WorldWideScience

Sample records for metal-poor carbon stars

  1. Carbon-enhanced metal-poor stars and thermohaline mixing

    NARCIS (Netherlands)

    Stancliffe, R.J.; Glebbeek, E.; Izzard, R.G.; Pols, O.R.

    2007-01-01

    One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until

  2. Carbon-enhanced metal-poor stars in dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania; Skúladóttir, Ása; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation

  3. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  4. Formation and Evolution of Carbon-Enhanced Metal-Poor Stars

    NARCIS (Netherlands)

    Abate, C.; Pols, O.R.; Izzard, R.G.

    2010-01-01

    Very metal-poor stars observed in the Galactic halo constitute a window on the primordial conditions under which the Milky Way was formed. A large fraction of these stars show a great enhancement in the abundance of carbon and other heavy elements. One explanation of this observation is that these

  5. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  6. A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY

    International Nuclear Information System (INIS)

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2010-01-01

    We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 ≤ [Fe/H] ≤ -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B< 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 A. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

  7. AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.; Frebel, Anna

    2010-01-01

    We report the analysis of high-resolution, high signal-to-noise ratio, spectra of an extremely metal-poor, extremely C-rich red giant, Seg 1-7, in Segue 1-described in the literature alternatively as an unusually extended globular cluster or an ultra-faint dwarf galaxy. The radial velocity of Seg 1-7 coincides precisely with the systemic velocity of Segue 1, and its chemical abundance signature of [Fe/H] = -3.52, [C/Fe] = +2.3, [N/Fe] = +0.8, [Na/Fe] = +0.53, [Mg/Fe] = +0.94, [Al/Fe] = +0.23, and [Ba/Fe] < -1.0 is similar to that of the rare and enigmatic class of Galactic halo objects designated CEMP-no (carbon-rich, extremely metal-poor with no enhancement (over solar ratios) of heavy neutron-capture elements). This is the first star in a Milky Way 'satellite' that unambiguously lies on the metal-poor, C-rich branch of the Aoki et al. bimodal distribution of field halo stars in the ([C/Fe], [Fe/H])-plane. Available data permit us only to identify Seg 1-7 as a member of an ultra-faint dwarf galaxy or as debris from the Sgr dwarf spheroidal galaxy. In either case, this demonstrates that at extremely low abundance, [Fe/H ] <-3.0, star formation and associated chemical evolution proceeded similarly in the progenitors of both the field halo and satellite systems. By extension, this is consistent with other recent suggestions that the most metal-poor dwarf spheroidal and ultra-faint dwarf satellites were the building blocks of the Galaxy's outer halo.

  8. CHEMICAL ANALYSIS OF A CARBON-ENHANCED VERY METAL-POOR STAR: CD-27 14351

    Energy Technology Data Exchange (ETDEWEB)

    Karinkuzhi, Drisya; Goswami, Aruna [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Masseron, Thomas [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-01-01

    We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution ( R  ∼ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature T {sub eff} = 4335 K, surface gravity log g  = 0.5, microturbulence ξ  = 2.42 km s{sup −1}, and metallicity [Fe/H] = −2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancement being seen in Ce with [Ce/Fe] = 2.63. While the first peak s -process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s -process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r -process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.

  9. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Melanie [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Lugaro, Maria [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest (Hungary); Meyer, Bradley S., E-mail: mhampel@lsw.uni-heidelberg.de [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

    2016-11-10

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .

  10. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    Science.gov (United States)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  11. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    Science.gov (United States)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  12. Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Simon, Joshua D.; Frebel, Anna; Thompson, Ian B.; Shectman, Stephen A.; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Walker, Matthew

    2018-04-01

    The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. FORMATION OF CARBON-ENHANCED METAL-POOR STARS IN THE PRESENCE OF FAR-ULTRAVIOLET RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, S.; Schleicher, D. R. G.; Latif, M. A. [Institut für Astrophysik Georg-August-Universität, Friedrich-Hund Platz 1, 37077 Göttingen (Germany); Grassi, T., E-mail: sbovino@astro.physik.uni-goettingen.de [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen (Denmark)

    2014-08-01

    Recent discoveries of carbon-enhanced metal-poor stars like SMSS J031300.36–670839.3 provide increasing observational insights into the formation conditions of the first second-generation stars in the universe, reflecting the chemical conditions after the first supernova explosion. Here, we present the first cosmological simulations with a detailed chemical network including primordial species as well as C, C{sup +}, O, O{sup +}, Si, Si{sup +}, and Si{sup 2+} following the formation of carbon-enhanced metal-poor stars. The presence of background UV flux delays the collapse from z = 21 to z = 15 and cool the gas down to the cosmic microwave background temperature for a metallicity of Z/Z {sub ☉} = 10{sup –3}. This can potentially lead to the formation of lower-mass stars. Overall, we find that the metals have a stronger effect on the collapse than the radiation, yielding a comparable thermal structure for large variations in the radiative background. We further find that radiative backgrounds are not able to delay the collapse for Z/Z {sub ☉} = 10{sup –2} or a carbon abundance as in SMSS J031300.36–670839.3.

  14. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    Science.gov (United States)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  15. CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Kennedy, Catherine R.; Bovy, Jo; Sivarani, Thirupathi; Aoki, Wako

    2012-01-01

    Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ( c arbonicity ) in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] 5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with –2.0 < [Fe/H] <–1.5, the frequency grows from 5% at |Z| ∼2 kpc to 10% at |Z| ∼10 kpc. For stars with [Fe/H] <–2.0, the frequency grows from 8% at |Z| ∼2 kpc to 25% at |Z| ∼10 kpc. For stars with –2.0 < [Fe/H] <–1.5, the mean carbonicity is ([C/Fe]) ∼+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <–2.0, ([C/Fe]) ∼+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components—the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components—the inner halo has a greater portion of stars with modest carbon enhancement ([C/Fe] ∼+0.5]); the outer halo has a greater portion of stars with large enhancements ([C/Fe] ∼+2.0), although considerable overlap still exists. We interpret these results as due to the possible presence of additional astrophysical sources of carbon production associated with outer-halo stars, beyond the asymptotic giant-branch source that may dominate for inner-halo stars, with implications for the progenitors of these populations.

  16. Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [NMSU, Las Cruces; Beers, Timothy C. [Michigan State U., JINA; Masseron, Thomas [Brussels U.; Plez, Bertrand [U. Montpellier 2, LUPM; Rockosi, Constance M. [Lick Observ.; Sobeck, Jennifer [Chicago U.; Yanny, Brian [Fermilab; Lucatello, Sara [Padua Observ.; Sivarani, Thirupathi [Bangalore, Indian Inst. Astrophys.; Placco, Vinicius M. [Sao Paulo U., IAG; Carollo, Daniela [Macquarie U.

    2013-10-17

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged

  17. VizieR Online Data Catalog: Carbon-enhanced metal-poor stars sample (Caffau+, 2018)

    Science.gov (United States)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    We selected a sample of turn-off stars from the Sloan Digital Sky Survey (SDSS York et al. 2000AJ....120.1579Y; Yanny et al. 2009, Cat. J/AJ/137/4377) that were bright enough (gGMOS spectra were acquired in service mode on the nights of 21/07/2017 and 25/07/2017. Table 1 lists the stars we examined here, along with their coordinates, g-mag, and metallicities derived from Fe abundances computed using SDSS and FORS/GMOS spectra. (2 data files).

  18. First stars X. The nature of three unevolved carbon-enhanced metal-poor stars

    DEFF Research Database (Denmark)

    Sivarani, T.; Beers, T.C.; Bonifacio, P.

    2006-01-01

    Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov.......Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov....

  19. Carbon-enhanced metal-poor stars in SDSS/Segue. II. Comparison of CEMP-star frequencies with binary population-synthesis models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Suda, Takuma [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Stancliffe, Richard J., E-mail: yslee@nmsu.edu [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-06-20

    We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff (MSTO) stars with predictions from binary population-synthesis models involving asymptotic giant-branch (AGB) mass transfer. The giant and MSTO stars are selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration. We consider two initial mass functions (IMFs)—a Salpeter IMF, and a mass function with a characteristic mass of 10 M {sub ☉}. For giant stars, the comparison indicates a good agreement between the observed CEMP frequencies and the AGB binary model using a Salpeter IMF for [Fe/H] > – 1.5, and a characteristic mass of 10 M {sub ☉} for [Fe/H] < – 2.5. This result suggests that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a 'chemical time' between [Fe/H] =–2.5 and [Fe/H] =–1.5. The CEMP frequency for the turnoff stars with [Fe/H] < – 3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] =–3.0. We also discuss possible effects of first dredge-up and extra mixing in red giants and internal mixing in turnoff stars on the derived CEMP frequencies.

  20. Abundances in very metal-poor stars

    Science.gov (United States)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  1. Stellar Archaeology -- Exploring the Universe with Metal-Poor Stars

    OpenAIRE

    Frebel, Anna

    2010-01-01

    The abundance patterns of the most metal-poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star- and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. T...

  2. The best and brightest metal-poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  3. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    Science.gov (United States)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  4. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    International Nuclear Information System (INIS)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela

    2009-01-01

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of Hα and Hβ. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 ∼< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  5. Three-dimensional models of metal-poor stars

    OpenAIRE

    Collet, R.

    2008-01-01

    I present here the main results of recent realistic, 3D, hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of loc...

  6. Three-dimensional models of metal-poor stars

    International Nuclear Information System (INIS)

    Collet, R

    2008-01-01

    I present here the main results of recent realistic, three-dimensional (3D), hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of local thermodynamic equilibrium (LTE) with the results of analogous line formation calculations performed with classical, 1D, hydrostatic model atmospheres. The low surface temperatures encountered in the upper photospheric layers of 3D model atmospheres of very metal-poor stars cause spectral lines of neutral metals and molecules to appear stronger in 3D than in 1D calculations. Hence, 3D elemental abundances derived from such lines are significantly lower than estimated by analyses with 1D models. In particular, differential 3D-1D LTE abundances for C, N and O derived from CH, NH and OH lines are found to be in the range -0.5 to - 1 dex. Large negative differential 3D-1D corrections to the Fe abundance are also computed for weak low-excitation Fe i lines. The application of metal-poor 3D models to the spectroscopic analysis of extremely iron-poor halo stars is discussed.

  7. Heavy elements abundances in metal-poor stars

    International Nuclear Information System (INIS)

    Magain, P.; Jehin, E.; Neuforge, C.; Noels, A.

    1998-01-01

    A sample of 21 metal-poor stars have been analysed on the basis of high resolution and high signal-to-noise spectra. Correlations between relative abundances of 16 elements have been studied, with a special emphasis on the neutron-capture ones. This analysis reveals the existence of two sub-populations of field halo stars, namely Pop IIa and Pop IIb. They differ by the behaviour of the s-process elements versus the α and r-process elements. We suggest a scenario of formation of these stars, which closely relates the field halo stars to the evolution of globular clusters. The two sub-populations would have evaporated the clusters during two different stages of their chemical evolution

  8. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    International Nuclear Information System (INIS)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang; Wang, Wei; Yuan, Hailong; Christlieb, Norbert; Zhang, Yong; Hou, Yonghui

    2015-01-01

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data

  9. Searching for dust around hyper metal poor stars

    International Nuclear Information System (INIS)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else; Puzia, Thomas H.; Côté, Stephanie; Lambert, David L.

    2014-01-01

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  10. Searching for dust around hyper metal poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 7820436 Macul, Santiago (Chile); Côté, Stephanie [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Lambert, David L., E-mail: kvenn@uvic.ca [McDonald Observatory and the Department of Astronomy, University of Texas at Austin, RLM 15.308, Austin, TX 78712 (United States)

    2014-08-20

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  11. Searching for chemical classes among metal-poor stars using medium-resolution spectroscopy

    Science.gov (United States)

    Cruz, Monique A.; Cogo-Moreira, Hugo; Rossi, Silvia

    2018-04-01

    Astronomy is in the era of large spectroscopy surveys, with the spectra of hundreds of thousands of stars in the Galaxy being collected. Although most of these surveys have low or medium resolution, which makes precise abundance measurements not possible, there is still important information to be extracted from the available data. Our aim is to identify chemically distinct classes among metal-poor stars, observed by the Sloan Digital Sky Survey, using line indices. The present work focused on carbon-enhanced metal-poor (CEMP) stars and their subclasses. We applied the latent profile analysis technique to line indices for carbon, barium, iron and europium, in order to separate the sample into classes with similar chemical signatures. This technique provides not only the number of possible groups but also the probability of each object to belong to each class. The method was able to distinguish at least two classes among the observed sample, with one of them being probable CEMP stars enriched in s-process elements. However, it was not able to separate CEMP-no stars from the rest of the sample. Latent profile analysis is a powerful model-based tool to be used in the identification of patterns in astrophysics. Our tests show the potential of the technique for the attainment of additional chemical information from `poor' data.

  12. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  13. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    Science.gov (United States)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (Vevolution or changes in the IMF, e.g., carbon enrichment, high [alpha/Fe] ratios vs alpha-challenged stars, and details in the neutron capture element ratios. While these early studies are being carried out using classical model atmospheres and synthetic spectral fitting (Venn et al. 2017, 2018), we are also exploring the use of a neural network for the fast, efficient, and precise determination of these stellar parameters and chemical abundances (e.g., StarNet, Fabbro et al. 2018).

  14. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Science.gov (United States)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ≈-1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims: The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ~ 45 000) and high-signal-to-noise (S/N> 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods: High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe I and Fe II. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results: We confirm that the analysed stars are moderately metal-poor (-1.04 ≤ [Fe/H] ≤-0.43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤ + 0.2, and α-enhanced. We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na - O, Al - O, Al - Mg anti-correlations) were

  15. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  16. Observational Constraints on First-Star Nucleosynthesis. II. Spectroscopy of an Ultra metal-poor CEMP-no Star

    Science.gov (United States)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Yoon, Jinmi; Chiti, Anirudh; Heger, Alexander; Chan, Conrad; Casey, Andrew R.; Christlieb, Norbert

    2016-12-01

    We report on the first high-resolution spectroscopic analysis of HE 0020-1741, a bright (V = 12.9), ultra metal-poor ([{Fe}/{{H}}] = -4.1), carbon-enhanced ([{{C}}/{Fe}] = +1.7) star selected from the Hamburg/ESO Survey. This star exhibits low abundances of neutron-capture elements ([{Ba}/{Fe}] = -1.1) and an absolute carbon abundance A(C) = 6.1 based on either criterion, HE 0020-1741 is subclassified as a carbon-enhanced metal-poor star without enhancements in neutron-capture elements (CEMP-no). We show that the light-element abundance pattern of HE 0020-1741 is consistent with predicted yields from a massive (M = 21.5 {M}⊙ ), primordial-composition, supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models (covering the mass range 10{--}100 {M}⊙ ), in order to probe the nature of their likely stellar progenitors. Our results suggest that at least two classes of progenitors are required at [{Fe}/{{H}}] \\lt -4.0, as the abundance patterns for more than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  17. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States)

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  18. SPECTROSCOPIC STUDIES OF EXTREMELY METAL-POOR STARS WITH THE SUBARU HIGH DISPERSION SPECTROGRAPH. V. THE Zn-ENHANCED METAL-POOR STAR BS 16920-017

    International Nuclear Information System (INIS)

    Honda, Satoshi; Aoki, Wako; Beers, Timothy C.; Takada-Hidai, Masahide

    2011-01-01

    We report Zn abundances for 18 very metal-poor stars studied in our previous work, covering the metallicity range -3.2< [Fe/H] <-2.5. The [Zn/Fe] values of most stars show an increasing trend with decreasing [Fe/H] in this metallicity range, confirming the results found by previous studies. However, the extremely metal-poor star BS 16920-017([Fe/H] =-3.2) exhibits a significantly high [Zn/Fe] ratio ([Zn/Fe] = +1.0). Comparison of the chemical abundances of this object with HD 4306, which has similar atmospheric parameters to BS 16920-017, clearly demonstrates a deficiency of α elements and neutron-capture elements in this star, along with enhancements of Mn and Ni, as well as Zn. The association with a hypernova explosion that has been proposed to explain the high Zn abundance ratios found in extremely metal-poor stars is a possible explanation, although further studies are required to fully interpret the abundance pattern of this object.

  19. The Most Metal-poor Stars in the Large Magellanic Cloud

    Science.gov (United States)

    Schlaufman, Kevin C.

    2018-06-01

    The chemical abundances of the most metal-poor stars in a galaxy can be used to investigate the earliest stages of its formation and chemical evolution. Differences between the abundances of the most metal-poor stars in the Milky Way and in its satellite dwarf galaxies have been noted and provide the strongest available constraints on the earliest stages of general galactic chemical evolution models. However, the masses of the Milky Way and its satellite dwarf galaxies differ by four orders of magnitude, leaving a gap in our knowledge of the early chemical evolution of intermediate mass galaxies like the Magellanic Clouds. To close that gap, we have initiated a survey of the metal-poor stellar populations of the Magellanic Clouds using the mid-infrared metal-poor star selection of Schlaufman & Casey (2014). We have discovered the three most metal-poor giant stars known in the Large Magellanic Cloud (LMC) and reobserved the previous record holder. The stars have metallicities in the range -2.70 < [Fe/H] < -2.00 and three show r-process enhancement: one has [Eu II/Fe] = +1.65 and two others have [Eu II/Fe] = +0.65. The probability that four randomly selected very metal-poor stars in the halo of the Milky Way are as r-process enhanced is 0.0002. For that reason, the early chemical enrichment of the heaviest elements in the LMC and Milky Way were qualitatively different. It is also suggestive of a possible chemical link between the LMC and the ultra-faint dwarf galaxies nearby with evidence of r-process enhancement (e.g., Reticulum II and Tucana III). Like Reticulum II, the most metal-poor star in our LMC sample is the only one not enhanced in r-process elements.

  20. Metal-Poor Stars and the Chemical Enrichment of the Universe

    OpenAIRE

    Frebel, Anna; Norris, John E.

    2011-01-01

    Metal-poor stars hold the key to our understanding of the origin of the elements and the chemical evolution of the Universe. This chapter describes the process of discovery of these rare stars, the manner in which their surface abundances (produced in supernovae and other evolved stars) are determined from the analysis of their spectra, and the interpretation of their abundance patterns to elucidate questions of origin and evolution. More generally, studies of these stars contribute to other ...

  1. Extremely metal-poor stars in classical dwarf spheroidal galaxies : Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to

  2. Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to

  3. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.; Tafelmeyer, M.; Szeifert, T.; Babusiaux, C.

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of

  4. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  5. SEARCHES FOR METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY USING THE CH G BAND

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-090 (Brazil); Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun [Department of Physics and Astronomy and JINA (Joint Institute for Nuclear Astrophysics), Michigan State University, East Lansing, MI 48824 (United States); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, 69117 Heidelberg (Germany); Sivarani, Thirupathi [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Reimers, Dieter [Hamburger Sternwarte, Universitaet Hamburg, Gojenbergsweg 112, 21029 Hamburg (Germany); Wisotzki, Lutz, E-mail: vmplacco@astro.iag.usp.br [Astrophysical Institute Potsdam, An der Sternwarte 16, 14482 Potsdam (Germany)

    2011-12-15

    We describe a new method to search for metal-poor candidates from the Hamburg/ESO objective-prism survey (HES) based on identifying stars with apparently strong CH G-band strengths for their colors. The hypothesis we exploit is that large overabundances of carbon are common among metal-poor stars, as has been found by numerous studies over the past two decades. The selection was made by considering two line indices in the 4300 A region, applied directly to the low-resolution prism spectra. This work also extends a previously published method by adding bright sources to the sample. The spectra of these stars suffer from saturation effects, compromising the index calculations and leading to an undersampling of the brighter candidates. A simple numerical procedure, based on available photometry, was developed to correct the line indices and overcome this limitation. Visual inspection and classification of the spectra from the HES plates yielded a list of 5288 new metal-poor (and by selection, carbon-rich) candidates, which are presently being used as targets for medium-resolution spectroscopic follow-up. Estimates of the stellar atmospheric parameters, as well as carbon abundances, are now available for 117 of the first candidates, based on follow-up medium-resolution spectra obtained with the SOAR 4.1 m and Gemini 8 m telescopes. We demonstrate that our new method improves the metal-poor star fractions found by our pilot study by up to a factor of three in the same magnitude range, as compared with our pilot study based on only one CH G-band index. Our selection scheme obtained roughly a 40% success rate for identification of stars with [Fe/H] <-1.0; the primary contaminant is late-type stars with near-solar abundances and, often, emission line cores that filled in the Ca II K line on the prism spectrum. Because the selection is based on carbon, we greatly increase the numbers of known carbon-enhanced metal-poor stars from the HES with intermediate metallicities -2

  6. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    Science.gov (United States)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  7. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    OpenAIRE

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.

    2009-01-01

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of these stars is very limited because detailed chemical abundance measurements are needed from high resolution spectroscopy. Aims. To constrain the formation and chemical evolution of dwarf galaxi...

  8. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    Science.gov (United States)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter

  9. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    Science.gov (United States)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  10. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    International Nuclear Information System (INIS)

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-01-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  11. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    García Pérez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Léo

    2013-01-01

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] ≤ –1.7), including two that are very metal-poor [Fe/H] ∼ –2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α-elements O, Mg, and Si without significant α-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  12. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  13. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  14. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Conroy, Charlie, E-mail: phopkins@caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  15. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-01-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  16. Lithium isotopic abundances in metal-poor stars: a problem for standard big bang nucleosynthesis?

    International Nuclear Information System (INIS)

    Nissen, P.E.; Asplund, M.; Lambert, D.L.; Primas, F.; Smith, V.V.

    2005-01-01

    Spectral obtained with VLT/UVES suggest the existence of the 6 Li isotope in several metal-poor stars at a level that challenges ideas about its synthesis. The 7 Li abundance is, on the other hand, a factor of three lower than predicted by standard Big Bang nucleosynthesis theory. Both problems may be explained if decaying suppersymmetric particles affect the synthesis of light elements in the Big Bang. (orig.)

