WorldWideScience

Sample records for metalated polyp-phenylenevinylene polymers

  1. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  2. Antimicrobial Polymers with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Humberto Palza

    2015-01-01

    Full Text Available Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  3. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available Polymer-noble metal nanocomposites have been extensively investigated due to their potential ability to provide materials with novel mechanical, electronic or chemical behaviour for technological applications. Many preparative procedures have been...

  5. Polymer composites with plasmonic metal nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Dammer, Ondřej; Vlčková, B.; Podhájecká, Klára; Procházka, M.; Pfleger, Jiří

    2008-01-01

    Roč. 268, č. 1 (2008), s. 91-95 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA AV ČR IAA4050406 Institutional research plan: CEZ:AV0Z40500505 Keywords : metal nanoparticles * nanocomposites * .pi.-conjugated polymers Subject RIV: CD - Macromolecular Chemistry

  6. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  7. Welding of a metal-polymer laminate

    NARCIS (Netherlands)

    Gower, H.L.

    2007-01-01

    The purpose of this work is to investigate the weldability of a metal polymer sandwich structure. The welding of the sandwich material proceeds first by welding of the skin layer. The material selected for this research is Steelite, a sandwich structure developed by Corus, with 0.12 mm thick mild

  8. Method of making metal-polymer composite catalysts

    Science.gov (United States)

    Zelena, Piotr [Los Alamos, NM; Bashyam, Rajesh [Los Alamos, NM

    2009-06-23

    A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.

  9. Super high conductivity effect in metal-polymer-metal structures

    Science.gov (United States)

    Ionov, Alexander N.; Zakrevskii, V. A.; Svetlichny, V. M.; Rentzsch, R.

    2003-06-01

    We have observed that films of a polyimide precursor of poly[4,4'-bis(4"-N-phenoxy)diphenyl-sulfone] amid acid of 1,3-bis(3',4-dicarboxyphenoxy) benzene which is called type (1) polymer- or co-poly[4,4'-bis(4"-N-phenoxy)diphenyl-sulfone-α,ω-bis(η-amino propyl)oligodimethylsiloxane]imide of 1,3-bis(3',4-dicarboxyphenoxy)benzene type (2) polymer, placed between two metallic electrodes become highly conducting in a relatively small electric field (E<1 V/cm). If the metallic electrodes (Sn, Nb) in sandwich structures were in the superconducting state an effective resistance of zero was recorded. A typical current-voltage characteristic of an S-P-S structure looks like a Josephson type. We hve experimentally shown that for a S-P-S structure, a point contact between the superconductor and the polymer film plays the role of a weak link.

  10. Synthesis, characterization and applications of polymer-metal ...

    Indian Academy of Sciences (India)

    4-Acryloxy acetophenone was prepared and subjected to suspension polymerization with divinylbenzene as a cross-linking agent. The resulting network polymer was ligated with benzoyl hydrazone. The functional polymer was treated with metal ions [Cu(II), Fe(II)]. The polymer-metal complexes obtained were ...

  11. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... constrained cemented prosthesis. 888.3640 Section 888.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  12. Polymer waveguide couplers based on metal nanoparticle–polymer nanocomposites

    International Nuclear Information System (INIS)

    Signoretto, M; Suárez, I; Chirvony, V S; Martínez-Pastor, J; Abargues, R; Rodríguez-Cantó, P J

    2015-01-01

    In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP–Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404–780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%. (paper)

  13. Polymer filtration: A new technology for selective metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  14. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... constrained cemented prosthesis. 888.3550 Section 888.3550 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a device...

  15. Characterization of metal nanoparticles/ conducting polymer prepared by radiation technique

    International Nuclear Information System (INIS)

    Abdo Mohd Meftah; Elias Saion; Mohd Maarof Abdul Moksin; Hishamuddin Zainuddin

    2009-01-01

    Full text: Composites of conducting polymer-metal nanoparticles are of great interest in modern physical and chemical researchers due to their unique physical and chemical properties, which are distinct from those of the bulk metal and molecules .Conducting polymer-metal nanoparticles can be used in diverse fields such as electronics, electrocatalysts and optoelectronics. Conducting polymer and metal nanoparticles blended in polyvinyl alcohol (PVA) was synthesized by irradiating as films containing monomer and metal salt at different concentrations with gamma radiation technique. In the same time the conducting polymer and metal nanoparticles were formed due to oxidation of monomer and reduction of metal ion respectively by radiation. The structure analysis of conducting polymer-metal nanoparticles films were studied by X-Ray diffraction system which appears different diffraction peak angles respectively .The optical properties were investigated using UV -Vis spectrophotometer that show optical absorbance peak at λ = (780 , 430) nm of conducting polymer and metal nanoparticles respectively .From the UV-spectrum the band gap energy (E g ) was deduced and found to be decreases from (1.4, 2.8) eV at 10 kGy to (1.2,2.52) eV at 50 kGy for conducting polymer and metal nanoparticles respectively. (author)

  16. Stability of complex coacervate core micelles containing metal coordination polymer

    NARCIS (Netherlands)

    Yan, Y.; Keizer, de A.; Cohen Stuart, M.A.; Drechsler, M.; Besseling, N.A.M.

    2008-01-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and

  17. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    Science.gov (United States)

    Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Nazem, Negin (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  18. PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to the field of selective metallization, and in particular to preparing a polymer article for selective metallization by submerging the article in a first liquid, and while submergedirradiate the article by a laser beam the area of the article on which the metal...... is to be deposited. An activation step, prior to the selective metallization, comprises submerging the article in an activation liquid for depositing seedparticles in the selected area. The irradiation of the selected area is proportionate so as to cause a temporary meltingof the polymer in the surface...... of the selected area of the polymer article. The invention is advantageous in that the preparation may be performed with a relatively high scan rate across the polymer article, and in that a quite limited use of toxic chemicals....

  19. Laser Processing of Metals and Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, Senthilraja [Old Dominion Univ., Norfolk, VA (United States)

    2012-05-01

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.

  20. Investigation of over-moulded hybrid metal/polymer devices

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    thickness, metal surface roughness and texture topography, surface treatment and coating, i.e. metal insert designs to improve polymer/metal interlocking and tensile test speed. Results show a strong influence of the surface properties and of the employed material on the bonding strength. The proposed......Miniaturized devices with increased functionality can be obtained by means of incorporation of metal micro parts in a polymer matrix. They allow achieving both conductive circuits and mechanical functions in the same device, enabling design of MIDs with enhanced characteristics. New design...... principles, in-process manufacturing technologies, as well as testing methodologies have to be established in order to be able to develop such integrated devices. In this paper an investigation of the bonding between miniaturized metal insert and a polymer matrix is presented. A special demonstrator...

  1. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  2. Metal complex modified azo polymers for multilevel organic memories

    Science.gov (United States)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  3. Polymer filtration systems for dilute metal ion recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  4. Polymer Nanocomposites Containing Anisotropic Metal Nanostructures as Internal Strain Indicators

    Directory of Open Access Journals (Sweden)

    Giacomo Ruggeri

    2010-02-01

    Full Text Available Polymer/metal nanocomposite containing intrinsically anisotropic metal nanostructures such as metal nanorods and nanowires appeared extremely more sensitive and responsive to mechanical stimuli than nanocomposites containing spherical nanoparticles. After uniaxial stretching of the supporting polymer matrix (poly(vinyl alcohol, the elongated silver nanostructures embedded at low concentration into the polymer matrix (<1 wt % of Ag assume the direction of the drawing, yielding materials with a strong dichroic response of the absorption behavior. Accordingly, the film changed its color when observed under linearly polarized light already at moderate drawings. The results obtained suggest that nanocomposite films have potential in applications such as color polarizing filters, radiation responsive polymeric objects and smart flexible films in packaging applications.

  5. Metal complex polymer for second harmonic generation and electroluminescence applications

    Science.gov (United States)

    Tao, X. T.; Suzuki, H.; Watanabe, T.; Lee, S. H.; Miyata, S.; Sasabe, H.

    1997-03-01

    We report the second harmonic generation and electroluminescent (EL) properties of a soluble metal complex polyurethane (PU). The PU was prepared by the reaction of a zinc Schiff base with 4,4'-diphenylmethane-diisocyanate. The polymer film has been effectively poled under a corona field and its linear and nonlinear optical (NLO) properties were characterized. The results indicated that the NLO effects of the polymer are mainly originated in the distorted coordination tetragonals formed by the central zinc atoms and coordination atoms. The polymer shows strong photoluminescence under a ultraviolet-lamp illumination and can be used as a luminescent material for EL devices.

  6. Polymers are Metals Too: Proceedings, Society of Plastics Engineers Annual Technical Conference, April 1998

    National Research Council Canada - National Science Library

    Epstein, A

    1998-01-01

    ...." These polymers are a different class of materials than conducting polymers, which are merely a physical mixture of a non- conductive polymer with a conductive material such as metal or carbon powder...

  7. CHARACTERIZATION OF METAL BENZOTRIAZOLES AND RELATED POLYMERS

    Science.gov (United States)

    Benzotriazole (bta-H) is a well-known corrosion inhibitor for copper, copper-alloy, and other metal surfaces. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons...

  8. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, Gul [MiQro Innovation Collaborative Centre (C2MI), 45, boul. de l' Aéroport, Bromont, QC, J2L 1S8 (Canada); Mining & Materials Engineering, McGill University, 3610,University Street, Montreal, QC, H3A 0C5 (Canada); Duong, Xuan Truong [Department of Mechanical Engineering, Ecole polytechnique de Montréal, Montréal, QC, H3C 3T5 (Canada); Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam); Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh [Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam); Salimy, Siamak [ePeer Review LLC, 145 Pine Haven Shores Rd, Suite 1000-X, Shelburne, VT 05482 (United States); Le, Xuan Tuan, E-mail: xuantuan.le@teledyne.com [MiQro Innovation Collaborative Centre (C2MI), 45, boul. de l' Aéroport, Bromont, QC, J2L 1S8 (Canada); Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam)

    2017-06-15

    Highlights: • Electroless deposition of Ni-B film on KMPR photoresist polymer insulator with excellent adhesion has been achieved. • This metallization has been carried out in aqueous solutions at low temperature. • Polyamine palladium complexes grafts serve as seeds for the electroless plating on KMPR. • This electroless metallization process is simple, industrially feasible, chromium-free and environment-friendly. - Abstract: While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  9. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... porous-coated uncemented prosthesis. 888.3358 Section 888.3358 Food and Drugs FOOD AND DRUG... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device...

  10. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  11. Selective micro metallization of polymers for biomedical and medical application

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    Integration of micro/nano metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Some of these combinations have been known for years and other combinations or methods are ve...

  12. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  13. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  14. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Guibal, E.; Quignard, F.; SenGupta, A. K.

    2012-01-01

    Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.

  15. Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles.

    Science.gov (United States)

    Gao, Bo; Rozin, Matthew J; Tao, Andrea R

    2013-07-07

    Noble metal nanoparticles that support localized surface plasmon resonances (LSPRs) have the unique ability to manipulate and confine light at subwavelength dimensions. Utilizing these capabilities in devices and coatings requires the controlled organization of metal nanoparticles into ordered or hierarchical structures. Polymer grafts can be used as assembly-regulating molecules that bind to the nanoparticle surface and guide nanoparticle organization in solution, at interfaces, and within condensed phases. Here, we present an overview of polymer-directed assembly of plasmonic nanoparticles. We discuss how polymer grafts can be used to control short-range nanoparticle interactions that dictate interparticle gap distance and orientation. We also discuss how condensed polymer grafts can be used to control long-range order within condensed nanoparticle-polymer blends. The assembly of shaped plasmonic nanoparticles that have potential applications in enhanced spectroscopy and optical metamaterials is highlighted. We end with a summary of promising new directions toward the fabrication of plasmonic nanocomposites that are responsive and possess three-dimensional order.

  16. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  17. Diagnostics of transparent polymer coatings of metal items

    Science.gov (United States)

    Varepo, L. G.; Ermakova, I. N.; Nagornova, I. V.; Kondratov, A. P.

    2017-08-01

    The methods of visual and instrumental express diagnostics of safety critical defects and non-uniform thickness of transparent mono- and multilayer polyolefin surface coating of metal items are analyzed in the paper. The instrumental diagnostics method relates to colorimetric measuring based on effects, which appear in the polarized light for extrusion polymer coatings. A color coordinates dependence (in the color system CIE La*b*) on both HDPE / PVC coating thickness fluctuation values (from average ones) and coating interlayer or adhesion layer delaminating is shown. A variation of color characteristics in the polarized light at a liquid penetration into delaminated polymer layers is found. Measuring parameters and critical uncertainties are defined.

  18. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques

    International Nuclear Information System (INIS)

    Bonomo, C; Brunetto, P; Fortuna, L; Graziani, S; Bottino, M; Di Pasquale, G; Pollicino, A

    2010-01-01

    Ionic polymer metal composites (IPMCs) belong to electroactive polymers (EAPs) and have been suggested for various applications due to their light weight and to the fact that they react mechanically when stimulated by an electrical signal and vice versa. Thick IPMCs (3D-IPMCs) have been fabricated by hot pressing several Nafion ® 117 films. Additional post-processes (more cycles of Pt electroless plating and dispersing agents) have been applied to improve the 3D-IPMC performance. The electromechanical response of 3D-IPMCs has been examined by applying electrical signals and measuring the displacement and blocking force produced

  19. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    .../polymer semi-constrained cemented prosthesis. 888.3560 Section 888.3560 Food and Drugs FOOD AND DRUG... prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a knee joint. The device limits...

  20. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  1. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  2. Enhanced metal extractive behavior using dual mechanism bifunctional polymer: an effective metal chelatogen.

    Science.gov (United States)

    Prabhakaran, D; Subramanian, M S

    2003-11-12

    A new class of chelating polymers using Amberlite XAD-16 (AXAD-16) modified with (N-(3,4-dihydroxy)benzyl)-4-amino,3-hydroxynapthalene-1-sulphonic acid has been developed based on dual mechanism bifunctional polymers, for the extraction of transition and post-transition metal ions. The optimum pH conditions for the quantitative sorption of metal ions were studied. The developed method showed superior extraction qualities with high metal loading capacities of 71, 85, 182, 130 and 46 mg g(-1) for Ni(II), Cd(II), Pb(II), Cu(II) and Co(II), respectively. The rate of metal ion uptake i.e. kinetics studies performed under optimum levels showed a time duration of metal ion saturation. Desorption of metal ions were effective with 15 ml of 2 M HCl/HNO(3) prior to detection using flame atomic absorption spectrophotometer. The chelating polymer was highly ion-selective in nature even in the presence of large concentrations of alkali and alkaline earth metal ions, with a high preconcentrating ability for the metal ions of interest. The developed chelating matrix was tested on its utility with synthetic and real samples like river/sea/tap/well water samples and also with multivitamin/mineral tablets, showed R.S.D. values of <2.5% reflecting on the accuracy and reproducibility of data using the newly developed resin matrix.

  3. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  4. Synthesis of biocidal polymers containing metal NPs using an electron beam

    International Nuclear Information System (INIS)

    Choi, Kwonyong; Kim, Seong-Eun; Kim, Hee-Yeon; Yoon, Jeyong; Lee, Jong-Chan

    2012-01-01

    Metal containing antibacterial polymers were prepared by the polymerization of methylmethacrylate and methacrylic acid with copper or zinc. When the thin film of the polymers coated on a glass was irradiated with an electron beam, nanoparticles were obtained. It was found that these polymers exhibited a potent antibacterial activity against the Gram-negative bacteria, Escherichia coli. The metal containing polymers showed a 99.999% (5.0 logs) reduction in E. coli at a contact time of 12 h. In addition, polymers had a good antifouling effect against marine organisms. - Graphical abstract: Biocidal activity of Cu nanoparticle/polymer composite film against Gram-negative bacteria. Highlights: ► Metal containing antibacterial polymers were prepared with copper. ► Using the electron beam, nanoparticles were obtained. ► It was found that these polymers exhibited potent biocidal activity against E. coli. ► The metal containing polymers showed a 99.999% reduction of E. coli.

  5. Synthesis by plasma of polymer-metal materials

    International Nuclear Information System (INIS)

    Fernandez R, G.

    2004-01-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10 -2 mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10 -1 and 5.2 X 10 -1 mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 μm for P An and, in the case of PE-CI, with an approximately growing rate of 14 ηm/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity (σ), which was complemented

  6. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Science.gov (United States)

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan

    2017-06-01

    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  7. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Science.gov (United States)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  8. Cold spray of metal-polymer composite coatings onto carbon fiber-reinforced polymer (CFRP)

    OpenAIRE

    Bortolussi, Vincent; Borit, François; Chesnaud, Anthony; Jeandin, Michel; Faessel, Matthieu; Figliuzzi, Bruno; Willot, François; Roche, K.; Surdon, G.

    2016-01-01

    International audience; The growing use of Polymer-Matrix Composite (PMC) materials within transport industry raises new security concerns, especially those due to lightning. To protect these electrically insulating materials, conductive coatings can be applied. Due to the high level of required properties, cold spray is believed to be an effective way to achieve these coatings. Recent studies showed that obstacles remained to be overcome when cold spraying metallic particles onto Carbon Fibe...

  9. Chemical and Electrochemical Metallic Covering of ABS polymers

    Directory of Open Access Journals (Sweden)

    Florentina Cziple

    2009-10-01

    Full Text Available The aim of this paper is the deposition of metallic layers on the surface of ABS plastic material, by means of two consecutive procedures, namely: the first is represented by the conductibility through chemical or electro-chemical metallic covering of the polymeric support and the second procedure is the electrodeposition of the metal through galvanization. The chemical mehtod consists in the submission of ABS polymers to some conductibility operations of the plastic material surface through chemical copper plating (chemical roughing, degreasing with ultra-sounds, chemical sensitivation, activation and proper conductibility of the material surface. The electrochemical deposition of nickel was made on the plastic material activated in the mixture solution of graphite with potassium carbonate.

  10. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  11. 21 CFR 888.3410 - Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... semiconstrained resurfacing cemented prosthesis. 888.3410 Section 888.3410 Food and Drugs FOOD AND DRUG... prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing cemented prosthesis is a two-part device intended to be implanted to replace the articulating surfaces of...

  12. Ionochromic effects and structures of metalated poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L.X.; Jager, W.J.H.; Gosztola, D.J.; Niemczyk, M.P.; Wasielewski, M.R.

    2000-01-01

    The effects of metal ion chelation to the 2,2'-bipyridine (bpy) groups on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 in solution are investigated. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of metalated polymers 1 and 2 are compared to those of the metal-free polymers (Chen et al. J. Phys. Chem. A 1999, 103, 4341-4351). The origins of ionochromic effects due the metal ion chelation were studied using both steady-state and transient optical spectroscopy, and the results indicate that both conformational flattening and participation of Jr electrons from the metal in the π-conjugation of the polymer backbone play important roles in metal ion binding induced red shifts in absorption and photoluminescence spectra. The photoluminescence properties of the metalated polymers are determined by the metal ion electronic structures, where the closed shell Zn 2+ -bound polymer 2 has an increased photoluminescence quantum yield and the corresponding open shell Ni 2+ - or Fe 3+ -bound polymers have quenched photoluminescence due to spin-orbit coupling. The dual character of metalated polymer 2 as a conjugated polymer and as a metal-bpy complex is discussed. In addition, the structures of metal ion binding sites are studied via X-ray absorption fine structure (XAFS) and are related to the photophysical properties of the metalated polymers

  13. Metal (Hydr)oxides@Polymer Core-Shell Strategy to Metal Single-Atom Materials.

    Science.gov (United States)

    Zhang, Maolin; Wang, Yang-Gang; Chen, Wenxing; Dong, Juncai; Zheng, Lirong; Luo, Jun; Wan, Jiawei; Tian, Shubo; Cheong, Weng-Chon; Wang, Dingsheng; Li, Yadong

    2017-08-16

    Preparing metal single-atom materials is currently attracting tremendous attention and remains a significant challenge. Herein, we report a novel core-shell strategy to synthesize single-atom materials. In this strategy, metal hydroxides or oxides are coated with polymers, followed by high-temperature pyrolysis and acid leaching, metal single atoms are anchored on the inner wall of hollow nitrogen-doped carbon (CN) materials. By changing metal precursors or polymers, we demonstrate the successful synthesis of different metal single atoms dispersed on CN materials (SA-M/CN, M = Fe, Co, Ni, Mn, FeCo, FeNi, etc.). Interestingly, the obtained SA-Fe/CN exhibits much higher catalytic activity for hydroxylation of benzene to phenol than Fe nanoparticles/CN (45% vs 5% benzene conversion). First-principle calculations further reveal that the high reactivity originates from the easier formation of activated oxygen species at the single Fe site. Our methodology provides a convenient route to prepare a variety of metal single-atom materials representing a new class of catalysts.

  14. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    Science.gov (United States)

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    Science.gov (United States)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications

  16. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...-constrained cemented prosthesis. 888.3530 Section 888.3530 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device intended...

  17. 21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... uncemented prosthesis. 888.3310 Section 888.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...

  18. 21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... cemented prosthesis. 888.3800 Section 888.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...

  19. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... porous-coated uncemented prosthesis. 888.3565 Section 888.3565 Food and Drugs FOOD AND DRUG... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a device...

  20. 21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... prosthesis. 888.3350 Section 888.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a hip joint. The device limits...

  1. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...-constrained cemented prosthesis. 888.3520 Section 888.3520 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended to...

  2. 21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... prosthesis. 888.3220 Section 888.3220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace a metacarpophalangeal or...

  3. 21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... cemented prosthesis. 888.3160 Section 888.3160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...

  4. 21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... cemented prosthesis. 888.3510 Section 888.3510 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace part...

  5. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    OpenAIRE

    Grégorio Crini; Nadia Morin-Crini; Nicolas Fatin-Rouge; Sébastien Déon; Patrick Fievet

    2017-01-01

    Polymer assisted ultrafiltration (PAUF) is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine) and poly(acrylic acid) are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater t...

  6. Selective removal of heavy metal ions by disulfide linked polymer networks.

    Science.gov (United States)

    Ko, Dongah; Lee, Joo Sung; Patel, Hasmukh A; Jakobsen, Mogens H; Hwang, Yuhoon; Yavuz, Cafer T; Hansen, Hans Chr Bruun; Andersen, Henrik R

    2017-06-15

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  8. Synthesis by plasma of polymer-metal materials; Sintesis por plasma de materiales polimero-metal

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, G

    2004-07-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10{sup -2} mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10{sup -1} and 5.2 X 10{sup -1} mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 {mu}m for P An and, in the case of PE-CI, with an approximately growing rate of 14 {eta}m/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity ({sigma

  9. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    Science.gov (United States)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate

  10. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  11. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  12. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  13. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  14. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  15. Polymer-Derived In- Situ Metal Matrix Composites Created by Direct Injection of a Liquid Polymer into Molten Magnesium

    Science.gov (United States)

    Sudarshan; Terauds, Kalvis; Anilchandra, A. R.; Raj, Rishi

    2014-02-01

    We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 °C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites.

  16. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  17. Bio-applications of ionic polymer metal composite transducers

    International Nuclear Information System (INIS)

    Aw, K C; McDaid, A J

    2014-01-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications

  18. An external disturbance sensor for ionic polymer metal composite actuators

    Science.gov (United States)

    Bakhtiarpour, Parisa; Parvizi, Amin; Müller, Martin; Shahinpoor, Mohsen; Marti, Othmar; Amirkhani, Masoud

    2016-01-01

    Ionic polymer metal composite (IPMC) is a fast-growing type of smart material with a wide range of applications. IPMC has been used extensively as an actuator, but for effective usage, one must add a self-sensing ability to it. Two common self-sensing techniques are mechanical-to-electrical transducer and surface resistance. The first one cannot be used while the actuator is running, and the second one needs a sample modification. In this work, we present a new self-sensing method, which can measure external disturbance in the presence of actuator voltage without any sample modification. The resistance across an IPMC sample follows Ohm’s law at sufficiently high frequency. We exploit the frequency dependency of the resistance across the sample to design the self-sensing method. In this technique a function generator, a lock-in amplifier and an isolation circuit were employed to measure an external impulse or steady disturbance. As implementing this technique does not require any change to the IPMC specimen or electrical connection (hanger), it can be added to any existing electroactive device.

  19. Numerical investigation of blanking for metal polymer sandwich sheets

    Directory of Open Access Journals (Sweden)

    Gutknecht Florian

    2016-01-01

    Full Text Available Metal polymer sandwich sheets consist of materials with drastically different mechanical properties. Due to this fact and because of high local gradients in the cutting zone during the blanking process, traditional process strategies and empirical knowledge are difficult to apply. A finite-element simulation of the shear cutting process is used to predict the necessary force and the geometry of the cutting surface. A fully-coupled ductile damage model is used for the description of the material behaviour. This model considers the influence of shear and compression-dominated stress states on the initiation of damage. Experimental tensile and compression test data is used for the identification of material parameters. The results of the blanking simulation are compared with experimental data. Furthermore, the evolution of the stress state is analysed to gain understanding of the underlying physics. Finally this model enables the prediction of core compression and other quantities such as the acting stresses and corresponding triaxilities, which provide valuable information for the development of analytical models.

  20. Insight into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, via Metal Nanoparticles

    OpenAIRE

    Stefanescu, Eduard A.; Daranga, Codrin; Stefanescu, Cristina

    2009-01-01

    Highly ordered polymer nanocomposites are complex materials that display a rich morphological behavior owing to variations in composition, structure, and properties on a nanometer length scale. Metal-polymer nanocomposite materials are becoming more popular for applications requiring low cost, high metal surface areas. Catalytic systems seem to be the most prevalent application for a wide range of metals used in polymer nanocomposites, particularly for metals like Pt, Ni, Co, and Au, with kno...

  1. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    Science.gov (United States)

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  2. Physical masking process for integrating micro metallic structures on polymer substrate

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    2009-01-01

    . The current study shows a novel approach for fabricating thin micro metallic structures on polymer substrates using a simple physical mask and a PVD equipment. The new process involves fewer process steps, it is cost effective and suitable for high volume industrial production. Current study suggests...... that physical masking process in combination with PVD can be a cost effective alternative to photolithography when thin metallic structures on a polymers substrate are concerned....

  3. Corrosion at the Polymer-Metal Interface in Artificial Seawater Solutions

    Directory of Open Access Journals (Sweden)

    Amelia M. Anderson-Wile

    2012-01-01

    Full Text Available Polymer components for liquid sealing applications are employed in a variety of potentially corrosive environments, such as seawater. Frequently, corrosion of the metal is found at or adjacent to the rubber-metal interface rather than at a noncontact area. The corrosion of different metal alloys (titanium, bronze, nickel, aluminum, 316 stainless steel, and 4130 steel in combination with rubber O-rings (Buna-N and EPDM of varying internal diameters and cross-sectional shapes in seawater over a period of four years is described herein. The corrosion of some metals (i.e., 4130 stainless steel was found to be accelerated through interaction with Buna-N rubber O-rings. Theories to account for corrosion at the polymer-metal interface, especially with respect to polymer composition and O-ring size and shape, are discussed.

  4. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    Science.gov (United States)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  5. Radiation crosslinking of polymers with segregated metallic particles. Final report, June 1, 1971--September 30, 1973

    International Nuclear Information System (INIS)

    Corneliussen, R.D.; Kamel, I.; Kusy, R.P.

    1973-01-01

    Through the past four years of research, a new approach to fabricating conductive polymer/metal composites has been developed. This approach consists of compacting mixtures of polymer and metal powders and then stabilizing the composite through radiation-induced crosslinking. The result is a mechanically strong, conductive materials consisting of two intertwining networks. One is a massive network consisting of fused crosslinked, large (greater than 100 μ) polymer particles while the other is a fine network of small, metallic particles (greater than 10 μ). Nine different systems including crystalline, amorphous, and rubbery polymers were studied. Processing at this time is limited to compression molding in a closed die because of network stability problems. Costs for processing were estimated at about $6.00/lb compared to $50.00 and up for commercial material based on random networks. (U.S.)

  6. Biolimus-eluting stents with biodegradable polymer versus bare-metal stents in acute myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Kelbæk, Henning; Taniwaki, Masanori

    2014-01-01

    BACKGROUND: This study sought to determine whether the 1-year differences in major adverse cardiac event between a stent eluting biolimus from a biodegradable polymer and bare-metal stents (BMSs) in the COMFORTABLE trial (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal...

  7. New Metallic Oxide Electrodes for the Deposition of Functionalised Polymers

    Directory of Open Access Journals (Sweden)

    Grégoire Herzog

    2006-02-01

    Full Text Available This article explores the possibilities of using Sb doped SnO2 thin films as potential electrode substrates for biosensors. Two series of electrodes were modified with electrogenerated functionalised polymeric films. The polymers investigated were biotinylated poly(ruthenium pyrrole and poly(pyrrole benzophenone. AFM studies show polymer morphologies depending on the nature and roughness of the substrates.

  8. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    'The first objective of this research is to develop rapid discovery and optimization approaches to new water-soluble chelating polymers. A byproduct of the development approach will be the new, selective, and efficient metal-binding agents. The second objective is to evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. The technology under development, Polymer Filtration (PF), is a technique to selectively remove or recover hazardous and valuable metal ions and radionuclides from various dilute aqueous streams. Not only can this technology be used to remediate contaminated soils and solid surfaces and treat aqueous wastes, it can also be incorporated into facilities as a pollution prevention and waste minimization technology. Polymer Filtration uses water-soluble metal-binding polymers to sequester metal ions in dilute solution. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using commercial ultrafiltration technology. Water, small organic molecules, and unbound metals pass freely through the ultrafiltration membrane while concentrating the metal-binding polymer. The polymers can then be reused by changing the solution conditions to release the metal ions. The metal-ions are recovered in concentrated form for recycle or disposal using a diafiltration process. The water-soluble polymer can be recycled for further aqueous-stream processing. To advance Polymer Filtration technology to the selectivity levels required for DOE needs. fixture directions in Polymer Filtration must include rapid development, testing, and characterization of new metal-binding polymers. The development of new chelating molecules can be equated to the process of new drugs or new materials discovery. Thus, the authors want to build upon and adapt the combinatorial chemistry approaches developed for rapid molecule generation for the drug industry to the rapid

  9. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1997 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.

    1997-06-01

    'The first objective of this research is to develop rapid discovery and optimization approaches to new water-soluble chelating polymers. A byproduct of the development approach will be the new, selective, and efficient metal-binding agents. The second objective is to evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. The technology under development, Polymer Filtration (PF), is a technique to selectively remove or recover hazardous and valuable metal ions and radionuclides from various dilute aqueous streams. Not only can this technology be used to remediate contaminated soils and solid surfaces and treat aqueous wastes, it can also be incorporated into facilities as a pollution prevention and waste minimization technology. Polymer Filtration uses water-soluble metal-binding polymers to sequester metal ions in dilute solution. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using commercial ultrafiltration technology. Water, small organic molecules, and unbound metals pass freely through the ultrafiltration membrane while concentrating the metal-binding polymer. The polymers can then be reused by changing the solution conditions to release the metal ions. The metal-ions are recovered in concentrated form for recycle or disposal using a diafiltration process. The water-soluble polymer can be recycled for further aqueous-stream processing. To advance Polymer Filtration technology to the selectivity levels required for DOE needs. fixture directions in Polymer Filtration must include rapid development, testing, and characterization of new metal-binding polymers. The development of new chelating molecules can be equated to the process of new drugs or new materials discovery. Thus, the authors want to build upon and adapt the combinatorial chemistry approaches developed for rapid molecule generation for the drug industry to the rapid

  10. Performance improvement of an ionic polymer metal composite actuator by parylene thin film coating

    Science.gov (United States)

    Kim, Seong Jun; Lee, In Taek; Lee, Ho-Young; Hyup Kim, Yong

    2006-12-01

    IPMC (ionic polymer-metal composite) is a kind of ionic EAP (electroactive polymer) which is actuated by the movement of cations combined with water molecules in the polymer. The cations and water molecules move due to the applied voltage on the metal electrodes which are located on both sides of the polymer. However, water contained in the polymer gradually evaporates during the actuation and this reduces the performance of the IPMC actuator. To suppress the water evaporation from the IPMC, waterproof material such as parylene, silicone rubber and other polymers were coated on the surface of the IPMC. The displacement, the force and the lifetime of the actuator were observed by using a laser displacement measurement system and a load cell. The water impermeability of the polymer coating with respect to time was measured on a hot plate. Results showed that the parylene coating effectively suppressed the water loss from the IPMC and enlarged the lifetime of the actuator dramatically. However, it was found that parylene has poor adhesion properties to the metal electrode. To improve the adhesion, plasma treatments of argon (Ar), oxygen (O2) and trifluoromethane (CHF3) were performed on the electrode surface before parylene coating. We evaluated the surface morphology change of the electrode after plasma treatment by SEM (scanning electron microscopy) and AFM (atomic force microscopy). In addition, a tape adhesion test and a peel test were performed for quantitative analysis of adhesion strength between the metal electrode and parylene. It was found that the argon plasma treatment was the most effective to improve the adhesion strength between the metal electrode and parylene.

  11. Metal-Polymer Nanocomposites: (Co-Evaporation/(CoSputtering Approaches and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Vanna Torrisi

    2015-07-01

    Full Text Available In this review, we discuss the basic concepts related to (co-evaporation and (cosputtering based fabrication methods and the electrical properties of polymer-metal nanocomposite films. Within the organic-inorganic hybrid nanocomposites research framework, the field related to metal-polymer nanocomposites is attracting much interest. In fact, it is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. The metal-polymer nanocomposites research field is, now, a wide, complex, and important part of the nanotechnology revolution. So, with this review we aim, starting from the discussion of specific cases, to focus our attention on the basic microscopic mechanisms and processes and the general concepts suitable for the interpretation of material properties and structure–property correlations. The review aims, in addition, to provide a comprehensive schematization of the main technological applications currently in development worldwide.

  12. Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate

    International Nuclear Information System (INIS)

    Barranco, V.; Carpentier, J.; Grundmeier, G.

    2004-01-01

    The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake φ, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma

  13. Electrostatic method for the production of polymer nanofibers blended with metal-oxide nanoparticles

    International Nuclear Information System (INIS)

    Jaworek, A; Krupa, A; Lackowski, M; Sobczyk, A T; Czech, T; Ramakrishna, S; Sundarrajan, S; Pliszka, D

    2009-01-01

    The paper presents investigations of a method of the production of non-woven polymer fabrics with incorporated metal oxide nanoparticles based on electrospinning and electrospraying. Two main configurations of electrospraying/electrospinning systems have been tested: two-step process of electrospinning of polymer solution followed by electrospraying of nanoparticle suspension, and simultaneous electrospinning of polymer solution and electrospraying of nanoparticle suspension. By this method TiO 2 , MgO, or Al 2 O 3 nanoparticles of the size from 20 to 100 nm were deposited onto electrospun PVC nanofibers.

  14. Polymer-supported reagents with enhanced metal ion recognition: Application to separations science

    International Nuclear Information System (INIS)

    Alexandratos, S.D.

    1993-01-01

    The design and development of polymer-supported reagents with ever-increasing specificities for targeted metal ions remains an important areas of research. The need for efficient separation schemes for both ions and molecules has been outlined in a report by the National Research Council (King) and will gain increased emphasis as environmental restoration is pursued. Polymer-supported reagents are unique in their ability to be applied in an environmentally benign manner to a host of challenges. Such reagents, in the form of beads, can be applied to continuous separation processes ranging from the removal of metal ions in water to the recovery of medicinal drugs produced through biotechnological means. The application of polymer-supported reagents to metal ion separations still requires developing a fundamental understanding of ligand-metal interactions, the role of the polymer in those interactions, and the methods of synthesizing such polymeric reagents in a readily applicable form. Ion exchange resins with sulfonic acid ligands are the prototypical polymer-supported reagents, and their properties have been exhaustively studied (Helfferich). The high acidity of the sulfonic acid group, however, precludes much selectivity, and it displays a very limited range of reaction free energy values with different metal ions (Boyd et al.). The carboxylic acid ligand, present in the acrylate resins, is more selective, though its weak acidity requires relatively high pH solutions for it to be effective. Research has thus been focused on the preparation of polymer-supported reagents with high levels of specificity for targeted metal ions

  15. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  16. Insight into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, via Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristina Stefanescu

    2009-11-01

    Full Text Available Highly ordered polymer nanocomposites are complex materials that display a rich morphological behavior owing to variations in composition, structure, and properties on a nanometer length scale. Metal-polymer nanocomposite materials are becoming more popular for applications requiring low cost, high metal surface areas. Catalytic systems seem to be the most prevalent application for a wide range of metals used in polymer nanocomposites, particularly for metals like Pt, Ni, Co, and Au, with known catalytic activities. On the other hand, among the most frequently utilized techniques to prepare polymer/CNT and/or polymer/clay nanocomposites are approaches like melt mixing, solution casting, electrospinning and solid-state shear pulverization. Additionally, some of the current and potential applications of polymer/CNT and/or polymer/clay nanocomposites include photovoltaic devices, optical switches, electromagnetic interference (EMI shielding, aerospace and automotive materials, packaging, adhesives and coatings. This extensive review covers a broad range of articles, typically from high impact-factor journals, on most of the polymer-nanocomposites known to date: polymer/carbon nanotubes, polymer/metal nanospheres, and polymer/clay nanoplatelets composites. The various types of nanocomposites are described form the preparation stages to performance and applications. Comparisons of the various types of nanocomposites are conducted and conclusions are formulated.

  17. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent ...... (water). The photograph here was taken just before screen printing of the aqueous silver ink.......The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  18. Use of X-ray fluorescence for metal determination in polymers

    International Nuclear Information System (INIS)

    Guidorizzi, Lorenza

    1996-01-01

    X-Ray fluorescence spectrometry was used to determine metals and non-metals in polyester polymers. The greatest advantage of this technique over others like Atomic Absorption or Plasma Emission is that no sample previous treatment (like calcination or acid digestion) is required. Other advantage of this method is its fastness allowing a complete analysis in just few minutes. On the other hand, this method requires metals higher than 15 ppm. Below those values there is a loss of the analysis' precision. Another advantage of this technique is the possibility of making qualitative metal analysis, scanning unknown samples and identifying the found peaks automatically. (author)

  19. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  20. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...

