01

    ... of intracellular environment. Because the concept of protein targeting is intuitive rather than explicitly defined, it has been variously used by different groups of researchers in cell biology, biochemistry, and molecular biology. For those working in the field of intracellular signaling, an influential introduction to the topic was the seminal article by Hubbard & Cohen (TIBS [1993] 18, 172- 177), which was based on the work of Cohen's laboratory on protein phosphatases. Subsequently, the ideas that t...

  17. CDTI target selection criteria

    Science.gov (United States)

    Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.

    1984-01-01

    A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.

  18. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  19. Implementing Target Value Design.

    Science.gov (United States)

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  20. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  1. Low enrichment Mo-99 target development program at ANSTO

    International Nuclear Information System (INIS)

    Donlevy, Therese M.; Anderson, Peter J.; Beattie, David; Braddock, Ben; Fulton, Scott; Godfrey, Robert; Law, Russell; McNiven, Scott; Sirkka, Pertti; Storr, Greg; Wassink, David; Wong, Alan; Yeoh, Guan

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO, formerly AAEC) has been producing fission product Mo-99 in HIFAR, from the irradiation of Low Enrichment Uranium (LEU) UO 2 targets, for nearly thirty years. Over this period, the U-235 enrichment has been increased in stages, from natural to 1.8% to 2.2%. The decision to provide Australia with a replacement research reactor (RRR) for HIFAR has created an ideal opportunity to review and improve the current Mo-99 production process from target design through to chemical processing and waste management options. ANSTO has entered into a collaboration with Argonne National Laboratory (RERTR) to develop a target using uranium metal foil with U-235 enrichment of less than 20% The initial focus has been to demonstrate use of LEU foil targets in HIFAR, using existing irradiation methodology. The current effort focussed on designing a target assembly with optimised thermohydraulic characteristics to accommodate larger LEU foils to meet Mo-99 production needs. The ultimate goal is to produce an LEU target suitable for use in the Replacement Research Reactor when it is commissioned in 2005. This paper reports our activities on: - The regulatory approval processes required in order to undertake irradiation of this new target; -Supporting calculations (neutronics, computational fluid dynamics) for safety submission; - Design challenges and changes to prototype irradiation; - Trial irradiation of LEU foil target in HIFAR; - Future target and rig development program at ANSTO. (author)

  2. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    OpenAIRE

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothée

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures...

  3. Electronic excitations in metallic systems: from defect annihilation to track formation

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.

    1991-01-01

    This paper presents an overview of the effects of high electronic energy deposition in metallic targets irradiated with GeV heavy ions. The main result of these investigations is that high electronic excitations lead to various and sometimes conflicting effects according to the nature of the target: - partial annealing of the defects induced by elastic collisions, - creation of additional disorder, - phase transformation (tracks formation and amorphization), - anisotropic growth. These different effects of high electronic energy deposition in metallic targets are probably manifestations at various degrees of the same basic energy transfer process between the excited electrons and the target atoms. Up to now no theoretical model explains these effects. 24 refs

  4. Toxic metals and autophagy.

    Science.gov (United States)

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  5. Inflation targeting and core inflation

    OpenAIRE

    Julie Smith

    2005-01-01

    This paper examines the interaction of core inflation and inflation targeting as a monetary policy regime. Interest in core inflation has grown because of inflation targeting. Core inflation is defined in numerous ways giving rise to many potential measures; this paper defines core inflation as the best forecaster of inflation. A cross-country study finds before the start of inflation targeting, but not after, core inflation differs between non-inflation targeters and inflation targeters. Thr...

  6. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  7. Effects of metal-inlay thickness in polyethylene cups with metal-on-metal bearings.

    NARCIS (Netherlands)

    Verdonschot, N.J.J.; Vena, P.; Stolk, J.; Huiskes, R.

    2002-01-01

    A way to prevent polyethylene wear in total hip replacements is to use metal-on-metal bearings. The cup design of these bearings may be a metal inlay in a polyethylene cup. However, these metal inlays are relatively thin and may deform on loading. The purpose of the current study was to determine

  8. Self-reported neurological clinical manifestations of metal toxicity in metal-on-metal hip arthroplasty

    NARCIS (Netherlands)

    van Lingen, Christiaan P.; Ettema, Harmen B.; Van Der Straeten, Catherine; Kollen, Bouwdewijn J.; Verheyen, Cees C. P. M.

    2014-01-01

    Adverse reactions to metal particle debris have been increasingly reported as a complication following large head metal-on-metal (MoM) hip arthroplasty. Elevated metal ion levels are a cause for concern. The aim of this study is to evaluate whether exposure to cobalt is associated with patient

  9. Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation

    OpenAIRE

    Tamás, Markus J.; Sharma, Sandeep K.; Ibstedt, Sebastian; Jacobson, Therese; Christen, Philipp

    2014-01-01

    While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional...