  17. Lithium evolution in metal-poor stars: from Pre-Main Sequence to the Spite plateau

    OpenAIRE

    Fu, Xiaoting; Bressan, Alessandro; Molaro, Paolo; Marigo, Paola

    2015-01-01

    Lithium abundance derived in metal-poor main sequence stars is about three times lower than the value of primordial Li predicted by the standard Big Bang nucleosynthesis when the baryon density is taken from the CMB or the deuterium measurements. This disagreement is generally referred as the lithium problem. We here reconsider the stellar Li evolution from the pre-main sequence to the end of the main sequence phase by introducing the effects of convective overshooting and residual mass accre...

  18. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.

    Science.gov (United States)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-26

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars-typically old and metal-poor-that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ∼10  GeV. Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  19. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  20. The Pristine survey - I. Mining the Galaxy for the most metal-poor stars

    Science.gov (United States)

    Starkenburg, Else; Martin, Nicolas; Youakim, Kris; Aguado, David S.; Allende Prieto, Carlos; Arentsen, Anke; Bernard, Edouard J.; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond G.; Côté, Patrick; Fouesneau, Morgan; François, Patrick; Franke, Oliver; González Hernández, Jonay I.; Gwyn, Stephen D. J.; Hill, Vanessa; Ibata, Rodrigo A.; Jablonka, Pascale; Longeard, Nicolas; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Tolstoy, Eline; Venn, Kim A.

    2017-11-01

    We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg2 in the Galactic halo ranging from b ˜ 30° to ˜78° and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and I photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ˜0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE < -3.0 stars among [Fe/H]Pristine < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.

  1. THE SYNTHETIC-OVERSAMPLING METHOD: USING PHOTOMETRIC COLORS TO DISCOVER EXTREMELY METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. A., E-mail: amiller@astro.caltech.edu [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2015-09-20

    Extremely metal-poor (EMP) stars ([Fe/H] ≤ −3.0 dex) provide a unique window into understanding the first generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first ∼500 Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training set of ∼170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ∼0.29 dex. This performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this synthetic-oversampling method recovers ∼20% of the EMP stars in the training set, at a precision of ∼0.05. Furthermore, ∼65% of the false positives from the model are very metal-poor stars ([Fe/H] ≤ −2.0 dex). The synthetic-oversampling method is biased toward the discovery of warm (∼F-type) stars, a consequence of the targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP selection method represents a significant improvement over alternative broadband optical selection techniques. The models are applied to >12 million stars, with an expected yield of ∼600 new EMP stars, which promises to open new avenues for exploring the early universe.

  2. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    Science.gov (United States)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  3. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  4. The origin of light neutron-capture elements in very metal-poor stars

    International Nuclear Information System (INIS)

    Honda, S.; Aoki, W.; Kajino, T.; Ando, H.; Beers, T.C.

    2005-01-01

    We obtained high resolution spectra of 40 very metal-poor stars, and measured the abundances of heavy elements. The abundance pattern of the heavy neutron-capture elements (56=< Z=<70) in r-process-enhanced, metal-poor stars are quite similar to that of the r-process component in solar-system material. In contrast, the abundance ratios of the light neutron-capture elements (38=< Z=<40) to heavier ones show a large dispersion. We investigated the correlation between Sr(Z=38) and Ba(Z=56) abundances, and obtained two clear results: (1) Ba-enhanced stars also show large excess of Sr (there is no object which is Ba-rich and Sr-poor); (2) stars with low Ba abundance show large scatter in Sr abundance. This trend is naturally explained by hypothesizing the existence of two processes, one that produces Sr without Ba and the other that produces Sr and Ba in similar proportions

  5. On the temperatures, colours, and ages of metal-poor stars predicted by stellar models

    International Nuclear Information System (INIS)

    Van den Berg, D A

    2008-01-01

    Most (but not all) of the investigations that have derived the effective temperatures of metal-poor, solar-neighbourhood field stars, from analyses of their spectra or from the infrared flux method, favour a T eff scale that is ∼100-120 K cooler than that given by stellar evolutionary models. This seems to be at odds with photometric results, given that the application of current colour-T eff relations to the observed subdwarf colours suggests a preference for hotter temperatures. Moreover, the predicted temperatures for main-sequence stars at the lowest metallicities ([Fe/H] eff for them unless some fundamental modification is made to the adopted physics. No such problems are found if the temperatures of metal-poor field stars are ∼100-120 K warmer than most determinations. In this case, stellar models would appear to provide consistent interpretations of both field and globular cluster (GC) stars of low metallicity. However, this would imply, e.g. that M 92 has an [Fe/H] value of approximately - 2.2, which is obtained from analyses of Fe I lines, instead of approximately equal to - 2.4, as derived from Fe II lines (and favoured by studies of three-dimensional model atmospheres). Finally, the age of the local, Population II subgiant HD 140283 (and GCs having similar metal abundances) is estimated to be ∼13 Gyr, if diffusive processes are taken into account.

  6. TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Courtney R.; Johnson, Jennifer A.; Tayar, Jamie; Pinsonneault, Marc [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Elsworth, Yvonne P.; Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, Edgbaston Park Road, West Midlands, Birmingham B15 2TT (United Kingdom); Shetrone, Matthew [McDonald Observatory, The University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Mosser, Benoît [LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, F-92195 Meudon Cedex (France); Hekker, Saskia [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106-7215 (United States); Silva Aguirre, Víctor [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719, USA and JINA: Joint Institute for Nuclear Astrophysics (United States); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Bedding, Timothy R. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Universit Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191, Gif-sur-Yvette (France); Pérez, Ana E. García; Hearty, Fred R., E-mail: epstein@astronomy.ohio-state.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); and others

    2014-04-20

    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (<ΔM > =0.17 ± 0.05 M {sub ☉}) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 M {sub ☉} level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ∼100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.

  7. DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Lawler, James E.; Cowan, John J.; Beers, Timothy C.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sobeck, Jennifer S.; Sneden, Christopher

    2012-01-01

    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A ≈ 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.

  8. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  9. The Oldest Stars of the Extremely Metal-Poor Local Group Dwarf Irregular Galaxy Leo A

    Science.gov (United States)

    Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Drozdovsky, Igor O.; Greggio, Laura; Crone, Mary M.

    2002-08-01

    We present deep Hubble Space Telescope (HST) single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters that exhibit red horizontal branches and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but we lack the detection of main-sequence turnoffs that would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, only 3% of solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  10. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    Science.gov (United States)

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  11. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Kohei; Yoshii, Yuzuru [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Carollo, Daniela [Department of Physics and Astronomy, Macquarie University, Sydney, 2109 NSW (Australia); Lee, Young Sun, E-mail: khattori@ioa.s.u-tokyo.ac.jp [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  12. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

    Science.gov (United States)

    Reggiani, Henrique; Meléndez, Jorge; Kobayashi, Chiaki; Karakas, Amanda; Placco, Vinicius

    2017-12-01

    Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims: We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (-2.8 ≤ [Fe/H] ≤ -1.5). Methods: Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results: We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions: By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (-3.6 ≤ [Fe/H] ≤ -0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We

  13. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-01-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  14. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    Science.gov (United States)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  15. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900 (Brazil); Frebel, Anna [Massachusetts Institute of Technology and Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Karakas, Amanda I.; Kennedy, Catherine R. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  16. J0023+0307: A Mega Metal-poor Dwarf Star from SDSS/BOSS

    Science.gov (United States)

    Aguado, David S.; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2018-02-01

    Only a handful of stars have been identified with an iron abundance [Fe/H] support from theoretical modeling, as the result of a top-heavy initial mass function. With zero or very low metal abundance limiting radiative cooling, the formation of low-mass stars could be inhibited. Currently, the star SDSS J1029+1729 sets the potential metallicity threshold for the formation of low-mass stars at {log}Z/{Z}ȯ ∼ -5. In our quest to push down the metallicity threshold we have identified SDSS J0023+0307, a primitive star with T eff = 6188 ± 84 K, and {log}g=4.9+/- 0.5, an upper limit [Fe/H] < ‑6.6, and a carbon abundance A(C) < 6.3. We find J0023+0307 to be one of the two most iron-poor stars known, and it exhibits less carbon that most of the stars at [Fe/H] < ‑5. Based on observations made with William Herschel Telescope (WHT) and the Gran Telescopio de Canarias (GTC), at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in La Palma.

  17. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, D.; Winckel, H. Van [Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D bus 2401, B-3001 Leuven (Belgium); Wood, P. R.; Asplund, M.; Karakas, A. I. [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lattanzio, J. C. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia)

    2017-02-10

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type ( T {sub eff} = 8250 ± 250 K) luminous (8200 ± 700 L {sub ⊙}) metal-poor ([Fe/H] = −1.18 ± 0.10) low-mass ( M {sub initial} ≈ 1.5–2.0 M {sub ⊙}) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancement (upper limit of [C/Fe] < 0.50) nor enrichment of s -process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.

  18. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    Science.gov (United States)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  19. NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS

    International Nuclear Information System (INIS)

    Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.; Cowan, John J.; Ivans, Inese I.

    2009-01-01

    We have derived new abundances of the rare earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low-metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally consistent Ba, rare earth, and Hf (56 ≤ Z ≤ 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  20. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States); Cooke, Ryan J. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2017-08-20

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  1. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Science.gov (United States)

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  2. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    International Nuclear Information System (INIS)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael; Cooke, Ryan J.

    2017-01-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  3. Atmospheric parameters and magnesium and calcium NLTE abundances for a sample of 16 ultra metal-poor stars

    Science.gov (United States)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna

    2018-06-01

    The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that

  4. Accurate effective temperatures of the metal-poor benchmark stars HD 140283, HD 122563, and HD 103095 from CHARA interferometry

    Science.gov (United States)

    Karovicova, I.; White, T. R.; Nordlander, T.; Lind, K.; Casagrande, L.; Ireland, M. J.; Huber, D.; Creevey, O.; Mourard, D.; Schaefer, G. H.; Gilmore, G.; Chiavassa, A.; Wittkowski, M.; Jofré, P.; Heiter, U.; Thévenin, F.; Asplund, M.

    2018-03-01

    Large stellar surveys of the Milky Way require validation with reference to a set of `benchmark' stars whose fundamental properties are well determined. For metal-poor benchmark stars, disagreement between spectroscopic and interferometric effective temperatures has called the reliability of the temperature scale into question. We present new interferometric measurements of three metal-poor benchmark stars, HD 140283, HD 122563, and HD 103095, from which we determine their effective temperatures. The angular sizes of all the stars were determined from observations with the PAVO beam combiner at visible wavelengths at the CHARA array, with additional observations of HD 103095 made with the VEGA instrument, also at the CHARA array. Together with photometrically derived bolometric fluxes, the angular diameters give a direct measurement of the effective temperature. For HD 140283, we find θLD = 0.324 ± 0.005 mas, Teff = 5787 ± 48 K; for HD 122563, θLD = 0.926 ± 0.011 mas, Teff = 4636 ± 37 K; and for HD 103095, θLD = 0.595 ± 0.007 mas, Teff = 5140 ± 49 K. Our temperatures for HD 140283 and HD 103095 are hotter than the previous interferometric measurements by 253 and 322 K, respectively. We find good agreement between our temperatures and recent spectroscopic and photometric estimates. We conclude some previous interferometric measurements have been affected by systematic uncertainties larger than their quoted errors.

  5. Chances for earth-like planets and life around metal-poor stars

    OpenAIRE

    Zinnecker, Hans

    2003-01-01

    We discuss the difficulties of forming earth-like planets in metal-poor environments, such as those prevailing in the Galactic halo (Pop II), the Magellanic Clouds, and the early universe. We suggest that, with less heavy elements available, terrestrial planets will be smaller size and lower mass than in our solar system (solar metallicity). Such planets may not be able to sustain life as we know it. Therefore, the chances of very old lifeforms in the universe are slim, and a threshold metall...

  6. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  7. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-01

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs

  8. Spectroscopic Comparison of Metal-rich RRab Stars of the Galactic Field with their Metal-poor Counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Chadid, Merieme [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France); Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W., E-mail: chadid@unice.fr, E-mail: chris@verdi.as.utexas.edu, E-mail: gwp@obs.carnegiescience.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-02-01

    We investigate atmospheric properties of 35 stable RRab stars that possess the full ranges of period, light amplitude, and metal abundance found in Galactic RR Lyrae stars. Our results are derived from several thousand echelle spectra obtained over several years with the du Pont telescope of Las Campanas Observatory. Radial velocities of metal lines and the H α line were used to construct curves of radial velocity versus pulsation phase. From these we estimated radial velocity amplitudes for metal lines (formed near the photosphere) and H α Doppler cores (formed at small optical depths). We also measured H α emission fluxes when they appear during primary light rises. Spectra shifted to rest wavelengths, binned into small phase intervals, and co-added were used to perform model atmospheric and abundance analyses. The derived metallicities and those of some previous spectroscopic surveys were combined to produce a new calibration of the Layden abundance scale. We then divided our RRab sample into metal-rich (disk) and metal-poor (halo) groups at [Fe/H] = −1.0; the atmospheres of RRab families, so defined, differ with respect to (a) peak strength of H α emission flux, (b) H α radial velocity amplitude, (c) dynamical gravity, (d) stellar radius variation, (e) secondary acceleration during the photometric bump that precedes minimum light, and (f) duration of H α line-doubling. We also detected H α line-doubling during the “bump” in the metal-poor family, but not in the metal-rich one. Although all RRab probably are core helium-burning horizontal branch stars, the metal-rich group appears to be a species sui generis.

  9. BOO-1137-AN EXTREMELY METAL-POOR STAR IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY BOOeTES I

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.

    2010-01-01

    We present high-resolution (R ∼ 40,000), high-signal-to-noise ratio (20-90) spectra of an extremely metal-poor giant star Boo-1137 in the 'ultra-faint' dwarf spheroidal galaxy (dSph) Booetes I, absolute magnitude M V ∼ -6.3. We derive an iron abundance of [Fe/H] = -3.7, making this the most metal-poor star as yet identified in an ultra-faint dSph. Our derived effective temperature and gravity are consistent with its identification as a red giant in Booetes I. Abundances for a further 15 elements have also been determined. Comparison of the relative abundances, [X/Fe], with those of the extremely metal-poor red giants of the Galactic halo shows that Boo-1137 is 'normal' with respect to C and N, the odd-Z elements Na and Al, the iron-peak elements, and the neutron-capture elements Sr and Ba, in comparison with the bulk of the Milky Way halo population having [Fe/H] ∼<-3.0. The α-elements Mg, Si, Ca, and Ti are all higher by Δ[X/Fe] ∼ 0.2 than the average halo values. Monte Carlo analysis indicates that Δ[α/Fe] values this large are expected with a probability ∼0.02. The elemental abundance pattern in Boo-1137 suggests inhomogeneous chemical evolution, consistent with the wide internal spread in iron abundances we previously reported. The similarity of most of the Boo-1137 relative abundances with respect to halo values, and the fact that the α-elements are all offset by a similar small amount from the halo averages, points to the same underlying galaxy-scale stellar initial mass function, but that Boo-1137 likely originated in a star-forming region where the abundances reflect either poor mixing of supernova (SN) ejecta, or poor sampling of the SN progenitor mass range, or both.

  10. VizieR Online Data Catalog: Very metal poor stars in MW halo (Mashonkina+, 2017)

    Science.gov (United States)

    Mashonkina, L.; Jablonka, P.; Sitnova, T.; Pakhomov, Yu; North, P.

    2017-10-01

    Tables 3 and 4 from the article are presented. They include the LTE and NLTE abundances from individual lines and average abundances of the investigated stars in the dSphs Sculptor (Scl), Ursa Minor (UMi), Fornax (Fnx), Sextans (Sex), Bootes I (Boo), UMa II, and Leo IV and the Milky Way (MW) halo. (3 data files).

  11. Classification of extremely metal-poor stars: absent region in A(C)-[Fe/H] plane and the role of dust cooling

    Science.gov (United States)

    Chiaki, Gen; Tominaga, Nozomu; Nozawa, Takaya

    2017-11-01

    Extremely metal-poor (EMP) stars are the living fossils with records of chemical enrichment history at the early epoch of galaxy formation. By the recent large observation campaigns, statistical samples of EMP stars have been obtained. This motivates us to reconsider their classification and formation conditions. From the observed lower limits of carbon and iron abundances of Acr(C) ∼ 6 and [Fe/H]cr ∼ -5 for C-enhanced EMP (CE-EMP) and C-normal EMP (CN-EMP) stars, we confirm that gas cooling by dust thermal emission is indispensable for the fragmentation of their parent clouds to form such low mass, i.e. long-lived stars, and that the dominant grain species are carbon and silicate, respectively. We constrain the grain radius r_i^cool of a species i and condensation efficiency fij of a key element j as r_C^cool / f_C,C = 10 {μ m} and r_Sil^cool / f_Sil,Mg = 0.1 {μ m} to reproduce Acr(C) and [Fe/H]cr, which give a universal condition 10[C/H] - 2.30 + 10[Fe/H] > 10-5.07 for the formation of every EMP star. Instead of the conventional boundary [C/Fe] = 0.7 between CE-EMP and CN-EMP stars, this condition suggests a physically meaningful boundary [C/Fe]b = 2.30 above and below which carbon and silicate grains are dominant coolants, respectively.

  12. DISCOVERY OF MIRA VARIABLE STARS IN THE METAL-POOR SEXTANS DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Tsuyoshi [Japan Spaceguard Association, 1716-3 Ookura, Bisei, Ibara, Okayama 714-1411 (Japan); Matsunaga, Noriyuki; Nakada, Yoshikazu [Kiso Observatory, Institute of Astronomy, School of Science, University of Tokyo, 10762-30 Mitake, Kiso-machi, Kiso-gun, Nagano 397-0101 (Japan); Hasegawa, Takashi, E-mail: sakamoto@spaceguard.or.jp [Gunma Astronomical Observatory, 6860-86 Nakayama, Takayama, Agatsuma, Gunma 377-0702 (Japan)

    2012-12-10

    We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal galaxy (dSph). We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the I{sub c} band show large-amplitude (3.7 and 0.9 mag) and long-period (326 {+-} 15 and 122 {+-} 5 days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras (75.3{sup +12.8}{sub -10.9} and 79.8{sup +11.5}{sub -9.9} kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph (90.0 {+-} 10.0 kpc). These are the first Miras found in a stellar system with a metallicity as low as [Fe/H] {approx} -1.9 than any other known system with Miras.

  13. Lithium in Very Metal-poor Dwarf Stars -- Problems for Standard Big Bang Nucleosynthesis?

    International Nuclear Information System (INIS)

    Lambert, David L.

    2004-01-01

    The standard model of primordial nucleosynthesis by the Big Bang as selected by the WMAP-based estimate of the baryon density (Ωbh2) predicts an abundance of 7Li that is a factor of three greater than the generally reported abundance for stars on the Spite plateau, and an abundance of 6Li that is about a thousand times less than is found for some stars on the plateau. This review discusses and examines these two discrepancies. They can likely be resolved without major surgery on the standard model of the Big Bang. In particular, stars on the Spite plateau may have depleted their surface lithium abundance over their long lifetime from the WMAP-based predicted abundances down to presently observed abundances, and synthesis of 6Li (and 7Li) via α + α fusion reactions may have occurred in the early Galaxy. Yet, there remain fascinating ways in which to remove the two discrepancies involving aspects of a new cosmology, particularly through the introduction of exotic particles

  14. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    Science.gov (United States)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  15. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  16. K2-111 b - a short period super-Earth transiting a metal poor, evolved old star

    Science.gov (United States)

    Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina M.; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki; Csizmadia, Sz.; Nowak, Grzegorz; Endl, Michael; Grziwa, Sascha; Korth, Judith; Pfaff, Jeremias; Bitsch, Bertram; Johansen, Anders; Mustill, Alexander J.; Davies, Melvyn B.; Deeg, Hans J.; Palle, Enric; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike; Hatzes, Artie P.; Kiilerich, Amanda; Kudo, Tomoyuki; MacQueen, Phillip; Narita, Norio; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Van Eylen, Vincent

    2017-07-01

    Context. From a light curve acquired through the K2 space mission, the star K2-111(EPIC 210894022) has been identified as possibly orbited by a transiting planet. Aims: Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. Methods: We analyse the light curve variations during the planetary transit using packages developed specifically for exoplanetary transits. Reconnaissance spectroscopy and radial velocity observations have been obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. Results: The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of K2-111 strongly suggest it to be a member of the thick disk population. The co-added high-resolution spectra show that that it is a metal poor ([Fe/H] = - 0.53 ± 0.05 dex) and α-rich somewhat evolved solar-like star of spectral type G3. We find Teff = 5730 ± 50 K, log g⋆ = 4.15 ± 0.1 cgs, and derive a radius of R⋆ = 1.3 ± 0.1 R⊙ and a mass of M⋆ = 0.88 ± 0.02 M⊙. The currently available radial velocity data confirms a super-Earth class planet with a mass of 8.6 ± 3.9 M⊕ and a radius of 1.9 ± 0.2 R⊕. A second more massive object with a period longer than about 120 days is indicated by a long-term radial velocity drift. Conclusions: The radial velocity detection together with the imaging confirms with a high level of significance that the transit signature is caused by a planet orbiting the star K2-111. This planet is also confirmed in the radial velocity data. A second more

  17. Evidence for a vanishing 6Li/7Li isotopic signature in the metal-poor halo star HD84937

    DEFF Research Database (Denmark)

    Lind, K.; Asplund, M.; Collet, Remo

    2012-01-01

    The claimed detections of 6Li in the atmospheres of some metal-poor halo stars have lead to speculative additions to the standard model of Big Bang nucleosynthesis and the early Universe, as the inferred abundances cannot be explained by Galactic cosmic ray production. A prominent example of a so...

  18. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  20. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [SETI Institute and Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States); Kurucz, Robert L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ayres, Thomas R., E-mail: peterson@ucolick.org [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  1. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS–LUMINOSITY RELATION

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Van Altena, William F.; Demarque, Pierre; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.; Teske, Johanna K.; Henry, Todd J.; Winters, Jennifer G.

    2015-01-01

    In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory

  2. Ultracool Subdwarfs: Metal-poor Stars and Brown Dwarfs Extending into the Late-type M, L and T Dwarf Regimes

    OpenAIRE

    Burgasser, Adam J.; Kirkpatrick, J. Davy; Lepine, Sebastien

    2004-01-01

    Recent discoveries from red optical proper motion and wide-field near-infrared surveys have uncovered a new population of ultracool subdwarfs -- metal-poor stars and brown dwarfs extending into the late-type M, L and possibly T spectral classes. These objects are among the first low-mass stars and brown dwarfs formed in the Galaxy, and are valuable tracers of metallicity effects in low-temperature atmospheres. Here we review the spectral, photometric, and kinematic properties of recent discov...