  1. Enhanced Nanotribology and Optimal Self-lubrication in Novel Polymer-Metal Composites

    Science.gov (United States)

    Seam, Alisha; Brostow, Witold; Olea-Mejia, Oscar

    2006-10-01

    Cheaper to produce, light-weight polymeric materials with improved micro and nano-scale tribological characteristics ar gradually replacing the heavier metals in gears, cams, ball-bearings, chains, and other critical machine components which operate under high stress, experience substantial sliding friction and wear, and require external lubrication regimes. Application of such high-performance synthetic materials in a whole range of machinery, manufacturing, aerospace and transportation industries would produce far reaching economic, energy conservation and environmental benefits. This paper devises and investigates a novel and previously untested method of developing self-lubricating and wear-resistant polymer based materials (PBMs) by blending a polymer with small proportions of a metallic additive. Tribological experiments establish that as increasing proportions of the metallic additive Iron (Fe) are added to the polymeric base polyethylene (PE), the friction and wear of the resulting composite (PE-Fe) experiences significant decline until an optimal value of 3 to 5 % Iron and then stabilize. Theoretical analysis reveals this phenomenon to likely be a result of the nano-structural formation of a lubricating oxide layer on surface of the polymer-metal composite. Furthermore, the oxide layer prevented significant degradation of the viscoelastic scratch-recovery of the base polymer, even with 10 percent metal additive (Fe) in the composite samples.

  2. Synthesis and characterization of metal ion-imprinted polymers

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... like sedimentation, evaporation, ion exchange, electrolysis, reverse osmosis, adsorption, etc. Polymers are materials that are light and inexpensive, have ... idics, bio-MEMS, micro-imprinting, optical coatings and controlled dewetting [2]. Gupta et al [3] have synthesized polyaniline (PANIs) doped with ...

  3. 21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... cemented or uncemented prosthesis. 888.3390 Section 888.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 888.3390 Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis is a two-part...

  4. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    Science.gov (United States)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  5. Boundary-condition analysis for physics-based modeling of ionic-polymer metal composite electroactive polymers

    Science.gov (United States)

    Bass, Patrick S.; Zhang, Lin; Cheng, Zhongyang

    2017-04-01

    Ionic-polymer metal composites (IPMCs) are a subset of ionic electroactive polymers (EAPs). They produce an actuation response based on the electrically induced flux of mobile ions through a parent-polymer matrix. This response is a result of the accumulation of cations and anions on opposing sides of the matrix and is directly related to the size disparity between the two types of ions. These factors impose a differential expansion across the matrix, which generates the macroscopic bending that is observed. It is well known that the motion of these EAPs is highly nonlinear and time dependent, making for a process that is difficult to model. A simplistic approach to modeling the physics behind this phenomenon and correlating that to experimental results is outlined, herein. This new methodology enables a comprehensive analysis of the boundary conditions (BCs) needed to be considered in order to accurately characterize the IPMC actuation response. The subsequent series of equations developed, which depict the ionic motion under these BCs, is presented. Empirical data for model analysis was acquired from IPMCs created using poly(ethylene oxide) (PEO), a well-known, biodegradable, solid-polymer electrolyte infused with lithium perchlorate, as the ionic salt. Experimental results fitted with this new model returned a favorable average adjusted-R2, goodness-of-fit, of 0.987, 0.994, and 0.992 when PEO films were tested under varying conditions, including: ionic concentration, applied voltage, and testing temperature, respectively.

  6. “High-Throughput” Evaluation of Polymer-Supported Triazolic Appendages for Metallic Cations Extraction

    Directory of Open Access Journals (Sweden)

    Riadh Slimi

    2015-03-01

    Full Text Available The aim of this work was to find and use a low-cost high-throughput method for a quick primary evaluation of several metal extraction by substituted piperazines appendages as chelatants grafted onto Merrifield polymer using click-chemistry by the copper (I-catalyzed Huisgen’s reaction (CuAAC The polymers were tested for their efficiency to remove various metal ions from neutral aqueous solutions (13 cations studied: Li+, Na+, K+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Cd2+, Ba2+, Ce3+, Hg+ and Pb2+ using the simple conductimetric measurement method. The polymers were found to extract all metals with low efficiencies ≤40%, except for Fe3+ and Hg+, and sometimes Pb2+. Some polymers exhibited a selectively for K+, Cd2+ and Ba2+, with good efficiencies. The values obtained here using less polymer, and a faster method, are in fair correspondence (average difference ±16% with another published evaluation by atomic absorption spectroscopy (AAS.

  7. Three-Dimensional (3D Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Susanna Fafenrot

    2017-10-01

    Full Text Available Fused deposition modeling (FDM is a three-dimensional (3D printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid (PLA printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  8. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.

    Science.gov (United States)

    Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea

    2017-10-19

    Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  9. Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes

    Directory of Open Access Journals (Sweden)

    J. Rubén Morones-Ramírez

    2014-01-01

    Full Text Available Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs. The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer and in situ synthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow.

  10. Influence of interface on the formation process of polymer coatings on metal

    Directory of Open Access Journals (Sweden)

    O. G. Maksimova

    2016-03-01

    Full Text Available The purpose of this work is in development of the model that allows to investigate the conformations of macromolecules near the interface “dielectric-metal” depending on the conditions of formation of the polymer coating. In the modified model of “sticky tape”, one part of macromolecule is anchored to the metal surface while the other can be elongated due to effective mean (molecular field of dipolar type formed by free ends of other chains. The dynamic Monte-Carlo method for Langmuir’s model is used for calculation of adhesion force taking into account the interaction energy of monomers with the metal surface. It is shown that conformation of polymer chain is defined by temperature conditions of its formation. The obtained results are confirmed by the data of production tests on polymer coatings in JSC “Severstal”.

  11. Photochemical Degradation Of Polymer Films On Metals As Studied By Fourier Transform Infrared (FTIR) Spectroscopy

    Science.gov (United States)

    Webb, John D.; Schissel, Paul; Czanderna, Alvin; Chughtai, Abdul R.; Smith, Dwight M.

    1981-10-01

    An experimental approach to the study of polymer film photodegradation by Fourier transform infrared (FT-IR) spectroscopy, with simultaneous UV irradiation under varying thermal and environmental parameters, has been developed. Reflection spectra from metal-backed polycarbonate films undergoing irradiation in a test chamber illustrate the system's capability. Early degradative events in polycarbonate are revealed by differences in these spectra.

  12. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  13. Electrical properties of composites of hard metal carbides in a polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Vilčáková, J.; Sáha, P.; Hausnerová, B.; Quadrat, Otakar

    2002-01-01

    Roč. 23, č. 5 (2002), s. 942-946 ISSN 0272-8397 R&D Projects: GA ČR GA101/97/0308 Institutional research plan: CEZ:AV0Z4050913 Keywords : polymer composites * hard metal carbides * electric conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.746, year: 2002

  14. Work of adhesion in laser-induced delamination along polymer-metal interfaces

    NARCIS (Netherlands)

    Fedorov, A.; van Tijum, R.; Vellinga, W. P.; de Hosson, Jeff

    2007-01-01

    Laser-induced delamination is a recent technique aimed at characterizing adhesive strength of thin polymer coatings on metal substrates. A laser pulse is used to create a blister that initiates further delamination of the film under pressure. To process the experimental data a simple elastic model

  15. Theoretical and Experimental Studies of New Polymer-Metal High-Dielectric Constant Nanocomposites

    Science.gov (United States)

    Ginzburg, Valeriy; Elwell, Michael; Myers, Kyle; Cieslinski, Robert; Malowinski, Sarah; Bernius, Mark

    2006-03-01

    High-dielectric-constant (high-K) gate materials are important for the needs of electronics industry. Most polymers have dielectric constant in the range 2 materials with K > 10 it is necessary to combine polymers with ceramic or metal nanoparticles. Several formulations based on functionalized Au-nanoparticles (R ˜ 5 -— 10 nm) and PMMA matrix polymer are prepared. Nanocomposite films are subsequently cast from solution. We study the morphology of those nanocomposites using theoretical (Self-Consistent Mean-Field Theory [SCMFT]) and experimental (Transmission Electron Microscopy [TEM]) techniques. Good qualitative agreement between theory and experiment is found. The study validates the utility of SCMFT as screening tool for the preparation of stable (or at least metastable) polymer/nanoparticle mixtures.

  16. Plasma coatings of nitrogen polymers on metal prostheses of the circulatory system

    International Nuclear Information System (INIS)

    Gomez J, L. M.

    2016-01-01

    This work has a study about the synthesis of poly aniline, poly allylamine and poly pyrrole doped with iodine onto metallic surfaces similar to stents for the circulatory system. Ar, water and hydrogen peroxide plasmas were used for eroding, conditioning and synthesizing polymers that potentially reduce some rejection reactions when stents are implanted in the human body. Stents are small metallic meshes that applied inside collapsed arteries or veins enlarge the diameter and restore the blood flow, however the metallic surfaces usually cause rejection reactions that obstruct the veins again. To give solutions to this problem, in this work is studied the synthesis of biocompatible polymer coatings on the stents that resist the blood flow forming a biocompatible interface between metal and blood. The metallic substrates were eroded and chemically prepared with Ar, H 2 O and/or H 2 O 2 glow discharges on which the polymers were synthesized by plasma. The coatings were morphologically characterized by optical, scanning electron and atomic force microscopy, the chemical structure was studied by infrared and photoelectron X-ray spectroscopy. The hydrophilicity was studied measuring the advance static contact angle and the adhesion was evaluated indirectly with scanning electron microscopy after two months submerged in buffered phosphate solutions. The results indicate that the polymers grew following the superficial morphology; that the conditioning with Ar ions erode the substrates and that the conditioning with H 2 O or H 2 O 2 erodes and activates the surface generating oxygen bridges which help in the polymer-metal adhesion. The chemical structure of the polymeric coatings contain crosslinked structures that correspond to links between monomers with the participation of all atoms, states that suggest monomer fragmentation and oxidation and states that indicate oxygen bridges in the polymers. The coatings had contact angles close to 90 degrees where is located the

  17. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  18. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  19. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  20. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  1. Reaction factors for photo-electrochemical deposition of metal silver on polypyrrole as conducting polymer

    International Nuclear Information System (INIS)

    Kawakita, Jin; Boter, Jelmer M.; Shova, Neupane; Fujihira, Hiroshi; Chikyow, Toyohiro

    2015-01-01

    Composite of metal and conducting polymer is expected for electrical application by the use of their advantages. For improvement of the composite’s characteristics, it is important to control formation rate and structure of the composites obtained by simultaneous metal deposition and polymerization under photo irradiation. The purpose of this research was to reveal the effects of UV irradiation and dopant type for conducting polymer on photo-electrochemical deposition of metal. Cathodic polarization curves for silver deposition on polypyrrole doped with different types of anion at different intensity of the UV light were compared. Deposited particles were evaluated by the statistical analysis. The experimental results showed that silver deposition on polypyrrole was enhanced by UV introduction and depended on the dopant type.

  2. In-process assembly of micro metal inserts in a polymer matrix

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard

    2006-01-01

    , have to be established in order to be able to develop new and more integrated micro products. In this paper a method for testing the bonding between micro thickened metal inserts and the polymer matrix they are moulded in is presented. A specific demonstrator has been manufactured by means of a hot...... embossing-like process which allows fast developing time and the possibility of batch process. Different levels of surface roughness and metal insert thickness were applied in a systematic design of experiments. The results show a strong influence of surface texture on bonding strength. The testing......New functionalities and smaller dimensions of micro products can be achieved by means of a higher degree of integration of both materials and components. Smart micro assembly techniques (such as on-the-machine assembly) together with hybrid structures (as metal inserts in polymer matrix...

  3. Polymer transistors fabricated by painting of metallic nanoparticles

    Science.gov (United States)

    Li, S. P.; Russell, D. M.; Newsome, C. J.; Kugler, T.; Shimoda, T.

    2006-09-01

    In this letter the authors describe the fabrication of high performance polymer thin film transistors using an aqueous based silver colloid to form source and drain electrodes patterned by brush painting. The electrode dimensions were controlled by a surface energy pattern defined by soft contact printing of a self-assembled monolayer 1H,1H,2H,2H-perfluorodecyl-trichlorosilane on a SiO2 surface which acted as a dewetting layer for the painted silver particle suspension. Another self-assembled monolayer of 1H ,1H,2H,2H-perfluorodecanethiol was also used to increase the work function of the patterned silver electrodes in order to decrease the barrier for charge injection into the polymer semiconductor. The field-effect mobility of the thin film transistors fabricated by this method approached 0.02cm2V-1s-1 with an on/off current ratio of 105. The relative high mobility may be influenced by the ordering of the poly(3-hexylthiophene) semiconductor layer by the self-assembled monolayer used to define the source and drain electrodes.

  4. Investigation of adsorption of polymers on metallic nanowires: A molecular dynamics study

    Science.gov (United States)

    Mirabbaszadeh, Kavoos; Zaminpayma, Esmaeil

    2012-11-01

    Composite of polymer with a small content of strong material, such as carbon nanotube (CNT) and metallic nanowire (NW) has interesting mechanical, thermal, optical and electrical properties. For the first time, we used molecular dynamics simulations (MD) with polymer consistent force field (PCFF) to study adsorption of polymers involving Poly(3-hexythiophene) (P3HT) and Poly[[[(2ethylhexyl)oxy]methoxy-1,4-phenylene]-1,2-ethenediyl] (MEH-PPV) on metallic NW including silver and gold. The influence of main factors such as NW radius and temperature on the interfacial adhesion of NW-polymer and radius of gyration of polymers (Rg) were studied. We showed that the interaction energy decreases slowly with increasing temperature, thus the temperature influence is very weak. Our results showed that P3HT-Au has the strongest interaction energy, then MEH-PPV-Au, P3HT-Ag, and finally MEH-PPV-Ag. In addition, the interaction energy increased with increasing NW radius, thus the NW with large radius is the best type for reinforcement. We studied the influence of NW radius and temperature on the radius of gyration (Rg). We found that Rg oscillated slowly and no obvious trend was seen. In other words, NW radius and temperature had no influence on Rg value. We showed that the Rg value for P3HT was higher than MEH-PPV, thus P3HT expanded more than MEH-PPV on NW surface.

  5. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  6. (II) metal ions using phosphonate-functionalized polymer

    Indian Academy of Sciences (India)

    The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, namely initial pH, adsorbentdose and the contact time. The reaction kinetics was determined by the Langmuir, Freundlich, ...

  7. Synthesis, characterization and applications of polymer-metal ...

    Indian Academy of Sciences (India)

    vibrations. The ester carbonyl is identified through the appearance of a strong absorption band at 1732 cm ... tate fashion. The IR spectrum of functionalized copoly- mer shows intense band at 1651 cm. −1 due to C=O stretching in hydrazone and its downward shift in Fe(II) complex suggest coordination of metal ion through.

  8. A Rational Approach to Metal Loading of Organic Multi-Site Polymers: Illusion or Reality?

    Science.gov (United States)

    Babel, Lucille; Baudet, Karine; Hoang, Thi Nhu Y; Nozary, Homayoun; Piguet, Claude

    2017-12-06

    Since its identification as an independent topic after the first world war, the chemistry of (bio)polymers and macromolecules rapidly benefited from intense synthetic activities driven by contributors focusing on formulation and structural aspects. Satisfying rationalization and predictions concerning polymer organization, stability, and reactivity were, however, delayed until the late fifties, when physical chemists set the basis of an adapted thermodynamic modeling. The recent emergence of metal-containing (bio)organic polymers (i.e., metallopolymers) thus corresponds to a logical extension of this field with the ultimate goal of combining the rich magnetic and optical properties of open-shell transition metals with the processability and structural variety of polymeric organic scaffolds. Since applications as energy storage materials, drug delivery vectors, shape-memory materials, and photonic devices can be easily envisioned for these materials, the development of metallopolymers is faced with some urgency in producing novel exploitable structures, while the rational control of their formation, organization, and transformation remains elusive. Caught between the sometimes antagonistic requirements of economic efficiency on one side and of scientific pertinence on the other side, the ongoing achievements in the control of the metal loadings of multi-site polymers are highlighted here with some tutorial discussions of luminescent lanthanidopolymers as proof-of-concept. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Unusual Transformation from a Solvent-Stabilized 1D Coordination Polymer to a Metal-Organic Framework (MOF)-Like Cross-Linked 3D Coordination Polymer.

    Science.gov (United States)

    Lee, Seung-Chul; Choi, Eun-Young; Lee, Sang-Beom; Kim, Sang-Wook; Kwon, O-Pil

    2015-10-26

    An unusual 1D-to-3D transformation of a coordination polymer based on organic linkers containing highly polar push-pull π-conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5-bis{4-[1-(4-nitrophenyl)pyrrolidin-2-yl]butoxy}terephthalic acid, which possesses highly polar (4-nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent-stabilized 1D coordination polymer into an insoluble, metal-organic framework (MOF)-like 3D coordination polymer. The coordination polymer exhibits good film-forming ability, and the MOF-like films are insoluble in conventional organic solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    OpenAIRE

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was us...

  11. Interface failure and adhesion measured by focused ion beam cutting of metal-polymer interfaces

    Science.gov (United States)

    Cordill, M. J.; Schmidegg, K.; Dehm, G.

    2011-08-01

    New developments in flexible electronics require metal films to adhere to polymer substrates. Measuring the interfacial adhesion of these systems is challenging, requiring the formulation of new techniques and models. A strategy to measure the adhesion of Cr-polyethylene terephthalate (PET) interfaces using tensile straining and buckle formation is presented in this article. Focused ion beam cross-sectioning of the buckles reveals that the polymer substrate can locally fail, which may lead to an overestimate of adhesion. Cr-PET adhesion energy of 9.4 ± 1.6 J/m2 is determined with the present approach.

  12. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Selective Gas-Phase Capture of Explosives on Metal Beta-diketonate Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Scott D.; Wenzel, Thomas J.

    2008-05-30

    A variety of metal beta-diketonate polymers were assessed for gas-phase selective retention of nitro aromatic, nitrate ester, and peroxide explosives. La(dihed) showed 13-42 times the retention for the nitro aromatics compared to a control column (identical column but lacking the 5% loading of the metal beta-diketonate polymer). Nitrate esters, the peroxide explosive TATP, and the taggant DMDNB were too strongly retained to elute from the La(dihed) column; however, these compounds could be eluted from the less retentive Cu(dihed) or Zn(dihed) columns. A Kovats index of 2124 for TNT the on the La(dihed) column compared to 1662 on the control illustrates the excellent discrimination against non-polar hydrocarbons, the principal matrix interference expected in air samples. A proof-of-principle experiment demonstrated analysis of an extrapolated 47 part-per trillion(v/v) of TNT in an air extract concentrate.

  14. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    International Nuclear Information System (INIS)

    Carrico, James D; Traeden, Nicklaus W; Leang, Kam K; Aureli, Matteo

    2015-01-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs. (paper)

  15. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites.

    Science.gov (United States)

    Khaydarov, Rashid A; Khaydarov, Renat R; Gapurova, Olga

    2010-03-01

    The paper deals with a novel method of obtaining nanocarbon-conjugated polymer nanocomposites (NCPC) using nanocarbon colloids (NCC) and polyethylenimine (PEI) for water purification from metal ions. Size of NCC, process of NCPC synthesis, its chemical characteristics, ratio of NCC and PEI in NCPC, speed of coagulation of NCPC, mechanism of interaction of metal ions with NCPC, ability of removing metal ions from water by NCPC against pH have been studied. NCPC has a bonding capacity of 4.0-5.7mmol/g at pH 6 for most of the divalent metal ions. Percent of sorption of Zn(2+), Cd(2+), Cu(2+), Hg(2+), Ni(2+), Cr(6+) ions is higher than 99%. Lifetime of NCPC before coagulation in the treated water is 1s-1000min and depends on the ratio of polymeric molecules and carbon nanoparticle concentrations. Results of laboratory tests of the method are described. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Multi-Input Multi-Output Integrated Ionic Polymer-Metal Composite for Energy Controls

    Directory of Open Access Journals (Sweden)

    Gou Nishida

    2012-02-01

    Full Text Available This paper presents an integrated sensor/actuator device with multi-input and multi-output designed on the basis of a standard control representation called a distributed port-Hamiltonian system. The device is made from soft material called an ionic polymer-metal composite (IPMC. The IPMC consists of a base film of a polyelectrolyte gel and a double layer of plated metal electrodes. The electrodes of the experimental IPMC are sectioned, and it is implemented as a control system with four pairs of inputs/outputs. We stabilize the system, and detect changes in dynamics by using the control representation.

  17. Metal oxide targets produced by the polymer-assisted deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A., E-mail: mitch@berkeley.ed [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ashby, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gates, Jacklyn M. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stavsetra, Liv [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gregorich, Kenneth E.; Nitsche, Heino [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-02-11

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  18. Metal oxide targets produced by the polymer-assisted deposition method

    International Nuclear Information System (INIS)

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2010-01-01

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  19. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis is a device intended to be implanted to replace part of a knee joint. The device limits...

  20. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    Directory of Open Access Journals (Sweden)

    Grégorio Crini

    2017-05-01

    Full Text Available Polymer assisted ultrafiltration (PAUF is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine and poly(acrylic acid are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater treatment mainly due to its polyelectrolyte properties at acidic pH. The objectives of this review are to present the PAUF process and to highlight the advantages gained from the use of chitosan in the process of complexation–ultrafiltration. For this, a PAUF-based literature survey has been compiled and is discussed. From these data, chitosan, a biopolymer that is non-toxic to humans and the environment, is found to be effective in removing metal ions and exhibits high selectivity. It might be a promising polyelectrolyte for PAUF purposes.

  1. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  2. Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface.

    Science.gov (United States)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Hinterdorfer, Peter

    2015-10-01

    In this study, the physical properties of transition metal oxide surfaces were examined using scanning probe microscopic (SPM) techniques for elucidating the antimicrobial activity of molybdenum trioxide (MoO3), tungsten trioxide (WO3), and zinc oxide (ZnO) embedded into the polymers thermoplastic polyurethane (TPU) and polypropylene (PP). We utilized atomic force microscopy (AFM) in the contact imaging mode and its derivative single-pass Kelvin probe force microscopy for investigating samples that were presumably identical in their compositions, but showed different antimicrobial activity in bacterial adhesion tests. Our results revealed that surfaces with larger roughness and higher surface potential variation showed stronger antimicrobial activities compared to smoother and homogeneously charge-distributed surfaces. In addition, capacitance gradient (dC/dZ) measurements were performed to elucidate the antimicrobial activity arising from the different dielectric behavior of the transition metal oxides in this heterogeneous polymer surface. We found that the nano-scale exposure of transition metal oxides on polymer surfaces provided strong antimicrobial effects. Applications arising from our studies will be useful for public and healthcare environments.

  3. Adaptive neuro-fuzzy control of ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Thinh, Nguyen Truong; Yang, Young-Soo; Oh, Il-Kwon

    2009-01-01

    An adaptive neuro-fuzzy controller was newly designed to overcome the degradation of the actuation performance of ionic polymer metal composite actuators that show highly nonlinear responses such as a straightening-back problem under a step excitation. An adaptive control algorithm with the merits of fuzzy logic and neural networks was applied for controlling the tip displacement of the ionic polymer metal composite actuators. The reference and actual displacements and the change of the error with the electrical inputs were recorded to generate the training data. These data were used for training the adaptive neuro-fuzzy controller to find the membership functions in the fuzzy control algorithm. Software simulation and real-time experiments were conducted by using the Simulink and dSPACE environments. Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the reliable control of the ionic polymer metal composite actuator for which the performance degrades under long-time actuation

  4. Physiochemical characterization and antimicrobial evaluation of phenylthiourea-formaldehyde polymer (PTF) based polymeric ligand and its polymer metal complexes

    Science.gov (United States)

    Ahamad, Tansir; Alshehri, Saad M.

    2013-05-01

    Phenylthiourea-formaldehyde polymer (PTF) has been synthesized via polycondensation of phenylthiourea and formaldehyde in basic medium and its corresponding metal complexes [PTF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) ions. The synthesized polymers have been characterized by elemental analysis, magnetic susceptibility, UV-visible, FT-IR, 1H NMR, 13C NMR, ESR spectroscopy and thermogravimetric analysis (TGA). Elemental analysis, electronic spectra and magnetic moment measurement indicate that PTF-Mn(II), PTF-Co(II) and PTF-Ni(II) show octahedral geometry, while PTF-Cu(II) and PTF-Zn(II) show square planar and tetrahedral geometry, respectively. The results of TGA ascribed that all the PTF-M(II) showed better heat-resistance properties than PTF resin. In vitro antimicrobial activities were performed against several bacteria and fungi using agar well diffusion method. The results of microbial activity were compared with Kanamycin and Miconazole as standard antibiotics for antibacterial and antifungal activities respectively.

  5. Effect of Metallic Additives to Polymer Matrix on Properties of Composite Adhesives Dedicated for Light Metal Joining

    Directory of Open Access Journals (Sweden)

    Mamala A.

    2017-12-01

    Full Text Available The most recent and promising trends in development of renewable sources of energy are Combined Heat and Power (CHP systems. The newest solutions from this field are hybrid compact solar panels. The correct operation of both systems, i.e. the photovoltaic panel and the heat exchanger requires an effective connection between the two. The adhesives utilized to interconnect above elements should provide a stable and hermetic joint able to withstand mechanical and thermal impacts of the surrounding environment factors. The paper presents the research results over the impact of the type and the amount of reinforcing phase on the physical and mechanical properties of epoxy resin matrix composites reinforced with particles of non-ferrous metals (Ag, Cu, W, Al, dedicated as adhesives for connections between photovoltaic panels and heat exchangers. Based on the experimental findings the usefulness of classical analytic models for valuation of polymer-metal composites properties was validated.

  6. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review.

    Science.gov (United States)

    Umoren, Saviour A; Eduok, Ubong M

    2016-04-20

    Naturally occurring polysaccharides are biopolymers existing as products of biochemical processes in living systems. A wide variety of them have been employed for various material applications; as binders, coatings, drug delivery, corrosion inhibitors etc. This review describes the application of some green and benign carbohydrate biopolymers and their derivatives for inhibition of metal corrosion. Their modes and mechanisms of protection have also been described as directly related to their macromolecular weights, chemical composition and their unique molecular and electronic structures. For instance, cellulose and chitosan possess free amine and hydroxyl groups capable of metal ion chelation and their lone pairs of electrons are readily utilized for coordinate bonding at the metal/solution interface. Some of the carbohydrate polymers reviewed in this work are either pure or modified forms; their grafted systems and nanoparticle composites with multitude potentials for metal protection applications have also been highlighted. Few inhibitors grafted to introduce more compact structures with polar groups capable of increasing the total energy of the surface have also been mentioned. Exudate gums, carboxymethyl and hydroxyethyl cellulose, starch, pectin and pectates, substituted/modified chitosans, carrageenan, dextrin/cyclodextrins and alginates have been elaborately reviewed, including the effects of halide additives on their anticorrosion performances. Aspects of computational/theoretical approach to corrosion monitoring have been recommended for future studies. This non-experimental approach to corrosion could foster a better understanding of the corrosion inhibition processes by correlating actual inhibition mechanisms with molecular structures of these carbohydrate polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  8. Effects of chemical modifications on photophysics and exciton dynamics on {pi}-conjugation attenuated and metal-chelated photoconducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. X.; Jager, W. J. H.; Gosztola, D. J.; Niemczyk, M. P.; Wasielewski, M. R.

    2000-03-11

    Effects of two types of chemical modifications on photoconducting polymers consisting of polyphenylenevinylene (PPV) derivatives are studied by static and ultrafast transient optical spectroscopy as well as semi-empirical ZINDO calculations. The first type of modification inserts 2,2{prime}-bipyridyl-5-vinylene units (bpy V) in the PPV backbone, and the second type involves metal-chelation with the bpy sites. Photoluminescence and exciton dynamics of polymers 1 and 2 with PV:bpyV ratios of 1 and 3 were examined in solution, and compared to those of the homopolymer, poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). Similar studies were carried out for several metal-chelated polymers. These results can be explained by changes in {pi}-conjugation throughout the polymer backbone. The attenuation in {pi}-conjugation by the chemical modifications transforms a conducting polymer from one-dimensional semiconductor to molecular aggregates.

  9. Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview.

    Science.gov (United States)

    Lofrano, Giusy; Carotenuto, Maurizio; Libralato, Giovanni; Domingos, Rute F; Markus, Arjen; Dini, Luciana; Gautam, Ravindra Kumar; Baldantoni, Daniela; Rossi, Marco; Sharma, Sanjay K; Chattopadhyaya, Mahesh Chandra; Giugni, Maurizio; Meric, Sureyya

    2016-04-01

    Pollution by metal and metalloid ions is one of the most widespread environmental concerns. They are non-biodegradable, and, generally, present high water solubility facilitating their environmental mobilisation interacting with abiotic and biotic components such as adsorption onto natural colloids or even accumulation by living organisms, thus, threatening human health and ecosystems. Therefore, there is a high demand for effective removal treatments of heavy metals, making the application of adsorption materials such as polymer-functionalized nanocomposites (PFNCs), increasingly attractive. PFNCs retain the inherent remarkable surface properties of nanoparticles, while the polymeric support materials provide high stability and processability. These nanoparticle-matrix materials are of great interest for metals and metalloids removal thanks to the functional groups of the polymeric matrixes that provide specific bindings to target pollutants. This review discusses PFNCs synthesis, characterization and performance in adsorption processes as well as the potential environmental risks and perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  11. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-01-01

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  12. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  13. A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection.

    Science.gov (United States)

    Zeng, Hui-Hui; Zhang, Li; Rong, Lian-Qing; Liang, Ru-Ping; Qiu, Jian-Ding

    2017-03-15

    A bimetal lanthanide coordination polymer nanoparticle (ATP-Ce/Tb-Tris CPNs) with good biocompatibility was synthesized in Tris-HCl buffer using adenosine triphosphate (ATP) molecules as the bridge ligands. The large absorption cross section and suitable emission energy of Ce 3+ matching to the adsorption energy of Tb 3+ ( 4 f n ) results in the efficient energy transfer from Ce 3+ to Tb 3+ , thus the synthesized ATP-Ce/Tb-Tris CPNs exhibit the characteristic green emission of Tb 3+ . Such energy transfer from metal to metal in fluorescent lanthanide coordination polymer nanoparticles (Ln-CPNs) has been demonstrated. It is found that the oxidation of Ce 3+ in ATP-Ce/Tb-Tris CNPs to Ce 4+ would interrupt the energy transfer from Ce 3+ to Tb 3+ , leading to fluorescence quenching of Tb 3+ . On the basis of this quenching mechanism, ATP-Ce/Tb-Tris CPNs has been successfully used to detect reactive oxygen H 2 O 2 with detection limit as low as 2nM. If glucose oxidase is present in the system, glucose can be determined using the ATP-Ce/Tb-Tris CNPs nanosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Independent Tuning Stiffness and Toughness of Polymer Metal Composites: Modeling, Validation, and Design

    Science.gov (United States)

    Nasr Esfahani, Sajedeh

    Titanium (Ti) alloys are one of the most used metals for biomedical applications, specifically in making implants. The stiffness of the dense Ti is 80-110 GPa, while the stiffness of the compact bone is 12-20 GPa. This high difference between the stiffness of the Ti alloys and compact bone results in stress shielding of the bone and stress concentration at the implant, both of which are undesirable and could result in implant failure. An alternative method to reduce the stiffness of a dense implant and avoid the stress shielding is adding porosity to the structure. This however results in considerable reduction in the toughness of the structure, which is also undesirable for the long-term success of implants. Also, implants such as knee and spine should have high fracture toughness, which is not achievable with porous structures. In this work, we study a new method for independently tuning the stiffness and toughness of the material by adding various polymers to the additively manufactured Ti structures with engineered porosity. Porous Ti samples with different levels of porosity are fabricated using selective laser melting. Various types of thermoplastic polymers including High Density Polyethylene (HDPE), Polyethylene Terephthalate (PET), and Nylon (MXD6) are used to fill the pores to make the titanium-polymer composite parts. Compression simulations and tests are performed on both porous and composite specimens to compare the mechanical behavior of these structures. A set of finite element simulations is conducted on different structures, and the results are verified with experiments. Simulation results and experimental findings indicate that filling porous Ti with thermoplastic polymers leads to an increase in the toughness of the structure. The percentage increase of the toughness depends on several parameters such as the geometry of the porosity, the percentage of the porosity, and the type of the polymer. Also, a design algorithm is developed based on the

  15. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  16. Metal Microporous Aromatic Polymers with Improved Performance for Small Gas Storage.

    Science.gov (United States)

    Fu, Xian; Zhang, Yindong; Gu, Shuai; Zhu, Yunlong; Yu, Guipeng; Pan, Chunyue; Wang, Zhonggang; Hu, Yuehua

    2015-09-14

    A novel metal-doping strategy was developed for the construction of iron-decorated microporous aromatic polymers with high small-gas-uptake capacities. Cost-effective ferrocene-functionalized microporous aromatic polymers (FMAPs) were constructed by a one-step Friedel-Crafts reaction of ferrocene and s-triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal-doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene-free analogues, FMAP-1, which has a moderate BET surface area, shows good gas-adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2 /N2 selectivity (107 v/v at 273 K/(0-1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol(-1) ) and CO2 (41.6 kJ mol(-1) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers

    KAUST Repository

    Zhou, Jian

    2015-01-21

    A dramatic improvement in electrical conductivity is necessary to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators. In this study, high-performance poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet-spinning followed by hot-drawing. Due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), we achieved a record electrical conductivity of 2804 S cm−1. This is, to the best of our knowledge, a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S cm−1) and a two-fold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S cm−1). Moreover, we found that these highly conductive fibers experience a semiconductor–metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers described here could make them available for conductive smart electronics.

  18. Fused filament 3D printing of ionic polymer-metal composites for soft robotics

    Science.gov (United States)

    Carrico, James D.; Leang, Kam K.

    2017-04-01

    Additive manufacturing techniques are used to create three-dimensional structures with complex shapes and features from polymer and/or metal materials. For example, fused filament three-dimensional (3D) printing utilizes non-electroactive polymers, such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), to build structures and components in a layer-by-layer fashion for a wide variety of applications. Presented here is a summary of recent work on a fused filament 3D-printing technique to create 3D ionic polymer-metal composite (IPMC) structures for applications in soft robotics. The 3D printing technique overcomes some of the limitations of existing manufacturing processes for creating IPMCs, such as limited shapes and sizes and time-consuming manufacturing steps. In the process described, first a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. Then, a custom-designed 3D printer is described that utilizes the precursor filament to manufacture custom-shaped structures. Finally, the 3D-printed samples are functionalized by hydrolyzing them in an aqueous solution of potassium hydroxide and dimethyl sulfoxide, followed by application of platinum electrodes. Presented are example 3D-printed single and multi-degree-of-freedom IPMC actuators and characterization results, as well as example soft-robotic devices to demonstrate the potential of this process.

  19. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.

    Science.gov (United States)

    Agina, Elena V; Sizov, Alexey S; Yablokov, Mikhail Yu; Borshchev, Oleg V; Bessonov, Alexander A; Kirikova, Marina N; Bailey, Marc J A; Ponomarenko, Sergei A

    2015-06-10

    An approach to polymer surface modification using self-assembled layers (SALs) of functional alkoxysilanes has been developed in order to improve the printability of silver nanoparticle inks and enhance adhesion between the metal conducting layer and the flexible polymer substrate. The SALs have been fully characterized by AFM, XPS, and WCA, and the resulting printability, adhesion, and electrical conductivity of the screen-printed metal contacts have been estimated by cross-cut tape test and 4-point probe measurements. It was shown that (3-mercaptopropyl)trimethoxysilane SALs enable significant adhesion improvements for both aqueous- and organic-based silver inks, approaching nearly 100% for PEN and PDMS substrates while exhibiting relatively low sheet resistance up to 0.1 Ω/sq. It was demonstrated that SALs containing functional -SH or -NH2 end groups offer the opportunity to increase the affinity of the polymer substrates to silver inks and thus to achieve efficient patterning of highly conductive structures on flexible and stretchable substrates.

  20. Visualisation of latent fingermarks on polymer banknotes using copper vacuum metal deposition: A preliminary study.

    Science.gov (United States)

    Davis, Lloyd W L; Kelly, Paul F; King, Roberto S P; Bleay, Stephen M

    2016-09-01

    The UK's recent move to polymer banknotes has seen some of the currently used fingermark enhancement techniques for currency potentially become redundant, due to the surface characteristics of the polymer substrates. Possessing a non-porous surface with some semi-porous properties, alternate processes are required for polymer banknotes. This preliminary investigation explored the recovery of fingermarks from polymer notes via vacuum metal deposition using elemental copper. The study successfully demonstrated that fresh latent fingermarks, from an individual donor, could be clearly developed and imaged in the near infrared. By varying the deposition thickness of the copper, the contrast between the fingermark minutiae and the substrate could be readily optimised. Where the deposition thickness was thin enough to be visually indistinguishable, forensic gelatin lifters could be used to lift the fingermarks. These lifts could then be treated with rubeanic acid to produce a visually distinguishable mark. The technique has shown enough promise that it could be effectively utilised on other semi- and non-porous substrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Søndergaard, Roar; Jørgensen, Mikkel

    2011-01-01

    The performance of printable metal back electrodes for polymer solar cells were investigated using light beam induced current (LBIC) mapping of the final solar cell device after preparation to identify the causes of poor performance. Three different types of silver based printable metal inks were...

  2. Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion

    International Nuclear Information System (INIS)

    Rueck, D.M.

    2000-01-01

    Polymers are a class of materials widely used for a broad field of applications. Ion irradiation ranging from several eV to GeV is a quite efficient tool to modify the properties of polymers like wettability, optical properties, adhesion between metal and polymer surfaces. In this paper ion induced chemical changes of polymers will be discussed in relation to the modified macroscopic properties. In the field of optical telecommunication, polymers are discussed as a new class of materials for the fabrication of passive optical devices. Ion irradiation is a promising method to generate structures with a modified index of refraction, which is necessary for the guidance of light with different wavelengths in optical devices. Modified optical properties of different polymers under ion irradiation will be discussed. Analytical investigations like infrared measurements and measurement of the outgassing reaction products during irradiation will be discussed to interpret the chemical changes of the polymers. Metallization of polymers is of interest in several fields of application like for multilayer systems in microtechnology or casings for radiation shielding for example. Ion beam mixing at low energies is a promising method to improve the metal/polymer adhesion. Also ion irradiation at high energies applied to a metal/polymer multilayer can improve the adhesion of a metal layer to a polymer surface, if not sufficient. Different metal/polymer systems will be presented as well as specific applications

  3. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  4. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-08-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW.cm-2 has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  5. A direct metal transfer method for cross-bar type polymer non-volatile memory applications

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee

    2008-01-01

    Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices

  6. Preparation of Metallic and Polymer Nanoparticles, Responsive Nanogels and Nanofibers by Radiation Initiated Reactions

    International Nuclear Information System (INIS)

    Lee, K.-Pill; Gopalan, A.I.

    2009-01-01

    Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)

  7. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    Science.gov (United States)

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  8. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    International Nuclear Information System (INIS)

    Biederman, H.; Holland, L.