  10. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Sugimoto, Masayoshi; Yamamura, Toshio

    2006-10-01

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  11. Targeted therapy for sarcomas

    Directory of Open Access Journals (Sweden)

    Forscher C

    2014-03-01

    Full Text Available Charles Forscher,1 Monica Mita,2 Robert Figlin3 1Sarcoma Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 2Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 3Academic Development Program, Samuel Oschin Comprehensive Cancer Institute, and Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: Sarcomas are tumors of mesenchymal origin that make up approximately 1% of human cancers. They may arise as primary tumors in either bone or soft tissue, with approximately 11,280 soft tissue tumors and 2,650 bone tumors diagnosed each year in the United States. There are at least 50 different subtypes of soft tissue sarcoma, with new ones described with ever-increasing frequency. One way to look at sarcomas is to divide them into categories on the basis of their genetic make-up. One group of sarcomas has an identifiable, relatively simple genetic signature, such as the X:18 translocation seen in synovial sarcoma or the 11:22 translocation seen in Ewing's sarcoma. These specific abnormalities often lead to the presence of fusion proteins, such as EWS-FLI1 in Ewing's sarcoma, which are helpful as diagnostic tools and may become therapeutic targets in the future. Another group of sarcomas is characterized by complex genetic abnormalities as seen in leiomyosarcoma, osteosarcoma, and undifferentiated sarcoma. It is important to keep these distinctions in mind when contemplating the development of targeted agents for sarcomas. Different abnormalities in sarcoma could be divided by tumor subtype or by the molecular or pathway abnormality. However, some existing drugs or drugs in development may interfere with or alter more than one of the presented pathways. Keywords: sarcoma, targeted agents, tyrosine kinase inhibitors, mTor inhibition

  12. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  13. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  14. Targeting proteins for degradation.

    Science.gov (United States)

    Schrader, Erin K; Harstad, Kristine G; Matouschek, Andreas

    2009-11-01

    Protein degradation plays a central role in many cellular functions. Misfolded and damaged proteins are removed from the cell to avoid toxicity. The concentrations of regulatory proteins are adjusted by degradation at the appropriate time. Both foreign and native proteins are digested into small peptides as part of the adaptive immune response. In eukaryotic cells, an ATP-dependent protease called the proteasome is responsible for much of this proteolysis. Proteins are targeted for proteasomal degradation by a two-part degron, which consists of a proteasome binding signal and a degradation initiation site. Here we describe how both components contribute to the specificity of degradation.

  15. Mechanical properties of vapor-deposited thin metallic films: a status report

    International Nuclear Information System (INIS)

    Adler, P.H.

    1982-01-01

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures

  16. Evaluation of approaches to calculate critical metal loads for forest soils

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.

    2009-01-01

    This paper evaluates approaches to calculate acceptable loads for metal deposition to forest ecosystems, distinguishing between critical loads, stand-still loads and target loads. We also evaluated the influence of including the biochemical metal cycle on the calculated loads. Differences are

  17. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  18. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  19. Dissimilar metals joint evaluation

    Science.gov (United States)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  20. Metals in edible seaweed.

    Science.gov (United States)

    Rubio, C; Napoleone, G; Luis-González, G; Gutiérrez, A J; González-Weller, D; Hardisson, A; Revert, C

    2017-04-01

    The concentration levels of 20 metals were analyzed by ICP-OES in edible seaweed (Chondrus, Eisenia, Gelidium, Himanthalia, Laminaria, Palmaria, Porphyra, Undaria), from two origins (Asia vs EU) according to their cultivation practices (conventional vs organic). Red seaweed showed higher concentrations of trace and toxic elements. Porphyra may be used as a potential bioindicator for metals. Significant differences were found between the Asian vs European mean contents. The mean Cd level from the conventional cultivation (0.28 mg/kg) was two points higher than the organic cultivation (0.13 mg/kg). A daily consumption of seaweed (4 g/day) contributes to the dietary intake of metals, mainly Mg and Cr. The average intakes of Al, Cd and Pb were 0.064, 0.001 and 0.0003 mg/day, respectively. Based on obtained results, this study suggests that exposure to the toxic metals analyzed (Al, Cd and Pb) through seaweed consumption does not raise serious health concerns, but other toxic metals should be monitored. Copyright © 2017. Published by Elsevier Ltd.

  1. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  2. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  3. Ultralight metal foams.