  3. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, G. C. [Cornell Center for Astrophysics and Planetary Science, Cornell Univ., Ithaca, NY 14853-6801 (United States); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); McDonald, I.; Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, Univ. of Manchester, Manchester M13 9PL (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Lagadec, E. [Observatoire de la Côte d’Azur, F-06300, Nice (France); Boyer, M. L. [CRESST and Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Kemper, F.; Srinivasan, S. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C. (China); Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Van Loon, J. Th. [Lennard Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Volk, K., E-mail: sloan@isc.astro.cornell.edu [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-07-20

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  4. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    International Nuclear Information System (INIS)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Srinivasan, S.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Van Loon, J. Th.; Volk, K.

    2016-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C 2 H 2 at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  5. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Science.gov (United States)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  6. A New View of the Dwarf Spheroidal Satellites of the Milky Way From VLT/FLAMES: Where are the Very Metal Poor Stars?

    Energy Technology Data Exchange (ETDEWEB)

    Helmi, Amina; Irwin, M.J.; Tolstoy, E.; Battaglia, G.; Hill, V.; Jablonka, P.; Venn, K.; Shetrone, M.; Letarte, B.; Arimoto, N.; Abel, T.; Francois, P.; Kaufer, A.; Primas, F.; Sadakane, K.; Szeifert, T.; /Kapteyn Astron. Inst., Groningen /Cambridge U., Inst. of Astron. /Meudon Observ. /LASTRO Observ. /Victoria U. /Texas U., McDonald Observ.

    2006-11-20

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems had been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.

  7. Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600

    Science.gov (United States)

    Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.

    2018-03-01

    Using VIMOS-IFU observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star-formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionised gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461 our results show that the ISM is fairly well mixed, at large scales, however we find an off-centre and low-metallicity region with 12 + log(O/H) ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.

  8. On the necessity of composition-dependent low-temperature opacity in models of metal-poor asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Thomas; Campbell, Simon; Lattanzio, John [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Gil-Pons, Pilar, E-mail: thomas.constantino@monash.edu [Department of Applied Physics, Polytechnic University of Catalonia, 08860 Barcelona (Spain)

    2014-03-20

    The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.

  9. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  10. Spectrophotometry of carbon stars

    International Nuclear Information System (INIS)

    Gow, C.E.

    1975-01-01

    Observations of over one hundred carbon stars have been made with the Indiana rapid spectral scanner in the red and, when possible, in the visual and blue regions of the spectrum. Five distinct subtypes of carbon stars (Barium, CH, R, N, and hydrogen deficient) are represented in the list of observed stars, although the emphasis was placed on the N stars when the observations were made. The rapid scanner was operated in the continuous sweep mode with the exit slit set at twenty angstroms, however, seeing fluctuations and guiding errors smear the spectrum to an effective resolution of approximately thirty angstroms. Nightly observations of Hayes standard stars yielded corrections for atmospheric extinction and instrumental response. The reduction scheme rests on two assumptions, that thin clouds are gray absorbers and the wavelength dependence of the sky transparency does not change during the course of the night. Several stars have been observed in the blue region of the spectrum with the Indiana SIT vidicon spectrometer at two angstroms resolution. It is possible to derive a color temperature for the yellow--red spectral region by fitting a black-body curve through two chosen continuum points. Photometric indices were calculated relative to the blackbody curve to measure the C 2 Swan band strength, the shape of the CN red (6,1) band to provide a measure of the 12 C/ 13 C isotope ratio, and in the hot carbon stars (Barium, CH, and R stars) the strength of an unidentified feature centered at 400 angstroms. An extensive abundance grid of model atmospheres was calculated using a modified version of the computer code ATLAS

  11. Carbon Stars Identified from LAMOST DR4 Using Machine Learning

    Science.gov (United States)

    Li, Yin-Bi; Luo, A.-Li; Du, Chang-De; Zuo, Fang; Wang, Meng-Xin; Zhao, Gang; Jiang, Bi-Wei; Zhang, Hua-Wei; Liu, Chao; Qin, Li; Wang, Rui; Du, Bing; Guo, Yan-Xin; Wang, Bo; Han, Zhan-Wen; Xiang, Mao-Sheng; Huang, Yang; Chen, Bing-Qiu; Chen, Jian-Jun; Kong, Xiao; Hou, Wen; Song, Yi-Han; Wang, You-Fen; Wu, Ke-Fei; Zhang, Jian-Nan; Zhang, Yong; Wang, Yue-Fei; Cao, Zi-Huang; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-02-01

    In this work, we present a catalog of 2651 carbon stars from the fourth Data Release (DR4) of the Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST). Using an efficient machine-learning algorithm, we find these stars from more than 7 million spectra. As a by-product, 17 carbon-enhanced metal-poor turnoff star candidates are also reported in this paper, and they are preliminarily identified by their atmospheric parameters. Except for 176 stars that could not be given spectral types, we classify the other 2475 carbon stars into five subtypes: 864 C-H, 226 C-R, 400 C-J, 266 C-N, and 719 barium stars based on a series of spectral features. Furthermore, we divide the C-J stars into three subtypes, C-J(H), C-J(R), and C-J(N), and about 90% of them are cool N-type stars as expected from previous literature. Besides spectroscopic classification, we also match these carbon stars to multiple broadband photometries. Using ultraviolet photometry data, we find that 25 carbon stars have FUV detections and that they are likely to be in binary systems with compact white dwarf companions.

  12. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  13. Chemical Abundance Analysis of Three α -poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-10

    We present chemical abundance measurements of three stars in the ultra-faintdwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark EnergySurvey. Using high resolution spectroscopic observations we measure themetallicity of the three stars as well as abundance ratios of several$\\alpha$-elements, iron-peak elements, and neutron-capture elements. Theabundance pattern is relatively consistent among all three stars, which have alow average metallicity of [Fe/H] $\\sim -2.6$ and are not $\\alpha$-enhanced([$\\alpha$/Fe] $\\sim 0.0$). This result is unexpected when compared to otherlow-metallicity stars in the Galactic halo and other ultra-faint dwarfs andhints at an entirely different mechanism for the enrichment of Hor I comparedto other satellites. We discuss possible scenarios that could lead to thisobserved nucleosynthetic signature including extended star formation, aPopulation III supernova, and a possible association with the Large MagellanicCloud.

  14. A new view of the Dwarf spheroidal satellites of the Milky Way from VLT FLAMES : Where are the very metal-poor stars?

    NARCIS (Netherlands)

    Helmi, Amina; Irwin, M. J.; Tolstoy, E.; Battaglia, G.; Hill, V.; Jablonka, P.; Venn, K.; Shetrone, M.; Letarte, B.; Arimoto, N.; Abel, T.; Francois, P.; Kaufer, A.; Primas, F.; Sadakane, K.; Szeifert, T.

    2006-01-01

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) program, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph's): Sculptor, Sextans, Fornax, and Carina. The low mean metal abundances and the presence of very old

  15. THE STAR FORMATION HISTORY OF THE VERY METAL-POOR BLUE COMPACT DWARF I Zw 18 FROM HST/ACS DATA

    Energy Technology Data Exchange (ETDEWEB)

    Annibali, F.; Cignoni, M.; Tosi, M.; Clementini, G.; Contreras Ramos, R.; Fiorentino, G. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Van der Marel, R. P.; Aloisi, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marconi, M.; Musella, I., E-mail: francesca.annibali@oabo.inaf.it [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli (Italy)

    2013-12-01

    We have derived the star formation history (SFH) of the blue compact dwarf galaxy I Zw 18 through comparison of deep HST/ACS data with synthetic color-magnitude diagrams (CMDs). A statistical analysis was implemented for the identification of the best-fit SFH and relative uncertainties. We confirm that I Zw 18 is not a truly young galaxy, having started forming stars earlier than ∼1 Gyr ago, and possibly at epochs as old as a Hubble time. In I Zw 18's main body we infer a lower limit of ≈2 × 10{sup 6} M {sub ☉} for the mass locked up in old stars. I Zw 18's main body has been forming stars very actively during the last ∼10 Myr, with an average star formation rate (SFR) as high as ≈1 M {sub ☉} yr{sup –1} (or ≈2 × 10{sup –5} M {sub ☉} yr{sup –1} pc{sup –2}). On the other hand, the secondary body was much less active at these epochs, in agreement with the absence of significant nebular emission. The high current SFR can explain the very blue colors and the high ionized gas content in I Zw 18, resembling primeval galaxies in the early universe. Detailed chemical evolution models are required to quantitatively check whether the SFH from the synthetic CMDs can explain the low measured element abundances, or if galactic winds with loss of metals are needed.

  16. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  17. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  18. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  19. Distances of Dwarf Carbon Stars

    Science.gov (United States)

    Harris, Hugh C.; Dahn, Conard C.; Subasavage, John P.; Munn, Jeffrey A.; Canzian, Blaise J.; Levine, Stephen E.; Monet, Alice B.; Pier, Jeffrey R.; Stone, Ronald C.; Tilleman, Trudy M.; Hartkopf, William I.

    2018-06-01

    Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1–3 au, consistent with the size of an AGB mass-transfer donor star.

  20. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    Science.gov (United States)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  1. Oxygen and iron abundances in two metal-poor dwarfs

    Science.gov (United States)

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  2. Sulphur in the metal poor globular cluster NGC 6397

    Science.gov (United States)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Prieto, Carlos Allende; Sneden, Christopher; Frebel, Anna; Shetrone, Matthew; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Beers, Timothy C.; Cowan, John J.

    2008-01-01

    We present the first detailed abundance analysis of the metal-poor giant HK-II 17435-00532. This star was observed as part of the University of Texas Long-Term Chemical Abundances of Stars in the Halo (CASH) Project. A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R∼15000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = -2.2) star has an unusually high lithium abundance (logε(Li) = +2.1), mild carbon ([C/Fe] = +0.7) and sodium ([Na/Fe] = +0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = +0.8) and r-process ([Eu/Fe] = +0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing mechanisms that connect the convective envelope with the outer regions of the H-burning shell. If so, HK-II 17435-00532 is the most metal-poor starin which this short-lived phase of Li enrichment has been observed. The r- and s-process material was not produced in this star but was either present in the gas from which HK-II 17435-00532 formed or was transferred to it from a more massive binary companion. Despite the current non-detection of radial velocity variations (over a time span of ∼180 days), it is possible that HK-II 17435-00532 is in a long-period binary system, similar to other stars with both r and s enrichment

  4. Carbon stars in lmc clusters revisited

    OpenAIRE

    Marigo, Paola; Girardi, Leo Alberto; Chiosi, Cesare

    1996-01-01

    Examining the available data for AGB stars in the Large Magellanic Cloud (LMC) clusters, we address the question about the mass interval of low- and intermediate-mass stars which eventually evolve into carbon stars (C stars) during the TP-AGB phase. We combine the data compiled by Frogel, Mould & Blanco (1990) - near infrared photometry and spectral classification for luminous AGB stars in clusters - with the ages for individual clusters derived from independent methods. The resulting distrib...

  5. The Chemistry of Extragalactic Carbon Stars

    Science.gov (United States)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  6. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    that the features used in estimating luminosities of ordinary giant stars are just those whose abundance ... This difference between the spectral energy distributions (SEDs) of CH stars and the. J stars, which belong to .... that the first group was binaries, as for the CH stars of the solar vicinity, while those of the second group ...

  7. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  8. Abundance analyses of thirty cool carbon stars

    International Nuclear Information System (INIS)

    Utsumi, Kazuhiko

    1985-01-01

    The results were previously obtained by use of the absolute gf-values and the cosmic abundance as a standard. These gf-values were found to contain large systematic errors, and as a result, the solar photospheric abundances were revised. Our previous results, therefore, must be revised by using new gf-values, and abundance analyses are extended for as many carbon stars as possible. In conclusion, in normal cool carbon stars heavy metals are overabundant by factors of 10 - 100 and rare-earth elements are overabundant by a factor of about 10, and in J-type cool carbon stars, C 12 /C 13 ratio is smaller, C 2 and CN bands and Li 6708 are stronger than in normal cool carbon stars, and the abundances of s-process elements with respect to Fe are nearly normal. (Mori, K.)

  9. The distances of nearby cool carbon stars

    International Nuclear Information System (INIS)

    Bergeat, J.; Sibille, F.; Lunel, M.

    1978-01-01

    Distance ratios are provided for 38 cool carbon stars on the basis of a previous study (Bergeat et al., 1976 a,b,c). The validation of this distance scale is obtained through an analysis of stellar velocities. A relationship is established between proper motions and the distance scale. Luminosities and radii are derived for cool carbon stars which permit a discussion of their evolutionary status. Finally, evaluations are given for the rate of mass ejection corresponding to large graphite grains. (WL) [de

  10. Discovery of a Metal-Poor Little Cub

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    The discovery of an extremely metal-poor star-forming galaxy in our local universe, dubbed Little Cub, is providing astronomers with front-row seats to the quenching of a near-pristine galaxy.SDSS image of NGC 3359 (left) and Little Cub (right), with overlying contours displaying the location of hydrogen gas. Little Cubs (also shown in the inset) stellar mass lies in the blue contour of the right-hand side. The outer white contours show the extended gas of the galaxy, likely dragged out as a tidal tail by Little Cubs interaction with NGC 3359. [Hsyu et al. 2017]The Hunt for Metal-Poor GalaxiesLow-metallicity, star-forming galaxies can show us the conditions under which the first stars formed. The galaxies with the lowest metallicities, however, also tend to be those with the lowest luminosities making them difficult to detect. Though we know that there should be many low-mass, low-luminosity, low-metallicity galaxies in the universe, weve detected very few of them nearby.In an effort to track down more of these metal-poor galaxies, a team of scientists led by Tiffany Hsyu (University of California Santa Cruz) searched through Sloan Digital Sky Survey data, looking for small galaxies with the correct photometric color to qualify a candidate blue compact dwarfs, a type of small, low-luminosity, star-forming galaxy that is often low-metallicity.Hsyu and collaborators identified more than 2,500 candidate blue compact dwarfs, and next set about obtaining follow-up spectroscopy for many of the candidates from the Keck and Lick Observatories. Though this project is still underway, around 100 new blue compact dwarfs have already been identified via the spectroscopy, including one of particular interest: the Little Cub.Little CubThis tiny star-forming galaxy gained its nickname from its location in the constellation Ursa Major. Little Cub is perhaps 50 or 60 million light-years away, and Hsyu and collaborators find it to be one of the lowest-metallicity star

  11. Rare White dwarf stars with carbon atmospheres

    OpenAIRE

    Dufour, P.; Liebert, James; Fontaine, G.; Behara, N.

    2007-01-01

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 msun and 8-10 msun, where msun is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for ~80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs...

  12. MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    VandenBerg, Don A.; Dotter, Aaron [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada); Bergbusch, Peter A. [Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Ferguson, Jason W. [Department of Physics, Wichita State University, Wichita, KS 67260-0032 (United States); Michaud, Georges; Richer, Jacques [Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Proffitt, Charles R., E-mail: vandenbe@uvic.ca, E-mail: Aaron.Dotter@gmail.com, E-mail: pbergbusch@accesscomm.ca, E-mail: proffitt@stsci.edu, E-mail: Jason.Ferguson@wichita.edu, E-mail: michaudg@astro.umontreal.ca, E-mail: jacques.richer@umontreal.ca [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-08-10

    Recent work has shown that most globular clusters have at least two chemically distinct components, as well as cluster-to-cluster differences in the mean [O/Fe], [Mg/Fe], and [Si/Fe] ratios at similar [Fe/H] values. In order to investigate the implications of variations in the abundances of these and other metals for H-R diagrams and predicted ages, grids of evolutionary sequences have been computed for scaled solar and enhanced {alpha}-element metal abundances, and for mixtures in which the assumed [m/Fe] value for each of the metals C, N, O, Ne, Na, Mg, Si, S, Ca, and Ti has been increased, in turn, by 0.4 dex at constant [Fe/H]. These tracks, together with isochrones for ages from Almost-Equal-To 5 to 14 Gyr, have been computed for -3.0 {<=} [Fe/H] {<=}-0.6, with helium abundances Y = 0.25, 0.29, and 0.33 at each [Fe/H] value, using upgraded versions of the Victoria stellar structure program and the Regina interpolation code, respectively. Turnoff luminosity versus age relations from isochrones are found to depend almost entirely on the importance of the CNO cycle, and thereby mainly on the abundance of oxygen. Since C, N, and O, as well as Ne and S, do not contribute significantly to the opacities at low temperatures and densities, variations in their abundances do not impact the predicted T{sub eff} scale of red giants. The latter is a strong function of the abundances of only Mg and Si (and Fe, possibly to a lesser extent) because they are so abundant and because they are strong sources of opacity at low temperatures. For these reasons, Mg and Si also have important effects on the temperatures of main-sequence stars. Due to their low abundances, Na, Ca, and Ti are of little consequence for stellar models. The effects of varying the adopted solar metals mixture and the helium abundance at a fixed [Fe/H] are also briefly discussed.

  13. White dwarf stars with carbon atmospheres.

    Science.gov (United States)

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  14. The origin of carbon revisited: winds of carbon-stars

    International Nuclear Information System (INIS)

    Mattsson, L

    2008-01-01

    Chemical evolution models, differing in the nucleosynthesis prescriptions (yields) for carbon, nitrogen and oxygen, have been computed for the Milky Way and Andromeda (NGC 224). All models fit the observed O/H gradients well and reproduce the main characteristics of the gas distributions, but they are also designed to do so. The N/O gradient for NGC 224 cannot be reproduced without ad hoc modifications to the yields and a similar result is obtained for the Milky Way N/O gradient, although in the latter case the slopes of the gradients obtained with unmodified yields are consistent with the observed gradient. For the C/O gradients (obtained from B stars) the results are inconclusive. The C/Fe, N/Fe, O/Fe versus Fe/H, as well as C/O versus O/H trends predicted by the models for the solar neighbourhood were compared with stellar abundances from the literature. For O/Fe versus Fe/H, all models fit the data, but for C/Fe, N/Fe versus Fe/H and C/O versus O/H, only modified sets of yields provide good fits. Since in the best-fit model, the yields were modified such that carbon should be primarily produced in low-mass stars, it is quite possible that in every environment where the peak of star formation happened a few Gyr back in time, the winds of carbon stars are responsible for most of the carbon enrichment, although models with a significant contribution from high-mass stars cannot be ruled out. In the solar neighbourhood, almost two-thirds of the carbon in the interstellar medium may come from carbon stars. Finally, the challenges met by stellar evolution and nucleosynthesis modelling due to this 'carbon star hypothesis' for the origin of carbon are discussed. It is suggested that a mass-loss prescription where the mass-loss rate depends on the carbon excess may act as a self-regulating mechanism for how much carbon a carbon star can deliver to the interstellar medium.

  15. The chromospheric structure of cool carbon stars

    International Nuclear Information System (INIS)

    Luttermoser, D.G.

    1988-01-01

    The temperature-density structure of the outer atmospheres of the N-type carbon stars are investigated through computer generated synthetic spectra from model atmospheres. The synthetic spectra are compared to spectra obtained with the International Ultraviolet Explorer (IUE) spacecraft and ground-based photometry. The nature of the severe violet flux falloff seen in cool carbon stars is investigated through photospheric synthetic flux calculations with the assumption of local thermodynamic equilibrium (LTE). A new candidate for the unknown opacity source that causes this flux falloff is proposed-a preponderance of neutral metal bound-bound and bound-free transitions from low energy states. The chromospheric structure of these stars is also investigated through a semi-empirical modeling technique. Such a technique involves attaching a chromospheric temperature rise to a radiative equilibrium model photosphere and generating a synthetic spectrum of chromospheric spectral lines using non-LTE radiative transfer. The chromospheric temperature-density structure is then altered until the synthetic spectrum matches the IUE observations of the singly ionized magnesium resonance lines and the intercombination lines of singly ionized carbon. Through the above mentioned non-LTE analysis of the atmospheric structure of these stars, the excitation and ionization equilibria are investigated. The excited levels of H I, C I, Na I, Mg I, and Ca I are over-populated with respect to LTE in the middle and upper photosphere of these stars, and all are over-ionized with respect to LTE. Photons from the chromosphere greatly influence the excitation and ionization of H I, C I, and Mg I

  16. NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

    Directory of Open Access Journals (Sweden)

    J.-W. Kim

    2007-03-01

    Full Text Available We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

  17. CO and HCN observations of carbon stars

    NARCIS (Netherlands)

    Baas, F; deJong, T; Loup, C

    We present CO and HCN observations of carbon stars. They consist of partly new detections in the (CO)-C-12 J = (1-0), (2-1) and HCN(1-0) lines obtained with the SEST and the IRAM telescope, and of (CO)-C-12 and (CO)-C-13 J = (1-0), (2-1) and (3-2) observations with IRAM and the JCMT of some of the

  18. Ruprecht 106 - A young metal-poor Galactic globular cluster

    International Nuclear Information System (INIS)

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G.

    1990-01-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs

  19. Halo carbon stars associated with dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Bergh, S.; Lafontaine, A.

    1984-11-01

    Star counts have been performed for rings centered on the carbon star at 1 69 degrees, b + 55 degrees at a distance of 60 kpc. The counts were performed in order to determine whether halo carbon stars might be situated in dwarf spheroidal galaxies which are too star-poor to have been recognized as galaxies. The counts were made on a IIIa-J plate baked in forming gas that was exposed for 40 minutes through a 2C filter with the Palomar 1.2-m Schmidt telescope. It is shown that the carbon star is not situated in a dwarf spheroidal galaxy brighter than M(V) 5.7.

  20. A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

    International Nuclear Information System (INIS)

    Sozzetti, Alessandro; Torres, Guillermo; Latham, David W.; Stefanik, Robert P.; Korzennik, Sylvain G.; Boss, Alan P.; Carney, Bruce W.; Laird, John B.