    1983-01-01

    Fluorocarbon films have been prepared by plasma polymerization of CF 4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF 4 [25%]-argon[75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF 4 [87%]-argon[13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF 4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined. (orig.)

  9. Role of Interchain Coupling in the Metallic State of Conducting Polymers

    Science.gov (United States)

    Kim, Nara; Lee, Byoung Hoon; Choi, Doowhan; Kim, Geunjin; Kim, Heejoo; Kim, Jae-Ryoung; Lee, Jongjin; Kahng, Yung Ho; Lee, Kwanghee

    2012-09-01

    We investigated the charge dynamics of the conductivity enhancement from 2 to 1000S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density. Therefore, we demonstrate that the conduction-character defining disorder in this conducting polymer system is determined by the extent of interchain coupling.

  10. Mechanical-optical-electro modulation by stretching a polymer-metal nanocomposite

    Science.gov (United States)

    Minnai, Chloé; Di Vece, Marcel; Milani, Paolo

    2017-09-01

    We report the simultaneous investigation of both the plasmonic resonance and electrical conductance evolution in stretchable metal-polymer nanocomposite films. The films are produced by the implantation of neutral gold nanoparticles in a polydimethylsiloxane substrate by aerodynamic acceleration in a supersonic expansion. A redshift of the gold nanoparticle plasmon peak is found upon stretching as well as a strong correlation between the plasmonic peak wavelength and the nanocomposite electrical resistance. Optical simulations attribute the optical response to the compression of the polymer perpendicular to the stretching direction, which brings the gold particles closer to each other, increasing the plasmonic coupling. Mechanical stretching can induce a simultaneous modulation of the optical and electrical properties of the nanocomposite.

  11. A study of TiN-coated metal-on-polymer bearing materials for hip prosthesis

    Science.gov (United States)

    Lee, Sung Bai; Choi, Jin Young; Park, Won Woong; Jeon, Jun Hong; Won, Sung Ok; Byun, Ji Young; Lim, Sang Ho; Han, Seung Hee

    2010-08-01

    The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.

  12. A traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator

    Science.gov (United States)

    Li, Jinbang; Liu, Shuo; Zhou, Ningning; Yu, Aibing; Cui, Yuguo; Chen, Pengfei

    2018-01-01

    This study proposes a traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator. The stator is composed of a metal ring and polymer-matrix teeth. The resonance frequency of the stator with different structural dimensions was analyzed by the finite element method. From the results, the structure parameters of the metal ring were obtained. The effects of the density and elastic modulus of the tooth material on the resonance frequency were also investigated. A viscoelastic contact model was built to explore the contact state between the compound stator and rotor. Considering the density, elastic modulus and tribological properties, the tooth material was prepared by a molding process. The load-torque and efficiency-torque characteristics of the motor with different tooth thicknesses were measured under different preloads using a preload controlled ultrasonic motor test device. The maximum no-load speed of the motor was about 85 r min-1 with a tooth thickness of 3 mm and a preload of 100 N, the maximum stall torque of the motor was about 0.5 N · m with a tooth thickness of 4 mm and a preload of 125 N, and a maximum efficiency of about 5.5% occurred with a tooth thickness of 4 mm, a preload of 100 N and a torque of 0.3 N · m. The main merits of the proposed ultrasonic motor are low cost, light weight, high processing efficiency and long life.

  13. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  14. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian

    2016-06-09

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  15. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch(2).

    Science.gov (United States)

    Huang, Cheng; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas

    2015-01-01

    Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.

  16. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2015-05-01

    Full Text Available Polymer blend lithography (PBL is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012, PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS and poly(methyl methacrylate (PMMA, dissolved in methyl ethyl ketone (MEK is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands. The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.

  17. Copper/polymer damascene interconnects: Elimination of high-resistivity metallic liners

    Science.gov (United States)

    Neirynck, Jan Michel

    1998-12-01

    Recent announcements by most major semiconductor companies have revealed both the near-future replacement of aluminum (Al) by copper (Cu) in interconnect technology as well as studies on replacing traditionally used interlayer dielectrics (ILD) with organic materials of lower dielectric constant. This work explores improving scalability by eliminating high-resistivity metallic liners and high-dielectric constant films from the Cu/polymer Damascene interconnect system. Polymer chemical mechanical planarization (CMP) in Cu slurries shows that polymer hardness is important because the polymer is no longer protected by a hard film used as a polish stop, etch mask and diffusion barrier. BCB shows much higher resistance to removal in Cu CMP slurries with scratching dramatically lower than with PA-n. The addition of a small amount of a surfactant (Triton-X) improves the BCB removal rate to 40 nm/min while further reducing scratching. Differences between BCB and PA-n polishing in such slurries are explained based on a phenomenological model. Adhesion of blanket Cu films on BCB was improved by using a thin layer of co-sputtered carbon doped Cu (Cu-C). The Cu-C resistivity ranges from 3.0 to 3.5 muOmega-cm and is dependent on polymer substrate and deposition conditions, which is related to the C distribution by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The etch mask removal during processing modifies the BCB surface mechanically and chemically, improving Cu adhesion so that CMP is feasible. The effects of plasma etching on BCB are investigated and related to observed improved Cu adhesion. Electrical characterization of Cu/BCB interfaces shows Cu diffusion does not occur (a) at temperatures of up to 200sp°C with electric fields of 1 MV/cm after 30 minutes and (b) upon annealing at 300sp°C for up to 90 minutes, although an initial polymer adjustment took place during the first thermal cycle. Leakage current spiking was suppressed with the Cu-C layer

  18. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  19. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes.

    Science.gov (United States)

    Park, Sanghoon; Kim, Yura; Jung, Hyosub; Park, Jun-Young; Lee, Naesung; Seo, Yongho

    2017-12-11

    In this study, we investigated an energy harvesting effect of tensile stress using piezoelectric polymers and flexible electrodes. A chemical-vapor-deposition grown graphene film was transferred onto both sides of the PVDF and P(VDF-TrFE) films simultaneously by means of a conventional wet chemical method. Output voltage induced by sound waves was measured and analyzed when a mechanical tension was applied to the device. Another energy harvester was made with a metallic electrode, where Al and Ag were deposited by using an electron-beam evaporator. When acoustic vibrations (105 dB) were applied to the graphene/PVDF/graphene device, an induced voltage of 7.6 V pp was measured with a tensile stress of 1.75 MPa, and this was increased up to 9.1 V pp with a stress of 2.18 MPa for the metal/P(VDF-TrFE)/metal device. The 9 metal/PVDF/metal layers were stacked as an energy harvester, and tension was applied by using springs. Also, we fabricated a full-wave rectifying circuit to store the electrical energy in a 100 μF capacitor, and external vibration generated the electrical charges. As a result, the stored voltage at the capacitor, obtained from the harvester via a bridge diode rectifier, was saturated to ~7.04 V after 180 s charging time.

  20. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan4201@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Ma, Yu-Lu [School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Lv, Guo-ling [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China)

    2017-05-15

    Utilizing the lactic acid derivatives (R)-4-(1-carboxyethoxy)benzoic acid (denoted: (R)-H{sub 2}CBA) and (S)-4-(1-carboxyethoxy)benzoic acid (denoted: (S)-H{sub 2}CBA)as chiral linkers to self-assemble with 4, 4′-bipyridine (denoted: BIP) and Cd(II) ions, a couple of three-dimensional homochiral coordination polymers, namely [Cd{sub 3}((R)-CBA){sub 3} (BIP){sub 2}(H{sub 2}O)]·xGuest (1-D) and [Cd{sub 3}((S)-CBA){sub 3}(BIP){sub 2}(H{sub 2}O)]·xGuest (1-L), have been synthesized under solvothermal reaction condition. Single crystal X-ray diffraction analysis reveals the two complexes contain single helical chains based on enantiopure ligands and cadmium clusters. Moreover, some physical characteristics such as PXRD, thermal stability, solid-state circular dichroism (CD) and luminescent were also investigated. - Graphical abstract: Utilizing enantiomeric lactic acid derivatives (R)-H{sub 2}CBA and (S)-H{sub 2}CBA to assemble with Cd{sup 2+} ions and ancillary BIP ligands, a couple of 3D homochiral coordination polymers with metal clusters and helical chains have been prepared by hydrothermal reaction. - Highlights: • Chiral lactic acid derivative. • Enantiomeric coordination polymer. • Helical chain. • Trinuclear cadmium cluster.

  1. A study of water electrolysis using ionic polymer-metal composite for solar energy storage

    Science.gov (United States)

    Keow, Alicia; Chen, Zheng

    2017-04-01

    Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.

  2. Programming Feature Size in the Thermal Wrinkling of Metal Polymer Bilayer by Modulating Substrate Viscoelasticity.

    Science.gov (United States)

    Das, Anuja; Banerji, Aditya; Mukherjee, Rabibrata

    2017-07-12

    We report a novel strategy for creating stress-induced self-organized wrinkles in a metal polymer bilayer with programmable periodicity (λ S ) varying over a wide range, from ∼20 μm down to ∼800 nm by modulating the viscoelasticity of the bottom polymer layer. Substrates with different viscoelasticity are prepared by precuring thin films of a thermo-curable poly dimethylsiloxane (PDMS) elastomer (Sylgard 184) for different durations (t P ) prior to deposition of the top aluminum layer by thermal evaporation. Precuring of the Sylgard 184 film for different durations leads to films with different degrees of viscoelasticity due to variation in the extent of cross-linking of the polymer matrix. The λ S as well as the amplitude (a S ) of the wrinkles progressively decrease with an increase in the extent of elasticity of the film, manifested as an increase in the storage modulus (G'). Based on the variation in the rate of decay of λ S with G', we identify three clearly distinguishable regimes over predominantly viscous, viscoelastic, and elastic bottom layers. While λ S and a S drop with an increase in G' for both the first and the third regimes, it remains nearly independent of G' for the intermediate regime. This is attributed to the difference in the mechanisms of wrinkle formation in the different regimes. We finally show that simultaneous modulation of λ S and a S can be used to engineer surfaces with different wettability as well as anti-reflection properties.

  3. A nonlinear scalable model for designing ionic polymer-metal composite actuator systems

    Science.gov (United States)

    McDaid, A. J.; Aw, K. C.; Hämmerle, E.; Xie, S. Q.

    2009-07-01

    This paper proposes a conclusive scalable model for Ionic Polymer Metal Composites (IPMC) actuators and their interactions with mechanical systems and external loads. This dynamic, nonlinear model accurately predicts the displacement and force actuation in air for a large range of input voltages. The model addresses all the requirements of a useful design tool for IPMC actuators and is intended for robotic and bio-mimetic (artificial muscle) applications which operate at low frequencies. The response of the IPMC is modeled in three stages, (i) a nonlinear equivalent electrical circuit to predict the current drawn, (ii) an electro-mechanical coupling term, representing the conversion of ion flux to a stress generated in the polymer membrane and (iii) a mechanical beam model which includes an electrically induced torque for the polymer. Mechanical outputs are in the rotational coordinate system, 'tip angle' and 'torque output', to give more practical results for the design and simulation of mechanisms. Model parameters are obtained using the dynamic time response and results are presented demonstrating excellent correspondence between the model and experimental results. This newly developed model is a large step forward, aiding in the progression of IPMCs towards wide acceptance as replacements to traditional actuators.

  4. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  5. Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element

    Directory of Open Access Journals (Sweden)

    Riccardo Caponetto

    2013-01-01

    Full Text Available Ionic polymer metal composites (IPMCs are electroactive materials made of ionic polymer thin membranes with platinum metallization on their surfaces. They are interesting materials due to not only their electromechanical applications as transducers but also to their electrochemical features and the relationship between the ionic/solvent current and the potential field. Their electrochemical properties thus suggest the possibility for exploiting them as compact fractional-order elements (FOEs with a view of defining fabrication processes and production strategies that assure the desired performances. In this paper, the experimental electrical characterization of a brand new IPMC setup in a fixed sandwich configuration is proposed. Two IPMC devices with different platinum absorption times (5 h and 20 h are characterized through experimental data: first, a preliminary linearity study is performed for a fixed input voltage amplitude in order to determine the frequency region where IPMC can be approximated as linear; then, a frequency analysis is carried out in order to identify a coherent fractional-order dynamics in the bode diagrams. Such analyses take the first steps towards a simplified model of IPMC as a compact electronic FOE for which the fractional exponent value depends on fabrication parameters as the absorption time.

  6. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Coordination Polymers and Metal Organic Frameworks Derived from 1,2,4-Triazole Amino Acid Linkers

    Directory of Open Access Journals (Sweden)

    Yann Garcia

    2011-10-01

    Full Text Available The perceptible appearance of biomolecules as prospective building blocks in the architecture of coordination polymers (CPs and metal-organic frameworks (MOFs are redolent of their inclusion in the synthon/tecton library of reticular chemistry. In this frame, for the first time a synthetic strategy has been established for amine derivatization in amino acids into 1,2,4-triazoles. A set of novel 1,2,4-triazole derivatized amino acids were introduced as superlative precursors in the design of 1D coordination polymers, 2D chiral helicates and 3D metal-organic frameworks. Applications associated with these compounds are diverse and include gas adsorption-porosity partitioning, soft sacrificial matrix for morphology and phase selective cadmium oxide synthesis, FeII spin crossover materials, zinc-b-lactamases inhibitors, logistics for generation of chiral/non-centrosymmetric networks; and thus led to a foundation of a new family of functional CPs and MOFs that are reviewed in this invited contribution.

  8. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  9. Catalyst System for Hydrogenation Catalysis Based on Multiarm Hyperbranched Polymer Templated Metal (Au, Pt, Pd, Cu Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunfeng Shi

    2017-09-01

    Full Text Available With a hyperbranched poly(amidoamine core and many water-soluble poly(ethylene glycol monomethyl ether arms connected by pH-sensitive acylhydrazone bonds, multiarm hyperbranched polymer was used as nanoreactor and reductant to prepare metal nanoparticles endowed with intelligence and biocompatibility. The multiarm hyperbranched polymer encapsulated nanoparticles (NPs showed excellent catalytic activity for hydrogenation, thus an excellent catalyst system for hydrogenation was established. The rate constants could reach as high as 3.48 L·s−1·m−2, which can be attributed to the lack of surface passivation afforded by the multiarm hyperbranched polymer.

  10. Microfabrication of air core power inductors with metal-encapsulated polymer vias

    International Nuclear Information System (INIS)

    Kim, Jungkwun; Herrault, Florian; Yu, Xuehong; Kim, Minsoo; Shafer, Richard H; Allen, Mark G

    2013-01-01

    This paper reports three-dimensional (3-D) microfabricated toroidal inductors intended for power electronics applications. A key fabrication advance is the exploitation of thick metal encapsulation of polymer pillars to form a vertical via interconnections. The radial conductors of the toroidal inductor are formed by conventional plating-through-mold techniques, while the vertical windings (up to 650 µm in height) are formed by polymer cores with metal plated on their external surfaces. This encapsulated polymer approach not only significantly reduces the required plating time but also exploits the relative ease of fabricating high-aspect-ratio SU-8 pillars. To form the top radial conductors, non-photopatternable SU-8 is introduced as a thick sacrificial layer. Two toroidal inductor geometries were fabricated and tested. The first inductor had an inner diameter of 2 mm, an outer diameter of 6 mm, 25 turns and a vertical via height of 650 µm. The second inductor had an inner diameter of 4 mm, an outer diameter of 8 mm, 50 turns and a vertical via height of 650 µm. Both inductor geometries were successfully fabricated and characterized in the frequency range of 0.1−100 MHz. Characterization results of the 25- and 50-turn inductors showed an average inductance of 76 and 200 nH, a low frequency (0.1 MHz) resistance of 0.2 and 1 Ω and a quality factor of 35 and 24 at 100 MHz, respectively. Finite-element simulations of the inductors were performed and agreed with the measured results to within 8%. The turn-to-turn breakdown voltage was measured to be in excess of 800 V and currents as high as 0.5 A could be successfully carried by the inductor windings. (paper)

  11. Polymer monoliths with chelating functionalities for solid phase extraction of metal ions from water.

    Science.gov (United States)

    Wang, Hongxia; Zhang, Haiyang; Lv, Yongqin; Svec, Frantisek; Tan, Tianwei

    2014-05-23

    Simple devices for the adsorption and preconcentration of metal ions comprising various monolithic polymers have been prepared by in situ polymerization within the 5.5cm long and 5.6mm i.d. polypropylene syringes. Poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was modified with ethylenediamine to obtain the chelating material. The poly(butyl methacrylate-co-ethylene dimethacrylate) and poly(lauryl methacrylate-co-ethylene dimethacrylate) monoliths were first photografted with glycidyl methacrylate prior to functionalization with ethylenediamine. Alternatively, other chelating functionalities including poly(ethylene imines) varying in molecular weight and shape (linear and branched) as well as lysozyme were also attached to the monolithic supports. We found that the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith functionalized with ethylenediamine exhibited the best chelating properties characterized with rapid adsorption and a capacity of 111.2mg/g (537μmol/g) for Pb(2+), 38.1mg/g (649μmol/g) for Ni(2+), 69.9mg/g (1100μmol/g) for Cu(2+), and 188.9mg/g (3633μmol/g) for Cr(3+). The very fast desorption was then achieved using 1.0mol/L HNO3 as the eluent. An enrichment factor of 300 was observed for metal ions adsorbed from solutions containing 2ppb of the metal. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Novel application of a Fe-Zn double-metal cyanide catalyst in the synthesis of biodegradable, hyperbranched polymers.

    Science.gov (United States)

    Sebastian, Joby; Srinivas, Darbha

    2011-10-07

    The use of Fe-Zn double-metal cyanide as a solid catalyst for synthesizing biodegradable, hyperbranched polymers from diacids and glycerol has been reported, for the first time, wherein acidity, micro-mesoporosity and hydrophobicity of the catalyst played an important role in controlling gelation. This journal is © The Royal Society of Chemistry 2011

  13. Chiral-Selective Formation of 1D Polymers Based on Ullmann-Type Coupling : The Role of the Metallic Substrate

    NARCIS (Netherlands)

    Pham, Tuan Anh; Tran, Van Bay; Nguyen, Manh-Thuong; Stöhr, Meike

    2017-01-01

    The chiral-selective formation of 1D polymers from a prochiral molecule, namely, 6,12-dibromochrysene in dependence of the type of metal surface is demonstrated by a combined scanning tunneling microscopy and density functional theory study. Deposition of the chosen molecule on Au(111) held at room

  14. 21 CFR 888.3353 - Hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... cemented or nonporous uncemented prosthesis. 888.3353 Section 888.3353 Food and Drugs FOOD AND DRUG... prosthesis. (a) Identification. A hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis is a device intended to be implanted to replace a hip joint. This device limits...

  15. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Hyvrard, François; Borrini, Julien [SARPI VEOLIA, Direction Technique et Innovations, Zone portuaire de Limay-Porcheville, 427 route du Hazay, 78520 Limay (France); Carboni, Michaël, E-mail: michael.carboni@cea.fr [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Meyer, Daniel [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2016-11-05

    Highlights: • Original waste disposal strategies for battery. • Precipitation of metals as coordination polymers. • Organo-phosphonate coordination polymers. • Selective extraction of manganese or co-precipitation of manganese/cobalt. • The recycling process give a promising application on any waste solution. - Abstract: An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution.

  16. From electrochemical biosensors to biomimetic sensors based on molecularly imprinted polymers in environmental determination of heavy metals

    Science.gov (United States)

    Malitesta, Cosimino; Di Masi, Sabrina; Mazzotta, Elisabetta

    2017-07-01

    Recent work relevant to heavy metal determination by inhibition-enzyme electrochemical biosensors and by selected biomimetic sensors based on molecularly imprinted polymers has been reviewed. General features and peculiar aspects have been evidenced. The replace of biological component by artificial receptors promises higher selectivity and stability, while biosensors keep their capability of producing an integrated response directly related to toxicity of the samples.

  17. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Sardan Sukas, Ö.; Bayraktar, Muharrem; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  18. Influence of implantation of three metallic ions on the mechanical properties of two polymers

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.V. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Perry, A.J. [Australian National Univ., Canberra, ACT (Australia); Treglio, J.R.

    1996-12-31

    Ion implantation of poly ethylene terephthalate (PET) and polystyrene (PS) with various high energy metallic ions at 70 kV to dose of 3 x 10{sup 16} ions/cm 2 have been made. Measurements of the mechanical properties of the polymers before and after implantation have been made with an ultra microindentation system using both pointed and a small (2 nm) radiused spherical tipped indenter. Significant differences have been observed between the Ti-B dual implanted surfaces and those of the Au and W implanted surfaces. For both the PET and PS the resistance to indenter penetration at very low loads was much greater for the Ti-B dual implanted surfaces. The estimated hardness and modulus versus depth of penetration for both indenters shows that the spherical indenter produces more consistent and less controversial values that are somewhat lower than the optimistic estimates from pointed indenters. 8 refs., 2 fig.

  19. Metal arsonate polymers of Cd, Zn, Ag and Pb supported by 4-aminophenylarsonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lesikar-Parrish, Leslie A.; Neilson, Robert H. [Department of Chemistry, Texas Christian University, Box 298860, Fort Worth, TX 76129 (United States); Richards, Anne F., E-mail: a.richards@latrobe.edu.au [Department of Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria 3086 (Australia)

    2013-02-15

    The coordination preferences of 4-aminophenylarsonic acid, 4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H{sub 2}, (p-arsanilic acid) with CdCl{sub 2}{center_dot}2.5H{sub 2}O, ZnCl{sub 2}, Ag(SO{sub 3}CF{sub 3}) and Pb(NO{sub 3}){sub 2} have been investigated affording five new metal arsonate polymers. The reaction between 4-aminophenylarsonic acid and CdCl{sub 2}{center_dot}2.5H{sub 2}O resulted in a one-dimensional polymer, [{l_brace}Cd(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3}H)(Cl){sub 2}{r_brace}(H{sub 2}O){sub 2}]{sub n}, 1, in which the polymeric chain is propagated by bridging chlorides. Exchange of CdCl{sub 2} for ZnCl{sub 2} afforded [{l_brace}Zn{sub 2}(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3})(Cl){sub 2}{r_brace}(H{sub 2}O){sub 2}(Cl)]{sub n}, 2, featuring interlinked 6- and 8-membered [Zn-O-As] ring systems. The reaction of Ag(SO{sub 3}CF{sub 3}) with 4-aminophenylarsonic acid, afforded polymeric 3, [Ag(4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H)(4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H{sub 2})]{sub n} where coordination of the amino group to the silver center is observed and [{l_brace}Ag{sub 2}(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3}H)(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3})({mu}2-SO{sub 3}CF{sub 3}){sub 2}{r_brace}(SO{sub 3}CF{sub 3}){sub 2}]{sub n}, 4. By comparison, the reaction of p-arsanilic acid with Pb(NO{sub 3}){sub 2} yielded a polymeric chain [Pb(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3}H)(NO{sub 3}){sub 2}]{sub n}, 5 of similar topology to 1. The structures of 1-5 have been indiscriminately characterized by single crystal X-ray diffraction and their composition supported by relevant spectroscopic techniques. A comparison of the structural features of these polymers is used to determine the coordination preference of the ligand and factors influencing structural motifs, for example, the role of the anion. - Graphical abstract: The reaction of 4-aminophenylarsonic acid, 4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H{sub 2}, with cadmium, zinc, silver, and lead have resulted in

  20. Surface Plasmon Resonance Sensor Based on Polymer Photonic Crystal Fibers with Metal Nanolayers

    Directory of Open Access Journals (Sweden)

    Jian-Quan Yao

    2013-01-01

    Full Text Available A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale metal film and analyte can be deposited on the outer side of the fiber instead of coating or filling in the holes of the conventional PCF, which make the real time detection with high sensitivity easily to realize. Moreover, it is relatively stable to changes of the amount and the diameter of air holes, which is very beneficial for sensor fabrication and sensing applications. Numerical simulation results show that under the conditions of the similar spectral and intensity sensitivity of 8.3 × 10−5–9.4 × 10−5 RIU, the confinement loss can be increased dramatically.

  1. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  2. A shape-recovery polymer coating for the corrosion protection of metallic surfaces.

    Science.gov (United States)

    Lutz, Alexander; van den Berg, Otto; Van Damme, Jonas; Verheyen, Karen; Bauters, Erwin; De Graeve, Iris; Du Prez, Filip E; Terryn, Herman

    2015-01-14

    Self-healing polymer coatings are a type of smart material aimed for advanced corrosion protection of metals. This paper presents the synthesis and characterization of two new UV-cure self-healing coatings based on acrylated polycaprolactone polyurethanes. On a macroscopic scale, the cured films all show outstanding mechanical properties, combining relatively high Young's modulus of up to 270 MPa with a strain at break above 350%. After thermal activation the strained films recover up to 97% of their original length. Optical and electron microscopy reveals the self-healing properties of these coatings on hot dip galvanized steel with scratches and microindentations. The temperature-induced closing of such defects restores the corrosion protection and barrier properties of the coating as shown by electrochemical impedance spectroscopy and scanning vibrating electrode technique. Therefore, such coatings are a complementary option for encapsulation-based autonomous corrosion protection systems.

  3. A one-step approach for the fabrication of polymer and metal nanowires

    International Nuclear Information System (INIS)

    Gu Hongyan; Zhu Shiping

    2011-01-01

    The fabrication of one-dimensional (1D) polymer and metal nanowires were obtained in a one-step mechanical approach. This approach is based on a controlled chattering process at the cutting edge of an oscillating diamond knife to conduct wavy cutting. Consecutive shallow wavy cuttings at different phases yield uniform ultra-long nanowire products with controlled lateral dimensions in the range of sub-100 nanometers to micrometers. The morphologies and lateral dimensions of the nanowires can be tuned through phase alignment, cutting depth and cutting speed, as demonstrated in this paper through examples of its application to polymethyl methacrylate, aluminum and copper. This facile one-step 'cutting-edge' method is robust, clean, involves no chemicals, and can be readily scaled up with precision machining for long-range and large-area fabrications.

  4. Flexible polymer solar cells based on Ag metallic grids and functional reduced graphene oxide composite electrode

    Science.gov (United States)

    Zheng, Qiao; Cheng, Shuying; Jia, Hongjie; Zhang, Hong; Liu, Si; Lai, Yunfeng; Yu, Jinling; Zhou, Haifang

    2017-10-01

    By combining the appropriate Ag metallic grids with a thin functional reduced graphene oxide (MGs/F-rGO) film, a suitable photoelectric flexible electrode of the polymer solar cells (PSCs) is obtained. The conductivity and transmission of the MGs/F-rGO composited films can be improved by HNO3 modified. The optimized sheet resistance and transmission of the flexible electrode achieve to 25 Ω □-1 and 83% at 550 nm wavelength. Flexible PSCs with the MGs/F-rGO electrode show 5.63% power conversion efficiency. The photoelectric properties of the MGs/F-rGO film comparable with that of ITO substrates guarantee a high short current and an enhanced PCE of the solar cells. This method provides a feasible way for fabricating low-cost and flexible PSCs.

  5. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Yeom, Sung-Weon; Oh, Il-Kwon

    2009-01-01

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  6. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  7. Active disturbance rejection control for output force creep characteristics of ionic polymer metal composites

    Science.gov (United States)

    Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie

    2014-07-01

    Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.

  8. An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Yi-Chen Lin

    2014-01-01

    Full Text Available In this paper, a new application of an electro-active-polymer for a radio frequency (RF switch is presented. We used an ionic polymer metallic composite (IPMC switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than −10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO4 was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  9. Radiation induced synthesis of conducting polymers and their metal nano-composites

    International Nuclear Information System (INIS)

    Cui, Zhenpeng

    2017-01-01

    The aim of the present work is to demonstrate the versatility of the gamma (γ)-rays based radiolytic method and to extend our methodology to the synthesis of various conducting polymers (CPs) in water in different experimental conditions. Poly(3,4-ethylenedioxy-thiophene) (PEDOT) and poly-pyrrole (PPy) conjugated polymers were successfully prepared and characterized in solution and after deposition by complementary spectroscopic and microscopic techniques. Also their thermal stability and their electrical conductivity were studied and compared with those of CPs prepared by conventional methods. The influence of the nature of radiation-induced oxidizing radicals, of the ionic strength, of the medium, of the pH, of the presence of surfactant-based soft templates on the growth mechanism, on the efficiency of polymerization, on the morphology of the obtained CPs as well as on their absorption and conducting properties was checked. Also, the radiolytic method was extend to the synthesis of CPs/noble metal nano-composites. Different preparation methodologies were developed based on two-step method and one-pot method, by using oxidation route or reduction route. Our new radiolytic strategy described and extended in this manuscript opens the way for the preparation of different kinds of CPs and CPs nano-composites not only in aqueous solutions but also in various environments foreshadowing many promising applications.. (author)

  10. Quantitative texture analysis of metal sheets and polymer foils by neutron diffraction

    Science.gov (United States)

    Vratislav, Stanislav; Dlouhá, Maja; Kalvoda, Ladislav; Grishin, Alexander

    2006-11-01

    Experimental and calculation techniques for quantitative texture analysis based on the ODF combined with the diffraction of thermal neutrons were developed and tested. In our work the texture of the oriented steel sheets was investigated after different stages of their processing. The texture experiments were carried out on the KSN-2 diffractometer (installed by the LVR-15 reactor in Rez near Prague) which is equipped with the TG-1 texture goniometer-supplied automatic data collection for transmission and reflection geometry. The TODF-N package was used and the ODF values were obtained together with all texture characteristics. Although most of our texture studies performed until recently concentrated on metallic materials, now we have extended research field to texture investigation of semi-crystalline polymer materials (rigid PVC foils) finding an extensive industrial application. Results achieved in our study confirm that the quantitative texture analysis in connection with neutron diffraction can help to improve the technology of the preparation of oriented magnetic steel sheets and to determine the final functional properties of polymer foils.

  11. Synthesis of f metal coordination polymers: properties and conversion into inorganic solids

    International Nuclear Information System (INIS)

    Demars, Thomas

    2012-01-01

    Coordination polymers (CP) are of great academic and industrial interest due to flexible structure and composition and offer prospects for original chemical (catalysis, soft-hard materials conversion..) and physical properties (magnetism, optics..). The major interest of these studies is to check the transfer of the structure, meso-structure and composition from the CP to the ceramic via a thermal treatment. In this context, this thesis describes studies on conversion of coordination polymers obtained by self-assembly of 4f and 5f metal ions with 2,5-dihydroxy-1,4-benzoquinone (DHBQ). Aqueous and anhydrous synthetic ways were developed, which yielded different kinds of CPs (4f, 4f-4f, 4f-5f); solid solutions were obtained with the mixed compounds. The products were characterized and their behaviour under thermal treatment was studied. The main results show that the DHBQ-based precursors obtained by aqueous way have a micrometric meso-structure, formed by the assembly of micro-crystalline subunits which all posses the same crystallographic structure. The study of the assembly of the meso-structure allowed controlling the morphology of the elementary grain (cylinder, cube, disk...) with very good size distribution. The implementation of anhydrous systems in a controlled atmosphere allowed yielded a wider range of micro-structural parameters (surface area, porosity...). For all CP-type compounds, the thermal conversion to ceramic has barely altered the morphology of the materials. The microstructural aspects could be controlled via the method of synthesis. (author) [fr

  12. Metal-Free, Multicomponent Synthesis of Pyrrole-Based π-Conjugated Polymers from Imines, Acid Chlorides, and Alkynes.

    Science.gov (United States)

    Kayser, Laure V; Vollmer, Moritz; Welnhofer, Merve; Krikcziokat, Hanna; Meerholz, Klaus; Arndtsen, Bruce A

    2016-08-24

    Multicomponent coupling reactions (MCRs) are becoming increasingly used in the synthesis of macromolecules, as they can allow the rapid generation of libraries of materials as a method to tune properties. MCRs could prove particularly useful in the synthesis of π-conjugated polymers in which structural changes are necessary for fine-tuning of electronic properties. We describe here the first metal-free multicomponent approach to conjugated polymers. This reaction exploits the coupling of imines, acid chlorides, and (catechyl)PPh to generate phospha-münchnone-containing polymers, which can be converted to poly(pyrroles) via cycloaddition. The platform allows for the efficient synthesis of families of high molecular weight polymers in one step from readily available monomers.

  13. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rujisamphan, Nopporn [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Murray, Roy E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Deng, Fei [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Supasai, Thidarat, E-mail: fscitrs@ku.ac.th [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-04-15

    Graphical abstract: - Highlights: • The well-controlled Ti–PTFE composite films were prepared by co-sputtering. • Ti clusters showed particle sizes varied between 10 and 30 nm in the PTFE matrix. • The swelling of polymer is the driving force to change interparticle distance and therefore a change in resistance. • The sensitivities of the Ti–PTFE devices were found to be in a range of 1.01–1.04. - Abstract: Titanium and polytetrafluoroethylene (Ti–PTFE) nanocomposite thin films were successfully fabricated on glass substrates using a combination of dc and rf magnetron sputtering. When the Ti–PTFE composites were prepared at below the percolation threshold i.e. 27% metal volume filling (F), Ti clusters with the average sizes of 7 ± 2 nm were found. As the Ti content was increased above the percolation threshold (F = 62%), the connecting regions of Ti were formed within the polymer matrix and the electrical property changed rapidly from insulator-like to metal-like properties. The Ti–PTFE composites prepared near the percolation threshold showed the electrical response to different volatile organic compounds (VOCs). The sensitivity significantly depended upon the VOCs concentrations. These composites devices showed the presence of distinct chemical bonds of C−C, C−CF, C−F and CF{sub 2} and TiF in TiO{sub 2} on the surface as investigated by X-ray photoelectron spectroscopy (XPS) while the surface morphology, characterized by atomic force microscopy (AFM) presented the root mean square (RMS) surface roughness of 13.3 nm. Cross-section transmission electron microscopy (TEM) images of the device revealed Ti clusters dispersed in PTFE matrix with particle sizes varied between 10 nm and 30 nm.

  14. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  15. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  16. Electrical and thermal conductivities of novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Min-Chien; Liao, Shu-Hang; Yen, Ming-Yu.; Ma, Chen-Chi M. [Department of Chemical Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsin-Chu 30043 (China); Lee, Shuo-Jen; Chen, Yung-Hung [Fuel Cell Center, Yuan Ze University, Tao-Yuan 32003 (China); Hung, Chih-Hung [Plastics Industry Development Center, Tai-Chung 40768 (China); Lin, Yu-Feng [Chemicals and Chemical Engineering, Chung Shan Institute of Science and Technology, Taoyuan 325 (China); Xie, Xiao-Feng [Institute of Nuclear and New Energy technology, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    This study prepares novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells (PEMFCs) via inserting a copper or aluminum mesh in polymer composites. The composition of polymer composites consists of 70 wt% graphite powder and 0-2 wt% modified multi-walled carbon nanotubes (m-MWCNTs). Results indicate that the in-plane electrical conductivity of m-MWCNTs/polymer composite bipolar plates increased from 156 S cm{sup -1} (0 wt% MWCNT) to 643 S cm{sup -1} (with 1 wt% MWCNT) (D.O.E. target >100 S cm{sup -1}). The bulk thermal conductivities of the copper and aluminum mesh hybrid polymer composite bipolar plates (abbreviated to Cu-HPBP and Al-HPBP) increase from 27.2 W m{sup -1} K{sup -1} to 30.0 W m{sup -1} K{sup -1} and 30.4 W m{sup -1} K{sup -1}, respectively. The through-plane conductivities decrease from 37.8 S cm{sup -1} to 36.7 S cm{sup -1} for Cu-HPBP and 22.9 S cm{sup -1} for Al-HPBP. Furthermore, the current and power densities of a single fuel cell using copper or aluminum mesh hybrid polymer composite bipolar plates are more stable than that of using neat polymer composite bipolar plates, especially in the ohmic overpotential region of the polarization curves of single fuel cell tests. The overall performance confirms that the metal mesh hybrid polymer composite bipolar plates prepared in this study are promising for PEMFC application. (author)

  17. The effective method based on IR annealing for manufacturing novel carbon nanocrystalline material and multifunctional metal-polymer nanocomposites

    Science.gov (United States)

    Kozhitov, L. V.; Kozlov, V. V.; Kostishyn, V. G.; Morchenko, A. T.; Muratov, D. G.

    2009-09-01

    Metal-containing polymeric nanomaterials were prepared by the two methods: infrared-irradiation pyrolysis and metals reduction from their salts in hydrazine on substrates. The composite consist of polymer matrix with 3d-metal nanoparticles. The structure and morphology of nanocomposites were investigated for the powder samples using X-ray diffraction, scanning and transmission electron microscopy, and Mössbauer spectroscopy (MS). It is shown that technology of preparing the nanocomposite under IR-irradiation is more effective than a thermal treatment under resistance-type heating, as the synergetic effect of influencing IR-radiation and heat leads to faster polymer transformations. The results of MS data comparison for the samples prepared by IR-radiation-stimulated pyrolysis and by means of salt reduction in hydrazine are discussed.

  18. Parylene C-on-photoresist (POP): a low temperature spacer scheme for polymer/metal nanowire fabrication

    International Nuclear Information System (INIS)

    Li, Yuanhui; Xie, Quan; Wang, Wei; Zhang, Hao; Lei, Yinhua; Zhang, Haixia Alice; Wu, Wengang; Li, Zhihong; Zheng, Mingxin

    2011-01-01

    This work introduced a novel spacer scheme for polymer/metal nanowire preparation by combining Parylene C and photoresist (Parylene C on photoresist, POP, process), both of which possess a low temperature fabrication essence. Adhesion between the Parylene C and the substrate with photoresist onside was improved by introducing a modified silanization pretreatment. Parylene C filled in an undercut generated by regular lithography on a dual-layered photoresist was left as nanometer-sized residues after an isotropic oxygen plasma etching. Parylene C nanowires with the minimal width down to 200 nm were successfully obtained by this POP-based spacer technique, and were then utilized as the etching mask for ion milling of the metal films beneath to realize corresponding chromium/gold nanowires. The present POP scheme will expand the application of the spacer technique in polymer/metal nanowire fabrication for integrated micro/nanoelectromechanical systems. (technical note)

  19. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    International Nuclear Information System (INIS)

    Gniadek, Marianna; Donten, Mikolaj; Stojek, Zbigniew

    2010-01-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag + oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  20. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gniadek, Marianna [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Donten, Mikolaj, E-mail: donten@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Stojek, Zbigniew, E-mail: stojek@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland)

    2010-11-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag{sup +} oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  1. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.