    Science.gov (United States)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-08

    Ultralight (battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  4. RI and Target recovery system of Lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. H.; Park, U. J.; Jung, S. H.; Kim, J. B.; Moon, J. H.; Nam, S. S.; Jang, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Separation of adjacent lanthanides is complicated process to obtain pure target nuclide. Several papers have reported that the ionic character change of lanthanides with appropriate chelating agents can isolate the target lanthanides. These specific agents to the metal ion are called as complexing agents including-HIBA, tartaric acid, mandelic acid, lactic acid etc. Radioisotope research division of KAERI has developed separating technique for target lanthanides, total 20mg scale, by using complexing agents and ion-pairing agents in cold state. The reactor-produced radiolanthanides have been pivotal for development of therapeutic radiopharmaceuticals. Some radiolanthanides show excellent theranostic effects in that they have proper Let (Linear Energy Transfer) to induce apoptosis for cancer treatment and gamma ray to use as a tracer for cancer diagnosis. This system was designed for automated separation of the (n,γ) reaction product. Especially, we are focused on getting the carrier free Ho-166 which is the first attempt at KAERI. Even though we have already developed to produce c.a Ho-166(carrier added form), we did not try to develop to produce carrier free Ho-166 since the separating process is difficult as well as production process follows double (n,γ) reaction. After HANARO is re-operated, we are schedule to produce n.c.a Ho by using this recovery system.

  5. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    Science.gov (United States)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (laser-based platform dedicated to high-energy-density physics studies.

  6. Fate of heavy metals and agrochemicals in biochar amended soils

    Science.gov (United States)

    Heavy metals and agrochemicals are the key targets for biochar-induced mitigation of runoff/groundwater contamination. Inorganic and organic contaminants interact differently with biochars as well as soil components. Mechanistic understandings are needed on sorption, desorption, and competitive sor...

  7. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  8. LEVELING METAL COATINGS

    Science.gov (United States)

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  9. Functional memory metals

    International Nuclear Information System (INIS)

    Dunne, D.P.

    2000-01-01

    The field of shape memory phenomena in metals and alloys has developed in a sporadic fashion from a scientific curiosity to a vigorously growing niche industry, over a period close to a full working lifetime. Memory metal research and development is replete with scientist and engineer 'true believers', who can finally feel content that their longstanding confidence in the potential of these unusual functional materials has not been misplaced. This paper reviews the current range of medical and non-medical systems and devices which are based on memory metals and attempts to predict trends in applications over the next decade. The market is dominated by Ni Ti alloys which have proved to exhibit the best and most reproducible properties for application in a wide range of medical and non-medical devices

  10. Metal fuel safety performance

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.; Tentner, A.M.

    1988-01-01

    The current development of breeder reactor systems has lead to the renewed interest in metal fuels as the driver material. Modeling efforts were begun to provide a mechanistic description of the metal fuel during anticipated and hypothetical transients within the context of the SAS4A accident analysis code system. Through validation exercises using experimental results of metal fuel TREAT tests, confidence is being developed on the nature and accuracy of the modeling and implementation. Prefailure characterization, transient pin response, margins to failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are considered. Transient time scales ranging from milliseconds to many hours can be studied with all the reactivity feedbacks evaluated

  11. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  12. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  13. Non-Targeted Analysis Challenge (Non-targeted screening workshop)

    Science.gov (United States)

    This brief presentation is intended to motivate discussion of the "Non-Targeted Analysis Challenge" at the Advancing Non-Targeted Analyses of Xenobiotics in Environmental and Biological Media workshop held at the EPA RTP campus.

  14. Heavy Metal Pumps in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  15. Metal Hypersensitivity in Orthodontic Patients

    Directory of Open Access Journals (Sweden)

    Sandhya Maheshwari Sanjeev K

    2015-06-01

    Full Text Available Orthodontic treatment of individuals with metal hypersensitivity is a matter of concern for the orthodontist. Orthodontic appliances contain metals like Nickel, Cobalt and Chromium etc. Metals may cause allergic reactions and are known as allergens. Reaction to these metals is due to biodegradation of metals in the oral cavity. This may lead to the formation of corrosion products and their exposure to the patient. Nickel is the most common metal to cause hypersensitivity reaction. Chromium ranks second among the metals, known to trigger allergic reactions. The adverse biological reactions to these metals may include hypersensitivity, dermatitis and asthma. In addition, a significant carcinogenic and mutagenic potential has been demonstrated. The orthodontist must be familiar with the best possible alternative treatment modalities to provide the safest, most effective care possible in these cases. The present article focuses on the issue of metal hypersensitivity and its management in orthodontic

  16. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  17. Alternative divertor target concepts for next step fusion devices

    Science.gov (United States)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  18. Double-shell target fabrication workshop-2016 report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. Morris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oertel, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrell, Michael [General Atomics, San Diego, CA (United States); Baumann, Ted [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Haibo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activities at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.

  19. Low intensity beam target unit

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This is a wheel fitted with many targets around its periphery (each with three longitudinally arranged thin rods) of which one is placed into the beam via a rotation of the wheel. Upstream of each target is placed a luminescent screen, aligbed on each target axis and viewed with a TV camera, to make sure that one is hitting the target. This target unit was probably used to study target's behaviour (like beam heating). Gualtiero Del Torre stands on the left, Pierre Gerdil on the right.