    2009-01-01

    We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K ∼> 100 m s -1 , or M p sin i ∼> 3.0 M J (P/yr) (1/3) , for orbital periods P ∼ p p ≅ 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

  1. New candidates for carbon stars with silicate features

    Science.gov (United States)

    Chan, S. J.; Kwok, Sun

    1991-01-01

    All stars in the General Catalog of Cool Galactic Carbon Stars with IRAS 12-micron fluxes greater than 10 Jy were searched for Low-Resolution-Spectrometer (LRS) spectra in the IRAS LRS data base. Out of the 532 spectra examined, 11 were found to show the 9.7-micron silicate emission feature. Four of these are identified for the first time. This group of carbon stars may represent transition objects between oxygen-rich and carbon-rich stars on the asymptotic giant branch.

  2. THE 3 MU-M SPECTRA OF CANDIDATE CARBON STARS

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T; GEBALLE, TR

    We have searched for the 3.1 mum absorption feature, a well-known characteristic of optical carbon stars, in a sample of sixteen candidate carbon stars, most of which have very red colors and some of which have no optical counterparts. The sample was selected on the basis of similarity of LRS

  3. Carbon and oxygen abundances of field RR Lyrae stars. I. Carbon abundances

    International Nuclear Information System (INIS)

    Butler, D.; Manduca, A.; Deming, D.; Bell, R.A.

    1982-01-01

    From an analysis of KPNO 4-m echelle plates and simultaneous uvbyβ photometry, we have determined carbon abundances and carbon-to-iron ratios for a large number of field RR Lyrae stars having [Fe/H]> or approx. =-1.2. It is found that these field RR Lyrae stars: stars which are known to be in an advanced evolutionary state: have carbon-to-iron ratios which are similar to those of unevolved stars

  4. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  5. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  6. THE KENNICUTT–SCHMIDT RELATION IN EXTREMELY METAL-POOR DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E.; Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Amorín, R. [National Institute for Astrophysics, Astronomical Observatory of Rome, Via Frascati 33, I-00040 Monteporzio Catone (Rome) (Italy); Elmegreen, B. G. [IBM, T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M., E-mail: mfilho@astro.up.pt [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2016-04-01

    The Kennicutt–Schmidt (KS) relation between the gas mass and star formation rate (SFR) describes the star formation regulation in disk galaxies. It is a function of gas metallicity, but the low-metallicity regime of the KS diagram is poorly sampled. We have analyzed data for a representative set of extremely metal-poor galaxies (XMPs), as well as auxiliary data, and compared these to empirical and theoretical predictions. The majority of the XMPs possess high specific SFRs, similar to high-redshift star-forming galaxies. On the KS plot, the XMP H i data occupy the same region as dwarfs and extend the relation for low surface brightness galaxies. Considering the H i gas alone, a considerable fraction of the XMPs already fall off the KS law. Significant quantities of “dark” H{sub 2} mass (i.e., not traced by CO) would imply that XMPs possess low star formation efficiencies (SFE{sub gas}). Low SFE{sub gas} in XMPs may be the result of the metal-poor nature of the H i gas. Alternatively, the H i reservoir may be largely inert, the star formation being dominated by cosmological accretion. Time lags between gas accretion and star formation may also reduce the apparent SFE{sub gas}, as may galaxy winds, which can expel most of the gas into the intergalactic medium. Hence, on global scales, XMPs could be H i-dominated, high-specific-SFR (≳10{sup −10} yr{sup −1}), low-SFE{sub gas} (≲10{sup −9} yr{sup −1}) systems, in which the total H i mass is likely not a good predictor of the total H{sub 2} mass, nor of the SFR.

  7. Physical conditions of the molecular gas in metal-poor galaxies

    Science.gov (United States)

    Hunt, L. K.; Weiß, A.; Henkel, C.; Combes, F.; García-Burillo, S.; Casasola, V.; Caselli, P.; Lundgren, A.; Maiolino, R.; Menten, K. M.; Testi, L.

    2017-10-01

    Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Z⊙ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1-0) and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 R31 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin ≲ 20 K), dense (H2 volume density nH2 ≳ 106 cm-3), with moderate CO column density (NCO 1016 cm-2) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low ( 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13CO enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [Ci](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO. Based on observations carried out with the IRAM 30 m and the Atacama Pathfinder Experiment (APEX). IRAM is supported by the INSU/CNRS (France), MPG (Germany), and IGN (Spain), and APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  8. IRAS colors of carbon stars - An optical spectroscopic test

    International Nuclear Information System (INIS)

    Cohen, M.; Wainscoat, R.J.; Walker, H.J.; Volk, K.; Schwartz, D.E.

    1989-01-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking vertical sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars. 16 refs

  9. Carbon stars with alpha-C:H emission

    Science.gov (United States)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  10. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Méndez-Abreu, J., E-mail: jos@iac.es [School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom)

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  11. Impact of Lyman alpha pressure on metal-poor dwarf galaxies

    Science.gov (United States)

    Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain

    2018-04-01

    Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 1010 M⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ˜5-10 near the mid-plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.

  12. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  13. The 14 mu m band of carbon stars

    NARCIS (Netherlands)

    Yamamura, [No Value; de Jong, T; Waters, LBFM; Cami, J; Justtanont, K; LeBertre, T; Lebre, A; Waelkens, C

    1999-01-01

    We have studied the absorption bands around 14 mum in the spectra of 11 carbon stars with mass-loss rates ranging from 10(-8) to 10(-4) M-circle dot yr(-1), based on data obtained with the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO). All stars clearly show a

  14. A High-precision Trigonometric Parallax to an Ancient Metal-poor Globular Cluster

    Science.gov (United States)

    Brown, T. M.; Casertano, S.; Strader, J.; Riess, A.; VandenBerg, D. A.; Soderblom, D. R.; Kalirai, J.; Salinas, R.

    2018-03-01

    Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population—one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 ± 0.013 ± 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 ± 0.07 ± 0.09 mag (2.39 ± 0.07 ± 0.10 kpc). The V luminosity at the stellar main-sequence turnoff implies an absolute cluster age of 13.4 ± 0.7 ± 1.2 Gyr. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13817, GO-14336, and GO-14773.

  15. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  16. The most metal-poor damped Lyα systems: insights into chemical evolution in the very metal-poor regime

    DEFF Research Database (Denmark)

    Cooke, Ryan; Pettini, Max; Steidel, Charles C.

    2011-01-01

    We present a high spectral resolution survey of the most metal-poor damped Lyα absorption systems (DLAs) aimed at probing the nature and nucleosynthesis of the earliest generations of stars. Our survey comprises 22 systems with iron abundance less than 1/100 solar; observations of seven...... agreement with the values measured in Galactic halo stars when the oxygen abundance is measured from the [O i] λ6300 line. We speculate that such good agreement in the observed abundance trends points to a universal origin for these metals. In view of this agreement, we construct the abundance pattern...... the near-solar values of C/O in DLAs at the lowest metallicities probed, and find that their distribution is in agreement with that seen in Galactic halo stars. We find that the O/Fe ratio in VMP DLAs is essentially constant, and shows very little dispersion, with a mean [〈O/Fe〉]=+0.39 ± 0.12, in good...

  17. DO HYDROGEN-DEFICIENT CARBON STARS HAVE WINDS?

    International Nuclear Information System (INIS)

    Geballe, T. R.; Rao, N. Kameswara; Clayton, Geoffrey C.

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 A line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18 O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is as expected.

  18. Chemical analysis of carbon stars in the local group - l.  The small magnetic cloud and the Sagittarius Dwarf Spheroidal galaxy

    DEFF Research Database (Denmark)

    de Laverny...[], P.; Abia, C.; Dominguez, I

    2006-01-01

    Stars: abundances, stars: carbon, nuclear reactions, nucleosynthesis, abundances, galaxies: Local Group Udgivelsesdato: Feb.......Stars: abundances, stars: carbon, nuclear reactions, nucleosynthesis, abundances, galaxies: Local Group Udgivelsesdato: Feb....

  19. CARBON STARS IN THE SATELLITES AND HALO OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Katherine; Guhathakurta, Puragra; Rockosi, Constance M.; Smith, Graeme H. [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Beaton, Rachael L. [The Observatories of the Carnegie Institutions for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gilbert, Karoline M.; Tollerud, Erik J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Howley, Kirsten, E-mail: khamren@ucolick.org [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color–color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  20. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  1. THE MOST METAL-POOR DAMPED Lyα SYSTEMS: AN INSIGHT INTO DWARF GALAXIES AT HIGH-REDSHIFT

    International Nuclear Information System (INIS)

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.

    2015-01-01

    In this paper we analyze the kinematics, chemistry, and physical properties of a sample of the most metal-poor damped Lyα systems (DLAs), to uncover their links to modern-day galaxies. We present evidence that the DLA population as a whole exhibits a ''knee'' in the relative abundances of the α-capture and Fe-peak elements when the metallicity is [Fe/H] ≅ –2.0, assuming that Zn traces the buildup of Fe-peak elements. In this respect, the chemical evolution of DLAs is clearly different from that experienced by Milky Way halo stars, but resembles that of dwarf spheroidal galaxies in the Local Group. We also find a close correspondence between the kinematics of Local Group dwarf galaxies and of high-redshift metal-poor DLAs, which further strengthens this connection. On the basis of such similarities, we propose that the most metal-poor DLAs provide us with a unique opportunity to directly study the dwarf galaxy population more than ten billion years in the past, at a time when many dwarf galaxies were forming the bulk of their stars. To this end, we have measured some of the key physical properties of the DLA gas, including their neutral gas mass, size, kinetic temperature, density, and turbulence. We find that metal-poor DLAs contain a warm neutral medium with T gas ≅ 9600 K predominantly held up by thermal pressure. Furthermore, all of the DLAs in our sample exhibit a subsonic turbulent Mach number, implying that the gas distribution is largely smooth. These results are among the first empirical descriptions of the environments where the first few generations of stars may have formed in the universe

  2. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  3. Fluorine Abundances in AGB Carbon Stars: New Results?

    Science.gov (United States)

    Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.

    2009-09-01

    A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.

  4. FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED

    International Nuclear Information System (INIS)

    Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.

    2009-01-01

    A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.

  5. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.B.

    1985-02-15

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in (Fe/H) of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to (Fe/H)roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities.

  6. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    International Nuclear Information System (INIS)

    Laird, J.B.

    1985-01-01

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in [Fe/H] of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to [Fe/H]roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities

  7. GRANULATION SIGNATURES IN THE SPECTRUM OF THE VERY METAL-POOR RED GIANT HD 122563

    International Nuclear Information System (INIS)

    RamIrez, I.; Collet, R.; Asplund, M.; Lambert, D. L.; Allende Prieto, C.

    2010-01-01

    A very high resolution (R = λ/Δλ = 200, 000), high signal-to-noise ratio (S/N ≅ 340) blue-green spectrum of the very metal-poor ([Fe/H] ≅ -2.6) red giant star HD 122563 has been obtained by us at McDonald Observatory. We measure the asymmetries and core wavelengths of a set of unblended Fe I lines covering a wide range of line strength. Line bisectors exhibit the characteristic C-shape signature of surface convection (granulation) and they span from about 100 m s -1 in the strongest Fe I features to 800 m s -1 in the weakest ones. Core wavelength shifts range from about -100 to -900 m s -1 , depending on line strength. In general, larger blueshifts are observed in weaker lines, but there is increasing scatter with increasing residual flux. Assuming local thermodynamic equilibrium (LTE), we synthesize the same set of spectral lines using a state-of-the-art three-dimensional (3D) hydrodynamic simulation for a stellar atmosphere of fundamental parameters similar to those of HD 122563. We find good agreement between model predictions and observations. This allows us to infer an absolute zero point for the line shifts and radial velocity. Moreover, it indicates that the structure and dynamics of the simulation are realistic, thus providing support to previous claims of large 3D-LTE corrections to elemental abundances and fundamental parameters of very metal-poor red giant stars obtained with standard 1D-LTE spectroscopic analyses, as suggested by the hydrodynamic model used here.

  8. Southern Milky Way carbon stars - New candidates, JHK photometry, and radial velocities

    International Nuclear Information System (INIS)

    Blanco, V.M.; Cook, K.H.; Schechter, P.L.; Aaronson, M.

    1989-01-01

    Data are presented for low-latitude southern Milky Way carbon stars. Coordinates and cross identifications are given for carbon stars (67 of which are confirmed new discoveries) in seven fields deemed to be unusually transparent. JHK photometry is presented for 520 stars. Velocities are presented for 393 stars. Improved coordinates are presented for selected stars in Westerlund's catalog. Averaged photometry and velocities are presented for a sample of 336 stars. 26 refs

  9. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Green, Paul [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, {approx}5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while {approx}7% are giants. The dCs likely span absolute magnitudes M{sub i} from {approx}6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C{sub 2} bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at {approx}40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  10. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Green, Paul

    2013-01-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ∼5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ∼7% are giants. The dCs likely span absolute magnitudes M i from ∼6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C 2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ∼40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  11. Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey

    Science.gov (United States)

    Green, Paul

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  12. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-01-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  13. Catching Carbon Stars in the Baade's Windows

    Science.gov (United States)

    Azzopardi, M.; Lequeux, J.; Rebeirot, E.

    1984-12-01

    Near-infrared objective prism surveys at low dispersion (1 700 to 3400 Amm-1) using Schmidt telescopes have been extensively used to detect M-, S- and C-type stars in the galactic equatorial zone, and in other strategically selected regions of the Milky Way. The detection techniques have been perfected by Nassau and his associates (Nassau and Velghe, 1964, Astrophysical Journal 139, 190) during their survey, at Cleveland, of the northern part of the Milky Way. These techniques are based on the identification of a number of typical molecular bands (TiO, CN, LaO, Va) that fall in the 6800-8800 Aspectral range, and which are used to classify M-, S- and C-type stars (Mavridis, 1967, Coll. on Late Type Stars, p. 420). Using the same method, partial or entire nearinfrared surveys of the southern Milky Way have been carried out by Blanco and Münch (1955, Bol. Obs. Tonantzintla y Tacubaya 12, 273) at Tonantzintla, Smith and Smith (1956, Astronomical Journal 61, 273) at Bloemfontein, and later by Westerlund (1971, Astronomy and Astrophysics Suppl. 4, 51 ; 1978, ibid. 32, 401) with the Uppsala Schmidt telescope at Mount Stromlo Observatory.

  14. New CO and HCN sources associated with IRAS carbon stars

    Science.gov (United States)

    NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.

    1987-01-01

    Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.

  15. Photometric and spectroscopic investigation of carbon stars. 1

    International Nuclear Information System (INIS)

    Vetesnik, M.

    1984-01-01

    The photoelectric light curves for carbon star UX Dra were derived in three colours and are discussed. Their shape shows a regular alternation of one deep and one shallow minima, which suggest the light curve of an eclipsing binary. The period variations of the star are analyzed on the basis of old photographic observations. The radial velocity curve of the star based on the measurements of the Swan molecular bands C 2 (1,0) and C 2 (0,1) exhibits a minimum preceding the primary light minima by about 0.15 P. The period P is 336 days, i.e. twice the mean period observed so far for the light variations of the star. The total absorption in the Swan molecular bands in dependence on the light phase of the star is investigated. The period of variability in molecular absorption equals the period of the radial velocity curve. Three possible mechanisms are considered to explain the light, radial velocity and molecular absorption chanqes of the star: radial pulsations, rotation of a heterogeneous single star, and occultations of two revolving components in a binary system. (author)

  16. Positions and proper motions of dwarf carbon stars

    Science.gov (United States)

    Deutsch, Eric W.

    1994-01-01

    Recent-epochs positions and proper motions of nine dwarf carbon star candidates are presented along with finding charts for each object. Measurements are obtained from digitized Palomar Observatory Sky Survey (POSS) and Quik V plate archives at the Space Telescope Science Institute, and from recent CCD images.

  17. The Shape of Extremely Metal-Poor Galaxies

    Science.gov (United States)

    Putko, Joseph; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Elmegreen, Bruce; Elmegreen, Debra

    2018-01-01

    This work is the first study on the 3D shape of starbursting extremely metal-poor galaxies (XMPs; a galaxy is said to be an XMP if its ionized gas-phase metallicity is less than 1/10 the solar value). A few hundred XMPs have been identified in the local universe primarily through mining the spectroscopic catalog of the Sloan Digital Sky Survey (SDSS), and follow-up observations have shown that metallicity drops significantly at the starburst (compared to the quiescent component of the galaxy). As the timescale for gas mixing is short, the metal-poor gas triggering the starburst must have been accreted recently. This is strong observational evidence for the cold flow accretion predicted by cosmological models of galaxy formation, and, in this respect, XMPs seem to be the best local analogs of the very first galaxies.The ellipsoidal shape of a class of galaxies can be inferred from the observed axial ratio (q) distribution (q = minor axis/major axis) of a large sample of randomly-oriented galaxies. Fitting ellipses to 200 XMPs using r-band SDSS images, we observe that the axial ratio distribution falls off at q ~0.8, and we determine that these falloffs are not due to biases in the data. The falloff at low axial ratio indicates that the XMPs are thick for their size, and the falloff at high axial ratio suggests the vast majority of XMPs are triaxial. We also observe that smaller XMPs are thicker in proportion to their size, and it is expected that for decreasing galaxy size the ratio of random to rotational motions increases, which correlates with increasing relative thickness. The XMPs are low-redshift dwarf galaxies dominated by dark matter, and our results are compatible with simulations that have shown dark matter halos to be triaxial, with triaxial stellar distributions for low-mass galaxies and with triaxiality increasing over time. We will offer precise constraints on the 3D shape of XMPs via Bayesian analysis of our observed axial ratio distribution.This work

  18. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra; Cunningham, Emily C.; Toloba, Elisa [Department of Astronomy and Astrophysics and University of California Observatories, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Munn, Jeffrey A., E-mail: kaplant@ucsc.edu [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States)

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.

  19. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    Science.gov (United States)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  20. Crystallization of carbon-oxygen mixtures in white dwarf stars.

    Science.gov (United States)

    Horowitz, C J; Schneider, A S; Berry, D K

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170  keV b.

  1. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    International Nuclear Information System (INIS)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  2. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    Science.gov (United States)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  3. Nuclear fusion and carbon flashes on neutron stars

    Science.gov (United States)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  4. Spectrophotometry of barium, CH, and R-type carbon stars

    International Nuclear Information System (INIS)

    Gow, C.E.

    1976-01-01

    Observations of 35 barium, CH, R, and hydrogen-deficient carbon stars, along with ten comparison K giants, have been made with the Indiana rapid spectrum scanner and the Indiana SIT vidicon spectrometer. The scanner observations cover a wavelength range of 3300--7000 A at 30-A resolution, while the SIT vidicon observations cover a wavelength range of 3800--5000 A at 2.5-A resolution. The data have been used to form molecular indices for a quantitative measurement of the strength of molecular features appearing in this region of the spectrum, and to compare the spectral energy distribution of carbon and oxygen stars over the entire observed wavelength range. We find the C 2 Swan index correlated strongly with both the strength of an unidentified feature centered near 4000 A, and the barium-to-hydrogen ratio. A detailed comparison of the spectral energy distribution of the barium stars with normal K giants shows that this unidentified absorption feature consists of two shallows depressions, one at 4000 A and another at 4325 A

  5. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1980-01-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (Δm=3/sup m/.60), the CTIO 4-m telescope (Δm=6/sup m/.83), and the ESO 3.6-m telescope (Δm=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V) 0 =0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood [Astrophys. J. 159, 605 (1970)] and the isochrones of Demarque and McClure [(1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199], we deduce the cluster's age to be 14.5( +- 4.0) x 10 9 yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution

  6. On the Dearth of Ultra-faint Extremely Metal-poor Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Filho, M. E.; Vecchia, C. Dalla [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Skillman, E. D., E-mail: jos@iac.es [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN (United States)

    2017-02-01

    Local extremely metal-poor galaxies (XMPs) are of particular astrophysical interest since they allow us to look into physical processes characteristic of the early universe, from the assembly of galaxy disks to the formation of stars in conditions of low metallicity. Given the luminosity–metallicity relationship, all galaxies fainter than M{sub r} ≃ −13 are expected to be XMPs. Therefore, XMPs should be common in galaxy surveys. However, they are not common, because several observational biases hamper their detection. This work compares the number of faint XMPs in the SDSS-DR7 spectroscopic survey with the expected number, given the known biases and the observed galaxy luminosity function (LF). The faint end of the LF is poorly constrained observationally, but it determines the expected number of XMPs. Surprisingly, the number of observed faint XMPs (∼10) is overpredicted by our calculation, unless the upturn in the faint end of the LF is not present in the model. The lack of an upturn can be naturally understood if most XMPs are central galaxies in their low-mass dark matter halos, which are highly depleted in baryons due to interaction with the cosmic ultraviolet background and to other physical processes. Our result also suggests that the upturn toward low luminosity of the observed galaxy LF is due to satellite galaxies.

  7. ALFALFA DISCOVERY OF THE MOST METAL-POOR GAS-RICH GALAXY KNOWN: AGC 198691

    Energy Technology Data Exchange (ETDEWEB)

    Hirschauer, Alec S.; Salzer, John J.; Rhode, Katherine L., E-mail: ash@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: krhode@indiana.edu [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); and others

    2016-05-10

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 10{sup 6}–10{sup 7.2} M {sub ⊙}, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enable the measurement of the temperature-sensitive [O iii] λ 4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.

  8. How does the carbon fusion reaction happen in stars?

    International Nuclear Information System (INIS)

    Tang, X.; Bucher, B.; Fang, X.; Notani, M.; Tan, W.P.; Mooney, P.; Li, Y.; Esbensen, H.; Jiang, C.L.; Rehm, K.E.; Lin, C.J; Brown, E.

    2012-01-01

    The 12 C + 12 C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects, such as massive stellar evolution, explosions on neutron stars, and supernovae from accreting white dwarf stars. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our studies: 1) an upper limit for the 12 C + 12 C fusion cross sections, 2) measurement of the 12 C + 12 C at deep sub-barrier energies, and 3) a new measurement of the 12 C( 12 C, n) reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented

  9. Luminous carbon star in Canis Major OB1

    International Nuclear Information System (INIS)

    Herbst, W.; Racine, R.; Richer, H.B.