    Science.gov (United States)

    Cha, Youngsu; Porfiri, Maurizio

    2013-02-01

    In this paper, we analyze the charge dynamics of ionic polymer-metal composites (IPMCs) in response to voltage inputs composed of a large dc bias and a small superimposed time-varying voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-Planck framework, in which steric effects are taken into consideration. The physics of charge build-up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from the metal electrodes by two composite layers. The method of matched asymptotic expansions is used to derive a semianalytical solution for the concentration of mobile counterions and the electric potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC electrical response. The circuit model consists of the series connection of a resistor and two complex elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The resistor is associated with ion transport in the ionomeric membrane and is independent of the dc bias. The capacitors and the Warburg impedance idealize charge build-up and mass transfer in the vicinity of the electrodes and their value is controlled by the dc bias. The proposed approach is validated against experimental results on in-house fabricated IPMCs and the accuracy of the equivalent circuit is assessed through comparison with finite element results.

  2. Metallic versus Semiconducting SWCNT Chemiresistors: A Case for Separated SWCNTs Wrapped by a Metallosupramolecular Polymer.

    Science.gov (United States)

    Ishihara, Shinsuke; O'Kelly, Curtis J; Tanaka, Takeshi; Kataura, Hiromichi; Labuta, Jan; Shingaya, Yoshitaka; Nakayama, Tomonobu; Ohsawa, Takeo; Nakanishi, Takashi; Swager, Timothy M

    2017-11-01

    As-synthesized single-walled carbon nanotubes (SWCNTs) are a mixture of metallic and semiconducting tubes, and separation is essential to improve the performances of SWCNT-based electric devices. Our chemical sensor monitors the conductivity of an SWCNT network, wherein each tube is wrapped by an insulating metallosupramolecular polymer (MSP). Vapors of strong electrophiles such as diethyl chlorophosphate (DECP), a nerve agent simulant, can trigger the disassembly of MSPs, resulting in conductive SWCNT pathways. Herein, we report that separated SWCNTs have a large impact on the sensitivity and selectivity of chemical sensors. Semiconducting SWCNT (S-SWCNT) sensors are the most sensitive to DECP (up to 10000% increase in conductivity). By contrast, the responses of metallic SWCNT (M-SWCNT) sensors were smaller but less susceptible to interfering signals. For saturated water vapor, increasing and decreasing conductivities were observed for S- and M-SWCNT sensors, respectively. Mixtures of M- and S-SWCNTs revealed reduced responses to saturated water vapor as a result of canceling effects. Our results reveal that S- and M-SWCNTs compensate sensitivity and selectivity, and the combined use of separated SWCNTs, either in arrays or in single sensors, offers advantages in sensing systems.

  3. Mechanical behavior of polymer-basedvs. metallic-based bioresorbable stents.

    Science.gov (United States)

    Ang, Hui Ying; Huang, Ying Ying; Lim, Soo Teik; Wong, Philip; Joner, Michael; Foin, Nicolas

    2017-08-01

    Bioresorbable scaffolds (BRS) were developed to overcome the drawbacks of current metallic drug-eluting stents (DES), such as late in-stent restenosis and caging of the vessel permanently. The concept of the BRS is to provide transient support to the vessel during healing before being degraded and resorbed by the body, freeing the vessel and restoring vasomotion. The mechanical properties of the BRS are influenced by the choice of the material and processing methods. Due to insufficient radial strength of the bioresorbable material, BRS often required large strut profile as compared to conventional metallic DES. Having thick struts will in turn affect the deliverability of the device and may cause flow disturbance, thereby increasing the incidence of acute thrombotic events. Currently, the bioresorbable poly-l-lactic acid (PLLA) polymer and magnesium (Mg) alloys are being investigated as materials in BRS technologies. The bioresorption process, mechanical properties, in vitro observations and clinical outcomes of PLLA-based and Mg-based BRS will be examined in this review.

  4. Two-Component Polymeric Materials of Fullerenes and the Transition Metal Complexes: A Bridge between Metal-Organic Frameworks and Conducting Polymers.

    Science.gov (United States)

    Balch, Alan L; Winkler, Krzysztof

    2016-03-23

    In this review, we examined the interactions of metal complexes and metal surfaces with fullerenes. That information has been related to the formation of redox-active materials produced by electrochemical reduction of solutions of various transition metal complexes and fullerene or fullerene adducts. These redox-active polymers are strongly bound to electrode surfaces and display electrochemical activity in solutions containing only supporting electrolyte. Extensive studies of the electrochemical behavior of these films have been used to characterize their properties and structure. The process that produces these poly-Pd(n)C60 and poly-Pt(n)C60 films can also produce composite materials that consist of metal nanoparticles interspersed with the poly-Pd(n)C60 and poly-Pt(n)C60 materials. The relationship between these redox-active films and conducting metal organic framework materials has been examined. These insoluble, redox-active polymers have potential utility for the adsorption of various gases, for the construction of capacitors, for sensing, for the preparation of metal-containing heterofullerenes, and for catalysis.

  5. Synthesis and Preliminary Characterization of a PPE-Type Polymer Containing Substituted Fullerenes and Transition Metal Ligation Sites

    Directory of Open Access Journals (Sweden)

    Corinne A. Basinger

    2015-01-01

    Full Text Available A substituted fullerene was incorporated into a PPE-conjugated polymer repeat unit. This subunit was then polymerized via Sonogashira coupling with other repeat units to create polymeric systems approaching 50 repeat units (based on GPC characterization. Bipyridine ligands were incorporated into some of these repeat units to provide sites for transition metal coordination. Photophysical characterization of the absorption and emission properties of these systems shows excited states located on both the fullerene and aromatic backbone of the polymers that exist in a thermally controlled equilibrium. Future work will explore other substituted polyaromatic systems using similar methodologies.

  6. Influence of metallic and semiconducting nanostructures on the optical properties of dye-doped polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.ro; Matei, E.

    2016-09-01

    Dye-doped polymer thin films were obtained by spin-coating of 8% polyvinylpyrrolidone (PVP) solutions (in ethanol). Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films (10{sup −4} M dye concentration). Optical and morphological properties of simple dye-doped polymer films and films containing metallic or semiconducting nanostructures were investigated. Optical microscopy and scanning electron microscopy were used to image the nanowires. The presence of Ni nanowires induces a small shift (2–3 nm) to longer wavelengths on the emission band of Rh 6G doped PVP film. The ZnO nanowires' presence was confirmed by X-ray diffraction measurements. An enhancement of the emission of the dye doped polymer is induced by the semiconducting structures. - Highlights: • Rhodamine 6G doped polyvinylpyrrolidone thin films were obtained by spin-coating. • Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films. • Ni nanowires' presence induces a shift to shorter wavelengths on the emission band. • Enhancement of dye-doped polymer emission induced by the semiconducting structures.

  7. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    polymer nanocompo- sites are used as advanced toner materials for high quality colour copiers and printers and as contrast agents in NMR analysis, memory devices. .... tions on polymer nanocomposite can thus pay rich dividends. Suggested Reading. [1] Metal-Polymer Nanocomposites Nicolais, Luigi(ed.) ; Carotenuto,.

  8. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    International Nuclear Information System (INIS)

    Mansoor, I; Liu, Y; Stoeber, B; Häfeli, U O

    2013-01-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres. (paper)

  9. Synthesis, Characterization and Some Properties of Chelating Polymers for Metal Ion Sorption

    International Nuclear Information System (INIS)

    Mohamed, A.S.A.

    2010-01-01

    Ion-exchange membranes have been prepared by radiation induced grafting using simultaneous technique based on low cost starting material and established process technologies. Methacrylic acid (MAA) and styrene (Sty) were selected as the grafted monomers to provide two different types of functional groups. Currently; there is much on going research for developing non fluorinated polymers with better performance and lower cost as alternative ion exchange membrane materials. The polymer chosen for this study is low density polyethylene (LDPE) film of two different thicknesses (40 and 70μm). The influence of grafting conditions, i.e. the effect of total irradiation dose and comonomer concentration and compositions have been investigated. These are important parameters in correlation with the grafting yield because they can markedly influence the composition of the resulting copolymer. Once grafted, the materials were readily sulfonated using concentrated sulfuric acid or chlorosulfonic acid in dichloroethane to produce a selection of graft copolymers with performer properties. The grafting and sulfonation of the membranes were confirmed by (FTIR) X-ray diffraction (XRD) and thermal analysis (TGA, DSC). The physicochemical properties of the prepared membranes such as, ion exchange capacity (IEC), equilibrium swelling and electrical conductivity of the grafted membranes and their derivatives were investigated as a function of composition and degree of grafting. The range of ion exchange capacities obtained with different degrees of grafting of MAA/Sty of composition (50/50) that sulfonated with sulfuric acid was in the range of 1.9-3.4 meq/g, whenever, for membranes that sulfonated with chlorosulfonic acid the IEC of 4.2 meq/g was achieved which is better than most of the commercially available membranes in addition to their low cost. The possibility of practicable use of membranes in various fields, such as the removal of some heavy metal ions is investigated.

  10. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators

    Science.gov (United States)

    Najem, Joseph; Sarles, Stephen A.; Akle, Barbar; Leo, Donald J.

    2012-09-01

    This paper presents the design, fabrication, and characterization of a biomimetic jellyfish robot that uses ionic polymer metal composites (IPMCs) as flexible actuators for propulsion. The shape and swimming style of this underwater vehicle are based on the Aequorea victoria jellyfish, which has an average swimming speed of 20 mm s-1 and which is known for its high swimming efficiency. The Aequorea victoria is chosen as a model system because both its bell morphology and kinematic properties match the mechanical properties of IPMC actuators. This medusa is characterized by its low swimming frequency, small bell deformation during the contraction phase, and high Froude efficiency. The critical components of the robot include the flexible bell that provides the overall shape and dimensions of the jellyfish, a central hub and a stage used to provide electrical connections and mechanical support to the actuators, eight distinct spars meant to keep the upper part of the bell stationary, and flexible IPMC actuators that extend radially from the central stage. The bell is fabricated from a commercially available heat-shrinkable polymer film to provide increased shape-holding ability and reduced weight. The IPMC actuators constructed for this study demonstrated peak-to-peak strains of ˜0.7% in water across a frequency range of 0.1-1.0 Hz. By tailoring the applied voltage waveform and the flexibility of the bell, the completed robotic jellyfish with four actuators swam at an average speed 0.77 mm s-1 and consumed 0.7 W. When eight actuators were used the average speed increased to 1.5 mm s-1 with a power consumption of 1.14 W.

  11. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Najem, Joseph; Leo, Donald J; Sarles, Stephen A; Akle, Barbar

    2012-01-01

    This paper presents the design, fabrication, and characterization of a biomimetic jellyfish robot that uses ionic polymer metal composites (IPMCs) as flexible actuators for propulsion. The shape and swimming style of this underwater vehicle are based on the Aequorea victoria jellyfish, which has an average swimming speed of 20 mm s −1 and which is known for its high swimming efficiency. The Aequorea victoria is chosen as a model system because both its bell morphology and kinematic properties match the mechanical properties of IPMC actuators. This medusa is characterized by its low swimming frequency, small bell deformation during the contraction phase, and high Froude efficiency. The critical components of the robot include the flexible bell that provides the overall shape and dimensions of the jellyfish, a central hub and a stage used to provide electrical connections and mechanical support to the actuators, eight distinct spars meant to keep the upper part of the bell stationary, and flexible IPMC actuators that extend radially from the central stage. The bell is fabricated from a commercially available heat-shrinkable polymer film to provide increased shape-holding ability and reduced weight. The IPMC actuators constructed for this study demonstrated peak-to-peak strains of ∼0.7% in water across a frequency range of 0.1–1.0 Hz. By tailoring the applied voltage waveform and the flexibility of the bell, the completed robotic jellyfish with four actuators swam at an average speed 0.77 mm s −1 and consumed 0.7 W. When eight actuators were used the average speed increased to 1.5 mm s −1 with a power consumption of 1.14 W. (paper)

  12. Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy).

    Science.gov (United States)

    Boutry, C M; Müller, M; Hierold, C

    2012-08-01

    The junctions between newly developed biodegradable conducting polymers (polylactide-polypyrrole PLLA-PPy and polycaprolactone-polypyrrole PCL-PPy) and metal electrodes (Au, Au/Cu, Ag, Ag/Cu, Cu, Cr/Au/Cu, Pd/Au/Cu, Pt/Au/Cu) were studied. The objective was to determine the composite/metal combination having the lowest possible contact resistance and ohmic characteristics. In a first step, different surface treatments, adhesion and metal layers were tested in order to evaluate the contact resistance. Then the current-voltage (IV) characteristics were measured and both ohmic and rectifying behaviour were observed depending on the polymer/metal junctions investigated. The surface treatments studied included an argon sputtering step and a grinding of the polymer surface with the objective of improving the contact between the metal electrode and the polymer. It was found that the most favourable conditions resulted from a process flow without argon sputtering, without grinding for PLLA-PPy and with a slight grinding for PCL-PPy. Moreover the most favourable metal electrodes for PLLA-PPy were Pd/Au/Cu, while the best compromise for PCL-PPy was to use Au/Cu. For the rectifying polymer/metal junctions, the standard thermionic emission model modified with a series resistance was successfully applied to the measured current-voltage IV characteristics. The saturation current density J0, series resistance R, ideality diode factor n and barrier height φB were investigated. The Chot functions were computed for each rectifying junction and the corresponding threshold voltages were calculated. Finally the conductivity of both composites was evaluated as a function of temperature in the range of 30 °C to 80 °C. For PLLA-PPy a decrease of the resistivity was observed when the temperature was increasing, while no clearly recognisable pattern was identified for PCL-PPy in this temperature range. The electrical conductivity of the PLLA-PPy samples was found to follow the empirical

  13. A procedure for calibration and validation of FE modelling of laser-assisted metal to polymer direct joining

    Science.gov (United States)

    Lambiase, F.; Genna, S.; Kant, R.

    2018-01-01

    The quality of the joints produced by means of Laser-Assisted Metal to Polymer direct joining (LAMP) is strongly influenced by the temperature field produced during the laser treatment. The main phenomena including the adhesion of the plastic to the metal sheet and the development of bubbles (on the plastic surface) depend on the temperature reached by the polymer at the interface. Such a temperature should be higher than the softening temperature, but lower than the degradation temperature of the polymer. However, the temperature distribution is difficult to be measured by experimental tests since the most polymers (which are transparent to the laser radiation) are often opaque to the infrared wavelength. Thus, infrared analysis involving pyrometers and infrared camera is not suitable for this purpose. On the other hand, thermocouples are difficult to be placed at the interface without influencing the temperature conditions. In this paper, an integrated approach involving both experimental measurements and a Finite Element (FE) model were used to perform such an analysis. LAMP of Polycarbonate and AISI304 stainless steel was performed by means of high power diode laser and the main process parameters i.e. laser power and scanning speed were varied. Comparing the experimental measurements and the FE model prediction of the thermal field, a good correspondence was achieved proving the suitability of the developed model and the proposed calibration procedure to be ready used for process design and optimization.

  14. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Science.gov (United States)

    Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning

    2014-01-01

    Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied. PMID:28788483

  15. From Electrochemical Biosensors to Biomimetic Sensors Based on Molecularly Imprinted Polymers in Environmental Determination of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cosimino Malitesta

    2017-07-01

    Full Text Available Recent work relevant to heavy metal determination by inhibition-enzyme electrochemical biosensors and by selected biomimetic sensors based on molecularly imprinted polymers has been reviewed. General features and peculiar aspects have been evidenced. The replace of biological component by artificial receptors promises higher selectivity and stability, while biosensors keep their capability of producing an integrated response directly related to biological toxicity of the samples.

  16. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Science.gov (United States)

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  17. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    Energy Technology Data Exchange (ETDEWEB)

    De, Souvik [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Nandasiri, Manjula I. [Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland WA 99352 USA; Schaef, Herbert T. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; McGrail, Benard Peter [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Nune, Satish K. [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Lutkenhaus, Jodie L. [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Department of Materials Science & Engineering, Texas A& M University, 3122 TAMU College Station TX 77843-3122 USA

    2016-12-27

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to be coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.

  18. A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior

    Science.gov (United States)

    Ru, Jie; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Bian, Changsheng; Luo, Bin; Li, Dichen

    2018-02-01

    Ionic polymer-metal composite (IPMC) actuator can generate large and rapid deformation based on ion migration under a relatively low driving voltage. Under full hydrated conditions, the deformation is always prone to relaxation. At room humidity conditions, the deformation increases substantially at the early stage of actuation, and then decreases gradually. Generally, most researchers considered that the change of water content or relative humidity mainly leads to the deformation instabilities, which severely limits the practical applications of IPMC. In this Letter, a novel actuation mode is proposed to control the deformation behavior of IPMC by employing moisture as an independent or collaborative incentive source together with the electric field. The deformation response is continuously measured under electric field, electric field-moisture coupling stimulus and moisture stimulus. The result shows that moisture can be a favorable driving factor for IPMC actuation. Such an electric field-moisture coupling stimulus can avoid the occurrence of deformation instabilities and guarantee a superior controllable deformation in IPMC actuation. This research provides a new method to obtain stable and large deformation of IPMC, which is of great significance for the guidance of material design and application for IPMC and IPMC-type iEAP materials.

  19. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites.

    Science.gov (United States)

    Dusoe, Keith J; Ye, Xinyi; Kisslinger, Kim; Stein, Aaron; Lee, Seok-Woo; Nam, Chang-Yong

    2017-12-13

    Modulus of resilience, the measure of a material's ability to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young's modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic-inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurements reveal a metal-like high yield strength (∼500 MPa) with an unusually low, foam-like Young's modulus (∼7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ∼24 MJ/m 3 as well as exceptional modulus of resilience per density of ∼13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.

  20. Inert Layered Silicate Improves the Electrochemical Responses of a Metal Complex Polymer.

    Science.gov (United States)

    Eguchi, Miharu; Momotake, Masako; Inoue, Fumie; Oshima, Takayoshi; Maeda, Kazuhiko; Higuchi, Masayoshi

    2017-10-11

    A chemically inert, insulating layered silicate (saponite; SP) and an iron(II)-based metallo-supramolecular complex polymer (polyFe) were combined via electrostatic attraction to improve the electrochromic properties of polyFe. Structural characterization indicated that polyFe was intercalated into the SP nanosheets. Interestingly, the redox potential of polyFe was lowered by combining it with SP, and the current was measurable despite the insulating nature of SP. X-ray photoelectron spectroscopy showed that the decrease in the redox potential observed in the SP-polyFe hybrid was caused by the electrostatic neutralization of the Fe cation in polyFe by the negative charge on SP. Electrochemical analyses indicated that electron transfer occurred through electron hopping across the SP-polyFe hybrid. Control experiments using a metal complex composed of Fe and two 2,2':6',2''-terpyridine ligands (terpyFe) showed that SP contributes to the effective electron hopping. This modulation of the electrochemical properties by the layered silicates could be applied to other electrochemical systems, including hybrids of the redox-active ionic species and ion-exchangeable adsorbents.

  1. Deformation behavior of ionic polymer metal composite actuator in several pH solutions

    Science.gov (United States)

    Omiya, M.; Aoyagi, W.

    2013-04-01

    In this paper, the pH value of working solution of Ionic Polymer Metal Composite (IPMC) actuators was systematically changed and the effect of pH on the deformation behavior was experimentally investigated. IPMC actuators, which consist of a thin perfuorinated ionomer membrane and electrodes plated on both surfaces, can undergo a large bending motion when a small electric field is applied across its thickness direction. Because of its lightness, softness and usableness in wet conditions, IPMC actuators are promised to be used for artificial muscles, biomimetic actuators and medical applications. The deformation properties of IPMC actuators are influenced by working solutions. However, the basic understandings about the effect of pH value of working solution on the deformation properties have not been clarified yet. Therefore, the pH characteristics of IPMC actuator were evaluated in this paper. IPMC actuators with the palladium electrodes were used and the responses for step voltage in several pH solutions were investigated. The results showed that the deformation behavior is drastically changed between acid and alkali solutions. In acid solutions, IPMC actuator showed a relaxation motion, though IPMC actuator in alkali solutions kept its deformed shape during applying a voltage.

  2. Kinematically stable bipedal locomotion using ionic polymer-metal composite actuators

    Science.gov (United States)

    Hosseinipour, Milad; Elahinia, Mohammad

    2013-08-01

    Ionic conducting polymer-metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical-mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force-torque generation of IPMCs for biped locomotion concludes this paper.

  3. Reactivity of Cu with poly(tetrafluoroethylene) and poly(vinyl chloride): Effect of pre- and post-metallization modification on the metal/polymer interface

    International Nuclear Information System (INIS)

    Perry, C.C.; Torres, J.; Carlo, S.R.; Fairbrother, D. Howard

    2002-01-01

    The reactivity of Cu with poly(tetrafluoroethylene) (PTFE) and poly(vinylchloride) (PVC) during thermal evaporation, as well as the effect of pre- and post-metallization Ar + ion and x-ray mediated surface modification treatments on the metal/polymer interface, have been studied using in situ x-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM). During thermal evaporation, copper was unreactive on PTFE but reacted with PVC to form CuCl. Pretreatment of PTFE or PVC surfaces by Ar + ion or x-ray irradiation did not modify the chemical reactivity of the polymer surface during subsequent Cu deposition, although significant morphological changes were observed on PTFE by AFM. In contrast, post-metallization modification of the Cu/PTFE interface by Ar + ion or x-ray irradiation lead to the production of CuF 2 , and increased the yield of CuCl in the Cu/PVC system. In either the Cu/PTFE or Cu/PVC systems, the maximum concentration of copper halide formed and dependence upon treatment time was found to be similar for either Ar + ion or x-ray irradiation post-metallization treatment strategies, suggesting a common reaction mechanism

  4. Endothelial Barrier Protein Expression in Biodegradable Polymer Sirolimus-Eluting Versus Durable Polymer Everolimus-Eluting Metallic Stents.

    Science.gov (United States)

    Mori, Hiroyoshi; Cheng, Qi; Lutter, Christoph; Smith, Samantha; Guo, Liang; Kutyna, Matthew; Torii, Sho; Harari, Emanuel; Acampado, Eduardo; Joner, Michael; Kolodgie, Frank D; Virmani, Renu; Finn, Aloke V

    2017-12-11

    This study sought to investigate endothelial coverage and barrier protein expression following stent implantation. Biodegradable polymer drug-eluting stents (BP-DES) have been purported to have biological advantages in vessel healing versus durable polymer DES (DP-DES), although clinical trial data suggest equipoise. Biodegradable polymer-sirolimus-eluting stents (BP-SES), durable polymer-everolimus-eluting stents (DP-EES), and bare-metal stents (BMS) were compared. In the rabbit model (28, 45, and 120 days), stented arteries underwent light microscopic analysis and immunostaining for the presence of vascular endothelium (VE)-cadherin, an endothelial barrier protein, and were subjected to confocal microscopy and scanning electron microscopy. A cell culture study in stented silicone tubes was performed to assess cell proliferation. Light microscopic assessments were similar between BP-SES and DP-EES. BMS showed nearly complete expression of VE-cadherin at 28 days, whereas both DES showed significantly less with results favoring BP-SES versus DP-EES (39% coverage in BP-SES, 22% in DP-EES, 95% in BMS). Endothelial cell morphologic patterns differed according to stent type with BMS showing a spindle-like shape, DP-EES a cobblestone pattern, and BP-SES a shape in between. VE-cadherin-negative areas showed greater surface monocytes regardless of type of stent. Cell proliferation was suppressed in both DES with numerically less suppression in BP-SES versus DP-EES. This is the first study to examine VE-cadherin expression after DES. All DES demonstrated deficient barrier expression relative to BMS with results favoring BP-SES versus DP-EES. These findings may have important implications for the development of neoatherosclerosis in different stent types. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Contribution to the study of metallic impurities diffusion in a polymer film (KAPTON) under and out of irradiation

    International Nuclear Information System (INIS)

    Marin, N.

    1995-01-01

    The main topic of this work is the diffusion behaviour in the polymer film Kapton, under and out of irradiation, of metallic coatings with different reactivity (copper, nickel, titanium) deposited by sputtering. The analysis of diffusion profiles has been performed by backscattering spectrometry, which, in association with cross-section microscopy, allows to connect the diffusion behaviour to the microscopic structure of the metal/Kapton interface. Generally speaking, the study under thermal annealing shows the importance of peculiarities of commercials polymers. In particular, additional elements they contain are liable to modify their surface characteristics and, as a consequence, diffusion. So, unlike observations in model polyimides, we show that even weakly reactive metals do not diffuse inside the polymer. Besides, there exists an energy threshold of Ar + used for sputtering, above which copper layers become very stable and so come up to industry's expectation. The study under irradiation gives evidence for copper diffusion under irradiation, resulting in 15 mn mean radius spherical clusters inside the modified polymer. This fast diffusion is shown to be due to the concomitant effect of nuclear collisions and temperature. This study is also the opportunity to show dramatic radiation-induced effects in Kapton, more particularly a large modification of mechanical and optical properties with the loss of more volatile elements (H, N,O). With regard to methodology, this study shows the strong ambiguity in the RBS spectrum interpretation in the case of lateral non-uniformity, and we propose a model giving access to the statistical distribution of the non-uniform property of the target. (author). 262 refs., 99 figs., 8 appends

  6. Fabrication and characterization of open-tubular CEC modified with tentacle-type metal-chelating polymer chains.

    Science.gov (United States)

    Xu, Liang; Sun, Yan

    2007-06-01

    A novel stationary phase with tentacle-type metal-chelating polymer chains was fabricated for open-tubular CEC. The preparation procedure of the stationary phase included the synthesis of monomer, silanization of capillary inner wall, in situ polymerization, and metal complexation. The effects of initiator concentration and reaction time on the column capacity were investigated. To compare with the tentacle-type metal-chelating capillary column, a monolayer ligand-modified capillary was also prepared. Immobilized copper(II) capacity of the tentacle-type polymer stationary phase was nearly 900 times higher than that of the monolayer one. The electroosmotic mobility was examined for its dependence on pH as well as phosphate and ACN concentrations. The tentacle-type metal-chelating capillary with high ligand capacity has proven to afford better retention and resolution for the separation of phenylalanine, tryptophan, and tyrosine mixtures and three purine derivatives. The separation was considered to be effected by a combination of ligand exchange and electrophoretic mobility.

  7. Efficacy of chitosan and other natural polymers in removing COD, TSS, heavy metals and pahs from municipal wastewater at Deer Island, Massachusetts. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Murcott, S.; Harleman, D.R.F.

    1992-10-01

    A series of tests was conducted at the Deer Island Primary Treatment Plant during the spring and summer of 1992 to determine the efficacy of chitosan and other natural polymers as coagulants, coagulant aids and flocculents in wastewater treatment. Prior to this undertaking, as part of the MIT Investigation of Chemically Enhanced Primary Treatment at the MWRA Project, the efficacy of metal salts and synthetic polymers had been studied at Deer Island. Those tests provided the standard against which to measure the viability of natural polymer use in municipal wastewater treatment. The major conclusions of the chitosan and other natural polymers study for Deer Island wastewater are included.

  8. Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphine-Functionalized Amphiphilic Polymer Latexes.

    Science.gov (United States)

    Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo

    2016-04-25

    Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  10. Design of Metal-Free Polymer Carbon Dots: A New Class of Room-Temperature Phosphorescent Materials.

    Science.gov (United States)

    Tao, Songyuan; Lu, Siyu; Geng, Yijia; Zhu, Shoujun; Redfern, Simon A T; Song, Yubin; Feng, Tanglue; Xu, Weiqing; Yang, Bai

    2018-02-23

    Polymer carbon dots (PCDs) are proposed as a new class of room-temperature phosphorescence (RTP) materials. The abundant energy levels in PCDs increase the probability of intersystem crossing (ISC) and their covalently crosslinked framework structures greatly suppress the nonradiative transitions. The efficient methods allow the manufacture of PCDs with unique RTP properties in air without additional metal complexation or complicated matrix composition. They thus provide a route towards the rational design of metal-free RTP materials that may be synthesized easily. Furthermore, we find that RTP is associated with a crosslink-enhanced emission (CEE) effect, which provides further routes to design improved PCDs with diverse RTP performance. Our results show the potential of PCDs as a universal route to achieve effective metal-free RTP. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Feasibility study of custom manufacturing methods of ionic polymer-metal composite sensors

    Science.gov (United States)

    Nelson, Shelby E.

    The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the membranes are tested throughout each processing stage to determine if they are suitable to be developed into IPMCs. The three processing stages are pre-activation, activation (hydrated and dehydrated), and IPMC. It was observed that the stiffness of the membranes increased from pre-activation to activation and decreased from activation to IPMC. A more flexible membrane in an IPMC allows for larger cation displacement within the membrane. The extruded and injection molded membranes showed the most potential with having the lowest stiffness of all the samples; however, they were not able to be made into IPMCs due to repeated membrane failures in the primary plating process. Gas accumulated between the layers that formed in the membranes due to the extrusion and injection molding cooling process during manufacturing. The hot pressed membrane was the only custom manufactured membrane to be fully processed into an IPMC. The hot pressed and GEFC IPMC sensors were operated at 1 Hz, 5 Hz, and 10 Hz frequencies with the GEFC IPMC producing the strongest output voltage signal. While the extruded and injection molded membranes showed potential to become IPMCs with their high water uptake percentage, high ion exchange capacity, and low stiffness, more development is needed within the manufacturing process to make

  12. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites

    Science.gov (United States)

    Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin

    2017-12-01

    Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.

  13. Mechanical stimulated reaction of metal/polymer mixed powders; Kinzoku/kobunshi kongo funmatsu no kikaiteki reiki hanno

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, M.; Sakakibara, A.; Takemoto, Y. [Okayama University, Okayama (Japan). Faculty of Engineering; Iwabu, H. [Kurare Co. Ltd., Osaka (Japan)

    1999-12-15

    Mechanical grinding (MG) with mechanically stimulated reaction was performed on metal/polymer mixed powders. The starting materials used in this study were the metals of Mg, Ti and Mg{sub 2}Ni powders, arid polymer of PTFE, PVC and PE powders. The MG process was investigated using XRD, IR, SEM and TEM. According to XRD results, magnesium fluoride (MgF{sub 2}, TiF{sub 2}) and chloride (MgCl{sub 2}) were detected from MG products of the Mg/PTFE, Ti/PTFE and Mg/PVC blending systems, respectively. Explosive reaction was found during MG of both Mg/PTFE and Ti/PTFE. It was also confirmed by XRD results that the production of MgF{sub 2} had already been formed just before the explosive reaction in Mg/PTFE system. It was found from IR analysis that C-C single bond in the polymers, not only both in PTFE and PVC but also in PE, changed to double bond C=C. Hydrogen produced due to decomposition of PE on blending Mg{sub 2}Ni/PE was absorbed into C-Mg{sub 2}Ni-H as amorphous solutes. These mechanically stimulated reaction was powerful method for decomposition of engineering plastics. (author)

  14. "JCE" Classroom Activity #106. Sequestration of Divalent Metal Ion by Superabsorbent Polymer in Diapers

    Science.gov (United States)

    Chen, Yueh-Huey; Lin, Jia-Ying; Lin, Li-Pin; Liang, Han; Yaung, Jing-Fun

    2010-01-01

    This activity explores an alternative use of a superabsorbent polymer known as a water absorbing material. A dilute solution of CuCl[subscript 2] is treated with a small piece of unused disposable diaper containing superabsorbent sodium polyacrylates. The polymer is used for the removal of Cu[superscript 2+] ions from the solution. The…

  15. Optimal design of high temperature metalized thin-film polymer capacitors: A combined numerical and experimental method

    Science.gov (United States)

    Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei

    2017-07-01

    The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.

  16. Super-Absorbent Polymer Gels for Oil and Grease Removal from Metal and Non-Metal Surfaces

    Science.gov (United States)

    2012-05-21

    morphology, phase transition, and functional groups of the synthesized polymers before the cleaning tests using: Infrared spectrometer ( FTIR ), UV... styrene based imbiber beads in various solvents 0 20 40 60 80 100 1 2 3 97.58 96.36 90.78 80.46 80.58 77.32 95.55 90.99 96.62 % oil

  17. Closed loop control of a cylindrical tube type Ionic Polymer Metal Composite (IPMC)

    Science.gov (United States)

    Mead, Benjamin T.

    The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type of IPMC is the ability to embed a specific tool and accurately control the tool tip location using the large deflection range of the IPMC. This ability has widespread applications including in the biomedical field for use in active catheter procedures. First, this relatively new type of IPMC is investigated and characterized. The processes and materials used are described and the functional design is explored. Before the modeling process beings the basic functions of the IPMC are investigated. To this end force and displacement experiments are performed to describe the activation of the tube type IPMC. This data will be used later to verify and calibrate the mathematical simulations. Second, a three dimensional multi-physics finite element model is developed using COMSOL 4.3a. This model will automatically couple three physics packages and provide a description of the fluid interactions within the tube type IPMC. This model is then compared against the experimental displacement results to calibrate the simulation. Using this simulation design parameters are declared including, overall diameter, and tool hole size. The performance of the IPMC is then simulated while varying these parameters. Third, an electro-mechanical model of the IPMC is developed. This macroscopic model is used to relate the input voltage to an associated tip deflection. Several model types

  18. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing

    International Nuclear Information System (INIS)

    Henann, David L; Srivastava, Vikas; Taylor, Hayden K; Hale, Melinda R; Hardt, David E; Anand, Lallit

    2009-01-01

    Metallic glasses possess unique mechanical properties which make them attractive materials for fabricating components for a variety of applications. For example, the commercial Zr-based metallic glasses possess high tensile strengths (≈2.0 GPa), good fracture toughnesses (≈10–50 MPa√m) and good wear and corrosion resistances. A particularly important characteristic of metallic glasses is their intrinsic homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic, coupled with their unique mechanical properties, makes them ideal materials for fabricating micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn be used as dies for the hot-embossing of polymeric microfluidic devices. In this paper we consider a commercially available Zr-based metallic glass which has a glass transition temperature of T g ≈ 350 °C and describe the thermoplastic forming of a tool made from this material, which has the (negative) microchannel pattern for a simple microfluidic device. This tool was successfully used to produce the microchannel pattern by micro-hot-embossing of the amorphous polymers poly(methyl methacrylate) (T g ≈ 115 °C) and Zeonex-690R (T g ≈ 136 °C) above their glass transition temperatures. The metallic glass tool was found to be very robust, and it was used to produce hundreds of high-fidelity micron-scale embossed patterns without degradation or failure

  19. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    Science.gov (United States)

    2015-02-25

    200 nm thick amor - phous Zn 0.3 In 1.4 Sn 0.3 O 3 (a-ZITO) fi lm was deposited on Ary- lite by pulsed laser deposition (PLD) to function as the gate...level. Thus, appropriate polymer incorporation promotes the amor - phous state but allows a suffi cient density of connected InO x polyhedra for effi...continuous and uniform. In conclusion, we have successfully developed a new low temperature route (as low as 225 °C) to high-mobility amor - phous metal

  20. Degradation of fluorine-containing organic thin films and organohalides mediated by ionizing radiation: Nitrogen-based surface modification of polymers and metallization of nitrogen-containing polymers

    Science.gov (United States)

    Wagner, Anthony Jon

    The surface modification of organic thin films and polymers has been studied using X-rays, electrons, ions, excited neutrals and metal atoms (metallization). The resulting chemical modification within the surface region has been studied to better understand the role of individual reactive species with the organic interfaces. Similarly, the role of electrons in organohalide remediation has been studied to better understand the remediation process occurring in organohalide/ice films. During the initial period of X-ray irradiation of semi-fluorinated self-assembled monolayers (SAMs), electron-stimulated C-F, C-C and S-X (X = copper or gold substrate) bond breaking events are responsible for the changes in the chemical composition of the SAM. Irradiation-induced changes to the film's chemical and structural properties, that included the chemical transformation of a fraction of the initial thiolate species, were most pronounced in these initial stages of irradiation, prior to the development of a highly cross-linked carbonaceous overlayer. The mechanism of the carbon-fluorine bond breaking within the film has been found to be consistent with a series of single C-F bond breaking events. The surface reactions of reactive neutral nitrogen species and nitrogen ions with polyethylene have also been studied. Neutral nitrogen species, generated using a modified nitrogen plasma, resulted in the incorporation of predominantly imine groups. Nitrogen ion bombardment yielded amine groups as the dominate species. The reactivity of vapor-deposited metal atoms with nylon 6, nitrogen ion implanted polyethylene and a nitrile-terminated SAM have also been studied using in situ X-ray Photoelectron Spectroscopy. Iron deposition resulted in the formation of iron-nitrogen linkages for all systems studied and iron-oxygen linkages in the case of nylon 6. Similarly, Nickel deposition resulted in nickel-nitrogen linkages for all the systems studied, however it did not react with the oxygen

  1. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  2. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  3. Nanoparticle-Directed Metal-Organic Framework/Porous Organic Polymer Monolithic Supports for Flow-Based Applications.

    Science.gov (United States)

    Darder, María Del Mar; Salehinia, Shima; Parra, José B; Herrero-Martinez, José M; Svec, Frantisek; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2017-01-18

    A two-step nanoparticle-directed route for the preparation of macroporous polymer monoliths for which the pore surface is covered with a metal-organic framework (MOF) coating has been developed to facilitate the use of MOFs in flow-based applications. The flow-through monolithic matrix was prepared in a column format from a polymerization mixture containing ZnO-nanoparticles. These nanoparticles embedded in the precursor monolith were converted to MOF coatings via the dissolution-precipitation equilibrium after filling the pores of the monolith with a solution of the organic linker. Pore surface coverage with the microporous zeolitic imidazolate framework ZIF-8 resulted in an increase in surface area from 72 to 273 m 2 g -1 . Monolithic polymer containing ZIF-8 coating was implemented as a microreactor catalyzing the Knoevenagel condensation reaction and also in extraction column format enabling the preconcentration of trace levels of toxic chlorophenols in environmental waters. Our approach can be readily adapted to other polymers and MOFs thus enabling development of systems for flow-based MOF applications.

  4. Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained neural network

    International Nuclear Information System (INIS)

    Truong, Dinh Quang; Ahn, Kyoung Kwan

    2014-01-01

    An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique. (paper)

  5. Evaluation of NaCl Effect on Vibration-Delaminated Metal-Polymer Composites by Improved Micro-Raman Methodology

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2013-01-01

    Full Text Available Polyethylene terephthalate (PET is a polymer coating that protects the electrolytic chromium coated steel (ECCS against aggressive electrolytes like NaCl. It is widely accepted by manufacturers that NaCl has no effect on the PET coating, which is inert. However, we showed that there are some effects at the structural level, caused by vibrations, and facilitated by defects on the layers. The vibrations occurring during the transportation of food containers produce delaminations at given points of the metal-polymer interface, known as antinodes, which in turn may produce PET degradation affecting food quality. The former can be determined by electrochemical measurements, and the changes in composition or structural order can be characterized by Raman. The present work applied this latter technique in experimental samples of PET-coated ECCS sheets by performing perpendicular and parallel analyses to the surface, and determined that it constitutes a new potential methodology to determine the behavior of the composite under the above conditions. The results demonstrated that the delamination areas on the PET facilitated polymer degradation by the electrolyte. Moreover, the Raman characterization evidenced the presence of multilayers and crystalline orderings, which limited its functionality as a protective coating.