  20. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  1. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  2. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  3. Analysis of metal samples

    International Nuclear Information System (INIS)

    Ramirez T, J.J.; Lopez M, J.; Sandoval J, A.R.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    An elemental analysis, metallographic and of phases was realized in order to determine the oxidation states of Fe contained in three metallic pieces: block, plate and cylinder of unknown material. Results are presented from the elemental analysis which was carried out in the Tandem Accelerator of ININ by Proton induced X-ray emission (PIXE). The phase analysis was carried out by X-ray diffraction which allowed to know the type of alloy or alloys formed. The combined application of nuclear techniques with metallographic techniques allows the integral characterization of industrial metals. (Author)

  4. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  5. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  6. The impact of environmental metals in young urbanites' brains.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Serrano-Sierra, Alejandro; Torres-Jardón, Ricardo; Zhu, Hongtu; Yuan, Ying; Smith, Donna; Delgado-Chávez, Ricardo; Cross, Janet V; Medina-Cortina, Humberto; Kavanaugh, Michael; Guilarte, Tomás R

    2013-07-01

    Air pollution exposures are linked to cognitive and olfaction deficits, oxidative stress, neuroinflammation and neurodegeneration including frontal hyperphosphorylated tau and diffuse amyloid plaques in Mexico City children and young adults. Mexico City residents are chronically exposed to fine particulate matter (PM(2.5)) concentrations (containing toxic combustion and industrial metals) above the annual standard (15 μg/m(3)) and to contaminated water and soil. Here, we sought to address the brain-region-specific effects of metals and key neuroinflammatory and DNA repair responses in two air pollution targets: frontal lobe and olfactory bulb from 12 controls vs. 47 Mexico City children and young adults average age 33.06±4.8 SE years. Inductively coupled plasma mass spectrometry (metal analysis) and real time PCR (for COX2, IL1β and DNA repair genes) in target tissues. Mexico City residents had higher concentrations of metals associated with PM: manganese (p=0.003), nickel and chromium (p=0.02) along with higher frontal COX2 mRNA (p=0.008) and IL1β (p=0.0002) and COX2 (p=0.005) olfactory bulb indicating neuroinflammation. Frontal metals correlated with olfactory bulb DNA repair genes and with frontal and hippocampal inflammatory genes. Frontal manganese, cobalt and selenium increased with age in exposed subjects. Together, these findings suggest PM-metal neurotoxicity causes brain damage in young urbanites, the olfactory bulb is a target of air pollution and participates in the neuroinflammatory response and since metal concentrations vary significantly in Mexico City urban sub-areas, place of residency has to be integrated with the risk for CNS detrimental effects particularly in children. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  8. FFTF metal fuel pin fabrication

    International Nuclear Information System (INIS)

    Dittmer, J.O.; Benecke, M.W.; Feigenbutz, L.V.

    1989-01-01

    A major new initiative to develop, irradiate, and qualify a binary uranium/zirconium metal-fuel system in the Fast Flux Test Facility (FFTF) has been implemented by the Westinghouse Hanford Company for the US Department of Energy. Metal-fuel test assemblies have been designed and fabricated, and are now being irradiated in FFTF to provide the data needed to support the potential use of binary metal fuels in FFTF and other liquid-metal reactors. These development efforts support licensing activities for metal-fuel use in near-term advanced liquid-metal reactors

  9. Commodity profiles for selected metals

    International Nuclear Information System (INIS)

    Svoboda, O.; Wilson, B.M.

    1985-01-01

    This report describes the basic characteristics of 35 metals and gives the prices and production of these metals for the period 1979 to 1983/4. The description of each metal includes the ore grades and reserves, the major minerals in which the metal occurs, and the discovery, selected physical properties, sources, uses, substitutes, and effects on the environment of the metal. Graphs showing price and production cover the period 1950 to 1984, and possible future developments in these areas are forecast for each metal until the year 2000

  10. Metal-Dependent Amyloid β-Degrading Catalytic Antibody Construct

    Science.gov (United States)

    Nishiyama, Yasuhiro; Taguchi, Hiroaki; Hara, Mariko; Planque, Stephanie A.; Mitsuda, Yukie; Paul, Sudhir