    1977-01-01

    The fact that W CMa illuminates a reflection nebula is used to argue that it is spatially associated with the CMa OBl/CMa Rl complex. An apparent cluster around the carbon star is found to consist primarly of field stars, although a few probable late B-type members of CMa OBl are identified. On the basis of its likely association with CMa OBl, a luminosity for W CMa is derived. The values M/sub v/ = -4.7 and M/sub bol/ = - 7.2 are found. It seems likely that the progenitor of W CMa was an O-type member of CMa OBl with a mass greater than 20 M/sub solar/ and a main-sequence lifetime less than 3 x 10 6 years

  10. Nuclear fusion and carbon flashes on neutron stars

    International Nuclear Information System (INIS)

    Taam, R.E.; Picklum, R.E.

    1978-01-01

    The properties of nuclear burning shells in the envelopes of accreting neutron stars are investigated for neutron star masses of 0.56M/sub sun/ and 1.41M/sub sun/ and mass accretion rates M ranging from 10 -11 M/sub sun/ yr -1 to 2 x 10 -9 M/sub sun/ yr -1 . It is found that (1) the hydrogen-burning shells lie at high density, log rhoapprox.6, (2) the hydrogen and helium shells overlap for M> or approx. =3 x 10 -10 M/sub sun/ yr -1 , and (3) the carbon abundance at the base of the helium shell is a strong function of M, being greater than 0.95 (less than 0.3) for less than 10 -10 M/sub sun/ yr -1 (greater than 10 -9 M/sub sun/ yr -1 ). A stability analysis of the hydrogen and helium burning shells reveals them to be unstable whenever they overlap. Detailed calculations of the thermal evolution of the carbon shells show that carbon flashes occur for 10 -10 -1 ) -9 . Results for lower rates are inconclusive

  11. CRL 2688: A post-carbon-star object and probable planetary nebula progenitor

    International Nuclear Information System (INIS)

    Zuckerman, B.; Gilra, D.P.; Turner, B.E.; Morris, M.; Palmer, P.

    1976-01-01

    Millimeter-wavelength emission is observed toward CRL 2688 from H 12 CN, H 13 CN, CS, and HC 3 N. The similarity of this emission and that from the molecular envelope of the carbon star IRC+10216 establishes, beyond a reasonable doubt, that CRL 2688 is a post--carbon-star object. It appears probable that both of these objects will evolve into planetary nebulae. An evolutionary sequence leading from carbon stars to planetary nebulae is outlined

  12. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  13. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  14. Evidences of extragalactic origin and planet engulfment in the metal-poor twin pair HD 134439/HD 134440

    Science.gov (United States)

    Reggiani, Henrique; Meléndez, Jorge

    2018-04-01

    Recent studies of chemical abundances in metal-poor halo stars show the existence of different populations, which is important for studies of Galaxy formation and evolution. Here, we revisit the twin pair of chemically anomalous stars HD 134439 and HD 134440, using high resolution (R ˜ 72 000) and high S/N ratio (S/N ˜ 250) HDS/Subaru spectra. We compare them to the well-studied halo star HD 103095, using the line-by-line differential technique to estimate precise stellar parameters and LTE chemical abundances. We present the abundances of C, O, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Ba, La, Ce, Nd, and Sm. We compare our results to the precise abundance patterns of Nissen & Schuster (2010) and data from dwarf Spheroidal galaxies (dSphs). We show that the abundance pattern of these stars appears to be closely linked to that of dSphs with [α/Fe] knee below [Fe/H] < -1.5. We also find a systematic difference of 0.06 ± 0.01 dex between the abundances of these twin binary stars, which could be explained by the engulfment of a planet, thus suggesting that planet formation is possible at low metallicities ([Fe/H] = -1.4).

  15. The metal-poor knee in the Fornax dwarf spheroidal galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Benjamin; Koch, Andreas [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117, Heidelberg (Germany); Lanfranchi, Gustavo A. [Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP (Brazil); Boeche, Corrado [Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Walker, Matthew [McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Johnson, Christian I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Peñarrubia, Jorge [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Gilmore, Gerard, E-mail: ben.hendricks@lsw.uni-heidelberg.de [Institute of Astronomy, Cambridge University, Madingley Rd, Cambridge CB3 OHA (United Kingdom)

    2014-04-20

    We present α-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal (dSph) galaxy, obtained with Very Large Telescope/GIRAFFE (R ∼ 16, 000). Due to the large fraction of metal-poor (MP) stars in our sample, we are able to follow the α-element evolution from [Fe/H] ≈ –2.5 continuously to [Fe/H] ≈ –0.7. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, α-enhanced plateau down to subsolar [α/Fe] values, due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an α-enhanced plateau at early epochs, followed by a well-defined 'knee' caused by the onset of SNe Ia, and finally a second plateau with sub-solar [α/Fe] values. We find the position of this knee to be at [Fe/H] ≈ –1.9 and therefore significantly more MP than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph ∼10 times less luminous than Fornax. Using chemical evolution models, we find that the position of the knee and the subsequent plateau at the sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation (SF) events with a drastic variation in SF efficiency, while a uniform SF can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller buildings blocks, this may also have implications for the understanding of the formation process of dSphs in general.

  16. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    International Nuclear Information System (INIS)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzyński, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni

    2014-01-01

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T eff indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  17. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; Alfvin, Erik D. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Johnson, Megan; Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, NSW 1710, Epping (Australia); McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487-0324 (United States); Ford, H. Alyson [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Hirschauer, Alec S.; Janowiecki, Steven; Salzer, John J.; Van Sistine, Angela [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Dolphin, Andrew [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Elson, E. C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Marigo, Paola; Rosenfield, Philip [Dipartimento di Fisica e Astronomia Galileo Galilei, Universitá degli Studi di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Rosenberg, Jessica L. [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117 (United States); Warren, Steven R., E-mail: jcannon@macalester.edu [Department of Astronomy, University of Maryland, CSS Bldg., Rm. 1024, Stadium Drive, College Park, MD 20742-2421 (United States)

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.

  18. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    Energy Technology Data Exchange (ETDEWEB)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Urbaneja, Miguel A.; Przybilla, Norbert [Institute for Astro and Particle Physics, A-6020 Innsbruck University (Austria); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh (United Kingdom); Pietrzyński, Grzegorz; Gieren, Wolfgang [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Carraro, Giovanni, E-mail: mwhosek@ifa.hawaii.edu, E-mail: kud@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu, E-mail: Miguel.Urbaneja-Perez@uibk.ac.at, E-mail: Norbert.Przybilla@uibk.ac.at, E-mail: chris.evans@stfc.ac.uk, E-mail: pietrzyn@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: gcarraro@eso.org [European Southern Observatory, La Silla Paranal Observatory (Chile)

    2014-04-20

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  19. Widespread HCN maser emission in carbon-rich evolved stars

    Science.gov (United States)

    Menten, K. M.; Wyrowski, F.; Keller, D.; Kamiński, T.

    2018-05-01

    Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are known to show maser action. Historically, in one of them, the 177 GHz J = 2 → 1 line in the l-doubled bending mode has been found to show relatively strong maser action, with results only published for a single object, the archetypical high-mass loss asymptotic giant branch (AGB) star IRC+10216. Aims: To examine how common 177 GHz HCN maser emission is, we conducted an exploratory survey for this line toward a select sample of carbon-rich asymptotic giant branch stars that are observable from the southern hemisphere. Methods: We used the Atacama Pathfinder Experiment 12 meter submillimeter Telescope (APEX) equipped with a new receiver to simultaneously observe three J = 2 → 1 HCN rotational transitions, the (0, 11c, 0) and (0, 11d, 0) l-doublet components, and the line from the (0,0,0) ground state. Results: The (0, 11c, 0) maser line is detected toward 11 of 13 observed sources, which all show emission in the (0,0,0) transition. In most of the sources, the peak intensity of the (0, 11c, 0) line rivals that of the (0,0,0) line; in two sources, it is even stronger. Except for the object with the highest mass-loss rate, IRC+10216, the (0, 11c, 0) line covers a smaller velocity range than the (0,0,0) line. The (0, 11d, 0) line, which is detected in four of the sources, is much weaker than the other two lines and covers a velocity range that is smaller yet, again except for IRC+10216. Compared to its first detection in 1989, the profile of the (0, 11c, 0) line observed toward IRC+10216 looks very different, and we also appear to see variability in the (0,0,0) line profile (at a much lower degree). Our limited information on temporal variabilitydisfavors a strong correlation of maser and stellar continuum flux

  20. How does the carbon fusion reaction happen in stars?

    Directory of Open Access Journals (Sweden)

    X. Tang

    2013-09-01

    Full Text Available The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its compli-cated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of vari-ous stellar objects, such as explosions on the surface of neutron stars, white dwarf (type Ia supernovae, and massive stellar evolution. In this paper, I will review the challenges in the study of carbon burning. I will also report recent re-sults from our studies: 1 an upper limit for the 12C + 12C fusion cross sections, 2 measurement of the 12C + 12C at deep sub-barrier energies, 3 a new measurement of the 12C(12C, n reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

  1. 3D hydrodynamic simulations of carbon burning in massive stars

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.

    2017-10-01

    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  2. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  3. Neutron-capture Nucleosynthesis in the First Stars

    Science.gov (United States)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  4. Infrared spectroscopy of four carbon stars with 9.8 micron emission from silicate grains

    International Nuclear Information System (INIS)

    Lambert, D.L.; Smith, V.V.; Hinkle, K.H.

    1990-01-01

    High-resolution K band and low resolution 4 micron spectra were obtained for four carbon stars showing IR emission by silicate grains. The results of the analysis of the K band spectra show that they are J-type stars. These results, together with published spectral classifications, show that all known carbon stars with a silicate emission feature are J-type stars. The 4 micron spectra are very similar to the spectra of classical J-type carbon stars, and do not show SiO bands that might come from a M giant companion. A binary model with a luminous M giant companion as a source of the silicate grain is rejected. It is proposed that the silicate grains formed from gas ejecta at or before the He-core flash, and that the flash initiates severe mixing, leading to the star's conversion to a J-type carbon star. The ejecta are stored in an accretion disk around a low mass unevolved companion. If it can be shown that the hypothesized accretion disk is stable and may be heated adequately, this binary model appears to account for these peculiar carbon stars. 41 refs

  5. Star-like superalkali cations featuring planar pentacoordinate carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jin-Chang [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Tian, Wen-Juan; Zhao, Xue-Feng; Wu, Yan-Bo, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn; Li, Si-Dian, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Wang, Ying-Jin [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhai, Hua-Jin, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe{sub 5} can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) cations containing a CBe{sub 5} moiety. Polyhalogenation and polyalkalination on the CBe{sub 5} unit may help eliminate the high reactivity of bare CBe{sub 5} molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe{sub 5}X{sub 5}{sup +} range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12–2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76–11.07 eV for X = F, Cl, Br and 4.99–6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be–X–Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe{sub 5} motif is robust in the

  6. Oxygen abundance in metal-poor dwarfs, derived from the forbidden line

    Science.gov (United States)

    Spite, M.; Spite, F.

    1991-12-01

    The oxygen abundance is redetermined in a few metal-poor dwarfs, using the oxygen forbidden line at 630 nm rather than the oxygen triplet at 777 nm previously used by Abia and Rebolo (1989). The ratios form O/Fe are clearly lower than the previous ones and are in agreement with the ratios found in the metal-poor red giants, suggesting that no real difference exists between dwarfs and giants. Finally, it can be argued that, pending the acquisition of additional information, the oxygen abundances derived from the forbidden line are more reliable than the abundances found from the triplet.

  7. Rejuvenation of the Innocent Bystander: Testing Spin-Up in a Dwarf Carbon Star Sample

    Science.gov (United States)

    Green, Paul

    2014-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dC stars are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  8. Mass return to the interstellar medium from highly-evolved carbon stars

    International Nuclear Information System (INIS)

    Latter, W.B.; Thronson, H.A. Jr.; Hacking, P.; Bally, J.; Black, J.; Bell Telephone Labs. Inc., Holmdel, NJ)

    1986-01-01

    Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated

  9. Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae

    National Research Council Canada - National Science Library

    Ohnaka, K; Boboltz, D. A

    2007-01-01

    .... We present multi-epoch, high-angular resolution observations of 22 GHz H2O masers toward the silicate carbon star EU And to probe the spatio-kinematic distribution of oxygen-rich material. Methods...

  10. The identification of IRAS 15194-5115 with a bright extreme carbon star

    International Nuclear Information System (INIS)

    Meadows, P.J.

    1987-01-01

    The authors identify IRAS 15194-5115 with a previously unknown extreme carbon star which is the third brightest carbon star in the sky at 12 μm (1148 Jy). Results of optical and infrared photometry and spectroscopy are presented. The 3.03 μm absorption feature associated with C 2 H 2 and HCN is seen as well as SiC emission at 11.2 μm. A comparison with recent model calculations of other workers indicates that this star is very similar to IRC+10216 and that it lies at a distance of about 1.7 kpc. (author)

  11. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  12. Exploring the SDSS Data Set with Linked Scatter Plots. I. EMP, CEMP, and CV Stars

    Energy Technology Data Exchange (ETDEWEB)

    Carbon, Duane F.; Henze, Christopher; Nelson, Bron C., E-mail: Duane.F.Carbon@nasa.gov [NASA Ames Research Center, NASA Advanced Supercomputing Facility, Moffett Field, CA, 94035-1000 (United States)

    2017-02-01

    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He ii emission CV stars found by the LSP approach that have not yet been discussed in the literature.

  13. Research of low-carbon transition path of star hotels--A case study of Guilin

    Directory of Open Access Journals (Sweden)

    Tang Fengling

    2016-01-01

    Full Text Available A general trend of the world economic development is the low-carbon economic transition. With a wide influencing range and rapid development, the hotel industry has prominent problems in the energy con-sumption, resources occupancy and environmental unfriendliness, so it is imperative to develop low-carbon ho-tels. This paper proposes the low-carbon transition of the star hotels in Guilin in terms of constructing the energy conservation and innovative management mode, adopting new technologies and ways, developing low-carbon hotel products and guiding low-carbon consumption through analysis about the inevitability of establishing low-carbon hotels in Guilin, the running status of the existing star hotels and the situation of energy consumption, thus further promoting the development of low-carbon tourism in Guilin.

  14. A new carbon-symbiotic star in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Cowley, A.P.; Hartwick, F.D.A.

    1989-01-01

    A new carbon-symbiotic star, designated as CH-95, was discovered during a study of the kinematics of CH stars in the LMC. The spectrum of CH-95 is presented. Some of the strong emission lines found include H, He I, He II, forbidden O III, and the broad C III/N III blend at 4640 A, often seen in compact systems such as X-ray binaries. A comparison was made with other C-star symbiotics in the LMC, SMC, and Draco. 12 refs

  15. Rejuvenation of the Innocent Bystander: Testing Spin-Up in Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul

    2013-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dCs are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  16. Rejuvenation of the Innocent Bystander: Results from a Pilot X-ray Study of Dwarf Carbon Stars

    Science.gov (United States)

    Mazzoni, Fernando; Montez, Rodolfo; Green, Paul

    2018-01-01

    We present the results of a pilot study by the Chandra X-ray Observatory of X-ray emission from dwarf Carbon (dC) stars. Carbon stars were thought to be exclusively AGB stars but main sequence dwarfs showing carbon molecular bands appear to be the dominant variety. The existence of dC stars is surprising since dwarf stars cannot intrinsically produce carbon as an AGB star can. It is hypothesized that dC stars are polluted by an evolved companion star. Evidence of past pollution can appear in X-ray emission where increased coronal activity (“spin-up”) or mass accretion via a disk can be detected. Using the Chandra X-ray Observatory we detected X-ray photons in the vicinity of all the dC stars in our a pilot sample. For each detection we characterized the X-ray emission and compared to the emission expected from potential emission scenarios. Although the process that produces the X-ray emission from dC stars is presently unclear and our pilot sample is small, our results suggest that X-ray emission might be a universal characteristic of dC stars. Further examination of the X-ray emission plus future X-ray and multiwavelength observations will help us better understand the nature of these intriguing stars.

  17. The X-shooter Spectral Library and Carbon stars

    NARCIS (Netherlands)

    Gonneau, A.; Lançon, A.; Trager, S. C.; Chen, Y.; Peletier, R.; Aringer, B.; Nowotny, W.; Cambrésy, L.; Martins, F.; Nuss, E.; Palacios, A.

    2013-01-01

    Until recently, most empirical stellar spectral libraries were limited to a certain wavelength range or combined data from different stars, taken by different instruments of which some have low spectral resolution, limiting for instance our ability to analyze galaxies jointly in the ultraviolet, the

  18. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  19. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets.

    Science.gov (United States)

    Ziurys, L M; Halfen, D T; Geppert, W; Aikawa, Y

    2016-12-01

    The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H 2 CO, HCN, HNC, c-C 3 H 2 , and even C 60 + . These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.

  20. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Nakajima, Tadashi; Sorahana, Satoko

    2016-01-01

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H 2 O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  1. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tadashi [Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Sorahana, Satoko, E-mail: tadashi.nakajima@nao.ac.jp, E-mail: sorahana@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-10-20

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H{sub 2}O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  2. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    Science.gov (United States)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  3. Carbon, nitrogen, and oxygen abundances in main-sequence stars. II. 20 F and G stars

    International Nuclear Information System (INIS)

    Clegg, R.E.S.; Lambert, D.L.; Tomkin, J.

    1981-01-01

    High-resolution Reticon spectra of red and near-infrared C I, N I, and O I lines have been analyzed to determine C, N, and O abundances in a sample of 20 F and G main-sequence stars. Their iron abundances, which have been determined from analysis of additional Reticon spectra of red Fe I lines, cover the range -0.9< or =[Fe/H]< or =+0.4. Sulfur abundances have also been obtained

  4. Fundamental problems and basic tests of stellar evolution theory - the case of carbon stars

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helim in shells above an electron-degenerate carbon-oxygen (CO) core. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 O reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes. There is qualitative accord between the properties of carbon stars in the Magellanic Clouds and properties of model stars, but considerably more theoretical work is required before a quantitative match is achieved. (Auth.)

  5. Hubble space telescope near-ultraviolet spectroscopy of the bright cemp-no star BD+44°493

    International Nuclear Information System (INIS)

    Placco, Vinicius M.; Beers, Timothy C.; Smith, Verne V.; Roederer, Ian U.; Cowan, John J.; Frebel, Anna; Filler, Dan; Ivans, Inese I.; Lawler, James E.; Schatz, Hendrik; Sneden, Christopher; Sobeck, Jennifer S.; Aoki, Wako

    2014-01-01

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44°493 a ninth magnitude subgiant with [Fe/H] =–3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44°493, log ε (B) <–0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, log ε (Be) <–2.3, and lead, log ε (Pb) <–0.23 ([Pb/Fe] <+1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44°493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.

  6. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  7. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    Science.gov (United States)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  8. EXAMINATION OF THE MASS-DEPENDENT Li DEPLETION HYPOTHESIS BY THE Li ABUNDANCES OF THE VERY METAL-POOR DOUBLE-LINED SPECTROSCOPIC BINARY G166-45

    International Nuclear Information System (INIS)

    Aoki, Wako; Ito, Hiroko; Tajitsu, Akito

    2012-01-01

    The Li abundances of the two components of the very metal-poor ([Fe/H] –2.5) double-lined spectroscopic binary G166-45 (BD+26°2606) are determined separately based on high-resolution spectra obtained with the Subaru Telescope High Dispersion Spectrograph and its image slicer. From the photometric colors and the mass ratio, the effective temperatures of the primary and secondary components are estimated to be 6350 ± 100 K and 5830 ± 170 K, respectively. The Li abundance of the primary (A(Li) = 2.23) agrees well with the Spite plateau value, while that of the secondary is slightly lower (A(Li) = 2.11). Such a discrepancy of the Li abundances between the two components is previously found in the extremely metal-poor, double-lined spectroscopic binary CS 22876-032; however, the discrepancy in G166-45 is much smaller. The results agree with the trends found for Li abundance as a function of effective temperature (and of stellar mass) of main-sequence stars with –3.0 eff ∼ 5800 K is not particularly large in this metallicity range. The significant Li depletion found in CS 22876-032B is a phenomenon only found in the lowest metallicity range ([Fe/H] < –3).

  9. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  10. Chemistry of Carbon Rich Star IRAS 15194–5115 A. Ali

    Indian Academy of Sciences (India)

    We have constructed two gas-phase models to study the chem- ... 1. Introduction. IRAS 15194–5115 is the third brightest carbon star at 12 µm and the brightest one ..... The main formation routes of CN, HCN and HNC in the inner part are.

  11. Discovery of water vapour in the carbon star V Cygni from observations with Herschel/HIFI

    NARCIS (Netherlands)

    Neufeld, D. A.; Gonzalez-Alfonso, E.; Melnick, G.; Pulecka, M.; Schmidt, M.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Menten, K.; Olofsson, H.; Planesas, P.; Schoier, F. L.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; McCoey, C.; Shipman, R.; Jellema, W.; de Graauw, T.; Ossenkopf, V.; Schieder, R.; Philipp, S.

    2010-01-01

    We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1(11)-0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receiver. The observed spectral line profile is nearly

  12. WASP-36b: A NEW TRANSITING PLANET AROUND A METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON A SINGLE TRANSIT LIGHT CURVE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. M. S.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Collier Cameron, A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom); Gillon, M.; Jehin, E. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17 Bat. B5C, Liege 1 (Belgium); Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Geneve, Universite de Geneve, 51 Chemin des Maillettes, 1290 Sauverny (Switzerland); West, R. G. [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Barros, S. C. C.; Pollacco, D. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University, University Road, Belfast, BT7 1NN (United Kingdom); Street, R. A., E-mail: amss@astro.keele.ac.uk [Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States)

    2012-04-15

    We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54 day orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (T{sub eff} = 5959 {+-} 134 K), with [Fe/H] =-0.26 {+-} 0.10. We determine the planet to have mass and radius, respectively, 2.30 {+-} 0.07 and 1.28 {+-} 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allow us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analyzing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.

  13. Nitrogen-to-carbon ratio in 70 dwarf halo stars

    Energy Technology Data Exchange (ETDEWEB)

    Carbon, D.F.; Kraft, R.P.; Barbuy, B.; Friel, E.; Suntzeff, N.B.