  6. Searching for a new ionomer for 3D printable ionic polymer-metal composites: Aquivion as a candidate

    Science.gov (United States)

    Trabia, Sarah; Olsen, Zakai; Kim, Kwang J.

    2017-11-01

    The work presented in this paper introduces Aquivion as a potential candidate for additive manufacturing of ionomeric polymers for the application of IPMCs. First, Aquivion was characterized and compared with Nafion to show that it has the similar qualities, with the major difference being the ionic conductivity. Ionic polymer-metal composites (IPMCs) were fabricated using off-the-shelf membranes of Nafion and Aquivion. The actuation tests showed improved performance for an IPMC with Aquivion as the base compared to an IPMC with a Nafion base. With these results in mind, additive manufacturing of unique shapes using Aquivion filament was studied. A 3D printer was modified to work with Aquivion filament and the polymer was printed into various shapes. Using the printed membranes, IPMCs were fabricated using an electroless plating process. Nafion-based and printed Aquivion-based IPMCs were tested for their performance in back relaxation, frequency driven actuation, blocking force, and mechano-electric sensing. The printed Aquivion-based IPMCs performed comparably to Nafion-based IPMC in back relaxation and showed significantly improved performance in frequency driven actuation, blocking force generation, and mechano-electric sensing.

  7. Inventions in nanotechnological field provide increased strength and life span of the metal, composite and polymer, metallopolymer structures

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2014-02-01

    Full Text Available The invention «The method of dispersion of nanoparticles in epoxy resin (RU 2500706» refers to nanotechnological field and it can be applied in different areas of machine industry, transport, construction, power engineering to increase strength and life span of the structures made of metal, composite and polymer, metallopolymer materials, for glue and glue and mechanical joints in different structure elements as well as for compositions which strengthen the stress concentration zones (in the form of holes, cutouts, fillet, thickness differentials in structures, to reform defects, microcracks and other damages occurring in production and performance of structures, to eliminate and encapsulate the gaps in holes and meeting-points of bolted and riveted joints. The invention «The method to produce nanosuspension for manufacturing polymer nanocomposite (RU 2500695» refers to the area of production of polymer nanocomposites based on reactiveplastic binder for space, aircraft, construction and other types of structures (glass-fiber plastic, carbon reinforced plastic, organic plastic, etc.. The method includes preparation of nanosuspension by introducing carbon nanotubes into reactiveplastic binder under ultrasonic treatment with intensity cavity zone 15–25 kW/m². The method makes it possible to optimize the degree of dispersion of carbon nanotubes in binder and to shorten production time of nanocomposites possessing increased strength due to even distribution of nanoparticles in nanocomposite.

  8. Ionic polymer metal composite actuators employing irradiation-crosslinked sulfonated poly(styrene-ran-ethylene) as ion-exchange membranes

    Science.gov (United States)

    Wang, Xuanlun; Cheng, Tai-Hong; Xu, Liang; Oh, Il-Kwon

    2009-07-01

    Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in moist environments or water. This type of actuators consists of an ionic membrane and noble metal electrodes plated on both surfaces. The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation as a novel ionic membrane. The crosslinking reaction between polymer matrix and crosslinking agent was proved by FTIR analysis. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and sulfonation degree are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement.

  9. Differences in Tribological Behaviors upon Switching Fixed and Moving Materials of Tribo-pairs including Metal and Polymer.

    Science.gov (United States)

    Xu, Aijie; Tian, Pengyi; Wen, Shizhu; Guo, Fei; Hu, Yueqiang; Jia, Wenpeng; Dong, Conglin; Tian, Yu

    2017-10-12

    The coefficient of friction (COF) between two materials is usually believed to be an intrinsic property of the materials themselves. In this study, metals of stainless steel (304) and brass (H62), and polymers of polypropylene (PP) and polytetrafluoroethylene (PTFE) were tested on a standard ball-on-three-plates test machine. Significantly different tribological behaviors were observed when fixed and moving materials of tribo-pairs (metal/polymer) were switched. As an example, under the same applied load and rotating speed, the COF (0.49) between a rotating PP ball and three fixed H62 plates was approximately 2.3 times higher than that between switched materials of tribo-pairs. Meanwhile, the COF between H62 and PTFE was relatively stable. The unexpected tribological behaviors were ascribed to the thermal and mechanical properties of tribo-pairs. Theoretical analysis revealed that the differences in the maximum local temperature between switching the fixed and moving materials of tribo-pairs were consistent with the differences in the tested COF. This result indicated the precise prediction of the COF of two materials is complexcity, and that thermal and mechanical properties should be properly considered in designing tribo-pairs, because these properties may significantly affect tribological performance.

  10. Explicit relationship between electrical and topological degradation of polymer-supported metal films subjected to mechanical loading

    Science.gov (United States)

    Glushko, O.; Kraker, P.; Cordill, M. J.

    2017-05-01

    For a comprehensive characterization of mechanical reliability of metallization layers on polymer substrates, both electrical and mechanical degradation should be taken into account. Although it is evident that cracking of a conductive film should lead to electrical degradation, the quantitative relationship between the growth of electric resistance and parameters of the induced crack pattern has remained thus far unexplored. With the help of finite element modelling, we were able to find an explicit and concise expression which shows that electrical resistance grows with the fourth order of the crack length and second order of the areal crack density. The discovered relationship was verified by comparison with the experimental results of tensile testing of polymer-supported thin metal films. The presented model is independent of the length scale and can be applied to films with different thicknesses as long as Ohm's law is valid. It is demonstrated that the linear crack density is an ambiguous parameter, which does not properly capture the development of a crack pattern. For the unambiguous characterization of the intensity of a crack pattern, a universal dimensionless factor is proposed. The presented results show that there is a wide range of possible crack patterns which do not lead to electrical failure of a conductive film that can be used for the failure-free design of flexible electronic devices.

  11. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  12. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  13. .pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer

    2016-09-13

    A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.

  14. Multifunctional Metal/Polymer Composite Fiber for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovation Research Phase I Program, Syscom Technology, Inc. (STI) will fabricate a metallized multifunctional composite fiber from a...

  15. Extraction of uranium (VI) from sea water using hydrous metalic oxide binded with hydrophilic polymers

    International Nuclear Information System (INIS)

    Shigetomi, Yasumasa; Kojima, Takehiro; Kamba, Hideaki

    1978-01-01

    In the past five years, many researches have been made to extract U(VI) from sea water. This is a report of the extraction of U(VI) from sea water using hydrous titanium oxide binded with hydrophilic polymers, the apparatus for the adsorption and the separation of U(VI) by means of ion exchange. (author)

  16. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2012-01-01

    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  17. Polymer-metal organic frameworks (MOFs) mixed matrix membranes for gas separation applications

    NARCIS (Netherlands)

    Shahid, S.

    2015-01-01

    The performance of polymeric membranes is often limited by a trade-off between membrane permeability and selectivity, the so-called Robeson upper bound. Additionally, in high pressure CO2 capture applications, excessive swelling of the polymer membrane often leads to plasticization resulting in

  18. Synthesis, crystal structure and DFT calculations of a new Hg (II) metal-organic polymer

    Czech Academy of Sciences Publication Activity Database

    Mirtamizdoust, B.; Roodsari, M.S.; Shaabani, B.; Dušek, Michal; Fejfarová, Karla

    2016-01-01

    Roč. 15, č. 3 (2016), s. 257-266 ISSN 1024-1221 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : mercury (II) iodide * coordination polymer * square planar * tetrahedral geometry * density functional calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.565, year: 2016

  19. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  20. Synthesis of polyglutamide-based metal-chelating polymers and their site-specific conjugation to trastuzumab for auger electron radioimmunotherapy.

    Science.gov (United States)

    Lu, Yijie; Ngo Ndjock Mbong, Ghislaine; Liu, Peng; Chan, Conrad; Cai, Zhongli; Weinrich, Dirk; Boyle, Amanda J; Reilly, Raymond M; Winnik, Mitchell A

    2014-06-09

    Three types of metal-chelating polymers (MCPs) with hydrazide end groups were synthesized. (1) The first set of polymers (the F-series) was synthesized with a furan end group, and all of the pendant groups along the chain carried only a diethylenetriaminepentaacetic acid (DTPA) metal-chelating functionality. The hydrazide was introduced via a Diels-Alder reaction between the furan and 3,3'-N-[ε-maleimidocaproic acid] hydrazide (EMCH). (2) The P-series polymers was designed to carry several copies of a nuclear-localization peptide sequence (NLS peptides, CGYGPKKKRKVGG, harboring the NLS from the simian virus 40 large T-antigen) in addition to the DTPA metal-chelating groups. (3) The third type of polymer (the P-Py series) was a variation of the P-series polymers but with the introduction of a small number of pyrene chromophores along the backbone to allow for UV measurement of the incorporation of the MCPs into trastuzumab (tmab). These hydrazide-terminated polymers were site-specifically conjugated to aldehyde groups generated by NaIO4 oxidation of the pendant glycan in the Fc domain of tmab. The immunoconjugates were radiolabeled with (111)In and analyzed by SE-HPLC to confirm the attachment of the polymer to the antibody. HER2 binding assays demonstrated that neither the MCPs nor the presence of the NLS peptides interfered with specific antigen recognition on SK-Br-3 cells, although nonspecific binding was increased by polymer conjugation. Our results suggest that MCPs can be site-specifically attached to antibodies via oxidized glycans in the Fc domain and labeled with (111)In to construct radioimmunoconjugates with preserved immunoreactivity.

  1. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight

    Science.gov (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang

    2018-01-01

    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  2. A Polymer Encapsulation Strategy to Synthesize Porous Nitrogen-Doped Carbon-Nanosphere-Supported Metal Isolated-Single-Atomic-Site Catalysts.

    Science.gov (United States)

    Han, Aijuan; Chen, Wenxing; Zhang, Shaolong; Zhang, Maolin; Han, Yunhu; Zhang, Jian; Ji, Shufang; Zheng, Lirong; Wang, Yu; Gu, Lin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2018-03-06

    A novel polymer encapsulation strategy to synthesize metal isolated-single-atomic-site (ISAS) catalysts supported by porous nitrogen-doped carbon nanospheres is reported. First, metal precursors are encapsulated in situ by polymers through polymerization; then, metal ISASs are created within the polymer-derived p-CN nanospheres by controlled pyrolysis at high temperature (200-900 °C). Transmission electron microscopy and N 2 sorption results reveal this material to exhibit a nanospheric morphology, a high surface area (≈380 m 2 g -1 ), and a porous structure (with micropores and mesopores). Characterization by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure confirms the metal to be present as metal ISASs. This methodology is applicable to both noble and nonprecious metals (M-ISAS/p-CN, M = Co, Ni, Cu, Mn, Pd, etc.). In particular, the Co-ISAS/p-CN nanospheres obtained using this method show comparable (E 1/2 = 0.838 V) electrochemical oxygen reduction activity to commercial Pt/C with 20 wt% Pt loading (E 1/2 = 0.834 V) in alkaline media, superior methanol tolerance, and outstanding stability, even after 5000 cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer-Metal Layered Systems

    Directory of Open Access Journals (Sweden)

    J. D. Clayton

    2015-01-01

    Full Text Available Numerical simulations and analysis of ballistic impact and penetration by tungsten alloy rods into composite targets consisting of layers of aluminum nitride ceramic tile(s, polymer laminae, and aluminum backing are conducted over a range of impact velocities on the order of 1.0 to 1.2 km/s. Computational results for ballistic efficiency are compared with experimental data from the literature. Simulations and experiments both demonstrate a trend of decreasing ballistic efficiency with increasing impact velocity. Predicted absolute residual penetration depths often exceed corresponding experimental values. The closest agreement between model and experiment is obtained when polymer interfaces are not explicitly represented in the numerical calculations, suggesting that the current model representation of such interfaces may be overly compliant. The present results emphasize the importance of proper resolution of geometry and constitutive properties of thin layers and interfaces between structural constituents for accurate numerical evaluation of performance of modern composite protection systems.

  4. Replication quality control of metal and polymer micro structured optical surfaces

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2011-01-01

    surfaces, quite often results in mirror-like surfaces which scatter the light and invalidate the optical measurements. This paper focuses on an analysis of a micro-structured optical component and the corresponding mould. A first investigation leads to a control of the manufacturing process through...... a control of the product. The purpose is to evaluate three critical dimensions. Results show that the difference of the measurements on different areas of the mould and the polymer component is approximately 4%. A second analysis focuses on the investigation of the optical component and its mould using...... replication methods based on polymer casting. The replica method is used in order to avoid damages of the structures and make feasible the measurement of optical specimens with non-contact instruments. Results show a quality replication equal to 95 - 99%. In both investigations the uncertainty...

  5. Flexible Touchpads Based on Inductive Sensors Using Conductive Composite Polymer and Flexible Metal PCB

    OpenAIRE

    Rahbar, Alireza

    2015-01-01

    In this thesis, the design, fabrication, testing and characterization of two tactile sensor array technologies are presented. The two sensor systems both use inductance as a transduction principle and are designed to be implemented in flexible wearable systems. The tactile sensor arrays feature flexible PCB substrates and/or flexible conductive composite polymer (CCP) structures, resulting in highly flexible tactile arrays. Each switch consists of 4 elements: fascia, target, spacer and a sens...

  6. Dynamic Response of Metal-Polymer Bilayers - Viscoelasticity, Adhesion and Failure

    Science.gov (United States)

    2013-11-25

    the characteristic high speed radial expansion of the sample (note that the coil is firmly embedded in epoxy and is therefore immobile ). The...the load cell and crosshead displacement sensor of the device. The engineering stress in the specimen was obtained from the load and original cross...dynamic failure behavior of ceramics used as transparent armor (see, for example [3,4, 5]). Glass, laminated with alternating layers of polymers of

  7. Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Angmo, Dechan

    2013-01-01

    The majority of polymer solar cells reported today employs processing under high vacuum for one or more of the layers in the solar cell stack. Most notably the highly conducting metal back electrode is almost exclusively applied by evaporation of the pure metal. While it is not impossible...... to envisage mass production of polymer solar cells using vacuum processing it does present some drawbacks in terms of both processing speed, capital investment in processing equipment technical yield and direct process energy. From this point of view it is clear that vacuum processed electrodes should...... be avoided and electrodes should be printable using methods that provide a high degree of accuracy and high technical yield. When considering large area polymer solar cells (i.e., not laboratory devices) a few reports have employed printable back electrodes mostly by use of silver formulations[1–4] but also...

  8. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization

    Science.gov (United States)

    Current breakthroughs in green nanotechnology are capable to transform many of the existing processes and products that enhance environmental quality, reduce pollution, and conserve natural and non-renewable resources. Noteworthy, successful use of metal nanoparticles and 10 nano...

  9. Synthesis of Nanostructured/Macroscopic Low-Density Copper Foams Based on Metal-Coated Polymer Core-Shell Particles.

    Science.gov (United States)

    Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I; Yoo, Jae-Hyuck; Worsley, Marcus A; Satcher, Joe H; Sain, John D; Kuntz, Joshua D; Kucheyev, Sergei O; Baumann, Theodore F; Hamza, Alex V

    2016-12-21

    A robust, millimeter-sized low-density Cu foam with ∼90% (v/v) porosity, ∼30 nm thick walls, and ∼1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core-shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams due to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS-Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (∼1.5× modulus and ∼3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. Higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.

  10. A fabrication method of unique Nafion® shapes by painting for ionic polymer-metal composites

    Science.gov (United States)

    Trabia, Sarah; Hwang, Taeseon; Kim, Kwang J.

    2016-08-01

    Ionic polymer-metal composites (IPMC) are useful actuators because of their ability to be fabricated in different shapes and move in various ways. However, producing unique or intricate shapes can be difficult based upon the current fabrication techniques. Presented here is a fabrication method of producing the Nafion® membrane or thin film through a painting method. Using an airbrush, a Nafion water dispersion is sprayed onto an acrylonitrile butadiene styrene surface with a stencil of the desired shape. To verify that this method of fabrication produces a Nafion membrane similar to that which is commercially available, a sample that was made using the painting method and Nafion 117 purchased from DuPont™ were tested for various characteristics and compared. The results show promising similarities. The painted Nafion sample was chemically plated with platinum and compared with a traditional IPMC for its displacement and blocking force capabilities. The painted IPMC sample showed comparable results.

  11. Evaluation of circuit models for an IPMC (ionic polymer-metal composite) sensor using a parameter estimate method

    International Nuclear Information System (INIS)

    Park, Kiwon; Lee, Hyungki

    2012-01-01

    The present study investigated a sensor system to effectively detect the bending angles applied on an ionic polymer metal composite sensor. Firstly, the amount of net charge produced by the motion of cations was correlated to the bending angle based on the geometric relationship between a flat and a bent IPMC, and the relationship was represented by linear and nonlinear polynomial equations. Secondly, several existing and modified R and C circuit models with a linear charge model were evaluated using the experimental data. Thirdly, the nonlinear charge model was applied to a selected circuit model, and the effectivenesses of the linear and the nonlinear charge models were compared. Finally, the sensor output signal was fed into the inverse model of the identified circuit model to reproduce the bending angles. This paper presents a simple data processing procedure using the inverse transfer function of a selected circuit model that successfully monitored various bending motions of an IPMC sensor.

  12. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    Science.gov (United States)

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  14. Poly(vinylidene fluoride) modification induced by gamma irradiation for application as ionic polymer-metal composite

    International Nuclear Information System (INIS)

    Ferreira, Henrique Perez

    2011-01-01

    Gamma-radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses from 1 to 100 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and styrene/toluene (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere at room temperature, using gamma rays from a Co-60. After grafting reactions, the polymer was then sulfonated in chlorosulfonic acid/1,2-dichloroethane (2 and 10%) for 3 hours. The films were characterized before and after modification by calculating the degree of grafting (DOG), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). DOG results show that grafting increases with dose, and varies enormously depending on the solvent used, with DOGs about 20 times greater in DMF than in toluene. It was possible to confirm the grafting of styrene by FT-IR due to the appearance of the new characteristic peaks and by the TG and DSC which exhibited changes in the thermal behavior of the grafted/sulfonated material. Sulfonated material was also characterized by ion exchange capacity (IEC) showed that both DOG and sulfonic acid concentration increase IEC values. Results showed that it is possible to obtain materials with ion exchange capacity of possible application as ionic polymer-metal composites. (author)

  15. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    Science.gov (United States)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  16. Plasma coatings of nitrogen polymers on metal prostheses of the circulatory system; Recubrimientos por plasma de polimeros nitrogenados sobre protesis metalicas del sistema circulatorio

    Energy Technology Data Exchange (ETDEWEB)

    Gomez J, L. M.

    2016-07-01

    This work has a study about the synthesis of poly aniline, poly allylamine and poly pyrrole doped with iodine onto metallic surfaces similar to stents for the circulatory system. Ar, water and hydrogen peroxide plasmas were used for eroding, conditioning and synthesizing polymers that potentially reduce some rejection reactions when stents are implanted in the human body. Stents are small metallic meshes that applied inside collapsed arteries or veins enlarge the diameter and restore the blood flow, however the metallic surfaces usually cause rejection reactions that obstruct the veins again. To give solutions to this problem, in this work is studied the synthesis of biocompatible polymer coatings on the stents that resist the blood flow forming a biocompatible interface between metal and blood. The metallic substrates were eroded and chemically prepared with Ar, H{sub 2}O and/or H{sub 2}O{sub 2} glow discharges on which the polymers were synthesized by plasma. The coatings were morphologically characterized by optical, scanning electron and atomic force microscopy, the chemical structure was studied by infrared and photoelectron X-ray spectroscopy. The hydrophilicity was studied measuring the advance static contact angle and the adhesion was evaluated indirectly with scanning electron microscopy after two months submerged in buffered phosphate solutions. The results indicate that the polymers grew following the superficial morphology; that the conditioning with Ar ions erode the substrates and that the conditioning with H{sub 2}O or H{sub 2}O{sub 2} erodes and activates the surface generating oxygen bridges which help in the polymer-metal adhesion. The chemical structure of the polymeric coatings contain crosslinked structures that correspond to links between monomers with the participation of all atoms, states that suggest monomer fragmentation and oxidation and states that indicate oxygen bridges in the polymers. The coatings had contact angles close to 90

  17. Clinical outcomes with bioabsorbable polymer- versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis.

    Science.gov (United States)

    Palmerini, Tullio; Biondi-Zoccai, Giuseppe; Della Riva, Diego; Mariani, Andrea; Sabaté, Manel; Smits, Pieter C; Kaiser, Christoph; D'Ascenzo, Fabrizio; Frati, Giacomo; Mancone, Massimo; Genereux, Philippe; Stone, Gregg W

    2014-02-04

    This study sought to investigate the relative safety and efficacy of bioabsorbable polymer (BP)-based biolimus-eluting stents (BES) versus durable-polymer (DP)-drug-eluting stents (DES) and bare-metal stents (BMS) by means of a network meta-analysis. Studies have suggested that BP-BES might reduce the risk of stent thrombosis (ST) and late adverse outcomes compared with first-generation DES. However, the relative safety and efficacy of BP-BES versus newer-generation DES coated with more biocompatible DP have not been investigated in depth. Randomized controlled trials comparing BP-BES versus currently U.S.-approved DES or BMS were searched through MEDLINE, EMBASE, and Cochrane databases. Information on study design, inclusion and exclusion criteria, sample characteristics, and clinical outcomes was extracted. Data from 89 trials including 85,490 patients were analyzed. At 1-year follow-up, BP-BES were associated with lower rates of cardiac death/myocardial infarction (MI), MI, and target vessel revascularization (TVR) than BMS and lower rates of TVR than fast-release zotarolimus-eluting stents. The BP-BES had similar rates of cardiac death/MI, MI, and TVR compared with other second-generation DP-DES but higher rates of 1-year ST than cobalt-chromium everolimus-eluting stents (CoCr-EES). The BP-BES were associated with improved late outcomes compared with BMS and paclitaxel-eluting stents, considering the latest follow-up data available, with nonsignificantly different outcomes compared with other DP-DES although higher rates of definite ST compared with CoCr-EES. In this large-scale network meta-analysis, BP-BES were associated with superior clinical outcomes compared with BMS and first-generation DES and similar rates of cardiac death/MI, MI, and TVR compared with second-generation DP-DES but higher rates of definite ST than CoCr-EES. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Fabrication of a silver particle-integrated silicone polymer-covered metal stent against sludge and biofilm formation and stent-induced tissue inflammation.

    Science.gov (United States)

    Lee, Tae Hoon; Jang, Bong Seok; Jung, Min Kyo; Pack, Chan Gi; Choi, Jun-Ho; Park, Do Hyun

    2016-10-14

    To reduce tissue or tumor ingrowth, covered self-expandable metal stents (SEMSs) have been developed. The effectiveness of covered SEMSs may be attenuated by sludge or stone formation or by stent clogging due to the formation of biofilm on the covering membrane. In this study, we tested the hypothesis that a silicone membrane containing silver particles (Ag-P) would prevent sludge and biofilm formation on the covered SEMS. In vitro, the Ag-P-integrated silicone polymer-covered membrane exhibited sustained antibacterial activity, and there was no definite release of silver ions from the Ag-P-integrated silicone polymer membrane at any time point. Using a porcine stent model, in vivo analysis demonstrated that the Ag-P-integrated silicone polymer-covered SEMS reduced the thickness of the biofilm and the quantity of sludge formed, compared with a conventional silicone-covered SEMS. In vivo, the release of silver ions from an Ag-P-integrated silicone polymer-covered SEMS was not detected in porcine serum. The Ag-P-integrated silicone polymer-covered SEMS also resulted in significantly less stent-related bile duct and subepithelium tissue inflammation than a conventional silicone polymer-covered SEMS. Therefore, the Ag-P-integrated silicone polymer-covered SEMS reduced sludge and biofilm formation and stent-induced pathological changes in tissue. This novel SEMS may prolong the stent patency in clinical application.

  19. Syntheses, crystal structures, and properties of new metal-5-bromonicotinate coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjie [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China); Li, Guoting [Department of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011 (China); Lv, Lulu; Zhao, Hong [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China); Wu, Benlai, E-mail: wbl@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-05-15

    Four metal–5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Ni(Brnic){sub 2}]{sub n} (2), [Ni(Brnic)(bpy)(H{sub 2}O){sub 2}]{sub n}·n(Brnic)·4.5nH{sub 2}O (3), and [Co{sub 2}(Brnic){sub 3}(bpy){sub 2}(OH)]{sub n}·nH{sub 2}O (4) have been synthesized and structurally characterized (bpy=4,4′-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2–4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni{sub 2}(Brnic){sub 4}] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni{sub 2}(Brnic){sub 2}] and trigons [Co{sub 2}(Brnic){sub 3}(OH)], 6{sup 3}-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1–4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni{sub 2}(Brnic){sub 4}] and trigon [Co{sub 2}(Brnic){sub 3}(OH)] cores, respectively. - Highlights: • Four novel metal–5-bromonicotinate coordination polymers have been synthesized. • Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules. • Antiferromagnetic interactions in nickel(II) paddle-wheel and cobalt(II) trigon cores were observed.

  20. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  1. Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte

    Science.gov (United States)

    Perea, Alexis; Dontigny, Martin; Zaghib, Karim

    2017-08-01

    In this article we present the difference in thermal stability of Li/LiFePO4| half cells with liquid and solid polymer electrolytes. After two initial cycles, the cells were charged to two different state of charge (SOC) of 50 and 100%. The thermal stability of the half cells is assessed with an accelerating rate calorimeter, and the thermal runaway parameters are discussed for each experiment: dependence of self-heating rate on temperature, temperature of a first-detected exothermic reaction, and maximum cell temperature. The dependence of those parameters with respect to the SOC is also presented.

  2. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers.

    Science.gov (United States)

    Lasheras-Zubiate, M; Navarro-Blasco, I; Fernández, J M; Alvarez, J I

    2012-09-30

    Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm(-2). A newly reported Zn phase, dietrichite (ZnAl(2)(SO(4))(4)·22H(2)O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb(4)Al(2)(SiO(3))(7)), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs

    Directory of Open Access Journals (Sweden)

    Sarah Trabia

    2018-04-01

    Full Text Available Ionic polymer-metal composites (IPMCs are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. To understand the two precursor-ionomers, a set of tests were conducted to measure the thermal degradation temperature, viscosity, melting temperature, and glass transition. The results have shown that the precursor Aquivion has a higher melting temperature (240 °C than precursor Nafion (200 °C and a larger glass transition range (32–65°C compared with 21–45 °C. The two have the same thermal degradation temperature (~400 °C. Precursor Aquivion is more viscous than precursor Nafion as temperature increases. Based on the results gathered, it seems that the precursor Aquivion is more stable as temperature increases, facilitating the manufacturing processes. This paper presents the data collected to assist researchers in thermal-based fabrication processes.

  4. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    Science.gov (United States)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  5. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  6. Metal Oxide Nanoparticles in Electrospun Polymers and Their Fate in Aqueous Waste Streams

    Science.gov (United States)

    Hoogesteijn von Reitzenstein, Natalia

    Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays---water-soil, water-octanol, water

  7. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.

    Science.gov (United States)

    Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X

    2007-06-01

    Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus

  8. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II)

    Science.gov (United States)

    Ahamad, Tansir; Alshehri, Saad M.

    2012-10-01

    Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.

  9. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  10. 21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...: Articulating Surfaces Made of Metal, Ceramic and Plastic Materials,” and (viii) ISO 9001:1994 “Quality Systems... for this device are: (1) FDA's: (i) “Use of International Standard ISO 10993 ‘Biological Evaluation of... Locked’ Modular Implant Components,” and (2) International Organization for Standardization's (ISO): (i...

  11. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  12. Modeling back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers

    Science.gov (United States)

    Porfiri, Maurizio; Sharghi, Hesam; Zhang, Peng

    2018-01-01

    Ionic polymer metal composites (IPMCs) are a new class of active materials that are gaining traction as soft actuators in medical and industrial applications. IPMCs can undergo large deformations under modest voltage inputs, in dry and wet environments. Past studies have demonstrated that physical and geometric properties of all the IPMC constituents (ionomer, electrodes, and counterions) may all influence the time scales of the transient response and severity of the back-relaxation. In this study, we present a detailed mathematical model to investigate how the finite size of the counterions and the presence of metal particles in the vicinity of the electrodes modulate IPMC actuation. We build on previous work by our group on thermodynamically consistent modeling of IPMC mechanics and electrochemistry, which attributes IPMC actuation to the interplay between Maxwell stress and osmotic forces. To gain insight into the role of physical and geometric parameters, the resulting nonlinear partial differential equations are solved semianalytically using the method of matched asymptotic expansions, for the initial transient and the steady-state. A numerical solution in COMSOL Multiphysics® is developed to verify semianalytical findings and further explore IPMC actuation. Our model can successfully predict the entire response of IPMCs, from the initial bending toward the anode to the steady-state toward the cathode. We find that the steric effect can abolish the back-relaxation of IPMCs by restraining the counterions' concentration near the electrodes. We also find that increasing the thickness of the ionomer-metal composite layers may enhance IPMC actuation through increased osmotic forces and Maxwell stress.

  13. Optical Characteristics of Polystyrene Based Solid Polymer Composites: Effect of Metallic Copper Powder

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2013-01-01

    Full Text Available Solid polymer composites (SPCs were prepared by solution cast technique. The optical properties of polystyrene doped with copper powder were performed by means of UV-Vis technique. The optical constants were calculated by using UV-Vis spectroscopy. The dispersion regions were observed in both absorption and refractive index spectra at lower wavelength. However, a plateau can be observed at high wavelengths. The small extinction coefficient compared to the refractive index reveals the transparency of the composite samples. The refractive index and optical band gap were determined from the reflectance and optical absorption coefficient data, respectively. The nature of electronic transition from valence band to conduction band was determined and the energy band gaps of the solid composite samples were estimated. It was observed that, upon the addition of Cu concentration, the refractive index increased while the energy gaps are decreased. The calculated refractive indexes (low index of refraction of the samples reveal their availability in waveguide technology.

  14. Inhibition and quenching effect on positronium formation in metal salt doped polymer blend

    Science.gov (United States)

    Praveena, S. D.; Ravindrachary, V.; Ismayil, Bhajantri, R. F.; Harisha, A.; Guruswamy, B.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    Sodium Bromide (NaBr) doped PVA/PVP (50:50) polymer blend composites were prepared using solution casting technique. Pure PVA/PVP blend and PVA/PVP:NaBr composites were studied using XRD and Positron Annihilation Lifetime Spectroscopy (PALS). XRD study shows increase in amorphous nature of the blend due to the NaBr dopant and PALS studies reveal that the o-Ps lifetime (τ3) and intensity (I3) decreases with increase in NaBr doping level. This shows chemical quenching and inhibition process of positronium (Ps) formation in the composite. Here the electron acceptor (Br-) acts as a strong chemical quencher for positronium formation and same is understood based on the spur model.

  15. Metal Nanoparticle-Decorated Two-Dimensional Molybdenum Sulfide for Plasmonic-Enhanced Polymer Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ming-Kai Chuang

    2015-08-01

    Full Text Available Atomically thin two-dimensional (2D transition metal dichalcogenides have also attracted immense interest because they exhibit appealing electronic, optical and mechanical properties. In this work, we prepared gold nanoparticle-decorated molybdenum sulfide (AuNP@MoS2 through a simple spontaneous redox reaction. Transmission electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy were used to characterize the properties of the AuNP@MoS2 nanomaterials. Then we employed such nanocomposites as the cathode buffer layers of organic photovoltaic devices (OPVs to trigger surface plasmonic resonance, leading to noticeable enhancements in overall device efficiencies. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the effects of localized surface plasmonic resonance. Our results suggest that the metal nanoparticle-decorated two-dimensional materials appear to have great potential for use in high-performance OPVs.

  16. Metal nano-particles modernized layers and those with polymers for laser thermonuclear targets

    Science.gov (United States)

    Akimova, I. V.; Akunets, A. A.; Borisenko, N. G.; Chaurasia, S.; Gromov, A. I.; Kaur, C.; Munda, D. S.; Orekhov, D. S.; Orekhov, A. S.; Sklizkov, G. V.; Tolokonnikov, S. M.; Rao, U.; Rastogi, V.

    2017-10-01

    The manufacturing and precision monitoring methods of the layers as promising direct and indirect targets for Inertial confinement fusion (ICF) are under study, as well as their application in the experiments. The metal-containing foams with a density that is several times or several orders of magnitude smaller than the full-density material of the same composition are of interest for higher laser light conversion into X-rays and for better energy delivery into the target in direct and indirect interaction schemes. Such targets are developed and provided. We report the interaction of Nd: glass laser with a low-density bismuth and gold targets. The plasma dynamics and X-ray emissions were observed using multiframe optical shadowgraphy and an X-ray streak camera. Enhanced X-ray intensities and festoon plasma flame are observed from the metal low-density layers.

  17. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  18. Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents

    OpenAIRE

    Ang, Hui Ying; Huang, Ying Ying; Lim, Soo Teik; Wong, Philip; Joner, Michael; Foin, Nicolas

    2017-01-01

    Bioresorbable scaffolds (BRS) were developed to overcome the drawbacks of current metallic drug-eluting stents (DES), such as late in-stent restenosis and caging of the vessel permanently. The concept of the BRS is to provide transient support to the vessel during healing before being degraded and resorbed by the body, freeing the vessel and restoring vasomotion. The mechanical properties of the BRS are influenced by the choice of the material and processing methods. Due to insufficient radia...

  19. The interaction of metal carbonyl compounds with organic polymers and monomers

    OpenAIRE

    Lyons, Michael P.

    1993-01-01

    The photochemistry of W(CO)6, Mo(CO)6, and Cr(CO)6 in the presence of monomeric and polymeric triphenylphosphine ligands was investigated in toluene solution, using laser flash photolysis with 355nm excitation. The mechanism and kinetics of interaction of the primary photoproducts M(CO)5(toluene) (M = W, Mo, or Cr) with the various monomeric ligands were investigated. Interaction of the metal carbonyl photofragments with various homopolymers is also discussed. The polymerisation methods used ...

  20. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids

    Science.gov (United States)

    Li, Haiqing; Cooper-White, Justin J.

    2013-03-01

    1-Pyrenemethanol initiated hyperbranched polyglycerol (PiHP) has been synthesized and utilized to non-covalently functionalize pristine multi-walled carbon nanotubes (CNTs) through π-π stacking interactions. Mediated with the PiHP coating, a variety of metal nanoparticles (Au, Ag, Pd and Pt) were in situ generated and randomly tethered on the CNT sidewalls, producing various water-soluble CNT/PiHP/metal hybrids. Particularly, the resulting CNT/PiHP/Pt hybrids possess improved metal coverage in comparison to the reported CNT/Pt nanohybrids obtained by the use of conventional non-covalent CNT surface-modifiers. Depending on the using concentration of Pt2+ precursor, Pt coverage in CNT/PiHP/Pt hybrids can be effectively controlled. In the meanwhile, Pt component on the CNT sidewalls can be either well isolated nanoparticles or loose ``nanoclusters''. To test the promising catalytic application of these obtained CNT/PiHP/Pt hybrids, a systematic investigation on their catalytic performance towards the reduction of 4-nitrophenol to produce 4-aminophenol was performed. Surprisingly, these hybrids exhibited significantly enhanced catalytic activity compared with the conventionally utilized Au and Ag nanoparticles. Moreover, they can be easily recovered and reused without significant loss in catalytic activity after running 6 circles.

  1. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    Science.gov (United States)

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Coordination Chemistry inside Polymeric Nanoreactors: Metal Migration and Cross-Exchange in Amphiphilic Core-Shell Polymer Latexes

    Directory of Open Access Journals (Sweden)

    Si Chen

    2016-01-01

    Full Text Available A well-defined amphiphilic core-shell polymer functionalized with bis(p-methoxy-phenylphosphinophenylphosphine (BMOPPP in the nanogel (NG core has been obtained by a convergent RAFT polymerization in emulsion. This BMOPPP@NG and the previously-reported TPP@NG (TPP = triphenylphosphine and core cross-linked micelles (L@CCM; L = TPP, BMOPPP having a slightly different architecture were loaded with [Rh(acac(CO2] or [RhCl(COD]2 to yield [Rh(acac(CO(L@Pol] or [RhCl(COD(L@Pol] (Pol = CCM, NG. The interparticle metal migration from [Rh(acac(CO(TPP@NG] to TPP@NG is fast at natural pH and much slower at high pH, the rate not depending significantly on the polymer architecture (CCM vs. NG. The cross-exchange using [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(TPP@Pol] (Pol = CCM or NG as reagents at natural pH is also rapid (ca. 1 h, although slower than the equivalent homogeneous reaction on the molecular species (<5 min. On the other hand, the subsequent rearrangement of [Rh(acac(CO(TPP@Pol] and [RhCl(COD(TPP@Pol] within the TPP@Pol core and of [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(BMOPPP@Pol] within the BMOPPP@Pol core, leading respectively to [RhCl(CO(TPP@Pol2] and [RhCl(CO(BMOPPP@Pol2], is much more rapid (<30 min than on the corresponding homogeneous process with the molecular species (>24 h.

  3. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I: Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions.