    2015-01-01

    Catalytic antibodies (catabodies) that degrade target antigens rapidly are rare. We describe the metal-dependence of catabody construct 2E6, an engineered heterodimer of immunoglobulin light chain variable domains that hydrolyzes amyloid β peptides (Aβ) specifically. In addition to the electrophilic phosphonate inhibitor of serine proteases, the metal chelators ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline completely inhibited the hydrolysis of Aβ by catabody 2E6. Formation of catabody-electrophilic phosphonate inhibitor adducts was unaffected by EDTA, suggesting that the metal exerts a favorable effect on a catalytic step after the initial catabody nucleophilic attack on Aβ. The EDTA inactivated catabody failed to disaggregate fibrillar Aβ, indicating the functional importance of the Aβ hydrolytic activity. Treating the EDTA-inactivated catabody with Zn2+ or Co2+ restored the Aβ hydrolytic activity, and Zn2+-induced catabody conformational transitions were evident by fluorescence emission spectroscopy. The studies reveal the absolute catabody dependence on a metal cofactor. PMID:24698848

  11. Merging Metallic Catalysts and Sonication: A Periodic Table Overview

    Directory of Open Access Journals (Sweden)

    Claudia E. Domini

    2017-04-01

    Full Text Available This account summarizes and discusses recent examples in which the combination of ultrasonic waves and metal-based reagents, including metal nanoparticles, has proven to be a useful choice in synthetic planning. Not only does sonication often enhance the activity of the metal catalyst/reagent, but it also greatly enhances the synthetic transformation that can be conducted under milder conditions relative to conventional protocols. For the sake of clarity, we have adopted a structure according to the periodic-table elements or families, distinguishing between bulk metal reagents and nanoparticles, as well as the supported variations, thus illustrating the characteristics of the method under consideration in target synthesis. The coverage focuses essentially on the last decade, although the discussion also strikes a comparative balance between the more recent advancements and past literature.

  12. Sputter deposition of metallic thin film and directpatterning

    Energy Technology Data Exchange (ETDEWEB)

    Ji, L.; Chen, Y.; Jiang, X.; Ji, Q.; Leung, K.-N.

    2005-09-09

    A compact apparatus is developed for deposition of metal thin film. The system employs an RF discharge plasma source with a straight RF antenna, which is made of or covered with deposition material, serving as sputtering target at the same time. The average deposition rate of copper thin film is as high as 450nm/min. By properly allocating the metal materials on the sputtering antenna, mixture deposition of multiple metal species is achieved. Using an ion beam imprinting scheme also taking advantage of ion beam focusing technique, two different schemes of direct patterning deposition process are developed: direct depositing patterned metallic thin film and resistless ion beam sputter patterning. Preliminary experiments have demonstrated direct pattern transfer from a template with feature size of micro scale; patterns with more than 10x reduction are achieved by sputtering patterning method.

  13. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  14. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  15. Overview of Target Development for Next Generation Radioactive Beam Experiments

    Science.gov (United States)

    Nolen, Jerry

    2014-09-01

    With the increased intensities of radioactive ion beams at present and future facilities a wide variety of target technologies are being brought to bear for the experimental studies undertaken with these beams. For astrophysical reaction studies, classical thin foil targets are still going to be extensively used, mainly as hydrogen- or deuterium-rich plastics (or metals). But more complex target systems such as windowless gas jets, liquid or cryogenic solid targets are being developed. Cryogenic gas cells have also been employed though one must contend with issues relating to the windows used. Active targets usually integrated with time projection chambers are being used with rare beams for their high detection efficiency and also for low energy processes. In an active target, the gas acts as both a target and detector and allows for investigations of nuclear structure and transfer reactions with very high efficiency and at high resolution due to the thickness of the target. Polarized targets, in the form of gas-phase, foil, and crystal targets, are being used and further developed for use at rare isotope facilities. And finally, in heavy-element research, more exotic beams even at moderate intensities can be used with the standard 208Pb as well as exotic actinide targets to perhaps open previously unanticipated reaction channels for the production, chemistry, and spectroscopic studies of isotopes of the heaviest elements. For use with high quality secondary beams, very small samples of rare actinide isotopes in conjunction with high efficiency gamma ray detectors can be used for such research. This talk will be an overview to introduce the topics to be covered in detail in the contributions to this mini-symposium. Prepared in collaboration with John P. Greene, Physics Division, ANL. With the increased intensities of radioactive ion beams at present and future facilities a wide variety of target technologies are being brought to bear for the experimental studies

  16. Metals in Metal Salts: A Copper Mirror Demonstration

    Science.gov (United States)

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  17. Metal-on-metal bearings a clinical practicum

    CERN Document Server

    Jones, Lynne C; Greenwald, A Seth

    2014-01-01

    This book addresses the background and significance of factors potentially influencing clinical and biological outcomes of metal-on-metal hip implants. Includes discussion of reported complications including pseudotumors and other lymphocytic-based responses.

  18. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  19. Modeling of Laser-Induced Metal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  20. Risk assessment of allergen metals in cosmetic products.

    Science.gov (United States)

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health.

  1. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    Science.gov (United States)

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Heavy metals and metalloids as a cause for protein misfolding and aggregation.