    1986-02-01

    A survey of subdwarf selected from the lists by Sandage (1964, 1969, 1982) was carried out with the 3 m telescope at Lick Observatory, using the image dissector scanner IDS as detector. The blue tube was used in order to obtain the NH band at lambda 3360 A and the CH band at lambda 4300 A. By comparing synthetic spectra with the observations, nitrogen and carbon abundances were derived for the sample of subdwarfs. They found that the nitrogen-to-carbon ratio is constant in time (or with metallicity) showing that nitrogen was produced as a primary element at early times. 16 references, 1 figure.

  14. Variable circumstellar obscuration of the carbon star R Fornacis

    International Nuclear Information System (INIS)

    Feast, M.W.; Whitelock, P.A.; Catchpole, R.M.; Roberts, G.; Overbeek, M.D.

    1984-01-01

    In 1983 the carbon Mira-type variable R For became unusually faint in the visible and infrared. This is interpreted as a change in circumstellar obscuration. For absorption by graphite spheres the required particle radius is 0.15 μm. (author)

  15. OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. I. EVIDENCE FOR MULTIPLE PROGENITORS OF CEMP-NO STARS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jinmi; Beers, Timothy C.; Placco, Vinicius M.; Rasmussen, Kaitlin C.; Carollo, Daniela [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); He, Siyu [Department of Physics, Xi’an Jiaotong University, Shaanxi, 710049 (China); Hansen, Terese T. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Roederer, Ian U. [Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements (JINA-CEE) (United States); Zeanah, Jeff, E-mail: jinmi.yoon@nd.edu [Z Solutions, Inc., 9430 Huntcliff Trace, Atlanta, GA 30350 (United States)

    2016-12-10

    We investigate anew the distribution of absolute carbon abundance, A (C) = log ϵ (C), for carbon-enhanced metal-poor (CEMP) stars in the halo of the Milky Way, based on high-resolution spectroscopic data for a total sample of 305 CEMP stars. The sample includes 147 CEMP- s (and CEMP- r / s ) stars, 127 CEMP-no stars, and 31 CEMP stars that are unclassified, based on the currently employed [Ba/Fe] criterion. We confirm previous claims that the distribution of A (C) for CEMP stars is (at least) bimodal, with newly determined peaks centered on A (C) = 7.96 (the high-C region) and A (C) = 6.28 (the low-C region). A very high fraction of CEMP- s (and CEMP- r / s ) stars belongs to the high-C region, while the great majority of CEMP-no stars resides in the low-C region. However, there exists complexity in the morphology of the A (C)-[Fe/H] space for the CEMP-no stars, a first indication that more than one class of first-generation stellar progenitors may be required to account for their observed abundances. The two groups of CEMP-no stars we identify exhibit clearly different locations in the A (Na)- A (C) and A (Mg)- A (C) spaces, also suggesting multiple progenitors. The clear distinction in A (C) between the CEMP- s (and CEMP- r / s ) stars and the CEMP-no stars appears to be as successful, and likely more astrophysically fundamental, for the separation of these sub-classes as the previously recommended criterion based on [Ba/Fe] (and [Ba/Eu]) abundance ratios. This result opens the window for its application to present and future large-scale low- and medium-resolution spectroscopic surveys.

  16. The Binary Dwarf Carbon Star SDSS J125017.90+252427.6

    Science.gov (United States)

    Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.

    2018-03-01

    Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.

  17. Thermal instability of helium-burning shell in stars evolving toward carbon-detonation supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D; Nomoto, K [Tokyo Univ. (Japan). Coll. of General Education

    1975-07-01

    Artificially suppressing the occurrence of thermal pulses, evolution in the phase of a growing carbon-oxygen core was computed through the ignition of carbon burning. From this computation we chose two models with the core masses of 1.074 and 1.393 Msub(solar mass). Starting from these models, we followed by numerical computation the occurrence of thermal pulses in the helium-burning shell. We have found the following. More than 4000 thermal pulses take place through the evolutionary phase. The peak energy generation rate is 10/sup 7/Lsub(solar) at most, a rate too small to induce any major dynamical effect. After each pulse the convective envelope penetrates into the helium zone, and the products of helium burning, which contain carbon and s-process elements, are mixed into the convective envelope, which thereby develops composition characteristics of carbon stars.

  18. Estimating dust production rate of carbon-rich stars in the Small Magellanic Cloud

    Science.gov (United States)

    Nanni, A.; Marigo, P.; Groenewegen, M. A. T.; Aringer, B.; Pastorelli, G.; Rubele, S.; Girardi, L.; Bressan, A.; Bladh, S.

    We compute a grid of spectra describing dusty Circumstellar Envelopes of Thermally Pulsing Asymptotic Giant Branch carbon-rich stars by employing a physically grounded description for dust growth. The optical constants for carbon dust have been selected in order to reproduce simultaneously the most important color-color diagrams in the Near and Mid Infrared bands. We fit the Spectral Energy Distribution of ≈2000 carbon-rich in the Small Magellanic Cloud and we compute their total dust production rate. We compare our results with the ones in the literature. Different choices of the dust-to-gas ratio and outflow expansion velocity adopted in different works, yield, in some cases, a total dust budget about three times lower than the one derived from our scheme, with the same optical data set for carbon dust.

  19. Inflow of atomic gas fuelling star formation

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, Jeppe

    2016-01-01

    Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation in these ga......Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation...... in these galaxies may be fuelled by recent inflow of metal-poor atomic gas. While this process is debated, it can happen in low-metallicity gas near the onset of star formation because gas cooling (necessary for star formation) is faster than the Hi-to-H2 conversion....

  20. Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I

    Science.gov (United States)

    Feltzing, S.; Eriksson, K.; Kleyna, J.; Wilkinson, M. I.

    2009-12-01

    Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods: We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results: We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be -2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at -2.9 dex, and one is more metal-rich at, -1.9 dex. Additionally, we find that one of the stars, Boo-127, shows an atypically high [Mg/Ca] ratio, indicative of stochastic enrichment processes within the dSph galaxy. Similar results have previously only been found in the Hercules and Draco dSph galaxies and appear, so far, to be unique to this type of galaxy. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  1. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  2. Carbon stars near the open clusters at the galactic lattitudes 4deg,5

    International Nuclear Information System (INIS)

    Alksnis, A.; Alksne, Z.; Platajs, I.

    1977-01-01

    By visual inspection of spectral photographs of two bands along the Milky Way of a general area more than 1000 sq. degrees 302 carbon stars have been identified, including 142 stars discovered at the Radioastrophysical observatory of the Academy of Sciences of the Latvian SSR and about 50 scattered clusters. Nine of the carbon stars occur less than three radii from seven scattered stars clusters

  3. SYSTEMATIC SEARCH FOR EXTREMELY METAL-POOR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Luis, A. B.; Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C., E-mail: abml@iac.es, E-mail: jos@iac.es, E-mail: cmt@iac.es, E-mail: jalfonso@iac.es [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2011-12-10

    We carry out a systematic search for extremely metal-poor (XMP) galaxies in the spectroscopic sample of Sloan Digital Sky Survey (SDSS) data release 7 (DR7). The XMP candidates are found by classifying all the galaxies according to the form of their spectra in a region 80 A wide around H{alpha}. Due to the data size, the method requires an automatic classification algorithm. We use k-means. Our systematic search renders 32 galaxies having negligible [N II] lines, as expected in XMP galaxy spectra. Twenty-one of them have been previously identified as XMP galaxies in the literature-the remaining 11 are new. This was established after a thorough bibliographic search that yielded only some 130 galaxies known to have an oxygen metallicity 10 times smaller than the Sun (explicitly, with 12 + log (O/H) {<=} 7.65). XMP galaxies are rare; they represent 0.01% of the galaxies with emission lines in SDSS/DR7. Although the final metallicity estimate of all candidates remains pending, strong-line empirical calibrations indicate a metallicity about one-tenth solar, with the oxygen metallicity of the 21 known targets being 12 + log (O/H) {approx_equal} 7.61 {+-} 0.19. Since the SDSS catalog is limited in apparent magnitude, we have been able to estimate the volume number density of XMP galaxies in the local universe, which turns out to be (1.32 {+-} 0.23) Multiplication-Sign 10{sup -4} Mpc{sup -3}. The XMP galaxies constitute 0.1% of the galaxies in the local volume, or {approx}0.2% considering only emission-line galaxies. All but four of our candidates are blue compact dwarf galaxies, and 24 of them have either cometary shape or are formed by chained knots.

  4. The neutrino ignition of thermonuclear carbon burning, neutron star formation and supernova explosions

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Khlopov, M.Yu.; Imshennik, V.S.; Ivanova, L.N.; Chechetkin, V.M.

    1977-01-01

    Taking account of neutrino energy transport in the self-consistent hydrodynamical calculation of explosions of deo-enerated carbon stallar cores at 3x10 9 9 g/cm 3 central density leads to the core disruption with kinetic energy up to 10 51 erg (that corresponds to parameters of Supernovae of 2 type) . This mechanism leads to the formation of neutron stars with the mass M approximately 1.4M Sun at rhosub(c) > 8.4 x 10 9 g/cm 3 and to successive blow off the envelope being typical for Supernovae of 1 type

  5. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  6. Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions*†

    Science.gov (United States)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.; NuGrid Collaboration

    2017-08-01

    Atmospheric parameters and chemical compositions for 10 stars with metallicities in the region of -2.2 LTE) and non-LTE (NLTE) approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors between 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core-collapse supernovae are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.

  7. Analysis of the lambda 5696 Carbon III line in the O stars

    International Nuclear Information System (INIS)

    Cardona-Nunez, O.

    1978-01-01

    Lines of twice-ionized Carbon, specifically lambda 5695 and lambda 8500, in the O stars were analyzed on the basis of a detailed solution of the coupled statistical-equilibrium and transfer equations for a multilevel, multiline, multi-ion ensemble. It is significant that these plane-parallel non-LTE statistical equilibrium calculations reproduce successfully the observed emission a lambda 5696 and absorption at lambda 8500. The 3p 1 P 0 -3d 1 D transition is found to come into emission at the observed temperatures for both main-sequence and low-gravity objects. The equivalent widths of the emission and absorption lines agree very well with those measured for O stars. In these stars the basic physical mechanism responsible for this phenomenon is the overpopulation of 3d by means of direct recombination and cascades from upper states (with dielectronic recombination taking part in the earliest types) with subsequent cascade to 3p. The 3p state is drained by the two-electron transitions coupling 3p to the 2p 2 ( 1 S, 1 D) states; emission in the 3s 1 S-3p 1 P 0 line is thus prevented. The mechanism of formation of C III is different from that of N III because of dielectronic recombination is not necessary in the former case. The fact that the C III emission line can be produced in a static nonextended atmosphere in radiative equilibrium indicates that the presence of emission lines is not sufficient evidence for the existence of extended atmospheres

  8. Observational evidence for composite grains in an AGB outflow: MgS in the extreme carbon star LL Pegasi

    NARCIS (Netherlands)

    Lombaert, R.; de Vries, B.L.; de Koter, A.; Decin, L.; Min, M.; Smolders, K.; Mutschke, H.; Waters, L.B.F.M.

    2012-01-01

    The broad 30 μm feature in carbon stars is commonly attributed to MgS dust particles. However, reproducing the 30 μm feature with homogeneous MgS grains would require much more sulfur relative to the solar abundance. Direct gas-phase condensation of MgS occurs at a low efficiency. Precipitation of

  9. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    Science.gov (United States)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] 3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] 3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  10. J0815+4729: A Chemically Primitive Dwarf Star in the Galactic Halo Observed with Gran Telescopio Canarias

    Science.gov (United States)

    Aguado, David S.; González Hernández, Jonay I.; Allende Prieto, Carlos; Rebolo, Rafael

    2018-01-01

    We report the discovery of the carbon-rich hyper metal-poor unevolved star J0815+4729. This dwarf star was selected from SDSS/BOSS as a metal-poor candidate and follow-up spectroscopic observations at medium resolution were obtained with the Intermediate dispersion Spectrograph and Imaging System (ISIS) at William Herschel Telescope and the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy (OSIRIS) at Gran Telescopio de Canarias. We use the FERRE code to derive the main stellar parameters, {T}{eff}=6215+/- 82 K, and {log}g=4.7+/- 0.5, an upper limit to the metallicity of [Fe/H] ≤ ‑5.8, and a carbon abundance of [C/Fe] ≥ +5.0, while [α /{Fe}]=0.4 is assumed. The metallicity upper limit is based on the Ca II K line, which at the resolving power of the OSIRIS spectrograph cannot be resolved from possible interstellar calcium. The star could be the most iron-poor unevolved star known and also be among the ones with the largest overabundances of carbon. High-resolution spectroscopy of J0815+4729 will certainly help to derive other important elemental abundances, possibly providing new fundamental constraints on the early stages of the universe, the formation of the first stars, and the properties of the first supernovae. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Program ID GTC90-15B and the Discretionary Director Time GTC03-16ADDT and also based on observations made with the William Herschel Telescope (WHT).

  11. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    Science.gov (United States)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  12. NITROGEN ISOTOPES IN ASYMPTOTIC GIANT BRANCH CARBON STARS AND PRESOLAR SiC GRAINS: A CHALLENGE FOR STELLAR NUCLEOSYNTHESIS

    International Nuclear Information System (INIS)

    Hedrosa, R. P.; Abia, C.; Domínguez, I.; Palmerini, S.; Busso, M.; Cristallo, S.; Straniero, O.; Plez, B.

    2013-01-01

    Isotopic ratios of C, N, Si, and trace heavy elements in presolar SiC grains from meteorites provide crucial constraints to nucleosynthesis. A long-debated issue is the origin of the so-called A+B grains, as of yet no stellar progenitor thus far has been clearly identified on observational grounds. We report the first spectroscopic measurements of 14 N/ 15 N ratios in Galactic carbon stars of different spectral types and show that J- and some SC-type stars might produce A+B grains, even for 15 N enrichments previously attributed to novae. We also show that most mainstream grains are compatible with the composition of N-type stars, but in some cases might also descend from SC stars. From a theoretical point of view, no astrophysical scenario can explain the C and N isotopic ratios of SC-, J-, and N-type carbon stars together, as well as those of many grains produced by them. This poses urgent questions to stellar physics.

  13. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan; Trenti, Michele; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-01-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars

  14. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Roberts, Luke F. [TAPIR, California Institute of Technology, Pasadena, California 91125 (United States); Lee, William H.; Saladino-Rosas, Martha I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico)

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  15. Elemental abundances of the field horizontal-branch stars HD 86986, 130095 and 202759

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1990-01-01

    Fine analyses of limited spectral regions of the field horizontal-branch A Stars HD86986, 130095 and 202759 confirm that these stars have abundances typical of Population II stars. HD 86986 has a metallicity of about 1/200 solar while HD 130095 and 202759 are even more metal poor. (author)

  16. QUENCHED COLD ACCRETION OF A LARGE-SCALE METAL-POOR FILAMENT DUE TO VIRIAL SHOCKING IN THE HALO OF A MASSIVE z = 0.7 GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, Christopher W.; Holtzman, Jon; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [Department of Astronomy, New Mexico State University, MSC 4500, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Spitler, Lee R. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Steidel, Charles C. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States)

    2012-11-20

    Using HST/COS/STIS and HIRES/Keck high-resolution spectra, we have studied a remarkable H I absorbing complex at z = 0.672 toward the quasar Q1317+277. The H I absorption has a velocity spread of {Delta}v = 1600 km s{sup -1}, comprises 21 Voigt profile components, and resides at an impact parameter of D = 58 kpc from a bright, high-mass (log M {sub vir}/M {sub Sun} {approx_equal} 13.7) elliptical galaxy that is deduced to have a 6 Gyr old, solar metallicity stellar population. Ionization models suggest the majority of the structure is cold gas surrounding a shock-heated cloud that is kinematically adjacent to a multi-phase group of clouds with detected C III, C IV, and O VI absorption, suggestive of a conductive interface near the shock. The deduced metallicities are consistent with the moderate in situ enrichment relative to the levels observed in the z {approx} 3 Ly{alpha} forest. We interpret the H I complex as a metal-poor filamentary structure being shock heated as it accretes into the halo of the galaxy. The data support the scenario of an early formation period (z > 4) in which the galaxy was presumably fed by cold-mode gas accretion that was later quenched via virial shocking by the hot halo such that, by intermediate redshift, the cold filamentary accreting gas is continuing to be disrupted by shock heating. Thus, continued filamentary accretion is being mixed into the hot halo, indicating that the star formation of the galaxy will likely remain quenched. To date, the galaxy and the H I absorption complex provide some of the most compelling observational data supporting the theoretical picture in which accretion is virial shocked in the hot coronal halos of high-mass galaxies.

  17. VizieR Online Data Catalog: Cool carbon stars in the halo and Fornax dSph (Mauron+, 2014)

    Science.gov (United States)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-03-01

    Spectroscopy of halo candidate C stars was achieved at ESO (La Silla) on 17-18 October 2009 at the NTT telescope equipped with the EFOSC2 instrument in the spectral range 5200-9300Å. We were able to secure the spectra of 25 candidates with exposure times of generally a few minutes, and eventually, eight were found to be C-rich. We also observed three carbon stars in the Carina dwarf galaxy because they were erroneously believed to be in the halo, and for comparison APM 2225-1401, a C star from the list of Totten and Irwin (1998MNRAS.294....1T). We found spectra that covered the Hα region for four halo stars in the Byurakan Astrophysical Observatory archive. They were obtained with the BAO 2.6m telescope and the ByuFOSC2 spectrograph. These spectra were taken on 28 March 1999, 12 June 2002, 11 May 2000, and 11 June 2000 with a resolution ~8Å. Concerning Fornax, spectra of C stars were found in the ESO Archive (program 70.D-0203, P.I. Marc Azzopardi). They were obtained on 5 November 2002 with the ESO 3.6m telescope and the EFOSC instrument with a resolution ~23Å and a spectral coverage from 4000Å to 7950Å. Sixteen C stars were monitored with the ground-based 25cm diameter TAROT telescopes. This monitoring took place irregularly at ESO La Silla and Observatoire de la Cote d'Azur (France) beginning in 2010. Thanks to the recently released Catalina and LINEAR databases, we were able to examine the light curves of 143 halo C stars and found 66 new periodic (Mira or SRa-type) variables among them. (5 data files).

  18. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  19. EXPANDING THE CATALOG: CONSIDERING THE IMPORTANCE OF CARBON, MAGNESIUM, AND NEON IN THE EVOLUTION OF STARS AND HABITABLE ZONES

    Energy Technology Data Exchange (ETDEWEB)

    Truitt, Amanda; Young, Patrick A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2017-01-20

    Building on previous work, we have expanded our catalog of evolutionary models for stars with variable composition; here we present models for stars of mass 0.5–1.2 M {sub ⊙}, at scaled metallicities of 0.1–1.5 Z {sub ⊙}, and specific C/Fe, Mg/Fe, and Ne/Fe values of 0.58–1.72 C/Fe{sub ⊙}, 0.54–1.84 Mg/Fe{sub ⊙}, and 0.5–2.0 Ne/Fe{sub ⊙}, respectively. We include a spread in abundance values for carbon and magnesium based on observations of their variability in nearby stars; we choose an arbitrary spread in neon abundance values commensurate with the range seen in other low Z elements due to the difficult nature of obtaining precise measurements of neon abundances in stars. As indicated by the results of Truitt et al., it is essential that we understand how differences in individual elemental abundances, and not just the total scaled metallicity, can measurably impact a star’s evolutionary lifetime and other physical characteristics. In that work, we found that oxygen abundances significantly impacted the stellar evolution; carbon, magnesium, and neon are potentially important elements to individually consider due to their relatively high (but also variable) abundances in stars. We present 528 new stellar main-sequence models, and we calculate the time-dependent evolution of the associated habitable zone boundaries for each based on mass, temperature, and luminosity. We also reintroduce the 2 Gyr “Continuously Habitable Zone” (CHZ{sub 2}) as a useful tool to help gauge the habitability potential for a given planetary system.

  20. CARBON CHEMISTRY IN THE ENVELOPE OF VY CANIS MAJORIS: IMPLICATIONS FOR OXYGEN-RICH EVOLVED STARS

    International Nuclear Information System (INIS)

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.

    2009-01-01

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO + have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO + in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H 2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ∼ 0.4-5 x 10 -4 , with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ∼ 0.9-9 x 10 -6 ), with no obvious dependence on the mass-loss rate. In VY CMa, HCO + is present in all three outflows with f ∼ 0.4-1.6 x 10 -8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ∼ 150-190, while [CN]/[HCN] ∼ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ∼ 2-6 x 10 -7 . These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent

  1. Carbon Chemistry in the Envelope of VY Canis Majoris: Implications for Oxygen-Rich Evolved Stars

    Science.gov (United States)

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.

    2009-04-01

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO+ have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO+ in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ~ 0.4-5 × 10-4, with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ~ 0.9-9 × 10-6), with no obvious dependence on the mass-loss rate. In VY CMa, HCO+ is present in all three outflows with f ~ 0.4-1.6 × 10-8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ~ 150-190, while [CN]/[HCN] ~ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ~ 2-6 × 10-7. These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent velocities.

  2. Carbon Abundances In The Light Of 3D Model Stellar Atmospheres

    DEFF Research Database (Denmark)

    Collet, Remo

    Classical spectroscopic analyses of late-type stars generally rely on the interpretation of observations with the use of stationary, one-dimensional (1D), hydrostatic model stellar atmospheres. In recent years, however, there has been significant development in the field of three-dimensional (3D......) hydrodynamic modelling of stellar atmospheres and stellar spectra. In this contribution, I describe quantitatively the impact of realistic, time-dependent, 3D hydrodynamic model atmospheres on the spectroscopic determination of carbon abundances from CH molecular lines for stars with a wide range of stellar...... parameters and compositions. I show that the differences with respect to classical analyses based on 1D models can be significant in very metal-poor stars and of the order of -0.5 to -1 dex in terms of logarithmic abundances of these important elements. I also examine the dependence of differential 3D-1D...

  3. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  4. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Stephan, Thomas; Boehnke, Patrick; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J., E-mail: nliu@carnegiescience.edu [Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States)

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  5. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  6. Linear series of stellar models. Pt. 4. Helium-carbon stars of 3.5Msub(o) and 1Msub(o)

    International Nuclear Information System (INIS)

    Kozlowski, M.; Paczynski, B.; Popova, K.