    Science.gov (United States)

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-02

    Despite the many efforts to develop efficient protein purification techniques, the isolation of peptides and small proteins on a larger than analytical scale remains a significant challenge. Recovery of small biomolecules from diluted complex biological mixtures, such as human serum, employing porous adsorbents is a difficult task mainly due to the presence of concentrated large biomolecules that can add undesired effects in the system such as blocking of adsorbent pores, impairing diffusion of small molecules, or competition for adsorption sites. Adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide matrix, have been developed and explored in this work to overcome such effects and to preferentially adsorb small molecules while rejecting large ones. In the first part of this work, adsorption studies were performed with small peptides and proteins from synthetic mixtures using controlled access polymer permeation adsorption (CAPPA) media created by effectively grafting PEG on an immobilized metal affinity chromatography (IMAC) agarose resin, where chelating agents and immobilized metal ions were used as the primary affinity binding sites. Synthetic mixtures consisted of bovine serum albumin (BSA) with small proteins, peptides, amino acids (such as histidine or Val⁴-Angiotensin III), and small molecules-spiked human serum. The synthesized hybrid adsorbent consisted of agarose beads modified with iminodiacetic (IDA) groups, loaded with immobilized Cu(II) ions, and PEG. These CAPPA media with grafted PEG on the interior and exterior surfaces of the agarose matrix were effective in rejecting high molecular weight proteins. Different PEG grafting densities and PEG of different molecular weight were tested to determine their effect in rejecting and controlling adsorbent permeation properties. Low grafting density of high molecular weight PEG was found to be as

  4. Metal-polymer interfaces studied with adsorption microcalorimetry and photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bebensee, Fabian

    2010-06-21

    The interface formation between calcium and two different semiconducting, ?-conjugated polymers, namely poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovilylene)phenylene] (CN-MEH-PPV), was investigated using adsorption microcalorimetry, low energy ion scattering spectroscopy (LEIS), atomic beam scattering and X-ray photoelectron spectroscopy. In addition to the interface formation on pristine, i.e., untreated polymer surfaces, the influence of electron irradiation prior to calcium deposition and the effect of dosing calcium at a low substrate temperature was studied. The reactive site for the interaction of calcium atoms impinging on a pristine P3HT surface appears to be the sulfur in the thiophene ring, as is concluded from a combination of XPS, adsorption calorimetry and theory results. The interaction, in fact, is strong enough that the sulfur atoms abstracted from the thiophene ring under formation of calcium sulfide with an overall reaction energy of this process of 405 kJ per mol. Quantitative evaluation of XPS data reveal that the depth up to which Ca atoms react with sulfur in the polymer is 3 nm, irrespective of increasing the amount of Ca dosed onto the substrate. A closed layer of Ca is only formed at a Ca coverage exceeding 11 ML, as suggested by LEIS. Irradiation of P3HT with electrons with a kinetic energy of 100 eV results in dehydrogenation of the hexyl side chains and formation of new C=C double bonds. This in turn results in a higher initial sticking probability of 0.63 for Ca, while no other significant changes could be observed: XPS indicates that the thiophene rings remain intact and the measured heat of adsorption is the same as observed for the deposition of Ca on pristine P3HT. Dosing Ca onto P3HT held at low temperature (130 K) is found to result in a very low saturation thickness of the reacted layer of approximately 0.3 nm. Upon warming the sample up to room temperature, the thickness of the reacted layer

  5. Development of scalable methods for the utilization of multi-walled carbon nanotubes in polymer and metal matrix composites

    Science.gov (United States)

    Vennerberg, Danny Curtis

    Multi-walled carbon nanotubes (MWCNTs) have received considerable attention as reinforcement for composites due to their high tensile strength, stiffness, electrical conductivity and thermal conductivity as well as their low coefficient of thermal expansion. However, despite the availability of huge quantities of low-cost, commercially synthesized nanotubes, the utilization of MWCNTs in engineering composites is extremely limited due to difficulties in achieving uniform dispersion and strong interfacial bonding with the matrix. A proven method of enhancing the nanotube-polymer interface and degree of MWCNT dispersion involves functionalizing the MWCNTs through oxidation with strong acids. While effective at laboratory scales, this technique is not well-suited for large-scale operations due to long processing times, poor yield, safety hazards, and environmental concerns. This work aims to find scalable solutions to several of the challenges associated with the fabrication of MWCNT-reinforced composites. For polymer matrix composite applications, a rapid, dry, and cost-effective method of oxidizing MWCNTs with O3 in a fluidized bed was developed as an alternative to acid oxidation. Oxidized MWCNTs were further functionalized with silane coupling agents using water and supercritical carbon dioxide as solvents in order to endow the MWCNTs with matrix-specific functionalities. The effect of silanization on the cure kinetics, rheological behavior, and thermo-mechanical properties of model epoxy nanocomposites were investigated. Small additions of functionalized MWCNTs were found to increase the glass transition temperature, strength, and toughness of the epoxy. In order to achieve composite properties approaching those of individual nanotubes, new approaches are needed to allow for high loadings of MWCNTs. One strategy involves making macroscopic mats of nanotubes called buckypaper (BP) and subsequently infiltrating the mats with resin in processes familiar to

  6. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B[sup +] and 550-keV N[sup +] (total dose 2.3[times]10[sup 16] ions/cm[sup 2]) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B[sup +] to 3 different doses. PS was also implanted with both B[sup +] and Ar[sup +]. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  7. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B{sup +} and 550-keV N{sup +} (total dose 2.3{times}10{sup 16} ions/cm{sup 2}) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B{sup +} to 3 different doses. PS was also implanted with both B{sup +} and Ar{sup +}. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  8. Energetic metallic ion implantation in polymers via cost-effective laser-driven ion source

    Science.gov (United States)

    Tahir, Muhammad Bilal; Rafique, M. Shahid; Ahmed, Rabia; Rafique, M.; Iqbal, Tahir; Hasan, Ali

    2017-07-01

    This research work reports the ions emission from the plasma generated by Nd:YAG laser having wavelength 1.064 μm, power 1.1 MW, pulse energy 10 mJ and intensity 1011 W/cm2 irradiated at 70° with respect to the target normal to the ions. These ions were accelerated through a home-made extraction assembly by means of a high voltage DC power supply. The energy of these ions were measured using Thomson parabola technique which utilizes Solid State Nuclear Track Detector (CR-39) and confirmed by Faraday cup as well that exploits a well-known technique known as time of flight. Interestingly, a significant increase in energy (from 490 to 730 keV) was observed with a discrete increase in acceleration potential from 0 to 18 kV. Polyethylene terephthalate (PET) and polypropylene were exposed to this recently developed ion source facility, to authenticate the reliability of this facility. The surface of the polymer is affected when energy of the irradiated ion is increased, which is evident from the optical micrographs. An increase in electrical conductivity was also observed with the increase in ion energy.

  9. Polymer grafting surface as templates for the site-selective metallization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Peiyuan, E-mail: lipearpear@yahoo.cn [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Li, Xiangcheng [School of computer, electronics and information, Guangxi University, Nanning 530001 (China); Huo, Lini [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Chen, Jinhao [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Chen, Rui [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Na, Wei; Tang, Wanning; Liang, Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Su, Wei, E-mail: aaasuwei@yahoo.com.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2013-06-01

    We report a simple, low-cost and universal method for the fabrication of copper circuit patterns on a wide range of flexible polymeric substrates. This method relies on procedures to modify the polymeric substrates with grafted polymer template to form surface-bound N-containing groups, which can bind palladium catalysts that subsequently initiate the site-selective deposition of copper granular layer patterns. The fabrications of patterned copper films were demonstrated on three kinds of flexible polymeric films including poly(imide) (PI), poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) with minimum feature sizes of 200 μm. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM, SEM. Furthermore, the copper layered structure shows good adhesion with polymeric film. This method, which provides a promising strategy for the fabrication of copper circuit patterns on flexible polymeric substrates, has the potential in manufacturing conductive features adopted in various fields including modern electronics, opto-electronics and photovoltaic applications.

  10. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  11. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  12. Mixed sulfoisophthalate and 1,2,4-triazole directed d10 metal coordination polymers: Synthesis, property and structural diversity

    Science.gov (United States)

    Liu, Bing; Guo, Kai; Feng, Hui-Jun; Miao, Wei-Ni; He, Ting-Ting; Xu, Ling

    2017-10-01

    This work presents six d10-metal coordination polymers based on mixed ligands of 5-sulfoisophthalate (H2SIP-) and 1,2,4-triazoles (1H-1,2,4-triazole (Htr), 3-amino-1H-1,2,4-triazole (Hatr)), 3D [Zn7(SIP)2(tr)8(H2O)4]·4H2O (1), 3D [Zn4(SIP)(atr)5(H2O)2]·3H2O (2), 2D [Zn2(SIP)(atr)(H2O)3]·2H2O (3), 2D [Ag(H2SIP)(Hatr)] (4 and 5), and 3D [Cd3(SIP)(tr)2(OH)]·H2O (6) under hydrothermal conditions. The structural analysis indicates a ligand directed structural diversity in the metal-(H)SIP-triazole system. The characterizations of 1-6 indicate that the bulk samples are pure phases, the thermal decomposition temperatures are beyond 300 °C, and the fluorescence are blue. The maximum emissions of 1-3 and 6 at around 410 nm are related with the intraligand π→π* transitions of 1,2,4-triazole moieties, and those at ca. 350 nm in 4 and 5 are assigned to intraligand transitions of (H)SIP ligands. The temperature-dependent fluorescence of 1-6 show thermal quenchings with fluorescence quenching rates ranging 22.9-74.2%, and the fluorescence cannot recover fully when it is back to ambient temperature.

  13. Response Behaviour of a Hydrogen Sensor Based on IonicConducting Polymer-metal Interfaces Prepared by the ChemicalReduction Method

    Directory of Open Access Journals (Sweden)

    Werner Weppner

    2006-04-01

    Full Text Available A solid-state amperometric hydrogen sensor based on a protonated Nafionmembrane and catalytic active electrode operating at room temperature was fabricated andtested. Ionic conducting polymer-metal electrode interfaces were prepared chemically byusing the impregnation-reduction method. The polymer membrane was impregnated withtetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced byusing either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensingcharacteristics with air as reference gas is reported. The sensors were capable of detectinghydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in therange of 10-30 s and a stable linear current output was observed. The thin Pt films werecharacterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic ForceMicroscopy, Scanning Electron Microscopy and EDAX.

  14. Friction riveting. Development and analysis of a new joining technique for polymer-metal multi-materials structures

    Energy Technology Data Exchange (ETDEWEB)

    Amancio, S.

    2007-07-01

    A new Friction Riveting technique for polymeric-metallic joints was developed, demonstrated and characterized in this work, as an alternative, reliable, environmental compatible and economically viable spot joining process. In the simplest process variant a rotating cylindrical metallic rivet is inserted in a thermoplastic base plate. The high rotation speed and pressure increase friction and heat is generated. The local increase in temperature induces the formation of a softened/molten polymer layer around the tip of the rotating rivet. When a certain penetration depth is achieved the heat input rate becomes higher than heat outflow (owing to the low polymer thermal conductivity), temperature highly increases and the rivet tip plasticizes. At this point rotation is stopped and the forging pressure applied, so the plasticized rivet tip is deformed by the opposite reactive forces of colder polymeric volumes, assuming a paraboloidal pattern; after cooling it becomes anchored in the polymeric base plate. In this work case-study joints on commercially available polyetherimide (PEI) and aluminium 2024- T351(Al-Cu-Mg alloy) were chosen for demonstrating proposed theories, models and mechanisms, as well as an analytical heat input model. Sound friction riveted point-on-plate and single-rivet overlap joints with elevated joint efficiencies in terms of base materials strength were obtained (joint efficiencies for point-on-plate joints: 60 %.93 %; for overlaps: 70 %) through tensile and lap shear testing at room temperature. The influence of process parameters (rotational speed, total time and total pressure) on process variables and joint properties were evaluated by thermometry, infrared thermography, microscopy, Vickers microhardness, X-ray microtomography and by gel permeation chromatography. Temperature (average maximal temperatures 500 deg C) was directly proportional to rotation speed, total time and total pressure. Volumetric flaw formation was directly proportional

  15. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  16. SHI irradiation of metal doped zinc sulfide polymer nanocomposites synthesized using micro emulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyendra [Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025 (India); Singh, Paramjit [University School of Basics and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078 (India); Sonkawade, R.G. [Inter University Aceelerator Centre, New Delhi 110067 (India); Awasthi, Kamlendra [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basics and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078 (India)

    2015-09-01

    The metal doped ZnS nanoparticles dispersed in polystyrene were synthesized using micro emulsion method. The synthesized free standing nanocomposites films of 18 μm thickness were irradiated with 60 MeV nickel ions at two different fluences for the modification of structural, optical and chemical properties. The pristine and irradiated samples were characterized by X-ray diffraction, UV–visible and FTIR spectrophotometer. The SEM and XRD results confirmed the synthesis of nanoparticles. The ion irradiation shifted the optical absorption towards higher wavelength and decreased the band gap energy to significant levels. The infrared band at 465 cm{sup −1} confirmed the Zn–S bonding. The intensity of other absorption bands was modified after ion irradiation.

  17. Three 3D metal coordination polymers based on triazol-functionalized rigid ligand: Synthesis, topological structure and properties

    Science.gov (United States)

    Meng, Lingkun; Liu, Kang; Liang, Chen; Guo, Xiaolei; Han, Xu; Ren, Siyuan; Ma, Dingxuan; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2018-02-01

    By using a triazol-functionalized tricarboxylate, three novel metal coordination polymers, namely, [Zn2L(OH)]·0.5H2O (1), [Co2L(OH)(H2O)]·5.5H2O (2), [Cu2(HL)] (3) L = [5-(3-(4-carboxyphenyl)-5-methyl-4H-1,2,4-triazol-4-yl)isophthalate] were synthesized under hydrothermal reactions. All the compounds were characterized by element analysis, IR spectroscopy, thermogravimetric analysis, power X-ray diffrcation and single-crystal X-ray diffrcation. Structural analysis reveals that compounds 1 and 2 have 3D networks with flu topologies where rigid trizaol-functionalized ligands as 4-connected nodes and Zn4(COO)6 or Co4(COO)6 clusters serves as 8-connected secondary building units. Compound 3 has 3D network with pcu topology where Cu4(COO)4 clusters serve as 6-connected secondary building units. Gas adsorption studies reveal that desolvated compoud 1 exhibits high H2 absorption capacity at 77 K and highly selective separation abilities of CO2 and C3H8 over CH4 at room temperature. The results suggest that 1 has potential application in gas storage and separation. In addition, the magnetic properties of compound 2 were also investigated.

  18. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization

    Directory of Open Access Journals (Sweden)

    Bilal Khatri

    2018-01-01

    Full Text Available In this work, a 3D printed polymer–metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS and a sharp decrease in Young’s modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.

  19. Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Reddy, V. S.

    2018-01-01

    Polymer solar cells were fabricated with solution-processed transition metal oxides, MoO3 and V2O5 as anode buffer layers (ABLs). The optimized device with V2O5 ABL exhibited considerably higher power conversion efficiency (PCE) compared to the devices based on MoO3 and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ABLs. The space charge limited current measurements and impedance spectroscopy results of hole-only devices revealed that V2O5 provided a very low charge transfer resistance and high hole mobility, facilitating efficient hole transfer from the active layer to the ITO anode. More importantly, incorporation of V2O5 as ABL resulted in substantial improvement in device stability compared to MoO3 and PEDOT:PSS based devices. Unencapsulated PEDOT:PSS-based devices stored at a relative humidity of 45% have shown complete failure within 96 h. Whereas, MoO3 and V2O5 based devices stored in similar conditions retained 22% and 80% of their initial PCEs after 96 h. Significantly higher stability of the V2O5-based device is ascribed to the reduction in degradation of the anode/active layer interface, as evident from the electrical measurements.

  20. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  1. Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system

    International Nuclear Information System (INIS)

    Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

    2002-01-01

    Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H(sub 2)-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO+ H(sub 2)O(rightleftharpoons) CO(sub 2)+ H(sub 2), is used to convert the bulk of the reformate CO to CO(sub 2). Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H(sub 2) for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H(sub 2)) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from

  2. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  3. Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.

    2015-10-06

    Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state-of-the-art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far-field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low-cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far-field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.

  4. Formation of Ultrathin, Continuous Metal-Organic Framework Membranes on Flexible Polymer Substrates.

    Science.gov (United States)

    Hou, Jingwei; Sutrisna, Putu D; Zhang, Yatao; Chen, Vicki

    2016-03-14

    Metal-organic framework (MOF) materials have an enormous potential in separation applications, but to realize their potential as semipermeable membranes they need to be assembled into thin continuous macroscopic films for fabrication into devices. By using a facile immersion technique, we prepared ultrathin, continuous zeolitic imidazolate framework (ZIF-8) membranes on titania-functionalized porous polymeric supports. The coherent ZIF-8 layer was surprisingly flexible and adhered well to the support, and the composite membrane could sustain bending and elongation. The membranes exhibited molecular sieving behavior, close to the theoretical permeability of ZIF-8, with hydrogen permeance up to 201×10(-7)  mol m(-2)  s(-1)  Pa(-1) and an ideal H2 /CO2 selectivity of 7:1. This approach offers significant opportunities to exploit the unique properties of MOFs in the fabrication of separation and sensing devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polymeric radioactive waste disposal containers: an investigation into the application of polymers vice metals to house low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Walker, M.W.; Bonin, H.W.; Bui, V.T.

    2001-01-01

    The research carried out in Canada in the design of containers for the disposal of radioactive waste has focussed on spent nuclear fuel, even though the quantities of other currently stored radioactive wastes are substantially greater. Research carried out at the Royal Military College of Canada on the effects of mixed fields of radiation on high polymer adhesives and composite materials has shown that some polymers are quite resistant to radiation and could well serve in the fabrication of radioactive waste disposal containers. The purpose of this research was to determine if thermoplastic polymers could be used as superior materials to replace metals in the application of low and intermediate level radioactive waste disposal containers. Polymers have the advantage that they do not corrode like metals. The experimental methods, used in this research, focused on the effects of radiation on the properties of the materials. Polypropylene, Nylon 66, Polycarbonate, and Polyurethane, with and without glass fibre reinforcement, were studied. The method involved irradiating injection moulded tensile test bars with the SLOWPOKE-2 reactor to accumulate doses ranging from 0.5 to 3.0 MGy. To determine the effects of the various doses on the materials, density, tensile, differential scanning calorimetry, and scanning electron microscopy tests were run. For each polymer, the test methods supported predominant crosslinking of polymeric chains severed by radiation. This was evident from observed changes in the mechanical and chemical properties of the polymers, typical of crosslinking. The mechanical changes included an overall increase in density, an increase in Young's modulus, a decrease in strain at break, and only minor changes in strength. The chemical changes included differences in chemical transition temperatures characteristic of radiation damage. The test methods also evidenced minor radiation degradation at the fibre/matrix interfaces in the glass fibre reinforced

  6. Stent selection in patients with myocardial infarction: drug eluting, biodegradable polymers or bare metal stents?

    Science.gov (United States)

    Mieres, Juan; Rodríguez, Alfredo E

    2012-08-01

    Percutaneous coronary intervention (PCI) has been increasingly used in the last years during interventional procedures in patients with acute coronary syndromes (ACS) including ST elevation myocardial infarction (STEMI) and non-ST elevation myocardial infarction (NSTEMI). In patients with either STEMI, NSTEMI, high risk ACS with EKG changes or cardiac enzymes rises; PCI with bare metal stent (BMS) implantation has been associated with a significant improvement in clinical outcome. Therefore, BMS implantation during primary PCI in STEMI has become a standard of practice. With the introduction of drug eluting stents (DESs) in this decade, the use of these new devices instead of BMSs in patients with STEMI has emerged as a rational PCI alternative in this particular subgroup of patients. In spite of the unquestionable benefits of DESs in terms of reduction of restenosis and TVR, specific concerns have arisen with regard to their long-term safety. High incidence of very late stent thrombosis has been described with these devices, and special attention should be paid in patients with unstable coronary lesions, in which plaque composition and remodeling may play a main role in their safety and long-term outcome. Intraluminal thrombus caused by plaque rupture is the most frequent mechanism of STEMI, in which the necrotic core and thin fibrous cap play a major role. In this context, the use of first DESs designs may be futile or even unsafe because delayed healing may further contribute to plaque instability. Adjunctive invasive imaging tools can improve stent deployment and safety outcome in these lesions with intravascular findings of plaque instability. Recently, other players such as new dedicated antithrombotic BMS designs, including selfexpanding stents or drug-eluting coated balloons, are exploring their potential indications in patients with ACS and myocardial infarction. This paper reports and discusses new stent devices and adjunctive pharmacologic agents. It

  7. Preparation and evaluation of open-tubular capillary column combining a metal-organic framework and a brush-shaped polymer for liquid chromatography.

    Science.gov (United States)

    Chen, Kai; Zhang, Lingyi; Zhang, Weibing

    2018-03-30

    In this work, an open-tubular capillary liquid-phase column was prepared by modifying chain polymer on the inner surface of capillary and chemical bonding of metal organic frameworks, NH 2 -UiO-66, to the brushes of chain polymer (poly(glycidyl methacrylate)). Besides advantages of facial preparation and good permeability, the chain polymer effectively increases the modification amount of NH 2 -UiO-66 nanoparticles to increase the phase ratio of open-tubular capillary column and enhance the interactions with analytes. The results of scanning electron microscope energy-dispersive X-ray spectra indicated that NH 2 -UiO-66 nanoparticles were successfully bonded to the chain polymer. Because of the hydrophobic interaction and hydrogen bonding interaction between the analytes and the ligand of NH 2 -UiO-66, different analytes were well separated on the NH 2 -UiO-66-modified poly(glycidyl methacrylate) capillary (1.12 m × 25 μm id × 365 μm od) with the high absolute column efficiency reaching 121 477 plates, benefiting from an open-tubular column and low mass transfer resistance provided by polymer brush and metal-organic framework crystal. The relative standard deviations of the retention time for run-to-run, day-to-day, and column-to-column (n = 3) runs are below 4.28%, exhibiting good repeatability. Finally, the column was successfully applied to separation of flavonoids in licorice. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bioresorbable Ca-phosphate-polymer/metal and Fe-Ag nanocomposites for macro-porous scaffolds with tunable degradation and drug release

    Science.gov (United States)

    Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.

    2016-11-01

    Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in

  9. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    Science.gov (United States)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  10. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  11. Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Shahinpoor, Mohsen, E-mail: mohsen.shahinpoor@maine.edu [Biomedical Engineering Laboratory, Department of Mechanical Engineering, University of Maine, Orono, ME 04469 (United States)

    2011-12-15

    The work described in this paper is a novel design of a robotic Venus flytrap (VFT) (Dionaea muscipula Ellis) by means of ionic polymeric metal composite (IPMC) artificial muscles as distributed nanosensors and nanoactuators. Rapid muscular movements in carnivorous plants, such as VFT, which are triggered by antenna-like sensors (trigger hair), present a golden key to study distributed biomolecular motors. Carnivorous plants, such as VFT, possess built-in intelligence (trigger hairs), as a strategy to capture prey, that can be turned on in a controlled manner. In the case of the VFT, the prey that is lured by the sweet nectar in the VFT pair of jaw-like lobes has to flip and move the trigger hairs, which are colorless, bristle-like and pointed. The dynamically moved trigger hairs then electro-elastically send an electric signal to the internal ions in the lobe to migrate outwardly for the jaw-like lobes to close rapidly to capture the prey. The manner in which the VFT lobes bend inward to capture the prey shows a remarkable similarity with typical IPMCs bending in an electric field. Furthermore, the mechano-electrical sensing characteristics of IPMCs also show a remarkable resemblance to mechano-electrical trigger hairs on the lobes of the VFT. The reader is referred to a number of papers in connection with sensing and actuation of IPMCs in particular. Thus, one can integrate IPMC lobes with a common electrode in the middle of one end of the lobes to act like a spine and use IPMC bristles as trigger finger to sense the intrusion of a fly or insect to send a sensing signal to a solid state relay which then triggers the actuation circuit of the IPMC lobes to rapidly bend toward each other and close. The two lobes, which form the trap, are attached to the midrib common electrode which is conveniently termed the spine. The upper surface of each lobe is dished, and spaced along the free margins of the lobes with some 15-20 prong-like teeth. These are tough and pointed

  12. Polymers in separation processes

    Science.gov (United States)

    Wieszczycka, Karolina; Staszak, Katarzyna

    2017-05-01

    Application of polymer materials as membranes and ion-exchange resins was presented with a focus on their use for the recovery of metal ions from aqueous solutions. Several membrane techniques were described including reverse osmosis, nanofiltration, ultrafiltration, diffusion and Donnan dialysis, electrodialysis and membrane extraction system (polymer inclusion and supported membranes). Moreover, the examples of using ion-exchange resins in metal recovery were presented. The possibility of modification of the resin was discussed, including hybrid system with metal cation or metal oxide immobilized on polymer matrices or solvent impregnated resin.

  13. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.

    Science.gov (United States)

    Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei

    2015-03-11

    Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance.

  14. Polymer-Supported Optically Active fac(S)-Tris(thiotato)rhodium(III) Complex for Sulfur-Bridging Reaction With Precious Metal Ions.

    Science.gov (United States)

    Aizawa, Sen-Ichi; Tsubosaka, Soshi

    2016-01-01

    The optically active mixed-ligand fac(S)-tris(thiolato)rhodium(III) complexes, ΔL -fac(S)-[Rh(aet)2 (L-cys-N,S)](-) (aet = 2-aminoethanethiolate, L-cys = L-cysteinate) () and ΔLL -fac(S)-[Rh(aet)(L-cys-N,S)2 ](2-) were newly prepared by the equatorial preference of the carboxyl group in the coordinated L-cys ligand. The amide formation reaction of with 1,10-diaminodecane and polyallylamine gave the diamine-bridged dinuclear Rh(III) complex and the single-chain polymer-supported Rh(III) complex with retention of the ΔL configuration of , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear-type trinuclear structure with the S-bridged Co(III) center and the two Δ-Rh(III) terminal moieties. The polymer-supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85-91, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    Directory of Open Access Journals (Sweden)

    David Thompson

    2016-10-01

    Full Text Available This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  16. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    Science.gov (United States)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  17. Nanoporous Block Polymer Thin Films Functionalized with Bio-Inspired Ligands for the Efficient Capture of Heavy Metal Ions from Water.

    Science.gov (United States)

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2017-06-07

    Heavy metal contamination of water supplies poses a serious threat to public health, prompting the development of novel and sustainable treatment technologies. One promising approach is to molecularly engineer the chemical affinity of a material for the targeted removal of specific molecules from solution. In this work, nanoporous polymer thin films generated from tailor-made block polymers were functionalized with the bio-inspired moieties glutathione and cysteamine for the removal of heavy metal ions, including lead and cadmium, from aqueous solutions. In a single equilibrium stage, the films achieved removal rates of the ions in excess of 95%, which was consistent with predictions based on the engineered material properties. In a flow-through configuration, the thin films achieved an even greater removal rate of the metal ions. Furthermore, in mixed ion solutions the capacity of the thin films, and corresponding removal rates, did not demonstrate any reduction due to competitive adsorption effects. After such experiments the material was repeatedly regenerated quickly with no observed loss in capacity. Thus, these membranes provide a sustainable platform for the efficient purification of lead- and cadmium-contaminated water sources to safe levels. Moreover, their straightforward chemical modifications suggest that they could be engineered to treat sources containing other recalcitrant environmental contaminants as well.

  18. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy

    2008-01-01

    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  19. Surface modification, organometallic and polyaryl polymer coatings, and flame spray technologies for preventing corrosion of metals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.

    1995-07-01

    To improve adherent properties of electrogalvanized steel (EGS) to polymeric topcoats, the surfaces of EGS were modified by polyelectrolyte-modified zinc phosphating solution. The electrochemical reaction between phosphating solution and EGS led to the complete coverage with fully grown hopeite crystals after only 5 sec treatment, thereby improving adhesion to topcoating and providing protection of EGS against corrosion. To evaluate the ability of polyphenylene sulfide (PPS) polyaryl thermoplastic coatings to protect zinc phosphate (Zn{center_dot}Ph)treated steels from corrosion in a wet, harsh environment ( 1.0 wt % H{sub 2}SO{sub 4}, 3.0 wt % NaCl and 96.0 wt % water at temperatures from 25{degrees} to 200{degree}C), we exposed them in an autoclave to attempt heating-cooling cyclic fatigue tests (1 cycle = 12 hr at 200{degrees}C + 12 hr at 25{degrees}C) up to 90 times. The major chemical reaction at the interface between the PPS and Zn in the Zn-Ph layer during cycling led to the formation of ZnS reaction product, which enhanced the Zn-Ph-to-PPS adhesive bond; correspondingly, there were no signs of peeling and separation of the coating after 90 cycles. organometallosiloxane polymer (OMSP) was synthesized through the hydrolysis-condensation reaction of the mixed precursor solutions of the N-[3-(triethoxysily)propyl]-4,5,-dihydroimidazole and {Beta}-trimethoxysilylethyl-2-pyridine sols in liquor medium and the metal alkoxides and metallocene dichloride dissolved in water or tetrahydrofurane. The OMSP films (thickness, 0. 5 to 1. 0 {mu}m) deposited by simple dip-withdrawing coating methods to aluminum alloys displayed the impedance of > 10{sup 6} ohm-cm {sup 2} after exposure for 40 days in 0.5 N NaCl solution at 25{degrees}C and the 3000 hr-salt spray resistance. Using a flame spray coating process, the methacrylic acid-modified polyethylene copolymer was overlaid onto cold rolled steel surfaces.

  20. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal......-oxide nanocomposite. We observed a short-circuit current density of 9.90 mA/cm2, an open-circuit voltage of 0.64 V, and a fill factor of 0.60. The overall power conversion efficiency increased from 3.20 to 3.72% with an external quantum efficiency improvement of 66%. The enhancement in performance was attributed...

  1. New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈.

    Science.gov (United States)

    Hovington, P; Lagacé, M; Guerfi, A; Bouchard, P; Mauger, A; Julien, C M; Armand, M; Zaghib, K

    2015-04-08

    Novel lithium metal polymer solid state batteries with nano C-LiFePO4 and nano Li1.2V3O8 counter-electrodes (average particle size 200 nm) were studied for the first time by in situ SEM and impedance during cycling. The kinetics of Li-motion during cycling is analyzed self-consistently together with the electrochemical properties. We show that the cycling life of the nano Li1.2V3O8 is limited by the dissolution of the vanadium in the electrolyte, which explains the choice of nano C-LiFePO4 (1300 cycles at 100% DOD): with this olivine, no dissolution is observed. In combination with lithium metal, at high loading and with a stable SEI an ultrahigh energy density battery was thus newly developed in our laboratory.

  2. Application of a Loop-Type Laboratory Biofilm Reactor to the Evaluation of Biofilm for Some Metallic Materials and Polymers such as Urinary Stents and Catheters

    Directory of Open Access Journals (Sweden)

    Hideyuki Kanematsu

    2016-10-01

    Full Text Available A laboratory biofilm reactor (LBR was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni, along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly—cultured solution with E-coli formed over 48–72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.

  3. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    Science.gov (United States)

    Long, Yun-Ze; Yin, Zhi-Hua; Hui, Wen; Chen, Zhao-Jia; Wan, Mei-Xiang

    2008-07-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I - V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory.

  4. Toxic metal ion separation by cellulose acetate/sulfonated poly(ether imide) blend membranes: effect of polymer composition and additive.

    Science.gov (United States)

    Nagendran, A; Vijayalakshmi, A; Arockiasamy, D Lawrence; Shobana, K H; Mohan, D

    2008-07-15

    Toxic heavy metal ion removal from industrial effluents are gaining increased visibility owing to environmental concern and saving precious materials. In this work, an attempt has been made to remove the valuable metal ions using modified ultrafiltration (UF) blend membranes based on cellulose acetate (CA) and sulfonated poly(ether imide) (SPEI) were prepared in the presence and absence of additive, poly(ethylene glycol) 600 (PEG600) in various compositions. Prepared membranes were characterized in terms of pure water flux (PWF), water content and membrane hydraulic resistance. High flux UF membranes were obtained in the range of 15-25 wt% SPEI and 2.5-10 wt% PEG600 in the polymer blend. The molecular weight cut-off (MWCO) of the blend membranes were determined using protein separation studies found to vary from 20 to greater than 69 kDa. Surface morphology of the blend membranes were analysed with scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of metal ions such as Cu(II), Ni(II), Zn(II) and Cd(II) using polyethyleneimine as the chelating ligand. On increasing the composition of SPEI and PEG600, the rejection of metal ions is decreasing while the permeate flux has an increasing trend. These effects are due to the increased pore formation in the CA/SPEI blend membranes because of the hydrophilic SPEI and polymeric additive PEG600. In general, it was found that CA/SPEI blend membranes displayed higher permeate flux and lower rejection compared to pure CA membranes. The extent of separation of metal ions depends on the affinity of metal ions to polyethyleneimine to form macromolecular complexes and the stability of the formed complexes.

  5. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination.

    Science.gov (United States)

    Ikeda, Masato; Tanaka, Yoshie; Hasegawa, Takashi; Furusho, Yoshio; Yashima, Eiji

    2006-05-31

    We describe the construction of the first double-stranded metallosupramolecular helical polymers. We designed and synthesized a supramolecular duplex comprised of complementary m-terphenyl-based strands bearing a chiral amidine or achiral carboxylic acid together with two pyridine groups at the four ends. Supramolecular polymerization of the duplex with cis-PtPh2(DMSO)2 in 1,1,2,2-tetrachloroethane produced the double-stranded metallosupramolecular polymer with a controlled helicity of which the two complementary metallostrands are intertwined through the amidinium-carboxylate salt bridges. The structures and hydrodynamic dimensions of the metallosupramolecular polymers were characterized by 1H NMR, diffusion-ordered NMR, dynamic light scattering, absorption, and CD measurements. The polymeric structure was also visualized by atomic force microscopy.

  6. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    was performed on the laser-machined polymer using an Alicona InfiniteFocus® microscope. Based on previous experiments, bearing area curve and its parameters are chosen to characterize the surface. In this paper, by comparison of plateable and non-plateable surfaces, and two types of plateable surface made...

  7. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Development of Metal/Polymer Mixtures Dedicated to Macro and Micro powder Injection Moulding : Experiments and Simulations

    International Nuclear Information System (INIS)

    Quinard, C.; Barriere, T.; Gelin, J. C.; Song, J. P.; Cheng, Z. Q.; Liu, B. S.

    2007-01-01

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components. These research tasks are completed with the simulations of injection and sintering for solid state diffusion for to validate the mumerical models

  9. Polymer/metal multi-layers structured composites: A route to high dielectric constant and suppressed dielectric loss

    Science.gov (United States)

    Feng, Yu; Li, Meng-Lu; Li, Wei-Li; Zhang, Tian-Dong; Zhao, Yu; Fei, Wei-Dong

    2018-01-01

    In order to obtain polymer-based composites with a high dielectric constant and suppressed dielectric loss, polyvinylidene fluoride (PVDF)/silver (Ag) multi-layer structured composites were fabricated via vacuum evaporation and hot-press methods. The dielectric constant of the PVDF/Ag(5/4) composite (including five PVDF layers and four Ag layers) is up to 31, and dielectric loss can be suppressed below 0.02 (smaller than that of pure PVDF) at 1 kHz. The enhanced interfacial polarization in multi-layer structured composites is determined via temperature dependence of electrical modulus, which is regarded as the origin of dielectric constant enhancement. The suppressed dielectric loss at low frequency is attributed to the difficulty in the formation of a percolation conductive network in this multi-layer system. This promising multi-layer strategy could be generalized to a variety of polymers to develop polymer-based composites with a high dielectric constant and low dielectric loss.

  10. Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

    Science.gov (United States)

    Maharramov, A. A.; Ramazanov, M. A.; Di Palma, Luca; Shirinova, H. A.; Hajiyeva, F. V.

    2018-01-01

    Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102-106 Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity ɛ, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.

  11. New Method for the Development of Plasmonic Metal-Semiconductor Interface Layer: Polymer Composites with Reduced Energy Band Gap

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2017-01-01

    Full Text Available Silver nanoparticles within a host polymer of chitosan were synthesized by using in situ method. Ultraviolet-visible spectroscopy was then carried out for the prepared chitosan : silver triflate (CS : AgTf samples, showing a surface plasmonic resonance (SPR peak at 420 nm. To prepare polymer composites with reduced energy band gap, different amounts of alumina nanoparticles were incorporated into the CS : AgTf solution. In the present work, the results showed that the reduced silver nanoparticles and their adsorption on wide band gap alumina (Al2O3 particles are an excellent approach for the preparation of polymer composites with small optical band gaps. The optical dielectric loss parameter has been used to determine the band gap experimentally. The physics behind the optical dielectric loss were interpreted from the viewpoint of quantum mechanics. From the quantum-mechanics viewpoint, optical dielectric loss was also found to be a complex equation and required lengthy numerical computation. From the TEM investigation, the adsorption of silver nanoparticles on alumina has been observed. The optical micrograph images showed white spots (silver specks with different sizes on the surface of the films. The second semicircle in impedance Cole-Cole plots was found and attributed to the silver particles.

  12. A model framework for actuation and sensing of ionic polymer-metal composites: prospective on frequency and shear response through simulation tools

    Science.gov (United States)

    Stalbaum, Tyler; Shen, Qi; Kim, Kwang J.

    2017-04-01

    Ionic polymer-metal composite (IPMC) is a promising material for soft-robotic actuator and sensor applications. This material system offers large deformation response for low input voltage and has an aptitude for operation in hydrated environments. Researchers have been developing IPMC actuators and sensors for applications with examples of self-sensing actuators, artificial fish fins and biomimicry of other aquatic lifeforms, and in medical operations such as in guided catheter devices. IPMCs have been developed in a range of geometric configurations, with tube or cylindrical and flat-plate rectangular as the most common shapes. Several mathematical and physics-based models have been developed for describing the transduction effects of IPMCs. In this work, the underlying theories of electromechanical and mechanoelectrical transduction in IPMCs are discussed, and simulated results of frequency response and shear response are presented. A model backbone is utilized which is primarily based on ion-transport and charge dynamics within the polymer membrane. The electromechanical model, that is with an IPMC as an actuator, is caused when an electric field is applied across the membrane causing ionic migration and swelling in the polymer membrane, which is based on the Poisson-Nernst-Planck equations and solid mechanics models. The mechanoelectric model is similar in underlying physics; however, the primary mechanisms of transduction are of different significance, where anion concentrations are as important as cations. COMSOL Multiphysics is utilized for simulations. Example applications of the modeling framework are presented. The simulated results provide additional support for the underlying physics theories discussed.

  13. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  14. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  15. Polymer-Derived Silicoboron Carbonitride Foams for CO2 Capture: From Design to Application as Scaffolds for the in Situ Growth of Metal-Organic Frameworks.

    Science.gov (United States)

    Sandra, Fabien; Depardieu, Martin; Mouline, Zineb; Vignoles, Gérard L; Iwamoto, Yuji; Miele, Philippe; Backov, Rénal; Bernard, Samuel

    2016-06-06

    A template-assisted polymer-derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron-modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m(2)  g(-1) and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal-organic frameworks (MOFs) directly within the open-cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Self-assembly of metal-organic coordination polymers constructed from a bent dicarboxylate ligand: diversity of coordination modes, structures, and gas adsorption.