    Science.gov (United States)

    Tamás, Markus J; Sharma, Sandeep K; Ibstedt, Sebastian; Jacobson, Therese; Christen, Philipp

    2014-02-25

    While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.

  3. Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation

    Directory of Open Access Journals (Sweden)

    Markus J. Tamás

    2014-02-01

    Full Text Available While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.

  4. Next Generation Target Control System

    National Research Council Canada - National Science Library

    1995-01-01

    Our objective was to evaluate the allegations concerning the Next Generation Target Control System Program and to determine whether the Program is the most cost effective solution to meet the target...

  5. Scaling of exploding pusher targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1977-01-01

    A theory of exploding pusher laser pusher targets is compared to results of LASNEX calculations and to Livermore experiments. A scaling relationship is described which predicts the optimum target/pulse combinations as a function of the laser power

  6. Bradycardia During Targeted Temperature Management

    DEFF Research Database (Denmark)

    Thomsen, Jakob Hartvig; Nielsen, Niklas; Hassager, Christian

    2016-01-01

    OBJECTIVES: Bradycardia is common during targeted temperature management, likely being a physiologic response to lower body temperature, and has recently been associated with favorable outcome following out-of-hospital cardiac arrest in smaller observational studies. The present study sought...... to confirm this finding in a large multicenter cohort of patients treated with targeted temperature management at 33°C and explore the response to targeted temperature management targeting 36°C. DESIGN: Post hoc analysis of a prospective randomized study. SETTING: Thirty-six ICUs in 10 countries. PATIENTS......: We studied 447 (targeted temperature management = 33°C) and 430 (targeted temperature management = 36°C) comatose out-of-hospital cardiac arrest patients with available heart rate data, randomly assigned in the targeted temperature management trial from 2010 to 2013. INTERVENTIONS: Targeted...

  7. Slowing down of heavy ions in ionized target. Relevance to the heavy ion inertial fusion and experimental study proposal

    International Nuclear Information System (INIS)

    Dei-Cas, Renato.

    1981-07-01

    By using a simplified model we have analyzed the influence of the main target (Tsub(e), n, Zsub(p)) and incoming ion parameters (Zsub(f), Esub(f)) on the heavy ion slowing down in ionized metal targets. This model is used to define an experimental set up consisting of a heavy ion probe crossing a laser created plasma target. The energy output of the heavy ion probe appears to be a sensitive parameter of the target characteristics [fr

  8. THE METALLICITY OF THE MONOCEROS STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Aaron M.; Finkbeiner, Douglas P. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Frebel, Anna; Juric, Mario, E-mail: ameisner@fas.harvard.edu, E-mail: mjuric@cfa.harvard.edu, E-mail: dfinkbeiner@cfa.harvard.edu, E-mail: afrebel@mit.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-10

    We present low-resolution MMT Hectospec spectroscopy of 594 candidate Monoceros stream member stars. Based on strong color-magnitude diagram overdensities, we targeted three fields within the stream's footprint, with 178 Degree-Sign {<=} l {<=} 203 Degree-Sign and -25 Degree-Sign {<=} b {<=} 25 Degree-Sign . By comparing the measured iron abundances with those expected from smooth Galactic components alone, we measure, for the first time, the spectroscopic metallicity distribution function for Monoceros. We find the stream to be chemically distinct from both the thick disk and halo, with [Fe/H] = -1, and do not detect a trend in the stream's metallicity with Galactic longitude. Passing from b = +25 Degree-Sign to b = -25 Degree-Sign , the median Monoceros metallicity trends upward by 0.1 dex, though uncertainties in modeling sample contamination by the disk and halo make this a marginal detection. In each field, we find Monoceros to have an intrinsic [Fe/H] dispersion of 0.10-0.22 dex. From the Ca II K line, we measure [Ca/Fe] for a subsample of metal-poor program stars with -1.1 < [Fe/H] < -0.5. In two of three fields, we find calcium deficiencies qualitatively similar to previously reported [Ti/Fe] underabundances in Monoceros and the Sagittarius tidal stream. Further, using 90 spectra of thick disk stars in the Monoceros pointings with b Almost-Equal-To {+-}25 Degree-Sign , we detect a 0.22 dex north/south metallicity asymmetry coincident with known stellar density asymmetry at R{sub GC} Almost-Equal-To 12 kpc and |Z| Almost-Equal-To 1.7 kpc. Our median Monoceros [Fe/H] = -1.0 and its relatively low dispersion naturally fit the expectation for an appropriately luminous M{sub V} {approx} - 13 dwarf galaxy progenitor.

  9. Metal separation from multi metallic solutions by grape stalks

    OpenAIRE

    Stevens, Bas

    2016-01-01

    With the rapid development of various industries such as mine and metallurgy, wastewaters containing metals are directly or indirectly discharged into the environment. One of the most dangerous effluents discharged are Acid Mine Drainage (AMD), the outflows of acidic waters from metal mines. This water needs to be treated so it can be reused and the metal ions in this polluted water can be recuperated. The metals that occur in the polluted water are difficult to eliminate. To e...