    1973-01-01

    One linear series of models for a star of 3.5Msub(o) and two linear series of models for a star of 1Msub(o) are constructed. Models consist of helium rich envelopes (Y = 0.97, Z = 0.03) and pure carbon cores, and they have a rectangular helium profile, Y(Msub(r)). The linear series for a star of 3.5Msub(o) begins on the normal branch of the helium main sequence and terminates on the normal branch of the carbon main sequence. This series has eight turning points at which the core mass attains a local extremum. One of the two linear series for a star of 1Msub(o) begins on the normal branch of the helium main sequence, terminates on the high density branch of the helium main sequence, and has one turning point. The second linear series for a star of 1Msub(o) begins on the normal branch of the carbon main sequence, terminates on the high density branch of the carbon main sequence, and has three turning points. Two such linear series may have a common bifurcation point for a star of about 1.26Msub(o). (author)

  7. THE GALACTIC R CORONAE BOREALIS STARS: THE C2 SWAN BANDS, THE CARBON PROBLEM, AND THE 12C/13C RATIO

    International Nuclear Information System (INIS)

    Hema, B. P.; Pandey, Gajendra; Lambert, David L.

    2012-01-01

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C 2 Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C 2 bands are used to derive the 12 C abundance, and the (1, 0) 12 C 13 C band to determine the 12 C/ 13 C ratios. The carbon abundance derived from the C 2 Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C 2 Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C 2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C 2 carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the 12 C/ 13 C ratios are discussed in light of the double degenerate and the final flash scenarios.

  8. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-01-01

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 μm). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute ∼20% of the global SMC flux (extended + point-source) at 3.6 μm, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  9. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  10. Extremely Low-Metallicity Stars in the Classical Dwarf Galaxies

    NARCIS (Netherlands)

    Starkenburg, E.; DART Team, [Unknown; Aoki, W; Ishigaki, M; Suda, T; Tsujimoto, T; Arimoto, N

    After careful re-analysis of Ca II triplet calibration at low-metallicity, the classical satellites around the Milky Way are found not to be devoided of extremely low-metallicity stars and their (extremely) metal-poor tails are predicted to be much more in agreement with the Milky Way halo. A first

  11. Spectral Evidence for an Inner Carbon-rich Circumstellar Belt in the Young HD 36546 A-star System

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Sitko, M. L. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 and Space Science Institute, Boulder, CO 80301 (United States); Russell, R. W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Marengo, M. [Department of Physics and Astronomy, 12 Physics Hall, Iowa State University, Ames, IA 50010 (United States); Currie, T. [Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Hilo, HI 96720 (United States); Melis, C. [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093-0424 (United States); Mittal, T. [Department of Earth and Planetary Sciences, McCone Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); Song, I., E-mail: carey.lisse@jhuapl.edu, E-mail: ron.vervack@jhuapl.edu, E-mail: sitkoml@ucmail.uc.edu, E-mail: ray.russell@aero.org, E-mail: mmarengo@iastate.edu, E-mail: currie@naoj.org, E-mail: cmelis@ucsd.edu, E-mail: tmittal2@berkeley.edu, E-mail: song@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451 (United States)

    2017-05-10

    Using the NASA/IRTF SpeX and BASS spectrometers we have obtained 0.7–13 μ m observations of the newly imaged 3–10 Myr old HD 36546 disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an L {sub *} ∼ 20 L {sub ⊙}, solar abundance A1.5V star with little to no extinction, and excess emission from circumstellar dust detectable beyond 4.5 μ m. Non-detections of CO emission lines and accretion signatures point to the gas-poor circumstellar environment of a very old transition disk. Combining the SpeX + BASS spectra with archival WISE / AKARI / IRAS / Herschel photometry, we find an outer cold dust belt at ∼135 K and 20–40 au from the primary, likely coincident with the disk imaged by Subaru, and a new second inner belt with a temperature ∼570 K and an unusual, broad SED maximum in the 6–9 μ m region, tracing dust at 1.1–2.2 au. An SED maximum at 6–9 μ m has been reported in just two other A-star systems, HD 131488 and HD 121191, both of ∼10 Myr age. From Spitzer , we have also identified the ∼12 Myr old A7V HD 148657 system as having similar 5–35 μ m excess spectral features. The Spitzer data allows us to rule out water emission and rule in carbonaceous materials—organics, carbonates, SiC—as the source of the 6–9 μ m excess. Assuming a common origin for the four young A-star systems’ disks, we suggest they are experiencing an early era of carbon-rich planetesimal processing.

  12. Protective Effect of the Persian Gulf brittle star Ophiocoma Erinaceus extract on carbon tetrachloride (CCl4 induced liver damage in adult male Wistar rats

    Directory of Open Access Journals (Sweden)

    Aida Soheili

    2015-12-01

    Full Text Available Background and Aim:  Brittle star possess  bioactive compounds which confer the wound healing capacity and regenerative potency of damaged  arms and organisms to this creature. The aim of the current study was to assess the   protective  effect  of  the  star extract on liver damages induced by carbon tetrachloride in adult male Wistar rats. Materials and Methods: In this experimental study, 32 adult male rats were randomly divided into 4 equal groups: control, Sham exposed, experimental 1 (treated with %25 extract and experimental 2 (treated with %50 extract of star Ophiocoma Erinaceus. The control group received no treatment. The sham exposed groups received carbon tetrachloride .(50% in olive oil .0.5 ml/kg for 7 days. The experimental groups firstly received carbon tetrachloride, then received %25, %50 brittle star extract as intragastric for 7 days. Finally, the animals were sacrificed, and their bodies and livers were weighed. Then, the livers sections were prepared and were examined by means of light microscope. Finally, the obtained  quantitative data was analyzed using SPSS (V; 20, Mini Tab software, ANOVA, and Tukey. at the significant level of P<0.001. Results: Carbon tetrachloride significantly decreased the rats’ body weight, but it increased their livers weight (P<0.001. Histopathological evaluations showed .extensive liver damage. On the other hand, treatment with brittle star extract .ncreased liver weight, reduced. body weight and significantly altered other induced changes by carbon tetrachloride on liver structure such as hepatocytes number, Kupffer cells, and arteritis, which indicated  the improvement of damaged liver tissue (P<0.001. Conclusion: It was found that brittle star extract can exert protective effects on  liver damages induced by carbon tetrachloride on male Wistar rat.

  13. URCA neutrino-loss rates under conditions found in the carbon-oxygen cores of intermediate-mass stars

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1978-01-01

    In the hope of uncovering additional Urca-active nuclei that might appear during carbon burning in the electron-degenerate carbon-oxygen core of an asymptotic-branch star and avert a thermonuclear runaway, a nuclear-reaction matrix connecting 244 nuclear species has been constructed. Analytic expressions for rates of all relevant β-transitions are also presented and used. It is shown that in matter which is composed initially of elements in a solar-system distribution and which has undergone first complete hydrogen burning and then complete helium burning, neutrino-loss rates due to 11 Urca pairs either rival or exceed neutrino losses predicted by the charge- and neutral-current theories of weak interactions. Most remarkably, no new Urca pairs of any consequence appear as a result of several thousand reactions that are allowed to occur during carbon burning. The dominant Urca-loss rates are still due to the pairs 21 F- 21 Ne, 23 Ne- 23 Na, 25 Na- 25 Mg, and 25 Ne- 25 Na, as in matter containing a solar-system distribution of elements that has undergone prior processing during hydrogen- and helium-burning phases. The abundances of these Urca-active pairs are enhanced by one to three orders of magnitude as a consequence of carbon-burning reactions

  14. Synthetic Stromgren photometry for F dwarf stars

    Science.gov (United States)

    Bell, R. A.

    1988-01-01

    Recent synthetic spectrum and color calculations for cool dwarf star models are tested by comparison with observation. The accuracy of the computed dependence of the thermal colors B-V and b-y on effective temperature is examined, and H-beta indices are presented and compared with observed values. The accuracy of the predictions of the Stromgren uvby system metal-abundance indicator m1 and luminosity indicator c1 are tested. A new calibration of the c1, b-y diagram in terms of absolute magnitudes is given, making use of recent calculations of stellar isochrones. Observations of very metal-poor subdwarfs are used to study the accuracy of the isochrones. The c1, b-y diagram of the subdwarfs is compared with that of the turnoff-region stars in the very metal-poor globular cluster NGC 6397.

  15. Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets Around Main Sequence M Stars

    Science.gov (United States)

    Nava-Sedeno, J. Manik; Ortiz-Cervantes, Adrian; Segura, Antigona; Domagal-Goldman, Shawn D.

    2016-01-01

    Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the stars chromospheric activity lasts, and the sink of CO and O2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal- Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawaet al. (2002) and Schlesinger and Miller (1983a, 1983b). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin.

  16. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  17. Herschel/HIFI Observations of IRC+10216: Water Vapor in the Inner Envelope of a Carbon-rich Asymptotic Giant Branch Star

    NARCIS (Netherlands)

    Neufeld, D. A.; González-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; de Koter, A.; Schöier, F. L.; Cernicharo, J.

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch

  18. Stark Broadening of Carbon and Oxygen Lines in Hot DQ White Dwarf Stars: Recent Results and Applications

    Directory of Open Access Journals (Sweden)

    Dufour P.

    2011-12-01

    Full Text Available White dwarf stars are traditionally found to have surface compositions made primarily of hydrogen or helium. However, a new family has recently been uncovered, the so-called hot DQ white dwarfs, which have surface compositions dominated by carbon and oxygen with little or no trace of hydrogen and helium (Dufour et al. 2007, 2008, 2010. Deriving precise atmospheric parameters for these objects (such as the effective temperature and the surface gravity requires detailed modeling of spectral line profiles. Stark broadening parameters are of crucial importance in that context. We present preliminary results from our new generation of model atmospheres including the latest Stark broadening calculations for C II lines and discuss the implications as well as future work that remains to be done.

  19. Multi-Epoch Hubble Space Telescope Observations of IZw18 : Characterization of Variable Stars at Ultra-Low Metallicities

    NARCIS (Netherlands)

    Fiorentino, G.; Ramos, R. Contreras; Clementini, G.; Marconi, M.; Musella, I.; Aloisi, A.; Annibali, F.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2010-01-01

    Variable stars have been identified for the first time in the very metal-poor blue compact dwarf galaxy IZw18, using deep multi-band (F606W, F814W) time-series photometry obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope. We detected 34 candidate variable stars in the

  20. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  1. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  2. Pair decay width of the Hoyle state and carbon production in stars

    International Nuclear Information System (INIS)

    Neumann-Cosel, Peter von; Chernykh, Maksym; Richter, Achim; Feldmeier, Hans; Neff, Thomas

    2011-01-01

    The pair decay width of the first excited 0 + state in 12 C (the Hoyle state) is deduced from a novel analysis of the world data on inelastic electron scattering covering a wide momentum transfer range, thereby resolving previous discrepancies. The extracted value Γ π = (62.3 ± 2.0) μeV is independently confirmed by new data at low momentum transfers measured at the S-DALINAC and reduces the uncertainty of the literature values by more than a factor of three. A precise knowledge of Γ π is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process.

  3. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  4. The First 3D Simulations of Carbon Burning in a Massive Star

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2017-11-01

    We present the first detailed three-dimensional hydrodynamic implicit large eddy simulations of turbulent convection for carbon burning. The simulations start with an initial radial profile mapped from a carbon burning shell within a 15 M⊙ stellar evolution model. We considered 4 resolutions from 1283 to 10243 zones. These simulations confirm that convective boundary mixing (CBM) occurs via turbulent entrainment as in the case of oxygen burning. The expansion of the boundary into the surrounding stable region and the entrainment rate are smaller at the bottom boundary because it is stiffer than the upper boundary. The results of this and similar studies call for improved CBM prescriptions in 1D stellar evolution models.

  5. An Unusual Transient in the Extremely Metal-Poor Galaxy SDSS J094332.35+332657.6 (Leoncino Dwarf)

    Science.gov (United States)

    Filho, Mercedes E.; Sánchez Almeida, J.

    2018-05-01

    We have serendipitously discovered that Leoncino Dwarf, an ultra-faint, low-metallicity record-holder dwarf galaxy, may have hosted a transient source, and possibly exhibited a change in morphology, a shift in the center of brightness, and peak variability of the main (host) source in images taken approximately 40 yr apart; it is highly likely that these phenomena are related. Scenarios involving a Solar System object, a stellar cluster, dust enshrouding, and accretion variability have been considered, and discarded, as the origin of the transient. Although a combination of time-varying strong and weak lensing effects, induced by an intermediate mass black hole (104 - 5 × 105 M⊙) moving within the Milky Way halo (0.1 - 4 kpc), can conceivably explain all of the observed variable galaxy properties, it is statistically highly unlikely according to current theoretical predictions, and, therefore, also discarded. A cataclysmic event such as a supernova/hypernova could have occurred, as long as the event was observed towards the later/late-stage descent of the light curve, but this scenario fails to explain the absence of a post-explosion source and/or host HII region in recent optical images. An episode related to the giant eruption of a luminous blue variable star, a stellar merger or a nova, observed at, or near, peak magnitude may explain the transient source and possibly the change in morphology/center of brightness, but can not justify the main source peak variability, unless stellar variability is evoked.

  6. K2-155: A Bright Metal-poor M Dwarf with Three Transiting Super-Earths

    Science.gov (United States)

    Hirano, Teruyuki; Dai, Fei; Livingston, John H.; Fujii, Yuka; Cochran, William D.; Endl, Michael; Gandolfi, Davide; Redfield, Seth; Winn, Joshua N.; Guenther, Eike W.; Prieto-Arranz, Jorge; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Cauley, P. Wilson; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Fukui, Akihiko; Grziwa, Sascha; Hatzes, Artie P.; Korth, Judith; Narita, Norio; Nespral, David; Niraula, Prajwal; Nowak, Grzegorz; Pätzold, Martin; Palle, Enric; Persson, Carina M.; Rauer, Heike; Ribas, Ignasi; Smith, Alexis M. S.; Van Eylen, Vincent

    2018-03-01

    We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf (V = 12.81 mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candidates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are {1.55}-0.17+0.20 {R}\\oplus and 6.34365 ± 0.00028 days for the inner planet; {1.95}-0.22+0.27 {R}\\oplus and 13.85402 ± 0.00088 days for the middle planet; and {1.64}-0.17+0.18 {R}\\oplus and 40.6835 ± 0.0031 days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation 1.67 ± 0.38 times that of the Earth. The planet’s radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of three-dimensional global climate simulations, assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than ∼1.5 times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, as K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.

  7. Probing the LHS Catalog. I. New Nearby Stars and the Coolest Subdwarf

    OpenAIRE

    Gizis, John E.; Reid, I. Neill

    1997-01-01

    We present moderate resolution spectroscopy of 112 cool dwarf stars to supplement the observations we have already presented in the Palomar/MSU Nearby-Star Spectroscopic Survey. The sample consists of 72 suspected nearby stars added to the The Preliminary Third Catalog of Nearby Stars since 1991 as well as 40 faint red stars selected from the LHS catalog. LHS 1826 is more metal-poor and cooler than the coolest previously known extreme subdwarf, LHS 1742a. LHS 2195 is a very late M dwarf of ty...

  8. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK, 73019 (United States)

    2017-04-10

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  9. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  10. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-01-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  11. ON THE CARBON-TO-OXYGEN RATIO MEASUREMENT IN NEARBY SUN-LIKE STARS: IMPLICATIONS FOR PLANET FORMATION AND THE DETERMINATION OF STELLAR ABUNDANCES

    International Nuclear Information System (INIS)

    Fortney, Jonathan J.

    2012-01-01

    Recent high-resolution spectroscopic analysis of nearby FGK stars suggests that a high C/O ratio of greater than 0.8, or even 1.0, is relatively common. Two published catalogs find C/O > 0.8 in 25%-30% of systems, and C/O > 1.0 in ∼6%-10%. It has been suggested that in protoplanetary disks with C/O > 0.8 that the condensation pathways to refractory solids will differ from what occurred in our solar system, where C/O = 0.55. The carbon-rich disks are calculated to make carbon-dominated rocky planets, rather than oxygen-dominated ones. Here we suggest that the derived stellar C/O ratios are overestimated. One constraint on the frequency of high C/O is the relative paucity of carbon dwarf stars (10 –3 -10 –5 ) found in large samples of low-mass stars. We suggest reasons for this overestimation, including a high C/O ratio for the solar atmosphere model used for differential abundance analysis, the treatment of a Ni blend that affects the O abundance, and limitations of one-dimensional LTE stellar atmosphere models. Furthermore, from the estimated errors on the measured stellar C/O ratios, we find that the significance of the high C/O tail is weakened, with a true measured fraction of C/O > 0.8 in 10%-15% of stars, and C/O > 1.0 in 1%-5%, although these are still likely overestimates. We suggest that infrared T-dwarf spectra could show how common high C/O is in the stellar neighborhood, as the chemistry and spectra of such objects would differ compared to those with solar-like abundances. While possible at C/O > 0.8, we expect that carbon-dominated rocky planets are rarer than others have suggested.

  12. Investigating Molecular Inheritance of Carbon in Star-forming Regions along a Galactic Gradient

    KAUST Repository

    Smith, Rachel L.

    2015-04-01

    Observations of CO isotopologues taken at high spectral resolution toward young stellar objects (YSOs) are valuable tools for investigating protoplanetary chemical reservoirs, and enable robust comparisons between YSOs and solar system material (meteorites and the Sun). Investigating a range of YSO environments also helps parameterize variations in the distribution and evolution of carbon-based molecules, furthering an understanding of prebiotic chemistry. We have begun a wide survey of massive YSOs using Keck-NIRSPEC at high spectral resolution (R=25,000). Fundamental and first-overtone near-IR CO rovibrational absorption spectra have thus far been obtained toward 14 massive, luminous YSOs at Galactocentric radii (RGC) ranging from ~4.5 to 9.7 kpc. From these data we can obtain precise [12CO]/[13CO] gas-phase abundance ratios along a Galactic gradient, and [12CO]/[13CO]Gas can be further evaluated against published [12CO2]/[13CO2]Ice and [12CO]/[13CO]Ice because all observations are in absorption, a robust study of molecular inheritance is possible by virtue of comparing 12C/13C along the same lines-of-sight. Initial results for cold CO gas at RGC ~ 6.1 kpc and 9.4 kpc reveal [12C16O]/[13C16O] of 59+/‑8 and 74+/‑3, respectively, roughly following an expected 12C/13C Galactic gradient. Thus far, we find [12CO]/[13CO] in the cold CO gas to be lower than [12CO2]/[13CO2]Ice, suggesting that CO2 may not originate from CO reservoirs as often assumed. While very high-resolution observations of CO gas toward low-mass YSOs observed with VLT-CRIRES show significant heterogeneity in [12CO]/[13CO] at RGC ~ 8 kpc, this dispersion is not found for the massive YSOs. Both the low-mass and massive YSOs have higher [12CO]/[13CO] in warm vs. cold gas, and both show signatures suggesting possible interplay between CO ice and gas reservoirs. Overall, our results indicate that carbon isotopic evolution in massive YSO environments may follow different paths compared to low-mass YSOs

  13. Investigating Molecular Inheritance of Carbon in Star-forming Regions along a Galactic Gradient

    KAUST Repository

    Smith, Rachel L.; Blake, Geoffrey; Boogert, Adwin; Pontoppidan, Klaus Martin; Lockwood, Alexandra C.

    2015-01-01

    Observations of CO isotopologues taken at high spectral resolution toward young stellar objects (YSOs) are valuable tools for investigating protoplanetary chemical reservoirs, and enable robust comparisons between YSOs and solar system material (meteorites and the Sun). Investigating a range of YSO environments also helps parameterize variations in the distribution and evolution of carbon-based molecules, furthering an understanding of prebiotic chemistry. We have begun a wide survey of massive YSOs using Keck-NIRSPEC at high spectral resolution (R=25,000). Fundamental and first-overtone near-IR CO rovibrational absorption spectra have thus far been obtained toward 14 massive, luminous YSOs at Galactocentric radii (RGC) ranging from ~4.5 to 9.7 kpc. From these data we can obtain precise [12CO]/[13CO] gas-phase abundance ratios along a Galactic gradient, and [12CO]/[13CO]Gas can be further evaluated against published [12CO2]/[13CO2]Ice and [12CO]/[13CO]Ice because all observations are in absorption, a robust study of molecular inheritance is possible by virtue of comparing 12C/13C along the same lines-of-sight. Initial results for cold CO gas at RGC ~ 6.1 kpc and 9.4 kpc reveal [12C16O]/[13C16O] of 59+/‑8 and 74+/‑3, respectively, roughly following an expected 12C/13C Galactic gradient. Thus far, we find [12CO]/[13CO] in the cold CO gas to be lower than [12CO2]/[13CO2]Ice, suggesting that CO2 may not originate from CO reservoirs as often assumed. While very high-resolution observations of CO gas toward low-mass YSOs observed with VLT-CRIRES show significant heterogeneity in [12CO]/[13CO] at RGC ~ 8 kpc, this dispersion is not found for the massive YSOs. Both the low-mass and massive YSOs have higher [12CO]/[13CO] in warm vs. cold gas, and both show signatures suggesting possible interplay between CO ice and gas reservoirs. Overall, our results indicate that carbon isotopic evolution in massive YSO environments may follow different paths compared to low-mass YSOs

  14. VLT/UVES abundances of individual stars in the Fornax dwarf spheroidal globular clusters

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Jablonka, P.; Tolstoy, E.; Randich, S; Pasquini, L

    2006-01-01

    We present high resolution abundance analysis of nine stars belonging to three of the five globular clusters (GCs) of the Fornax dwarf galaxy. The spectra were taken with UVES at a resolution of 43 000. We find them to be slightly more metal-poor than what was previously calculated with other

  15. Descendants of the first stars: the distinct chemical signature of second generation stars

    Science.gov (United States)

    Hartwig, Tilman; Yoshida, Naoki; Magg, Mattis; Frebel, Anna; Glover, Simon C. O.; Gómez, Facundo A.; Griffen, Brendan; Ishigaki, Miho N.; Ji, Alexander P.; Klessen, Ralf S.; O'Shea, Brian W.; Tominaga, Nozomu

    2018-05-01

    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only ˜1% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.