    Science.gov (United States)

    Yang, Wenbin; Lin, Xiang; Blake, Alexander J; Wilson, Claire; Hubberstey, Peter; Champness, Neil R; Schröder, Martin

    2009-12-07

    We have synthesized five new metal-organic coordination polymers incorporating the bent ligand H(2)hfipbb [4,4'-(hexafluoroisopropylidene)bis(benzoic acid)] with different transition metal ions and co-ligands via solvothermal reactions to give [Zn(2)(hfipbb)(2)(py)(2)] x DMF (1), [Zn(2)(hfipbb)(2)(4,4'-bipy)(H(2)O)] (2), [Zn(2)(hfipbb)(2)(bpdab)].2DMF (3), [Cd(2)(hfipbb)(2)(DMF)(2)] x 2 DMF (4), and [Co(hfipbb)(dpp)] x MeOH (5) (py = pyridine, 4,4'-bipy = 4,4'-bipyridine, bpdab = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, dpp = 1,3-di(4-pyridyl)propane). Compound 1 displays a 2-fold 2D-->2D parallel interpenetrated layer network with one-dimensional (1D) helical channels, while 3 exhibits a three-dimensional pillared helical-layer open framework of alpha-Po topology based upon binuclear paddlewheel units. In compounds 2 and 5, binuclear motifs with double carboxylate bridges are linked by hfipbb(2-) ligands into a 1D ribbon, which are further assembled into two-dimensional non-interpenetrated (4,4) layers via bipyridyl co-ligands. However, the different bridging modes of hfipbb(2-) ligands and the different disposition of the coordinated co-ligands around metal ions result in subtle differences in the final architecture. Thus, 2 is based on a binuclear cluster node, double-stranded hfipbb(2-) linkers, and single-stranded 4,4'-bipy linkers, while 5 is based on a binuclear cluster node and hfipbb(2-) and dpp linkers which are both double-stranded. Among these compounds, the Cd(II) complex 4 is possibly the most interesting because it represents a rare example in which metal centers are linked by carboxylate groups into infinite chains further joined together by hfipbb(2-) spacers to form a 2D network with tubular helical channels. All these coordination polymers exhibit low solvent-accessible volumes. Both 3 and 4 retain structural integrity and permanent microporosity upon evacuation of guest molecules, with hydrogen uptakes of 0.57 and 0.78 wt %, respectively, at

  17. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    International Nuclear Information System (INIS)

    He Rong; Song Huihua; Wei Zhen; Zhang Jianjun; Gao Yuanzhe

    2010-01-01

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (1), [Co(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (2), [Ni(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (3), and [Co(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (4), where tsgluO 2- =(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2 1 , forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co 2 O 6 N 2 ] n 4- units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through π-π stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.

  18. Mechanochemical and thermal formation of 1H-benzotriazole coordination polymers and complexes of 3d-transition metals with intriguing dielectric properties.

    Science.gov (United States)

    Brede, Franziska A; Mühlbach, Friedrich; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-07-14

    Liquid-assisted grinding (LAG) reactions have been successfully applied to achieve a series of complexes and coordination polymers based on divalent 3d-transition metal chlorides (TM chlorides) and the aromatic ligand 1H-benzotriazole (BtzH). The obtained substances were investigated via single crystal X-ray, powder X-ray determination and simultaneous DTA/TG analysis as model compounds for structural and chemical influences on their dielectric properties. Depending on the synthesis method, different constitutions and structures are observed. Two polymorphous forms of the 1D polymer [MnCl2(BtzH)2] (1 and 2) as well as the complexes [ZnCl2(BtzH)2]·BtzH (3) and [CoCl2(BtzH)2]·BtzH (4) have been obtained as phase-pure bulk substances via the mechanochemical LAG route, and even single crystals are available. For comparison, thermal reactions were also carried out and have led to the formation of the neutral complexes: [CoCl2(BtzH)2] (5) and [CoCl2(BtzH)4]·4BtzH (6), [ZnCl2(BtzH)2] (7) and the anionic complex BtzH2[CoCl3BtzH] (8). In addition, thermal treatment of 3 yields the benzotriazolium salt {(BtzH)2H}Cl (9). The transition metal compounds were additionally analysed regarding their dielectric properties by frequency-dependent as well as temperature-dependent permittivity investigations. It is intriguing that compounds 1 and 3 show remarkably low dielectric constants and loss factors up to 50 °C highlighting them as potential "low-k materials".

  19. Three-dimensional activated graphene network-sulfonate-terminated polymer nanocomposite as a new electrode material for the sensitive determination of dopamine and heavy metal ions.

    Science.gov (United States)

    Yuan, Xiaoyan; Zhang, Yijia; Yang, Lu; Deng, Wenfang; Tan, Yueming; Ma, Ming; Xie, Qingji

    2015-03-07

    We report here that three-dimensional activated graphene networks (3DAGNs) are a better matrix to prepare graphene-polymer nanocomposites for sensitive electroanalysis than two-dimensional graphene nanosheets (2DGNs). 3DAGNs were synthesized in advance by the direct carbonization and simultaneous chemical activation of a cobalt ion-impregnated D113-type ion exchange resin, which showed an interconnected network structure and a large specific surface area. Then, the 3DAGN-sulfonate-terminated polymer (STP) nanocomposite was prepared via the in situ chemical co-polymerization of m-aminobenzene sulfonic acid and aniline in the presence of 3DAGNs. The 3DAGN-STP nanocomposite can adsorb dopamine (DA) and heavy metal ions, which was confirmed by quartz crystal microbalance studies. The 3DAGN-STP modified glassy carbon electrode (GCE) was used for the electrochemical detection of DA in the presence of ascorbic acid and uric acid, with a linear response range of 0.1-32 μM and a limit of detection of 10 nM. In addition, differential pulse voltammetry was used for the simultaneous determination of Cd(2+) and Pb(2+) at the 3DAGN-STP/GCE further modified with a bismuth film, exhibiting linear response ranges of 1-70 μg L(-1) for Cd(2+) and 1-80 μg L(-1) for Pb(2+) with limits of detection of 0.1 μg L(-1) for Cd(2+) and 0.2 μg L(-1) for Pb(2+). Because the 3DAGN-STP can integrate the advantages of 3DAGNs with STPs, the 3DAGN-STP/GCE was more sensitive than the bare GCE, 3DAGN/GCE, and 2DGN-STP/GCE for the determination of DA and heavy metal ions.

  20. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  2. Poly(vinylidene fluoride) modification induced by gamma irradiation for application as ionic polymer-metal composite; Modificacao de poli(fluoreto de vinilideno) induzida por radiacao gama para aplicacao como composito ionomerico de metal-polimero

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique Perez

    2011-07-01

    Gamma-radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses from 1 to 100 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and styrene/toluene (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere at room temperature, using gamma rays from a Co-60. After grafting reactions, the polymer was then sulfonated in chlorosulfonic acid/1,2-dichloroethane (2 and 10%) for 3 hours. The films were characterized before and after modification by calculating the degree of grafting (DOG), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). DOG results show that grafting increases with dose, and varies enormously depending on the solvent used, with DOGs about 20 times greater in DMF than in toluene. It was possible to confirm the grafting of styrene by FT-IR due to the appearance of the new characteristic peaks and by the TG and DSC which exhibited changes in the thermal behavior of the grafted/sulfonated material. Sulfonated material was also characterized by ion exchange capacity (IEC) showed that both DOG and sulfonic acid concentration increase IEC values. Results showed that it is possible to obtain materials with ion exchange capacity of possible application as ionic polymer-metal composites. (author)

  3. Transverse crack initiation under combined thermal and mechanical loading of Fibre Metal Laminates and Glass Fibre Reinforced Polymers

    NARCIS (Netherlands)

    Van De Camp, W.; Dhallé, M. M.J.; Warnet, L.; Wessel, W. A.J.; Vos, G. S.; Akkerman, R.; Ter Brake, H. J.M.

    2017-01-01

    The paper describes a temperature-dependent extension of the classical laminate theory (CLT) that may be used to predict the mechanical behaviour of Fibre Metal Laminates (FML) at cryogenic conditions, including crack initiation. FML are considered as a possible alternative class of structural

  4. Mechanochemical Synthesis of 3d Transition-Metal-1,2,4-Triazole Complexes as Precursors for Microwave-Assisted and Thermal Conversion to Coordination Polymers with a High Influence on the Dielectric Properties.

    Science.gov (United States)

    Brede, Franziska A; Heine, Johanna; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-02-18

    The complexes [MCl2 (TzH)4] (M=Mn (1), Fe (2); TzH=1,2,4-1H-triazole) and [ZnCl2 (TzH)2] (3) have been obtained by mechanochemical reactions of the corresponding divalent metal chloride and 1,2,4-1H-triazole. They were successfully used as precursors for the formation of coordination polymers either by a microwave-assisted reaction or by thermal conversion. For manganese, the conversion directly yielded 1∞ [MnCl2 TzH] (4), whereas for the iron-containing precursor, 1∞ [FeCl2 TzH] (6), was formed via the intermediate coordination polymer 1∞ [FeCl(TzH)2]Cl (5). For cobalt, the isotypic polymer 1∞ [CoCl(TzH)2]Cl (7) was obtained, but exclusively by a microwave-induced reaction directly from CoCl2 . The crystal structures were resolved from single crystals and powders. The dielectric properties were determined and revealed large differences in permittivity between the precursor complexes and the rigid chain-like coordination polymers. Whereas the monomeric complexes exhibit very different dielectric behaviour, depending on the transition metal, from "low-k" to "high-k" with the permittivity ranging from 4.3 to >100 for frequencies of up to 1000 Hz, the coordination polymers and complexes with strong intermolecular interactions are all close to "low-k" materials with very low dielectric constants up to 50 °C. Therefore, the conversion procedures can be used to deliberately influence the dielectric properties from complex to polymer and for different 3d transition-metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Şahin, Onur [Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop (Turkey)

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  6. Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand

    Science.gov (United States)

    Hayati, Payam; Souri, Bagher; Rezvani, Ali Reza; Morsali, Ali; Gutierrez, Angel

    2017-12-01

    Nanoparticles of one new lead and K coordination polymer (CP), {[Pb6(pyc)6(N3)7K].½H2O}n (1) Hpyc = picolinic acid ligand, has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compound 1 imply that the Pb ion is seven coordinated. The thermal stability of compound 1 has been studied by thermogravimetric (TG) and differential scanning calorimetry (DSC). The role of temperature, reaction time and ultrasound irradiation power on the size and morphfology of the nano-structured compound obtained from 1, have been investigated. Results indicate that an increase of temperature and sonication power and a decrease in time reaction led to a decrease of particle size.

  7. Synthesis, crystal structures, luminescence properties of two metal coordination polymers derived from 5-substituted isophthalate and flexible bis (triazole) ligands.

    Science.gov (United States)

    Ming, Chun-lun; Wang, Li-na; Van Hecke, Kristof; Cui, Guang-hua

    2014-08-14

    Two new metal complexes, [Ni(btx)(nip)(H2O)]n (1), {[Cd(btx)(mip)(H2O)]·H2O}n (2) (btx=1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, H2nip=5-nitroisophthalic acid, H2mip=5-methyisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. Complex 1 features a 3D metal-organic framework with three-fold interpenetrating CdSO4-type topology. Complex 2 exhibits a 2D network with square grid units, which is further extended into a rare 3,5T1 three-dimensional supramolecular network via three modes of classical OH⋯O hydrogen bonds. In addition, luminescence properties of 1 and 2 have also been investigated in the solid state. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation of polymers suitable for radiation shielding and studying its properties (polyester composites with heavy metals salts)

    International Nuclear Information System (INIS)

    Kharita, M. H.; Al-Ajji, Z.; Yousef, S.

    2010-12-01

    Four composites were prepared in this work, based on polyester and heavy metals oxides and salts. The attenuation properties, as well as mechanical properties were studied, and the chemical stability was evaluated. It has been shown, that these composites can be used in radiation shielding for X-rays successfully, and the exact composition of these composites can be optimized according to the radiation energy to prepare the lightest possible shield. (author)

  9. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  10. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand.

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-05

    A series of novel coordination polyurethanes [HTPU-M, where M=Mn(II) 'd 5 ', Ni(II) 'd 8 ', and Zn(II) 'd 10 '] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1 H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II)>HTPU-Mn(II)>HTPU-Zn(II)>HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Heteronuclear, mixed-metal Ag(I)-Mn(II) coordination polymers with bridging N-pyridinylisonicotinohydrazide ligands: synthesis, crystal structures, magnetic and photoluminescence properties.

    Science.gov (United States)

    Bikas, Rahman; Hosseini-Monfared, Hassan; Vasylyeva, Vera; Sanchiz, Joaquín; Alonso, Javier; Barandiaran, Jose Manuel; Janiak, Christoph

    2014-08-21

    Mixed-metal dicyanoargentate-bridged coordination polymers of Ag(i)-Mn(ii) have been prepared and their structure and magnetic properties were determined. Reaction of manganese(ii) chloride and potassium dicyanoargentate(i) with (X)(pyridin-2-ylmethylene)isonicotinohydrazide ligands (HL(1) X = Ph, HL(2) X = Me, HL(3) X = H) produced the coordination polymer 2D-[Mn(μ-L(1))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]n (), 1D-{[Mn(L(2))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]CH3OH}n () and [Mn(L(3))(Cl)(μ-NCAgCN)Mn0.5(CH3OH)]n () in good yields. Trinuclear {Mn(μ-L(1))Mn(μ-L(1))Mn} and [Ag(CN)2](-) building units form a two-dimensional slab in and 1D strands in . Variable temperature magnetic susceptibility measurements showed that despite the long distance among the high spin Mn(ii) ions [10.4676(12) Å and 10.522(1) Å, for and , respectively], weak antiferromagnetic coupling takes place through the long NC-Ag-CN bridge. The best fit parameters to the model led to the magnetic coupling constant of J = -0.1 and J = -0.47 cm(-1) for and , respectively. The photoluminescence behaviour of compounds and was studied. The spectrum of compound shows a broad emission centered at about 450 nm and two excitation maxima at 270 and 310 nm.

  12. Synthesis, crystal structures, luminescence and catalytic properties of two d¹⁰ metal coordination polymers constructed from mixed ligands.

    Science.gov (United States)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-15

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb=1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph=homophthalic acid, H3btc=1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 6(6) topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. In Situ Conductance Analysis of Zinc Oxide Nucleation and Coalescence during Atomic Layer Deposition on Metal Oxides and Polymers.

    Science.gov (United States)

    Sweet, William J; Parsons, Gregory N

    2015-07-07

    Real time in situ conductance is collected continuously during atomic layer deposition (ALD) of zinc oxide films, and trends are used to study ALD nucleation on polypropylene, nylon-6, SiO2, TiO2, and Al2O3 substrates. The detailed conductance change during the ALD cycle is ascribed to changes in surface band bending upon precursor/reactant exposure. Conductive pathways form earlier on the inorganic surfaces than on the polymers, with Al2O3 substrates showing more rapid nucleation than SiO2 or TiO2, consistent with the expected density of nucleation sites (e.g., hydroxyl groups) on these different materials. The measured conductance is ohmic, and both two- and four-electrode configurations show the same data trends. Detailed analysis of conductivity at deposition temperatures between 100 and 175 °C shows faster conductivity decay at higher temperature during the water purge step, ascribed to thermally activated water desorption kinetics. Analysis of real-time conductivity during ALD of other material systems could provide further insight into key aspects of film nucleation and nuclei coalescence.

  14. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  15. Metal Catalysis with Nanostructured Metals Supported Inside Strongly Acidic Cross-linked Polymer Frameworks: Influence of Reduction Conditions of AuIII-containing Resins on Metal Nanoclusters Formation in Macroreticular and Gel-Type Materials

    Czech Academy of Sciences Publication Activity Database

    Calore, L.; Cavinato, g.; Canton, P.; Peruzzo, L.; Banavali, R.; Jeřábek, Karel; Corain, B.

    2012-01-01

    Roč. 391, AUG 30 (2012), s. 114-120 ISSN 0020-1693 Institutional support: RVO:67985858 Keywords : strongly acidic cross-linked polymer * frameworks * gold(0) nanoclusters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.687, year: 2012

  16. Organogel-derived Covalent-Noncovalent Hybrid Polymers as Alkali Metal Ion Scavengers for Partial Deionization of Water.

    Science.gov (United States)

    Prathap, Annamalai; Raju, Cijil; Sureshan, Kana M

    2018-04-12

    We show that crown ethers (CEs) 1-5 congeal both polar and non-polar solvents via their self-assembly through weak non-covalent interactions (NCI) such as CH...O and CH...π interactions. Di-isopropylidene-mannitol (6) is a known gelator that self-assembles through stronger OH...O H-bonding. These two gelators together also congeal non-polar solvents via their individual self-assembly. The gelator 6 self-assembles swiftly to fibers, which act as templates and attract CE to their surface through H-bonding and thereby facilitate their self-assembly through weak NCI. Polymerization of styrene gels made from CE and 6 followed by the washing off of the sacrificial gelator 6 yields robust porous polystyrene-crown ether hybrid matrices (PCH), having pore-exposed CEs. These PCHs were not only efficient in sequestering alkali metal ions from aqueous solutions but also can be recycled. This novel use of organogels for making solid sorbents for metal ion scavenging might be of great interest.

  17. Coordination polymer nanocapsules prepared using metal-organic framework templates for pH-responsive drug delivery

    Science.gov (United States)

    Tang, Lei; Shi, Jiafu; Wang, Xiaoli; Zhang, Shaohua; Wu, Hong; Sun, Hongfan; Jiang, Zhongyi

    2017-07-01

    A facile, efficient, and versatile approach is presented to synthesize pH-responsive nanocapsules (˜120 nm) by combining the advantages of metal-organic frameworks (MOFs) and metal-organic thin films. ZIF-8 nanoparticles are used as templates on which a thin film coating of iron(III)-catechol complexes is derived from the coordination between dopamine-modified alginate (AlgDA) and iron(III) ions. After the template removal, nanocapsules with a pH-responsive wall are obtained. Doxorubicin (Dox), a typical anticancer drug, is first immobilized in ZIF-8 frameworks through coprecipitation and then encapsulated in nanocapsules after the removal of ZIF-8. The structure of the iron(III)-catechol complex varies with pH value, thus conferring the Dox@Nanocapsules with tailored release behavior in vitro. Cytotoxicity tests illustrate the highly effective cytotoxicity of Dox@Nanocapsules towards cancer cells. This study provides a new method for preparing smart nanocapsules and offers more opportunities for the controlled delivery of drugs.

  18. Three two-dimensional coordination polymers constructed from transition metals and 2,3-norbornanedicarboxylic acid: Hydrothermal synthesis, crystal structures and photocatalytic properties

    Science.gov (United States)

    Zhang, Jia; Wang, Chong-Chen

    2017-02-01

    Three novel coordination polymers based on transition metals like Co(II), Cu(II) and Mn(II), namely [Co2(bpy)2(nbda)2(H2O)2]·2H2O (denoted as BUC-1), [Cu2(bpy)2(nbda)2(H2O)2]·2H2O (BUC-2), [Mn2(bpy)2(nbda)2(H2O)2]·2H2O (BUC-3), (where bpy = 4,4‧-bipyridine, H2nbda = 2,3-norbornanedicarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture), were synthesized under hydrothermal conditions, and characterized by CNH elemental analyses (EA), Fourier Transform infrared spectroscopy (FTIR), and single crystal X-ray diffraction (SCXRD). BUC 1-3 were isostructural and crystallized in the monoclinic space group C2/c, in which the corresponding metal atoms were linked by typical bidentate bpy ligands into two adjacent 1D [M1(bpy)]n2n+ and [M2(bpy)]n2n+ (M = Co(II), Cu(II), Mn(II)), further joined by versatile nbda2- ligands into 2D [M2(bpy)2(nbda)2]n sheets. Finally, three-dimensional supramolecular frameworks were constructed with the aid of the intermolecular hydrogen bonding interactions. BUC 1-3 exhibited different photocatalytic degradation ability to decompose methylene blue (MB) and methyl orange (MO) under UV light irradiation. Additionally, a possible photocatalytic mechanism HOMO-LUMO was proposed and discussed, which was further confirmed by radicals trapping experiments using isopropanol as radical scavenger.

  19. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    Science.gov (United States)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  1. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    OpenAIRE

    Shunsuke Asahina; Mitsuo Suga; Hideyuki Takahashi; Hu Young Jeong; Carolina Galeano; Ferdi Schüth; Osamu Terasaki

    2014-01-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently ...

  2. Arterial healing following primary PCI using the Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS) versus the durable polymer everolimus-eluting metallic stent (XIENCE) in patients with acute ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Raber, L.; Onuma, Yoshinobu; Brugaletta, Salvatore

    2016-01-01

    Aims: The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated...... implantation of the Absorb BVS compared with the EES. The healing response assessed by a novel NIH score in conjunction with results on angiographic efficacy parameters and device-oriented events will elucidate disease-specific applications of bioresorbable scaffolds....

  3. Metal and Ligand Effects on the Construction of Divalent Coordination Polymers Based on bis-Pyridyl-bis-amide and Polycarboxylate Ligands

    Directory of Open Access Journals (Sweden)

    Miao-Ning Chang

    2017-12-01

    Full Text Available Ten coordination polymers constructed from divalent metal salts, polycarboxylic acids, and bis-pyridyl-bis-amide ligands with different donor atom positions and flexibility are reported. They were structurally characterized by single-crystal X-ray diffraction. The ten coordination polymers are as follows: (1 {[Ni(L1(3,5-PDA(H2O3]·2H2O}n (L1 = N,N′-di(3-pyridylsuberoamide, 3,5-H2PDA = 3,5-pyridinedicarboxylic acid; (2 {[Ni2(L12(1,3,5-HBTC2(H2O4]·H2O}n (1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid; (3 {[Ni(L2(5-tert-IPA(H2O2]·2H2O}n (L2 = N,N′-di(3-pyridyladipoamide, 5-tert-H2IPA = 5-tert-butylisophthalic acid; (4 [Ni(L31.5(5-tert-IPA]n (L3 = N,N′-di(4-pyridyladipoamide; (5 [Co(L1(1,3,5-HBTC(H2O]n; (6 {[Co3(L13(1,3,5-BTC2(H2O2]·6H2O}n; (7 [Cu(L4(AIPA]n (L4 = N,N′-bis(3-pyridinylterephthalamide, H2AIPA = 5-acetamido isophthalic acid; (8 {[Cu(L20.5(AIPA]·MeOH}n; (9 {[Zn(L4(AIPA]·2H2O}n; and (10 {[Zn(L2(AIPA]·2H2O}n. Complex 1 forms a 1D chain and 2 is a two-fold interpenetrated 2D layer with the sql topology, while 3 is a 2D layer with the hcp topology and 4 shows a self-catenated 3D framework with the rare (42·67·8-hxg-d-5-C2/c topology. Different Co/1,3,5-H3BTC ratios were used to prepare 5 and 6, affording a 2D layer with the sql topology and a 2D layer with the (4·852(42(832(8 topology that can be further simplified to an hcp topology. While complex 7 is a 2D layer with the (42·67·8(42·6-3,5L2 topology and 8 is a 2-fold interpenetrated 3D framework with the pcu topology, complexes 9 and 10 are self-catenated 3D frameworks with the (424·64-8T2 and the (44·610·8-mab topologies, respectively. The effects of the identity of the metal center, the ligand isomerism, and the flexibility of the spacer ligands on the structural diversity of these divalent coordination polymers are discussed. The luminescent properties of 9 and 10 and their photocatalytic effects on the degradation of dyes are also investigated.

  4. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C.

    Science.gov (United States)

    Percec, Virgil; Guliashvili, Tamaz; Ladislaw, Janine S; Wistrand, Anna; Stjerndahl, Anna; Sienkowska, Monika J; Monteiro, Michael J; Sahoo, Sangrama

    2006-11-01

    Conventional metal-catalyzed organic radical reactions and living radical polymerizations (LRP) performed in nonpolar solvents, including atom-transfer radical polymerization (ATRP), proceed by an inner-sphere electron-transfer mechanism. One catalytic system frequently used in these polymerizations is based on Cu(I)X species and N-containing ligands. Here, it is reported that polar solvents such as H(2)O, alcohols, dipolar aprotic solvents, ethylene and propylene carbonate, and ionic liquids instantaneously disproportionate Cu(I)X into Cu(0) and Cu(II)X(2) species in the presence of a diversity of N-containing ligands. This disproportionation facilitates an ultrafast LRP in which the free radicals are generated by the nascent and extremely reactive Cu(0) atomic species, while their deactivation is mediated by the nascent Cu(II)X(2) species. Both steps proceed by a low activation energy outer-sphere single-electron-transfer (SET) mechanism. The resulting SET-LRP process is activated by a catalytic amount of the electron-donor Cu(0), Cu(2)Se, Cu(2)Te, Cu(2)S, or Cu(2)O species, not by Cu(I)X. This process provides, at room temperature and below, an ultrafast synthesis of ultrahigh molecular weight polymers from functional monomers containing electron-withdrawing groups such as acrylates, methacrylates, and vinyl chloride, initiated with alkyl halides, sulfonyl halides, and N-halides.

  5. Self-Sensing Control of Nafion-Based Ionic Polymer-Metal Composite (IPMC Actuator in the Extremely Low Humidity Environment

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2013-10-01

    Full Text Available This paper presents feedforward, feedback and two-degree-of-freedom control applied to an Ionic Polymer-Metal Composite (IPMC actuator. It presents a high potential for development of miniature robots and biomedical devices and artificial muscles. We have reported in the last few years that dehydration treatment improves the electrical controllability of bending in Selemion CMV-based IPMCs. We tried to replicate this controllability in Nafion-based IPMC. We found that the displacement of a Nafion-based IPMC was proportional to the total charge imposed, just as in the Selemion-CMV case. This property is the basis of self-sensing controllers for Nafion-based IPMC bending behavior: we perform bending curvature experiments on Nafion-based IPMCs, obtaining the actuator's dynamics and transfer function. From these, we implemented self-sensing controllers using feedforward, feedback and two-degree-of-freedom techniques. All three controllers performed very well with the Nafion-based IPMC actuator.

  6. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    Science.gov (United States)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  7. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  8. Active Tube-Shaped Actuator with Embedded Square Rod-Shaped Ionic Polymer-Metal Composites for Robotic-Assisted Manipulation

    Directory of Open Access Journals (Sweden)

    Yanjie Wang

    2018-01-01

    Full Text Available This paper reports a new technique involving the design, fabrication, and characterization of an ionic polymer-metal composite- (IPMC- embedded active tube, which can achieve multidegree-of-freedom (MODF bending motions desirable in many applications, such as a manipulator and an active catheter. However, traditional strip-type IPMC actuators are limited in only being able to generate 1-dimensional bending motion. So, in this paper, we try to develop an approach which involves molding or integrating rod-shaped IPMC actuators into a soft silicone rubber structure to create an active tube. We modified the Nafion solution casting method and developed a complete sequence of a fabrication process for rod-shaped IPMCs with square cross sections and four insulated electrodes on the surface. The silicone gel was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D printing technology. By applying differential voltages to the four electrodes of each IPMC rod-shaped actuator, MDOF bending motions of the active tube can be generated. Experimental results show that such IPMC-embedded tube designs can be used for developing robotic-assisted manipulation.

  9. Waste chimney oil to nanolights: A low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity.

    Science.gov (United States)

    Das, Poushali; Ganguly, Sayan; Maity, Priti Prasanna; Bose, Madhuparna; Mondal, Subhadip; Dhara, Santanu; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Ch

    2018-03-01

    Proper waste disposal from household and restaurants is becoming an important and recurring waste-management concern. Herein, a method of upcycling of waste kitchen chimney oil has been adopted to prepare fluorescent multifunctional carbon quantum dots. These nanodots showed superior biocompatibility, excellent optical properties, water solubility and high yield. Preparation of C-dots from highly abundant carbon source of waste refusals is highly effective in commercial aspect as well as in reducing the immense environmental pollution. The C-dots showed quasi-spherical size obtained from high resolution transmission electron microscopy (HRTEM) having an abundance of 1-4 nm in size. The ease of water dispersibility of the nanodots is a mere reflection of their surface polarity which has been supported by Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). In the field of practical acceptability, the C-dots have been experimented to sense Fe 3+ ion in a wide range of concentration (1 nM to 600 μM) with a detection limit of 0.18 nM which can be termed as 'tracer metal chemosensor'. Moreover, the prepared carbon dots were also tested against inter-cellular Fe 3+ ion sensing probe. Lastly, we also fabricate the biopolymer‑carbon dots composite for fluorescent marker ink and light emitting polymer film. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The friction of polymers around Tg,Tm : Preliminary results

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V N; Persson, B N J

    We present Molecular Dynamics calculations involving polymers of different lengths. Polymers with lengths from 20 to 1400 carbon atoms are considered. The systems are able to simulate friction between polymer surfaces and polymer against metal. The results we present are very preliminary and they......We present Molecular Dynamics calculations involving polymers of different lengths. Polymers with lengths from 20 to 1400 carbon atoms are considered. The systems are able to simulate friction between polymer surfaces and polymer against metal. The results we present are very preliminary...

  11. Friction and wear in polymer-based materials

    CERN Document Server

    Bely, V A; Petrokovets, M I

    1982-01-01

    Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and

  12. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  13. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    Science.gov (United States)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National

  14. Polymers for Combating Biocorrosion

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-03-01

    Full Text Available Biocorrosion has been considered as big trouble in many industries and marine environments due to causing of great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anticorrosion and antimicrobial properties have been widely accepted as a novel and effective approach to prevent biocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbial corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: (i traditional polymers incorporated with biocides, (ii antibacterial polymers containing quaternary ammonium compounds, and (iii conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting antibacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization, and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  15. Solid Polymer Nanocomposite Battery Electrolyte

    Data.gov (United States)

    National Aeronautics and Space Administration — Incorporate nano-graphene and nano-metal oxides in polymer electrolyte to enhance ionic conductivity; incorporate ionic liquid to improve ion transport properties in...

  16. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  17. Contribution to the study of metallic impurities diffusion in a polymer film (KAPTON) under and out of irradiation; Contribution a l`etude de la diffusion d`impuretes metalliques dans un film polymere (KAPTON) sous et hors irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marin, N.

    1995-12-18

    The main topic of this work is the diffusion behaviour in the polymer film Kapton, under and out of irradiation, of metallic coatings with different reactivity (copper, nickel, titanium) deposited by sputtering. The analysis of diffusion profiles has been performed by backscattering spectrometry, which, in association with cross-section microscopy, allows to connect the diffusion behaviour to the microscopic structure of the metal/Kapton interface. Generally speaking, the study under thermal annealing shows the importance of peculiarities of commercials polymers. In particular, additional elements they contain are liable to modify their surface characteristics and, as a consequence, diffusion. So, unlike observations in model polyimides, we show that even weakly reactive metals do not diffuse inside the polymer. Besides, there exists an energy threshold of Ar{sup +} used for sputtering, above which copper layers become very stable and so come up to industry`s expectation. The study under irradiation gives evidence for copper diffusion under irradiation, resulting in 15 mn mean radius spherical clusters inside the modified polymer. This fast diffusion is shown to be due to the concomitant effect of nuclear collisions and temperature. This study is also the opportunity to show dramatic radiation-induced effects in Kapton, more particularly a large modification of mechanical and optical properties with the loss of more volatile elements (H, N,O). With regard to methodology, this study shows the strong ambiguity in the RBS spectrum interpretation in the case of lateral non-uniformity, and we propose a model giving access to the statistical distribution of the non-uniform property of the target. (author). 262 refs., 99 figs., 8 appends.

  18. Hybrid conducting polymer materials incorporating poly-oxo-metalates for extraction of actinides; Materiaux polymeres conducteurs hybrides incorporant des polyoxometallates pour l'extraction d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Racimor, D

    2003-09-15

    The preparation and characterization of hybrid conducting polymers incorporating poly-oxo-metalates for extracting actinides is discussed. A study of the coordination of various lanthanide cations (Ce(III), Ce(IV), Nd(III)) by the mono-vacant poly-oxo-metalate {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} showed significant differences according to the cation.. Various {alpha}-A-[PW{sub 9}O{sub 34}(RPO){sub 2}]{sup 5-} hybrids were synthesized and their affinity for actinides or lanthanides was demonstrated through complexation. The first hybrid poly-oxo-metallic lanthanide complexes were then synthesized, as was the first hybrid functionalized with a pyrrole group. The electro-polymerization conditions of this pyrrole remain still to be optimized. Poly-pyrrole materials incorporating {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} or its neodymium or cerium complexes as doping agents proved to be the first conducting polymer incorporating poly-oxo-metalates capable of extracting plutonium from nitric acid. (author)

  19. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  20. The effect of biomass concentration on polymer alginate in the immobilized biosorbent formation during the sorption processof heavy metal Cu2+

    Science.gov (United States)

    Rinanti, A.; Jonathan, D.; Silalahi, M. D. S.; Fachrul, M. F.; Hadisoebroto, R.

    2018-01-01

    A research in environmental biotechnology has been done to analysis adsorption of ion Cu2+ by biomass of microalgae (Chlorella sp, Ankistrodesmus braunii, Scenedesmus quadricauda) and Saccharomyces cerevisiae onto alginate polymeras immobilized biosorbent on laboratory scale. The purpose of this study is to achieve the optimum biomass concentration which gives the best biosorption performance. Biosorption of Cu2+ was carried out in continuous fixed-bed column reactor system, volume of 1.5 L, equipped with peristaltic pump with a flow rate of 13 mL/min. Biosorption of Cu2+ was investigated using immobilized biosorbent with concentration of (g biomass/g polymer) 0.25; 0.5; 1, at pH4,initial concentration Cu2+15 mg/L and 26°C±1. The results of this study showed that the increasing of biomass concentration (0 to 0.5 g/g) would result in better biosorption performance but soon decreased its performance at biomass concentration of 1 g/g. Biosorption capacity and highest removal efficiency of 0.1025 mg Cu2+/g biosorbent and 66.36% occurred by immobilized biosorbent with 0.5 g/g concentration. The connection between the variation of biomass concentration in alginate to the biosorption performance by immobilized biosorbent shown by breakthrough curve, total adsorbed metal mass(qtotal ), efficiency of removal (%R) and biosorption capacity at breakthrough(qe ). Excessive biomass concentrations lead to reduced porosity of the beads thus slowing down the adsorption process.

  1. Superabsorbent polymer; Kokyushusei porima

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M. [Sanyo Kasei Kogyo K.K., Tokyo (Japan)

    1996-07-20

    Superabsorbent polymer (SAP) which has the absorbing ability from several hundreds to thousand times of the dead weight possesses many other functions in addition to the absorbing function, and studies on its application to various fields have been carried on very actively. Particularly, about 90% of the demand is for the application to body fluid absorber in the fields of sanitary materials. Basic water absorption mechanism, kinds, production methods, special features and applied cases of superabsorbent polymer are introduced. SAP is structured by loosely bridged water soluble polymer, particularly polymer electrolyte, to provide water unsoluble and water swelling properties. The kinds and production methods of SAP are described. SAP has respiration property in addition to the high water absorbing power and water holding ability. It has carboxyl ions, and has ammonia absorption ability and polyvalent metal ion adsorption ability. Paper diapers, water holding materials for soil, and cold reserving materials are discussed as examples of SAP application. 3 refs., 2 figs., 1 tab.

  2. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  3. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  4. Nanostructured polymer- and metal surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun

    moulding in polypropylene. A Ni shim was electroplated from a BSi master, and inserted in an injection moulding tool. The reflectance of the injection moulded parts was reduced from 4.5 % to 2.5% in the visible spectrum. The reflectance was calculated from the gradient in the refractive index from AFM data...

  5. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 - QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies.

    Science.gov (United States)

    Suhr, Matthias; Raff, Johannes; Pollmann, Katrin

    2016-01-19

    In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding. The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces.

  6. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  7. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  8. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  9. Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization

    Directory of Open Access Journals (Sweden)

    Sanghamitra Sen

    2015-05-01

    Full Text Available Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  10. Green polymer chemistry: enzyme catalysis for polymer functionalization.

    Science.gov (United States)

    Sen, Sanghamitra; Puskas, Judit E

    2015-05-21

    Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  11. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  12. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  13. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  14. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  15. Polyionic polymers – heterogeneous media for metal nanoparticles as catalyst in Suzuki–Miyaura and Heck–Mizoroki reactions under flow conditions

    Directory of Open Access Journals (Sweden)

    Klaas Mennecke

    2009-05-01

    Full Text Available The preparation of monolithic polyionic supports which serve as efficient heterogeneous supports for palladium(0 nanoparticles is described. These functionalized polymers were incorporated inside a flow reactor and employed in Suzuki–Miyaura and Heck cross couplings under continuous flow conditions.

  16. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin-Hua [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Tang, Gui-Mei, E-mail: meiguit@163.com [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Qin, Ting-Xiao; Yan, Shi-Chen [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Wang, Yong-Tao, E-mail: ceswyt@sohu.com [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Cui, Yue-Zhi [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Weng Ng, Seik [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  17. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    thane, PVC, polyesters, polystyrene and polypropylene. Also, some biocompatible polymers like PLA, poly (E-caprolactone) to mention a few, have been synthesized by varying methods and with different clay loadings (%by weight). The hydrophobicity /hydrophilicity ofthe polymer affects its dispersion in the clay.

  18. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction.

    Science.gov (United States)

    Qin, Ping-Li; Yang, Guang; Ren, Zhi-Wei; Cheung, Sin Hang; So, Shu Kong; Chen, Li; Hao, Jianhua; Hou, Jianhui; Li, Gang

    2018-03-01

    High-quality pinhole-free perovskite film with optimal crystalline morphology is critical for achieving high-efficiency and high-stability perovskite solar cells (PSCs). In this study, a p-type π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione))] (PBDB-T) is introduced into chlorobenzene to form a facile and effective template-agent during the anti-solvent process of perovskite film formation. The π-conjugated polymer PBDB-T is found to trigger a heterogeneous nucleation over the perovskite precursor film and passivate the trap states of the mixed perovskite film through the formation of Lewis adducts between lead and oxygen atom in PBDB-T. The p-type semiconducting and hydrophobic PBDB-T polymer fills in the perovskite grain boundaries to improve charge transfer for better conductivity and prevent moisture invasion into the perovskite active layers. Consequently, the PSCs with PBDB-T modified anti-solvent processing leads to a high-efficiency close to 20%, and the devices show excellent stability, retaining about 90% of the initial power conversion efficiency after 150 d storage in dry air. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  20. Stabilization of aqueous alkali metal aluminate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, S.J.

    1988-03-29

    A method of stabilizing an aqueous solution of alkali metal aluminate is described comprising: admixing an aqueous solution of alkali metal aluminate having a pH of at least 10 with a sufficient amount of vinyl polymer having pendant carboxylate groups to form a solution containing from 0.1 to 2.0 weight percent of an anionic vinyl polymer based on alkali metal aluminate solids. The anionic vinyl polymer has an average molecular weight of at least 500,000.

  1. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Kelbæk, Henning; Ostojic, Miodrag

    2012-01-01

    The efficacy and safety of drug-eluting stents compared with bare-metal stents remains controversial in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI)....