  10. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  11. Challenges in thermal and hydraulic analysis of ADS target systems

    International Nuclear Information System (INIS)

    Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.

    2004-01-01

    The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)

  12. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    within and below cloud scavenging, whereby the wet aerosol particles are collected by falling raindrops. In occult deposition, wetted particles (fog and mist) are deposited by impaction or turbulent transfer [3]. A high proportion of atmospheric heavy metals entering aquatic systems is in small particulate « IJlm) or soluble ...

  13. Metal cleaner poisoning

    Science.gov (United States)

    ... do so by poison control or a health care provider. If the chemical is on the skin or in the eyes, flush with lots of water for at least 15 minutes. If the person swallowed the metal cleaner, give them water or milk right away, unless a provider tells you not ...

  14. Wings of Stretched Metal

    Science.gov (United States)

    Nelken, Miranda

    2010-01-01

    This article presents a lesson that allows students to make bird ornaments using a metal tooling as it can be textured, cut, and colored. In this lesson, students choose a bird and sketch it on a piece of paper. Once the sketches are complete, students copy their pictures on a second piece of paper by taping the sketch over a sheet of blank paper…

  15. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  16. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...

  17. Flexible metal bellows

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    A set of flexible metal bellows being fatigue-tested by repeated offset motion. Such bellows assemblies were used in the SPS vacuum system at places where , for instance, beam stoppers and collimators had to be moved frequently in and out of the beam path.

  18. Metal Organic Framework

    Indian Academy of Sciences (India)

    IAS Admin

    X-ray crystallography is the most comprehensive character- ization tool to gain a molecular level understanding of a range of crystalline materials. One of the recent areas in which research with the aid of crystallography has exploded, is the metal organic frameworks (MOFs). These are porous crystal- line solids with ...

  19. Memories in Metal

    Science.gov (United States)

    Knepper, Claire A.

    2008-01-01

    In this article, the author shares a classroom project that she introduced to her students. The project involved decorating photographs with some metal materials. The project was inspired by "The Frame," a painting by the artist Frida Kahlo. This project aims to make students think critically and connect art to their lives.

  20. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    This paper presents a new formula for calculating the hardness of metallic crystals, resulted from the research on the critical grain size with stable dislocations. The formula is = 6 /[(1 – )], where is the hardness, the coefficient, the shear modulus, the Poisson's ratio, a function of the radius of an atom () ...

  1. Complex metal hydrides

    DEFF Research Database (Denmark)

    Ley, Morten Brix

    2014-01-01

    og batterier de to mest lovende energibærere til mobile applikationer. Komplekse metalhydrider er blevet undersøgt i vid udstrækning over de sidste tyve år, siden de gravimetrisk og volumetrisk kan indeholde store mængder brint. Derfor er metal borhydrider velegnet til faststofopbevaring af brint...

  2. Metal forming and lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  3. Monolithic metal oxide transistors.

    Science.gov (United States)

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics.

  4. Pile on the metal

    Science.gov (United States)

    Lee, Dung-Hai

    2008-09-01

    Discovering superconductivity above room temperature is a dream for modern science and technology. Now, theorists propose that for certain types of superconductors, contact with a metal layer could greatly increase the transition temperatures of these materials—in some cases by as much as an order of magnitude.

  5. Metal Organic Frameworks (MOFs)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Molecule Matters - Metal Organic Frameworks (MOFs). R Sarvanakumar S Sankararaman. Feature Article Volume 12 Issue 11 November 2007 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  7. Some Issues in Inflation Targeting

    OpenAIRE

    Andrew Haldane

    1997-01-01

    This paper discusses some of the operational issues relevant to the implementation of an inflation-targeting regime. In particular it focuses on: whether inflation targeting is 'new'; whether (and how) the forward-looking nature of inflation-targeting helps to prevent instabilities in inflation; whether inflation-targeting potentially destabilises output; and whether it requires too much knowledge on the part of the authorities. The paper argues that none of these propositions is in general c...

  8. Inflation targeting in dollarized economies

    OpenAIRE

    Dokle, Eda

    2013-01-01

    Inflation targeting has become an increasingly popular regime among emerging markets. Focusing on the experience of inflation targeting adoption in the countries in Central and Eastern Europe and Commonwealth of Independent States, this thesis highlights the main features of the inflation targeting framework. A clear economic condition bringing these countries together is considered the dollarization issue which gains importance when designing the inflation targeting framework. The empirical ...

  9. Solid Polarized Targets and Applications

    International Nuclear Information System (INIS)

    Crabb, D. G.

    2008-01-01

    Examples are given of dynamically polarized targets in use today and how the subsystems have changed to meet the needs of todays experiments. Particular emphasis is placed on target materials such as ammonia and lithium deuteride. Recent polarization studies of irradiated materials such as butanol, deuterated butanol, polyethylene, and deuterated polyethylene are presented. The operation of two non-DNP target systems as well as applications of traditional DNP targets are briefly discussed

  10. Nova target diagnostics control system

    International Nuclear Information System (INIS)

    Severyn, J.R.

    1985-01-01

    During the past year the Nova target diagnostics control system was finished and put in service. The diagnostics loft constructed to the north of the target room provides the environmental conditions required to collect reliable target diagnostic data. These improvements include equipment cooling and isolation of the power source with strict control of instrumentation grounds to eliminate data corruption due to electromagnetic pulses from the laser power-conditioning system or from target implosion effects

  11. Whole-Cell Bioreporters for the Detection of Bioavailable Metals

    Science.gov (United States)

    Hynninen, Anu; Virta, Marko

    Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.

  12. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  13. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  14. Immunoglobulin classes, metal binding proteins, and trace metals in ...

    African Journals Online (AJOL)

    , IgA and IgM), metal binding proteins (Transferrin, Caeruloplasmin, Alpha-2- Macroglobulin and Haptoglobin) and nutritionally essential trace metals/heavy metals (Zn, Fe, Se, Cu, Mg, Cd and Pb) in Nigerian cassava processors using single ...

  15. Fabrication of mercury target vessel

    International Nuclear Information System (INIS)

    Wakui, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Futakawa, Masatoshi; Hayashi, Ryoichi; Uchiyama, Naoyoshi; Okamoto, Yoshinao; Nakamura, Koji

    2010-03-01

    The construction of materials and life science experimental facility in J-PARC (Japan Proton Accelerator Complex) project had been completed and accepted pulsed proton beams with low power. Since 2003, the detailed design, fabrication and examination for the mercury target vessel as a pulsed neutron source were carried out by the vender. The mercury target vessel consists of triple-walled structure in order to prevent the leak of mercury to outside at the failure of the mercury vessel and to remove the heat of the safety hull, which covers the mercury vessel, due to the injection of the pulsed proton beams. The high fabrication accuracy is required for the mercury target vessel assembled by the welding, because there are the relationships between the mercury target vessel and other components (target trolley, target storage container, flange of helium vessel, reflector and water-cooled shield). At each fabrication step, the examinations for the mercury target vessel with multi-walled structure were required. In this report, the required specification and basic structure of parts in the mercury target vessel are described and the fabrication procedure of the mercury target vessel by the vender is reported. In the fabrication of the mercury target vessel, there were many troubles such as large deformation due to the welding and then the vender repaired and brought the mercury target vessel to completion. Furthermore, improvements for the design and fabrication of the mercury target are reported. (author)

  16. Targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Clauser, M.J.

    1978-01-01

    This paper describes some of the basic principles of fusion target implosions, using some simple targets designed for irradiation by ion beams. Present estimates are that ion beams with 1-5 MJ, and 100-500 TW will be required to ignite high gain targets. (orig.) [de

  17. Interaction of beam and coated metals at high power continuous irradiation

    Science.gov (United States)

    Kim, Yong Hyeon; Baek, Won-Kye; Yoh, Jack J.

    2011-07-01

    The beam-matter interaction with various coating effects has received continued attention in the high power laser community. Previous works suggest that coatings promote target damage when compared to beaming on uncoated surface. Three types of paint coatings (acrylic urethane, silicone alkyd and stealth blend) and a water coat on metals (Al, Ti and STS) are irradiated with a CO 2 laser. Both strain and temperature measurements are provided for assessing the instantaneous response characteristics of each coating on different metals. A selective combination of surface coats with metals has been proven to be effective in either preventing or enhancing damage, both thermal and mechanical, associated with focused beaming on a target.

  18. Siderophile element fractionation in meteor crater impact glasses and metallic spherules

    Science.gov (United States)

    Mittlefehldt, David W.; See, T. H.; Scott, E. R. D.

    1993-01-01

    Meteor Crater, Arizona provides an opportunity to study, in detail, elemental fractionation processes occurring during impacts through the study of target rocks, meteorite projectile and several types of impact products. We have performed EMPA and INAA on target rocks, two types of impact glass and metallic spherules from Meteor Crater. Using literature data for the well studied Canyon Diablo iron we can show that different siderophite element fractionations affected the impact glasses than affected the metallic spherules. The impact glasses primarily lost Au, while the metallic spherules lost Fe relative to other siderophile elements.

  19. Ultrathin metallized PBI paper

    Science.gov (United States)

    Chenevey, E. C.

    1978-01-01

    A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.

  20. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    Science.gov (United States)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.