  2. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  3. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    International Nuclear Information System (INIS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-01-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO 2 , and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C

  4. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki [JEOL Ltd., SM Business Unit, Tokyo (Japan); Young Jeong, Hu [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Galeano, Carolina; Schüth, Ferdi [Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim (Germany); Terasaki, Osamu, E-mail: terasaki@mmk.su.se, E-mail: terasaki@kaist.ac.kr [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO{sub 2}, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  5. Study of Six Green Insensitive High Energetic Coordination Polymers Based on Alkali/Alkali-Earth Metals and 4,5-Bis(tetrazol-5-yl)-2 H-1,2,3-triazole.

    Science.gov (United States)

    Chen, Dong; Jing, Dong; Zhang, Qi; Xue, Xianggui; Gou, Shaohua; Li, Hongzhen; Nie, Fude

    2017-12-14

    Constructing insensitive high-performance energetic coordination polymers (ECPs) with alkali/alkali-earth metal ions and a nitrogen-rich organic backbone has been proved to be a feasible strategy in this work. Six diverse dimensional novel ECPs (compounds 1-6) were successfully synthesized from Na I , Cs I , Ca II , Sr II , Ba II ions and a nitrogen-rich triheterocyclic 4,5-bis(tetrazol-5-yl)-2 H-1,2,3-triazole (H 3 BTT). All compounds show outstanding stability and low sensitivity, the thermal stability of these ECPs are significantly improved as the structural reinforcement increases from 1D to 3D, in which the decomposition temperature of 3D Ba II based compound 6 is as high as 397 °C. Long-term storage experiments show that compounds 5 and 6 are stable enough at high temperature. Moreover, the six compounds hold considerable detonation performances, in which Ca II based compound 5 possesses the detonation velocity of 9.12 km s -1 , along with the detonation pressure of 34.51 GPa, exceeding those of most energetic coordination polymers. Burn tests further certify that the six compounds can be versatile pyrotechnics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles.

    Science.gov (United States)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-04-15

    We prepared novel Fe(3)O(4) magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd(2+), Zn(2+), Pb(2+) and Cu(2+)) from aqueous solution. We investigated the adsorption capacity of Fe(3)O(4)@APS@AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe(3)O(4)@APS@AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd(2+), Zn(2+), Pb(2+) and Cu(2+) from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Crack propagation along polymer/non-polymer interfaces

    NARCIS (Netherlands)

    Vellinga, Willem-Pier; Fedorov, Alexander; De Hosson, Jeff T.

    2007-01-01

    Mechanisms of the propagation of crack fronts along interfaces between a glassy polymer and metal or glass are discussed. Specifically, the systems studied are Poly-Ethylene Terephthalate (PETG) spin-coated on A1, PETG-glass and PETG hot-pressed on Cr-sputtered glass. Cracks studied propagate in an

  9. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    carry out a careful study of steady state conduction of poly- styrene (PS) thin film thermo-electrets sandwiched be- tween metal electrodes both in doped and undoped forms. 2. Experimental. 2.1 Sample preparation. Polystyrene supplied by Polymer Chemical Industry,. Mumbai and naphthalene by S.G. Sisco Pvt Ltd., New ...

  10. PEO + PVP blended polymer composite

    Indian Academy of Sciences (India)

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the ...

  11. Agricultural Polymers as Corrosion Inhibitors

    Science.gov (United States)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  12. Sonochemical Preparation of Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2009-06-01

    Full Text Available Thisreview covers sonochemical fabrication of polymer nanocomposites. In addition to its application to the synthesis of various polymeric systems, due to its powerful efficiency, sonochemistry has been widely used not only as the assistant of dispersion for nanomaterials such as carbon nanotubes (CNT and organophillic clay, but also as a special initiator to enhance polymerization for fabrication of polymer nanocomposites with CNT and metallic nanoparticles. Recent developments in the preparation of multi-walled carbon nanotube/polymer nanocomposites with polystyrene and PMMA, magnetic particle/CNT composites and polymer/clay nanocomposites along with their physical characteristics and potential engineering applications will be introduced. Physical characterizations include morphological, thermal, and rheological properties under either an applied electric or magnetic field.

  13. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot......-controlled microdrilling was applied to drill through an insulating polymer, covering a conductive layer of PEDOT. The sudden drop in electrical resistance between the metal drill and the PEDOT layer upon physical contact was employed as stop criterion for the drilling process. Arrays of 3x 3 microelectrodes of diameter...... electrode configurations showed that the conducting polymer electrodes approach the steady state currents predicted from modeling, but at a much slower rate than expected. This wasshown to be caused by the use of electro active PEDOT electrodes. Subtraction of the latter contribution gave an approach...

  14. Polymers All Around You!

    Science.gov (United States)

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  15. Organometallic polymers for electrode decoration in sensing applications

    NARCIS (Netherlands)

    Feng, Xueling; Zhang, Kaihuan; Hempenius, Mark A.; Vancso, Gyula J.

    2015-01-01

    Macromolecules containing metals combine the processing advantages of polymers with the functionality offered by the metal centers. This review outlines the progress and recent developments in the area of electrochemical chemo/biosensors that are based on organometallic polymers. We focus on

  16. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  17. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2015-04-21

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  18. Lead ion adsorption on montmorillonite-Al hydroxide polymer systems

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Dijk, van G.; Riemsdijk, van W.H.

    2007-01-01

    Clay¿Al hydroxide polymer systems (CAlHO) can bind heavy metals effectively. Their adsorption behaviour depends on the type of metal. We studied the dependence of Al-loading and pH on the adsorption of Pb to Na-saturated montmorillonite¿Al hydroxide polymer systems. The available binding sites on

  19. Zinc ion adsorption on montmorillonite-Al hydroxide polymer systems

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Riemsdijk, van W.H.

    2003-01-01

    Clay¿Al hydroxide polymers (CAlHO) can bind heavy metals effectively and may play an important role in the adsorption behaviour and metal binding capacity of soils. We studied the dependence of Al loading and pH on the adsorption of Zn on Na-saturated montmorillonite¿Al hydroxide polymer systems.

  20. Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Jose-Francisco [Department of Material Science and Engineering, University of Washington, Seattle, Washington, 98195 (United States); Centro de Investigaciones en Optica A.P.1-948, Leon, Guanajuato, CP 37000 (Mexico); Yip, Hin-Lap; Chueh, Chu-Chen; Li, Chang-Zhi; Jen, Alex K.Y. [Department of Material Science and Engineering, University of Washington, Seattle, Washington, 98195 (United States); Maldonado, Jose-Luis [Centro de Investigaciones en Optica A.P.1-948, Leon, Guanajuato, CP 37000 (Mexico)

    2012-12-11

    ITO-free polymer solar cells with efficiencies as high as 6.6% and 5.8% are fabricated on glass and polyethylene naphthalate (PEN) by using TeO{sub 2} to enhance the in-coupling of light in an Ag-Ag microcavity. These cells exhibit higher performance, selective microcavity resonance as a function of the thickness of TeO{sub 2}, and better bending stability than flexible devices made with ITO. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Flows in polymers, reinforced polymers and composites a multi-scale approach

    CERN Document Server

    Binetruy, Christophe; Keunings, Roland

    2015-01-01

    This book gives a detailed and practical introduction to complex flows of polymers and reinforced polymers as well as the flow of simple fluids in complex microstructures. Over the last decades, an increasing number of functional and structural parts, made so far with metals, has been progressively reengineered by replacing metallic materials by polymers, reinforced polymers and composites. The motivation for this substitution may be the weight reduction, the simpler, cheaper or faster forming process, or the ability to exploit additional functionalities. The present Brief surveys modern developments related to the multi-scale modeling and simulation of polymers, reinforced polymers, that involve a flowing microstructure and continuous fiber-reinforced composites, wherein the fluid flows inside a nearly stationary multi-scale microstructure. These developments concern both multi-scale modeling, defining bridges between the micro and macro scales - with special emphasis on the mesoscopic scale at which kinetic...

  2. Thermal Conductivity of Polymers and Their Nanocomposites.

    Science.gov (United States)

    Xu, Xiangfan; Chen, Jie; Zhou, Jun; Li, Baowen

    2018-03-24

    Polymers are usually considered as thermal insulators, and their applications are limited by their low thermal conductivity. However, recent studies have shown that certain polymers have surprisingly high thermal conductivity, some of which are comparable to that in poor metals or even silicon. Here, the experimental achievements and theoretical progress of thermal transport in polymers and their nanocomposites are outlined. The open questions and challenges of existing theories are discussed. Special attention is given to the mechanism of thermal transport, the enhancement of thermal conductivity in polymer nanocomposites/fibers, and their potential application as thermal interface materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  4. Metal-free polymer/MWCNT composite fiber as an efficient counter electrode in fiber shape dye-sensitized solar cells

    Science.gov (United States)

    Ali, Abid; Mujtaba Shah, Syed; Bozar, Sinem; Kazici, Mehmet; Keskin, Bahadır; Kaleli, Murat; Akyürekli, Salih; Günes, Serap

    2016-09-01

    Highly aligned multiwall carbon nanotubes (MWCNT) as fiber were modified with a conducting polymer via a simple dip coating method. Modified MWCNT exhibited admirable improvement in electrocatalytic activity for the reduction of tri-iodide in dye sensitized solar cells. Scanning electron microscopy images confirm the successful deposition of polymer on MWCNT. Cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy studies were carried out to investigate the inner mechanism for the charge transfer behaviour. Results from bare and modified electrodes revealed that the MWCNT/(poly (3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) composite electrode is much better at catalysing the {{{{I}}}3}-/{{{I}}}- redox couple compared to the pristine fiber electrode. The photoelectric conversion efficiency of 5.03% for the modified MWCNT electrodes was comparable with that of the conventional Pt-based electrode. The scientific results of this study reveal that MWCNT/PEDOT:PSS may be a better choice for the replacement of cost intensive electrode materials such as platinum. Good performance even after bending up to 90° and in-series connection to enhance the output voltage were also successfully achieved, highlighting the practical application of this novel device.

  5. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells.

    Science.gov (United States)

    Yu, Zhimeng; Xia, Yijie; Du, Donghe; Ouyang, Jianyong

    2016-05-11

    A transparent electrode is an indispensable component of optoelectronic devices, and there as been a search for substitutes of indium tin oxide (ITO) as the transparent electrode. Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) ( PSS) is a conducting polymer that is very promising as the next generation of materials for the transparent electrode if it can obtain conductivity as high as that of ITO. Here, we report the treatment of PSS with organic solutions to significantly enhance its conductivity. Common organic solvents like dimethylformamide and γ-butyrolactone and common organic salts like methylammonium iodide and methylammonium bromide are used for the organic solutions. The conductivity of pristine PSS films is only ∼0.2 S/cm, and it can be increased to higher than 2100 S/cm. The conductivity enhancement is much more significant than control treatments of PSS films with neat organic solvents or aqueous solutions of the organic salts. The mechanism for the conductivity enhancement is the synergetic effects of both the organic salts and organic solvents on the microstructure and composition of PSS. They induce the segregation of some PSSH chains from PSS. Highly conductive PSS films were studied as the transparent electrode of polymer solar cells. The photovoltaic efficiency is comparable to that with an ITO transparent electrode.

  6. Chelating polymer-based membranes. Preparation and use for metal ion scavenging and sorption of murine immunoglobulin G by immobilized Ni(II) ions

    Czech Academy of Sciences Publication Activity Database

    Kráčalíková-Mészárosová, Kateřina; Bleha, Miroslav

    2008-01-01

    Roč. 61, č. 2 (2008), s. 147-156 ISSN 0170-0839 R&D Projects: GA ČR GA203/02/1327 Institutional research plan: CEZ:AV0Z40500505 Keywords : chelating * membrane * sorption * metal ion Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.127, year: 2008

  7. Structural parameter study on polymer-based ultrasonic motor

    Science.gov (United States)

    Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro

    2017-11-01

    Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.

  8. Development of Silicate Polymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob

    an inorganic binder is developed based on fumed silica and potassium hydroxide. The optimal composition of the binder system was determined using compressive strength test. The investigation showed that the strength of the inorganic binder was strongly related to the content of potassium hydroxide...... hydroxide in acid and increase pH to saturation of the metal hydroxide. It is assumed that the syntheses of the inorganic polymer are carried out through polymerisation of oligomers (dimer, trimer) which provide the actual unit structures of the three dimensional macromolecular structure. In this work...

  9. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT......:PSS/Ag grid forms the semitransparent top electrode. All layers are roll-coated/printed on a flexible substrate by using only two techniques: slot–die coating for up to 11 consecutive layers and flexo-printing for the last Ag grid layer. The slot–die coated Ag film is compared to an evaporated Ag film...... in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root-meansquare roughness of 3 nm was measured over 240_320 mm2 area), is highly conductive (

  10. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  11. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  12. Studies on electro-optical properties of conjugated polymers and novel metal complexes for nanocrystalline titanium oxide photovoltaic cells and sensors

    Science.gov (United States)

    Kim, Young-Gi

    Several new approaches towards the development of dye and polymer sensitized photovoltaic cells and fluorescence sensors are the focus of this thesis. A new Ru(II) complex has been designed and synthesized introducing two types of ligands, 5-amino-1,10-phenanthroline and 4,4'-dicarboxylic acid-2,2'-bipyridine. This Ru(II) complex is capable of grafting onto nanocrystalline titanium dioxide and can be incorporated into solid polymer electrolytes. A series of analogous ruthenium complexes have also been synthesized and investigated to compare the effects of functional groups on various ligands by measuring spectroscopic and photovoltaic properties. A mononuclear Ru(II) complex using terpyridine and bipyridine ligands has been synthesized and compared to analogous homometallic dinuclear Ru(II) complex. The photophysical and photovoltaic (PV) properties have been investigated. Carboxylated polythiophenes have also been investigated as photosensitizers and charge transfer mediators for nanocrystalline TiO2 PV cells and show potential as a new class of light harvesting photosensitizers. In the present study, by introducing a chelating group such as a carboxylic acid into the side chain of polythiophenes, enhancements in photovoltaic properties are observed. We believe the carboxylic groups in the side chains enhance the adsorptions of these polythiophenes giving higher solar energy conversion efficiencies. The effects of the chelating group in the side chain of polythiophene have been investigated using a variety of analytical techniques. Cationic nanocrystalline TiO2 particles have been synthesized for which the size and composition of the nanoparticles were analyzed by TEM and EDXS. Multilayered films have been fabricated by sequential adsorption of TiO2 nanoparticles and poly (3-thiophene acetic acid). Each layer of the nanoparticles and PTAA in the thin film has also been characterized by XPS, AFM, and UV-vis spectroscopy. It is believed that these types of

  13. Intravascular imaging comparison of two metallic limus-eluting stents abluminally coated with biodegradable polymers: IVUS and OCT results of the DESTINY trial.

    Science.gov (United States)

    Costa, J Ribamar; Chamié, Daniel; Abizaid, Alexandre A C; Ribeiro, Expedito; Meireles, George C; Prudente, Maurício; Campos, Carlos A; Castro, Juliana P; Costa, Ricardo; Lemos, Pedro A

    2017-02-01

    We sought to compare, by means of IVUS and OCT imaging, the performance of a novel sirolimus-eluting drug-eluting stent (DES) with biodegradable polymer (Inspiron™) to the Biomatrix™ DES. From the DESTINY trial, a total of 70 randomized patients (2:1) were enrolled in the IVUS substudy (Inspiron™, n = 46; Biomatrix™: n = 20) while 25 patients were evaluated with OCT (Inspiron™, n = 19; Biomatrix™: n = 06) at 9-month follow-up. The main endpoints were % of neointimal tissue obstruction (IVUS) and neointimal stut coverage (OCT) at 9 months. Patients treated with both DES had very little NIH formation at 9 months either by IVUS (% of NIH obstruction of 4.9 ± 4.1 % with Inspiron™ vs. 2.7 ± 2.9 % with Biomatrix™, p = 0.03) or by OCT (neointimal thickness of 144.2 ± 72.5 µm Inspiron™ vs. 115.0 ± 53.9 µm with Biomatrix™, p = 0.45). Regarding OCT strut-level assessment, again both devices showed excellent 9-month performance, with high rates of strut coverage (99.49 ± 1.01 % with Inspiron™ vs. 97.62 ± 2.21 % with Biomatrix™, p < 0.001) and very rare malapposition (0.29 ± 1.06 % with Inspiron™ vs. 0.53 ± 0.82 % with Biomatrix™, p = 0.44). Patients with any uncovered struts were more frequently identified in the Biomatrix™ group (9.78 ± 7.13 vs. 2.29 ± 3.91 %, p < 0.001). In the present study, midterm IVUS and OCT evaluations showed that both new generation DES with biodegradable polymer were effective in terms of suppressing excessive neointimal response, with very high rates of apposed and covered struts, suggesting a consistent and benign healing pattern.

  14. Conducting Polymers

    Indian Academy of Sciences (India)

    backbone (by the process of doping) and make them electrically. Conducting Polymers. From a Laboratory Curiosity to the Market Place. S Ramakrishnan ..... switching occurs between transparent yellow and green in less than. 100ms. Thus, while these materials are yet to achieve the set target. (in terms of their life cycle) ...

  15. Conducting Polymers

    Indian Academy of Sciences (India)

    ized the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the. Nobel Prize in Chemistry in 1963 for their discovery.) ... transport of charge in these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in ...

  16. Conducting Polymers

    Indian Academy of Sciences (India)

    the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the Nobel Prize in chemistry in 1963 for their discovery.) ... these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in protonated emeraldinel.

  17. Conducting Polymers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Conducting Polymers - From a Laboratory Curiosity to the Market Place. S Ramakrishnan. Volume 16 Issue 12 December 2011 pp 1254-1265. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Polymer solutions

    Science.gov (United States)

    Krawczyk, Gerhard Erich [Bremen, DE; Miller, Kevin Michael [West Dundee, IL

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  19. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  20. Supramolecular polymers

    National Research Council Canada - National Science Library

    Ciferri, A

    2000-01-01

    ... to the new class of self-assembled polymers that undergo reversible growth by the formation of noncovalent bonds. This class (Part II) is wider than expected: not only mainchain assemblies of hydrogen-bonded repeating units, but also planar organization of S-layer proteins, micellar and related three-dimensional structures of blo...

  1. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  2. Experimental investigation of new manufacturing process chains to create micro-metal structures on polymer substrates for lab-on-chip sensors

    DEFF Research Database (Denmark)

    Calaon, Matteo; Islam, Aminul; Hansen, Hans Nørgaard

    2012-01-01

    Over the last two decades, lab-on-a-chip devices have emerged as a leading technology for life sciences, drug development, medical diagnostics, food safety, agricultural and environmental monitoring. The conventional methods used nowadays to manufacture these micro- and nano-functional surface to...... olefin co-polymer substrates. The achievements authorize to consider the proposed process chain a valid option to fabricate structured surface topography in the sub-μ range for biological applications.......Over the last two decades, lab-on-a-chip devices have emerged as a leading technology for life sciences, drug development, medical diagnostics, food safety, agricultural and environmental monitoring. The conventional methods used nowadays to manufacture these micro- and nano-functional surface...... topography are very expensive, and they do not fit the requirements for industrial production. In particular, we report an experimental investigation to link technologies as structuring process and replication processes by establishing through the proposed low-cost-based approaches new manufacturing process...

  3. Attomolar electrochemical detection of the BCR/ABL fusion gene based on an amplifying self-signal metal nanoparticle-conducting polymer hybrid composite.

    Science.gov (United States)

    Avelino, Karen Y P S; Frias, Isaac A M; Lucena-Silva, Norma; Gomes, Renan G; de Melo, Celso P; Oliveira, Maria D L; Andrade, César A S

    2016-12-01

    In the last ten years, conjugated polymers started to be used in the immobilization of nucleic acids via non-covalent interactions. In the present study, we describe the construction and use of an electrochemical DNA biosensor based on a nanostructured polyaniline-gold composite, specifically developed for the detection of the BCR/ABL chimeric oncogene. This chromosome translocation is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The working principle of the biosensor rests on measuring the conductivity resulting from the non-covalent interactions between the hybrid nanocomposite and the DNA probe. The nanostructured platform exhibits a large surface area that enhances the conductivity. Positive cases, which result from the hybridization between DNA probe and targeted gene, induce changes in the amperometric current and in the charge transfer resistance (R CT ) responses. Atomic force microscopy (AFM) images showed changes in the genosensor surface after exposure to cDNA sample of patient with leukemia, evidencing the hybridization process. This new hybrid sensing-platform displayed high specificity and selectivity, and its detection limit is estimated to be as low as 69.4 aM. The biosensor showed excellent analytical performance for the detection of the BCR/ABL oncogene in clinical samples of patients with leukemia. Hence, this electrochemical sensor appears as a simple and attractive tool for the molecular diagnosis of the BCR/ABL oncogene even in early-stage cases of leukemia and for the monitoring of minimum levels of residual disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Physico-chemical behaviour of a metal/polymer contact subject to a low amplitude friction in a chlorinated medium. Effect of ionitriding and ion implantation surface treatment

    International Nuclear Information System (INIS)

    Rabbe, L.M.

    1993-10-01

    The fretting-corrosion behaviour of two tribological couples (TA6V/PMMA and 316L/PMMA) had been studied in order to better understand the degradation mechanisms observed on pivot prosthesis sealed in bones. Pressure appears to have a major role; at high contact pressure, the PMMA wear is the main degradation mechanism with PMMA debris acting as a metal surface protecting agent; at low contact pressure, both material deterioration is involved, and titanium has a corrosion-dominated degradation. An optimal resistance to fretting is achieved when TA6V is coated with Ti N (ion implantation) and Ti N, Ti 2 N (ionitriding). When nitriding, processing temperature appears as a critical factor to ensure thickness and homogeneity of the nitride coatings. 181 p., 106 figs., 110 refs

  5. Switching on fluorescence for selective visual recognition of naringenin and morin with a metal-organic coordination polymer of Zn(bix) [bix = 1,4-bis(imidazol-1-ylmethyl)benzene

    Science.gov (United States)

    Zhao, Xi Juan; Wang, Hui Juan; Liang, Li Jiao; Li, Yuan Fang

    2013-02-01

    Flavonoids such as naringenin and morin are ubiquitous in a wide range of foods isolated from plants, and have diverse effects on plants even on human health. Here, we establish a selective visual method for recognition of aringenin and morin based on the "switched on" fluorescence induced by a metal-organic coordination polymer of Zn(bix) [bix = 1,4-bis(imidazol-1-ylmethyl)benzene]. Owing to the coordination interaction of aringenin and morin with Zn(II) from the polymeric structure of Zn(bix), the conformational free rotation of naringenin and morin is restricted leading to relatively rigid structures. And as a consequence, the fluorescence is switched on. While luteolin and quercetin, holding a very similar structure with naringenin and morin, have no such fluorescence enhancement most likely owing to the 3'-hydroxy substitution in the B ring. Under 365 nm UV lamp light, we can visually recognize and discriminate naringenin and morin from them each other and luteolin as well as quercetin based on the colors of their emission. With this recognition system, the detection of naringenin and morin in human urine was made with satisfactory results.

  6. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum.

    Science.gov (United States)

    Ojeda, Irene; Barrejón, Myriam; Arellano, Luis M; González-Cortés, Araceli; Yáñez-Sedeño, Paloma; Langa, Fernando; Pingarrón, José M

    2015-12-15

    An electrochemical immunosensor for adiponectin (APN) using screen printed carbon electrodes (SPCEs) modified with functionalized double-walled carbon nanotubes (DWCNTs) as platforms for immobilization of the specific antibodies is reported. DWCNTs were functionalized by treatment with 4-aminobenzoic acid (HOOC-Phe) in the presence of isoamylnitrite resulting in the formation of 4-carboxyphenyl-DWCNTs. The oriented binding of specific antibodies toward adiponectin was accomplished by using the metallic-complex chelating polymer Mix&Go™. The HOOC-Phe-DWCNTs-modified SPCEs were characterized by cyclic voltammetry and compared with HOOC-Phe-SWCNTs/SPCE. The different variables affecting the performance of the developed immunosensor were optimized. Under the selected conditions, a calibration plot for APN was constructed showing a range of linearity extending between 0.05 and 10.0 μg/mL which is adequate for the determination of the cytokine in real samples. A detection limit of 14.5 ng/mL was achieved. The so prepared immunosensor exhibited a good reproducibility for the APN measurements, excellent storage stability and selectivity, and a much shorter assay time than the available ELISA kits. The usefulness of the immunosensor for the analysis of real samples was demonstrated by analyzing human serum from female or male healthy patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Fakhari, Mohamad Ali; Rahimpour, Farshad; Taran, Mojtaba

    2017-09-15

    Aqueous two phase affinity partitioning system using metal ligands was applied for partitioning and purification of xylanase produced by Aspergillus Niger. To minimization the number of experiments for the design parameters and develop predictive models for optimization of the purification process, response surface methodology (RSM) with a face-centered central composite design (CCF) has been used. Polyethylene glycol (PEG) 6000 was activated using epichlorohydrin, covalently linked to iminodiacetic acid (IDA), and the specific metal ligand Cu was attached to the polyethylene glycol-iminodiacetic acid (PEG-IDA). The influence of some experimental variables such as PEG (10-18%w/w), sodium sulfate (8-12%), PEG-IDA-Cu 2+ concentration (0-50% w/w of total PEG), pH of system (4-8) and crude enzyme loading (6-18%w/w) on xylanase and total protein partitioning coefficient, enzyme yield and enzyme specific activity were systematically evaluated. Two optimal point with high enzyme partitioning factor 10.97 and yield 79.95 (including 10% PEG, 12% Na 2 SO 4 , 50% ligand, pH 8 and 6% crude enzyme loading) and high specific activity in top phase 42.21 (including 14.73% PEG, 8.02% Na 2 SO 4 , 28.43% ligand, pH 7.7 and 6.08% crude enzyme loading) were attained. The adequacy of the RSM models was verified by a good agreement between experimental and predicted results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  9. Synthesis, structure and characterization of two new metal-organic coordination polymers based on the ligand 5-iodobenzene-1,3-dicarboxylate.

    Science.gov (United States)

    Zhang, Xu; Zhang, Lei; Wang, Meng-Jie; Zhang, Kou-Lin

    2015-09-01

    Two new coordination polymers (CPs) formed from 5-iodobenzene-1,3-dicarboxylic acid (H2iip) in the presence of the flexible 1,4-bis(1H-imidazol-1-yl)butane (bimb) auxiliary ligand, namely poly[[μ2-1,4-bis(1H-imidazol-1-yl)butane-κ(2)N(3):N(3')](μ3-5-iodobenzene-1,3-dicarboxylato-κ(4)O(1),O(1'):O(3):O(3'))cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2-1,4-bis(1H-imidazol-1-yl)butane-κ(2)N(3):N(3')](μ2-5-iodobenzene-1,3-dicarboxylato-κ(2)O(1):O(3))zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy, single-crystal X-ray diffraction analysis and powder X-ray diffraction analysis (PXRD). The iip(2-) ligand in (1) adopts the (κ(1),κ(1)-μ2)(κ(1), κ(1)-μ1)-μ3 coordination mode, linking adjacent secondary building units into a ladder-like chain. These chains are further connected by the flexible bimb ligand in a trans-trans-trans conformation. As a result, a twofold three-dimensional interpenetrating α-Po network is formed. Complex (2) exhibits a two-dimensional (4,4) topological network architecture in which the iip(2-) ligand shows the (κ(1))(κ(1))-μ2 coordination mode. The solid-state UV-Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.

  10. A hybrid, massively parallel implementation of a genetic algorithm for optimization of the impact performance of a metal/polymer composite plate

    KAUST Repository

    Narayanan, Kiran

    2012-07-17

    A hybrid parallelization method composed of a coarse-grained genetic algorithm (GA) and fine-grained objective function evaluations is implemented on a heterogeneous computational resource consisting of 16 IBM Blue Gene/P racks, a single x86 cluster node and a high-performance file system. The GA iterator is coupled with a finite-element (FE) analysis code developed in house to facilitate computational steering in order to calculate the optimal impact velocities of a projectile colliding with a polyurea/structural steel composite plate. The FE code is capable of capturing adiabatic shear bands and strain localization, which are typically observed in high-velocity impact applications, and it includes several constitutive models of plasticity, viscoelasticity and viscoplasticity for metals and soft materials, which allow simulation of ductile fracture by void growth. A strong scaling study of the FE code was conducted to determine the optimum number of processes run in parallel. The relative efficiency of the hybrid, multi-level parallelization method is studied in order to determine the parameters for the parallelization. Optimal impact velocities of the projectile calculated using the proposed approach, are reported. © The Author(s) 2012.

  11. A polymer driveshaft for use in orbital and rotational atherectomy

    Science.gov (United States)

    Grothe, Preston Lee

    Driveshafts used in atherectomy medical devices are often comprised of coiled or braided metal wires. These constructions are designed to tolerate delivery through tortuous vessels and can endure high speed rotation used during activation of the atherectomy treatment. This research investigated polymer driveshaft designs, which were comprised of polymer inner and outer layers, and coiled or braided stainless steel wires. The polymer driveshaft materials included polyimide, nylon 12, and polytetrafluoroethylene (PTFE). Mechanical testing of polymer driveshafts was conducted to determine material response in bending, tension, compression, and torsion. The polymer driveshaft test results were then compared with current coiled metal wire driveshaft constructions. The investigation identified polymer driveshaft options that could feasibly work in an atherectomy application.

  12. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  13. Effects of ion beam treatment on atomic and macroscopic adhesion of copper to different polymer materials

    Science.gov (United States)

    Zaporojtchenko, V.; Zekonyte, J.; Faupel, F.

    2007-12-01

    Low-energy ion irradiation of polymer induces different phenomena in the near surface layer, which effect strongly the metal-polymer interface formation and promotes adhesion of polymers to metals. Low-energy argon and oxygen ion beams were used to alter the chemical and physical properties of different polymers (PS (polystyrene), PαMS (poly(α-methylstyrene), BPA-PC (bisphenol-A-polycarbonate) and PMMA (poly(methyl methacrylate)), in order to understand the adhesion phenomena between a deposited Cu layer and the polymers. The resulting changes were investigated by various techniques including X-ray photoelectron spectroscopy, measurements of the metal condensation coefficient and a new technique to measure cross-linking at the polymer surface. Two types of practical adhesion strengths of Cu-polymer systems, measured using 90° peel tests, were observed: (i) peel strength increased at low ion fluences, reached a maximum and then decreased after prolonged treatment and (ii) no improvement in the peel strength on treated polymer surfaces was recorded. The improvement in the metal-polymer adhesion in the ion fluence range of 10 13-10 15 cm -2 is attributed to the creation of a large density of new adsorption sites resulting in a larger contact area and incorporation of chemically active groups that lead to increased interaction between metal and polymer by metal-oxygen-polymer species formation. XPS analysis of peeled-off surfaces showed that in most cases the failure location changed from interfacial for untreated polymers to cohesive failure in the polymer for treated surfaces. These observations and measurements of the metal condensation coefficients suggest that bonding is improved at the metal-polymer interface for all metal-polymer systems. However, the decrease in the peel strength at high ion fluences is attributed to the formation of a weak boundary layer in polymers. The correlation between sputter rate of polymers and altering in the peel strength for

  14. Effects of ion beam treatment on atomic and macroscopic adhesion of copper to different polymer materials

    International Nuclear Information System (INIS)

    Zaporojtchenko, V.; Zekonyte, J.; Faupel, F.

    2007-01-01

    Low-energy ion irradiation of polymer induces different phenomena in the near surface layer, which effect strongly the metal-polymer interface formation and promotes adhesion of polymers to metals. Low-energy argon and oxygen ion beams were used to alter the chemical and physical properties of different polymers (PS (polystyrene), PαMS (poly(α-methylstyrene), BPA-PC (bisphenol-A-polycarbonate) and PMMA (poly(methyl methacrylate)), in order to understand the adhesion phenomena between a deposited Cu layer and the polymers. The resulting changes were investigated by various techniques including X-ray photoelectron spectroscopy, measurements of the metal condensation coefficient and a new technique to measure cross-linking at the polymer surface. Two types of practical adhesion strengths of Cu-polymer systems, measured using 90 o peel tests, were observed: (i) peel strength increased at low ion fluences, reached a maximum and then decreased after prolonged treatment and (ii) no improvement in the peel strength on treated polymer surfaces was recorded. The improvement in the metal-polymer adhesion in the ion fluence range of 10 13 -10 15 cm -2 is attributed to the creation of a large density of new adsorption sites resulting in a larger contact area and incorporation of chemically active groups that lead to increased interaction between metal and polymer by metal-oxygen-polymer species formation. XPS analysis of peeled-off surfaces showed that in most cases the failure location changed from interfacial for untreated polymers to cohesive failure in the polymer for treated surfaces. These observations and measurements of the metal condensation coefficients suggest that bonding is improved at the metal-polymer interface for all metal-polymer systems. However, the decrease in the peel strength at high ion fluences is attributed to the formation of a weak boundary layer in polymers. The correlation between sputter rate of polymers and altering in the peel strength for

  15. Rebitagem por fricção ("FricRiveting". Desenvolvimento de uma nova técnica de união para juntas híbridas do tipo polímero-metal. Parte I: processo e microestrutura Friction riveting (FricRiveting. Development of a new joining technique for polymer-metal hybrid joints. Part I: process and microstructure

    Directory of Open Access Journals (Sweden)

    Sergio T. Amancio-Filho

    2011-12-01

    Full Text Available A rebitagem por fricção (do Inglês "Friction Riveting" é uma nova técnica de união pontual desenvolvida para a fabricação de estruturas híbridas do tipo polímero-metal. Nesta técnica, um rebite metálico cilíndrico é usado para unir um ou mais componentes termoplásticos. O processo de união ocorre através da plastificação e forjamento da extremidade do rebite via calor friccional, oriundo da rotação e pressão axial do rebite em contato com os componentes a serem unidos. Vantagens dessa nova técnica de união são, entre outras, ciclos de união curtos associados com a ausência ou diminuição do tempo de preparação das superfícies dos componentes, ausência de emissões tóxicas, e simplicidade operacional. Juntas rebitadas por fricção apresentam elevada resistência mecânica. Nesse artigo a viabilidade da técnica foi demonstrada através de um estudo de caso em juntas de polieterimida com rebites de alumínio 2024-T351. Juntas com elevada resistência mecânica (com valores médios de até 93% da resistência à tração do rebite foram produzidas e caracterizadas em termos de microestrutura (microscopia ótica, de varredura e por microtomografia computadorizada.The Friction Riveting (FricRiveting technique is a new alternative spot joining process developed for polymer-metal hybrid structures. In the technique, a cylindrical metallic rivet is used to join one or more thermoplastic-metal components by means of plasticizing and deforming the tip of the rotating rivet through frictional heating. Advantages of this new technique are short joining cycles, minimal sample preparation, absence of environmental emissions and simple operability. Friction riveted joints have enhanced mechanical performance. This study demonstrates the feasibility of FricRiveting by analyzing a case-study joint on polyetherimide / aluminum alloys. Sound joints on polyetherimide/aluminum 2024-T351 with elevated mechanical strength (up to 93

  16. From commodity polymers to functional polymers.

    Science.gov (United States)

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-04-08

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications.

  17. Revisiting the role of durable polymers in cardiovascular devices.

    Science.gov (United States)

    Mori, Hiroyoshi; Otsuka, Fumiyuki; Gupta, Anuj; Jinnouchi, Hiroyuki; Torii, Sho; Harari, Emanuel; Virmani, Renu; Finn, Aloke V

    2017-11-01

    Polymers are an essential component of drug-eluting stents (DES) used to control drug release but remain the most controversial component of DES technology. There are two types of polymers employed in DES: durable polymer based DES (DP-DES) and biodegradable polymer DES (BP-DES). First-generation DES were exclusively composed of DP and demonstrated increased rates of late stent failure due in part to poor polymer biocompatibility. Newer generations DES use more biocompatible durable polymers or biodegradable polymers. Areas covered: We will cover issues identified with 1st-generation DP-DES, areas of success and failure in 2nd-generation DP-DES and examine the promise and shortcomings of BP-DES. Briefly, fluorinated polymers used in 2nd-generation DP-DES have excellent anti-thrombogenicity and better biocompatibility than 1st-generation DES polymers. However, these devices lead to persistent drug exposure to the endothelium which impairs endothelial function and predisposes towards neoatherosclerosis. Meanwhile, BP-DES has shortened the duration of drug exposure which might be beneficial for endothelial functional recovery leading to less neoatherosclerosis. However, it remains uncertain whether the long-term biocompatibility of bare metal surfaces is better than that of polymer-coated metals. Expert commentary: Each technology has distinct advantages, which can be optimized depending upon the particular characteristics of the patient being treated.

  18. Conducting Polymers in Neural Stimulation Applications

    Science.gov (United States)

    Zhou, David D.; Cui, X. Tracy; Hines, Amy; Greenberg, Robert J.

    With advances in neural prostheses, the demand for high-resolution and site-specific stimulation is driving microelectrode research to develop electrodes that are much smaller in area and longer in lifetime. For such arrays, the choice of electrode material has become increasingly important. Currently, most neural stimulation devices use platinum, iridium oxide, or titanium nitride electrodes. Although those metal electrodes have low electrode impedance, high charge injection capability, and high corrosion resistance, the neural interface between solid metal and soft tissue has undesilable characteristics. Recently, several conducting polymers, also known as inherently conducting polymers (ICPs), have been explored as new electrode materials for neural interfaces. Polypyrrole (PPy), polyaniline (PANi), and poly(3,4-ethylenedioxythiophene) (PEDOT) polymers may offer the organic, improved bionic interface that is necessary to promote biocompatibility in neural stimulation applications. While conducting polymers hold much promise in biomedical applications, more research is needed to further understand the properties of these materials. Factors such as electrode impedance, polymer volume changes under electrical stimulation, charge injection capability, biocompatibility, and long-term stability are of significant importance and may pose as challenges in the future success of conducting polymers in biomedical applications.

  19. Interaction of energetic particles with polymer surfaces: surface morphology development and sputtered polymer-fragment ion analysis

    International Nuclear Information System (INIS)

    Michael, R.S.

    1987-01-01

    The core of this thesis is based on a series of papers that have been published or will soon be published in which the various processes taking place in the energetic particle-polymer surface interaction scene is investigated. Results presented show different developments on polymer surfaces when compared to the vast experimental data on energetic particle-metal surface interactions. The surface morphology development depends on the physical characteristics of the polymer. Sputtering yields of fluoropolymers were several orders higher than the sputtering yields of aliphatic and aromatic polymers. Depending on the chemical nature of the polymer, the surface morphology development was dependent upon the extent of radiation-damage accumulation. Fast Atom Bombardment Mass Spectrometry at low and high resolution was applied to the characterization of sputtered polymer fragment ions. Fragment ions and their intensities were used to identify polymer samples, observe radiation damage accumulation and probe polymer-polymer interface of a polymer-polymer sandwich structure. A model was proposed which attempts to explain the nature of processes involved in the energetic particle-polymer surface interaction region

  20. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.