  16. A spectral atlas of λ Bootis stars

    Directory of Open Access Journals (Sweden)

    Paunzen E.

    2014-01-01

    Full Text Available Since the discovery of λ Bootis stars, a permanent confusion about their classification can be found in literature. This group of non-magnetic, Population I, metal-poor A to F-type stars, has often been used as some sort of trash can for "exotic" and spectroscopically dubious objects. Some attempts have been made to establish a homogeneous group of stars which share the same common properties. Unfortunately, the flood of "new" information (e.g. UV and IR data led again to a whole zoo of objects classified as λ Bootis stars, which, however, are apparent non-members. To overcome this unsatisfying situation, a spectral atlas of well established λ Bootis stars for the classical optical domain was compiled. It includes intermediate dispersion (40 and 120Å mm-1 spectra of three λ Bootis, as well as appropriate MK standard stars. Furthermore, "suspicious" objects, such as shell and Field Horizontal Branch stars, have been considered in order to provide to classifiers a homogeneous reference. As a further step, a high resolution (8Å mm-1 spectrum of one "classical" λ Bootis star in the same wavelength region (3800-4600Å is presented. In total, 55 lines can be used for this particular star to derive detailed abundances for nine heavy elements (Mg, Ca, Sc, Ti, Cr, Mn, Fe, Sr and Ba.

  17. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  18. Carbon Nanotubes’ Effect on Mitochondrial Oxygen Flux Dynamics: Polarography Experimental Study and Machine Learning Models using Star Graph Trace Invariants of Raman Spectra

    Directory of Open Access Journals (Sweden)

    Michael González-Durruthy

    2017-11-01

    Full Text Available This study presents the impact of carbon nanotubes (CNTs on mitochondrial oxygen mass flux (Jm under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments and perturbation theory. The experimental measures of Jm showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared (R2 of 0.863 and test root-mean-square error (RMSE of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

  19. Peculiarities and Variations in the Optical Spectrum of the RV Tauri-type Star R Sct

    Directory of Open Access Journals (Sweden)

    Kipper Tõnu

    2013-06-01

    Full Text Available We analyzed some new high resolution optical spectra of the semiregular RV Tauri-type star R Sct. Fundamental parameters were found to be Teff = 4500 K, log g = 0.0 and ξt = 4.0 km s−1. The results of chemical analysis show that R Sct is a metal-poor star with [Fe/H]≈ −0.5. The carbon content with respect to iron is significantly larger than in the Sun, [C/Fe]=0.84, but there is an evident deficiency of heavy elements. We found no tight correlation of the chemical abundances on the condensation temperatures of elements. This means that in R Sct the depletion by condensation into dust does not work, with possible exception of Ca and Sc. The luminosity derived from the Hipparcos parallax corresponds to a tip of the red-giant branch or slightly above it. Thus it is possible that R Sct evolved off the early-AGB when it has not yet experienced the third dredge-up in thermal pulses, or it is still located on AGB. The peculiarities of spectral features (emissions, line-splitting and the complicated time-variable radial velocities were also studied.

  20. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  1. Hot subluminous stars: On the Search for Chemical Signatures of their Genesis

    Science.gov (United States)

    Hirsch, Heiko Andreas

    2009-10-01

    binary systems), this disqualifies any evolutionary connection between sdBs and the carbon rich sdOs. Those stars without carbon on the other hand show no significant rotational broadening in their line profiles. Altogether eight stars can be considered as compatible with having experienced a delayed helium flash. Those stars with high nitrogen abundances but only very little atmospheric carbon are not predicted by any late hot flasher calculation. They are considered candidates for the white dwarf merging scenario, which we cannot yet verify due to missing calculations. Another remaining problem are the three stars with high carbon, but very low nitrogen abundances. One possible explanation would be a very metal poor (halo) origin for these objects, which could be verified in the future by a quantitative analysis of the heavier metals. Alternatively the examinations of the kinematic properties of the stars could provide clues concerning their membership to the halo population.

  2. Chemical analysis of three barium stars: HD 51959, HD 88035, and HD 121447

    Science.gov (United States)

    Karinkuzhi, Drisya; Goswami, Aruna; Sridhar, Navin; Masseron, Thomas; Purandardas, Meenakshi

    2018-05-01

    We present elemental abundance results from high-resolution spectral analysis of three nitrogen-enhanced barium stars. The analysis is based on spectra obtained with the fibre-fed extended range optical spectrograph attached to 1.52 m telescope at European Southern Observatory, Chile. The spectral resolution is R ˜ 48,000 and the spectral coverage spans from 3500 to 9000Å . For the objects HD 51959 and HD 88035, we present the first-time abundance analyses results. Although a few studies are available in literature on the object HD 121447, the results are significantly different from each other. We have therefore carried out a detailed chemical composition study for this object based on a high-resolution spectrum with high S/N ratio, for a better understanding of the origin of the abundance patterns observed in this star. Stellar atmospheric parameters, the effective temperature, surface gravity, microturbulence, and metallicity of the stars are determined from the local thermodynamic equilibrium analysis using model atmospheres. The metallicities of HD 51959 and HD 88035 are found to be near-solar; they exhibit enhanced abundances of neutron-capture elements. HD 121447 is found to be moderately metal-poor with [Fe/H] = -0.65. While carbon is near-solar in the other two objects, HD 121447 shows carbon enhancement at a level, [C/Fe] = 0.82. Neutron-capture elements are highly enhanced with [X/Fe] > 2 (X: Ba, La, Pr, Nd, Sm) in this object. The α- and iron-peak elements show abundances very similar to field giants with the same metallicity. From kinematic analysis all the three objects are found to be members of thin disc population with a high probability of 0.99, 0.99, and 0.92 for HD 51959, HD 88035, and HD 121447, respectively.

  3. VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Letarte, B; Hill, [No Value; Jablonka, P; Tolstoy, E; Francois, P; Meylan, G

    We present a high resolution ( R similar to 43 000) abundance analysis of a total of nine stars in three of the five globular clusters associated with the nearby Fornax dwarf spheroidal galaxy. These three clusters ( 1, 2 and 3) trace the oldest, most metal-poor stellar populations in Fornax. We

  4. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    Science.gov (United States)

    Cescutti, G.; Valentini, M.; François, P.; Chiappini, C.; Depagne, E.; Christlieb, N.; Cortés, C.

    2016-11-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims: We discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods: We applied a standard one-dimensional (1D) LTE analysis to the spectrum of this star. We measured the abundances of 14 chemical elements; we computed the abundances for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, and Zn using equivalent widths; we obtained the abundances for C, Sr, and Ba by means of synthetic spectra generated by MOOG. Results: We find an abundance of [Fe/H] = -3.5 ±0.13 dex based on our high-resolution spectrum; this points to an iron content that is lower by a factor of three (0.5 dex) compared to that obtained by a low-resolution spectrum. The star has a [C/Fe] = 0.4 dex, and it is not carbon enhanced like most of the stars at this metallicity. Moreover, this star lies in the plane [Ba/Fe] versus [Fe/H] in a relatively unusual position, shared by a few other Galactic halo stars, which is only marginally explained by our past results. Conclusions: The comparison of the model results with the chemical abundance characteristics of this group of stars can be improved if we consider in our model the presence of faint supernovae coupled with rotating massive stars. These results seem to imply that rotating massive stars and faint supernovae scenarios are complementary to each other, and are both required in order to match the observed chemistry of the earliest phases of the chemical enrichment of the Universe. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 094.B-0781(A); P.I. G. Cescutti).

  5. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C. B.; Drake, N. A.; Roig, F. [Observatório Nacional/MCTIC, Rua Gen. José Cristino 77, Rio de Janeiro, 20921-400 (Brazil); Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Miranda, L. F., E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br, E-mail: nobar.baella@gmail.com, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía - CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2017-05-20

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  6. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    International Nuclear Information System (INIS)

    Pereira, C. B.; Drake, N. A.; Roig, F.; Baella, N. O.; Miranda, L. F.

    2017-01-01

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  7. Source of the violet depression in carbon stars (a study of the Balmer decrement in carbon L.P.V.s)

    International Nuclear Information System (INIS)

    Orlati, M.A.

    1985-01-01

    In an effort to determine the nature of the agent(s) of the violet depression in N-type stars through the behavior of their Balmer decrement, slit spectrograms of two C, one CS, two S (all reported to have the violet depression) and one M type LPVs were repeatedly taken between May 1983 and November 1984. The observed phase related changes in the Balmer decrement exclude the possibility that the absorbers are circumstellar because the emission region in the best-observed star is seen to rise through the opacity source. The exact nature and number of kinds of absorbers remains to be determined

  8. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    Science.gov (United States)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  9. Modelling the carbon AGB star R Sculptoris. Constraining the dust properties in the detached shell based on far-infrared and sub-millimeter observations

    Science.gov (United States)

    Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.

    2018-06-01

    Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  11. Gaia Confirms that SDSS J102915+172927 is a Dwarf Star

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; François, P.; Zaggia, S.; Arenou, F.; Haigron, R.; Leclerc, N.; Marchal, O.; Panuzzo, P.; Plum, G.; Sartoretti, P.

    2018-05-01

    The Gaia Data Release 2 provides a parallax of 0.734+/-0.073 mas for SDSS J102915+172927, currently the most metal-poor known object. This parallax implies that it is dwarf star, ruling out the scenario that it is a subgiant. The subgiant scenario had as a corollary that the star had been formed in a medium highly enriched in C, thus making line cooling efficient during the collapse, that was also highly enriched in Fe by Type Ia SNe. This scenario can also now be ruled out for this star, reinforcing the need of dust cooling and fragmentation to explain its formation.

  12. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  13. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  14. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disk and the halo

    DEFF Research Database (Denmark)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph

    2016-01-01

    We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations...

  15. Mining the Sloan digital sky survey in search of extremely α-poor stars in the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Q. F.; Zhao, G., E-mail: qfxing@nao.cas.cn, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-20

    As we know, the majority of metal-poor Galactic halo stars appear to have chemical abundances that were enhanced by α-elements (e.g., O, Mg, Si, Ca, and Ti) during the early stage of the Galaxy. Observed metal-poor halo stars preserved this pattern by exhibiting abundance ratios [α/Fe] ∼+0.4. A few striking exceptions that show severe departures from the general enhanced α-element chemical abundance trends of the halo have been discovered in recent years. They possess relatively low [α/Fe] compared to other comparable-metallicity stars, with abundance ratios over 0.5 dex lower. These stars may have a different chemical enrichment history from the majority of the halo. Similarly, low-α abundances are also displayed by satellite dwarf spheroidal (dSph) galaxies. We present a method to select extremely α-poor (EAP) stars from the SDSS/SEGUE survey. The method consists of a two-step approach. In the first step, we select suspected metal-poor ([Fe/H] <–0.5) and α-poor ([Mg/Fe] <0) stars as our targets. In the second step, we determine [Mg/Fe] from low-resolution (R = 2000) stellar spectra for our targets and select stars with [Mg/Fe] <–0.1 as candidate EAP stars. In a sample of 40,000 stars with atmospheric parameters in the range of T{sub eff} = [4500, 7000] K, log g = [1.0, 5.0], and [Fe/H] = [–4.0, +0.5], 14 candidate stars were identified. Three of these stars are found to have already been confirmed by other research.

  16. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (≤few x 10 14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H 17 2 O/H 16 2 O and H 18 2 O/H 16 2 O isotopic abundance ratios of ∼5 x 10 -3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  17. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  18. Ca II triplet spectroscopy of RGB stars in NGC 6822: kinematics and metallicities

    Science.gov (United States)

    Swan, J.; Cole, A. A.; Tolstoy, E.; Irwin, M. J.

    2016-03-01

    We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at ≈8500 Å was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line-of-sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be = -52.8 ± 2.2 km s-1 with dispersion σv = 24.1 km s-1, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was = -0.84 ± 0.04 with dispersion σ = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former were found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars was found to be higher than that of the metal-rich stars (σ _{v_MP}=27.4 km s-1; σ _{v_MR}=21.1 km s-1); combined with the age-metallicity relation this indicates that the older populations have either been dynamically heated during their lifetimes or were born in a less disc-like distribution than the younger stars.. The low ratio vrot/σv suggests that within the inner 10 arcmin, NGC 6822's stars are dynamically decoupled from the H I gas, and possibly distributed in a thick disc or spheroid structure.

  19. The Chemical Signature of SNIax in the Stars of Ursa Minor?

    Science.gov (United States)

    Cescutti, Gabriele; Kobayashi, Chiaki

    2018-06-01

    Recently, a new class of supernovae Ia was discovered: the supernovae Iax; the increasing sample of these objects share common features as lower maximum-light velocities and typically lower peak magnitudes.In our scenario, the progenitors of the SNe Iax are very massive white dwarfs, possibly hybrid C+O+Ne white dwarfs; due to the accretion from a binary companion, they reach the Chandrasekhar mass and undergo a central carbon deflagration, but the deflagration is quenched when it reaches the outer O+Ne layer. This class of SNe Ia are expected to be rarer than standard SNe Ia and do not affect the chemical evolution in the solar neighbourhood; however, they have a short delay time and they could influence the evolution of metal-poor systems. Therefore, we have included in a stochastic chemical evolution model for the dwarf spheroidal galaxy Ursa minor the contribution of SNe Iax.The model predicts a spread in [Mn/Fe] in the ISM medium at low metallicity and - at the same time - a decrease of the [alpha/Fe] elements, as in the classical time delay model. This is in surprising agreement with the observed abundances in stars of Ursa minor and provide a strong indication to the origin of this new classes of SNIa.

  20. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    International Nuclear Information System (INIS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-01-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir  ∼ 10 12.1 M ⊙ ) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star  ∼ 10 8 –10 10 M ⊙ . Halos with more quiescent accretion histories tend to have lower mass progenitors (10 8 –10 9 M ⊙ ), and lower overall accreted stellar masses. Ultra-faint mass (M star  < 10 5 M ⊙ ) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10 5  < M star /M ⊙  < 10 8 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M star  > 10 8 M ⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo

  1. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  2. HAT-P-12b: A LOW-DENSITY SUB-SATURN MASS PLANET TRANSITING A METAL-POOR K DWARF

    International Nuclear Information System (INIS)

    Hartman, J. D.; Bakos, G. A.; Torres, G.; Noyes, R. W.; Pal, A.; Latham, D. W.; Sipocz, B.; Esquerdo, G. A.; Sasselov, D. D.; Kovacs, Gabor; Stefanik, R. P.; Fernandez, J. M.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Butler, R. P.; Lazar, J.; Papp, I.

    2009-01-01

    We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V ∼ 12.8 K4 dwarf GSC 03033 - 00706, with a period P = 3.2130598 ± 0.0000021 d, transit epoch T c = 2454419.19556 ± 0.00020 (BJD), and transit duration 0.0974 ± 0.0006 d. The host star has a mass of 0.73 ± 0.02 M sun , radius of 0.70 +0.02 -0.01 R sun , effective temperature 4650 ± 60 K, and metallicity [Fe/H] = -0.29 ± 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 ± 0.012 M J and radius of 0.959 +0.029 -0.021 R J yielding a mean density of 0.295 ± 0.025 g cm -3 . Comparing these observations with recent theoretical models, we find that HAT-P-12b is consistent with a ∼1-4.5 Gyr, mildly irradiated, H/He-dominated planet with a core mass M C ∼ + . HAT-P-12b is thus the least massive H/He-dominated gas giant planet found to date. This record was previously held by Saturn.

  3. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  4. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  5. A window on first-stars models from studies of dwarf galaxies and galactic halo stars

    Science.gov (United States)

    Venkatesan, Aparna

    2018-06-01

    Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  6. Massive star populations in I Zw 18: A probe of stellar evolution in the early universe

    OpenAIRE

    Schaerer, Daniel; de Mello, Duilia; Leitherer, Claus; Heldmann, Jennifer

    1998-01-01

    We present a study of the gaseous and stellar emission in I Zw18, the most metal-poor star-forming galaxy known. Archival HST WFPC2 and FOS data have been used to analyze the spatial distribution of [OIII], Halpha, and HeII 4686. The latter is used to identify Wolf-Rayet stars found by ground-based spectroscopy and to locate nebular HeII emission. Most of the HeII emission is associated with the NW stellar cluster, displaced from the surrounding shell-like [OIII] and Halpha emission. We found...

  7. Searching for WR stars in I Zw 18 -- The origin of HeII emission

    OpenAIRE

    de Mello, Duilia; Schaerer, Daniel; Heldmann, Jennifer; Leitherer, Claus

    1998-01-01

    I Zw 18 is the most metal poor star-forming galaxy known and is an ideal laboratory to probe stellar evolution theory at low metallicities. Using archival HST WFPC2 imaging and FOS spectroscopy we were able to improve previous studies. We constructed a continuum free HeII map, which was used to identify Wolf-Rayet (WR) stars recently found by ground-based spectroscopy and to locate diffuse nebular emission. Most of the HeII emission is associated with the NW stellar cluster, clearly displaced...

  8. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  9. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    Science.gov (United States)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  10. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  11. Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars

    NARCIS (Netherlands)

    Tramper, F.; Straal, S.M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J.S.; de Mink, S.E.; Kaper, L.

    2015-01-01

    Context. Oxygen sequence Wolf-Rayet (WO) stars are a very rare stage in the evolution of massive stars. Their spectra show strong emission lines of helium-burning products, in particular highly ionized carbon and oxygen. The properties of WO stars can be used to provide unique constraints on the

  12. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    Science.gov (United States)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  13. Statistical properties of barium stars

    International Nuclear Information System (INIS)

    Hakkila, J.E.

    1986-01-01

    Barium stars are G- and K-giant stars with atmospheric excesses of s-process elements, and a broadband spectral depression in the blue portion of the spectrum. The strength of the λ4554 Ball line is used as a classification parameter known as the Barium Intensity. They have a mean absolute magnitude of 1.0 and a dispersion of 1.2 magnitudes (assuming a Gaussian distribution in absolute magnitude) as measured from secular and statistical parallaxes. These stars apparently belong to a young-disk population from analyses of both the solar reflex motion and their residual velocity distribution, which implies that they have an upper mass limit of around three solar masses. There is no apparent correlation of barium intensity with either luminosity or kinematic properties. The barium stars appear to be preferentially distributed in the direction of the local spiral arm, but show no preference to associate with or avoid the direction of the galactic center. They do not appear related to either the carbon or S-stars because of these tendencies and because of the stellar population to which each type of star belongs. The distribution in absolute magnitude combined with star count analyses implies that these stars are slightly less numerous than previously believed. Barium stars show infrared excesses that correlate with their barium intensities

  14. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  16. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  17. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  18. The RRc Stars: Chemical Abundances and Envelope Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sneden, Christopher; Adamów, Monika [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Chadid, Merieme, E-mail: chris@verdi.as.utexas.edu, E-mail: astromysz@gmail.com, E-mail: gwp@obs.carnegiescience.edu, E-mail: chadid@unice.fr [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France)

    2017-10-10

    We analyzed series of spectra obtained for 12 stable RRc stars observed with the echelle spectrograph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. We derived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra obtained during the pulsation cycles to increase signal to noise and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid et al. We used radial velocity (RV) measurements of metal lines and H α to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct RV templates for use in low- to medium-resolution RV surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, and metal and H α velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the RV data for our Blazhko stars and the Blazhko periods of Szczygieł and Fabrycky to falsify the Blazhko oblique rotator hypothesis.

  19. STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING

    International Nuclear Information System (INIS)

    Fadely, Ross; Willman, Beth; Hogg, David W.

    2012-01-01

    Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r ∼> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies—even very compact galaxies—outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM best ) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM real ) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering ∼80% completeness, with purity of ∼60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM best , HB, ML, and SVM real . We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.

  20. The chemical composition of three Lambda Bootis stars

    International Nuclear Information System (INIS)

    Venn, K.A.; Lambert, D.L.

    1990-01-01

    Abundance analyses are reported for three certain members (Lambda Boo, 29 Cyg, Pi1 Ori) of the class of rapidly rotating, metal-poor A-type stars known as Lambda Bootis stars. Model atmosphere analysis of high-resolution, high signal-to-noise spectra shows that the metal deficiencies are more severe than previously reported: Fe/H = -2.0, -1.8, -1.3 for Lambda Boo, 29 Cyg, and Pi1 Ori, respectively. Other metals (Mg, Ca, Ti, and Sr) are similarly underabundant, with Na often having a smaller underabundance. C, N, O, and S have near-solar abundances. Vega is shown to be a mild Lambda Boo star. The abundance anomalies of the Lambda Boo stars resemble those found for the interstellar gas in which the metals are depleted through formation of interstellar grains. It is suggested that the Lambda Boo stars are created when circumstellar (or interstellar) gas is separated from the grains and accreted by the star. The bulk of the interstellar grains comprises a circumstellar cloud or disk that is detectable by its infrared radiation. 67 refs

  1. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  2. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.

    2000-01-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different-age and -metallicity stellar populations, with important stellar evolutionary phases occurring over 3 orders of magnitude in number density. First, we count the nonvariable red and blue supergiants and the associated Cepheid variables and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which we interpret as discrete old populations ((greater-or-similar sign)1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal-branch (HB) stars in the 9M CMD with those of clusters, we identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB bump is very red, and the ratio of AGB bump stars to RR Lyrae variables is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the ∼1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyrae stars and the AGB bump. In this case, compared with the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyrae stars and AGB bump. Last, we show that the surface density profile of RR Lyrae variables is fitted by an exponential

  3. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C. (and others)

    2000-05-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different-age and -metallicity stellar populations, with important stellar evolutionary phases occurring over 3 orders of magnitude in number density. First, we count the nonvariable red and blue supergiants and the associated Cepheid variables and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which we interpret as discrete old populations ((greater-or-similar sign)1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal-branch (HB) stars in the 9M CMD with those of clusters, we identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB bump is very red, and the ratio of AGB bump stars to RR Lyrae variables is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the {approx}1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyrae stars and the AGB bump. In this case, compared with the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyrae stars and AGB bump. Last, we show that the surface density profile of RR Lyrae variables is fitted by an exponential

  4. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  5. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind [Cal. State Univ., Fullerton, Fullerton, CA (United States); Neff, James E.; Steele, Patricia A. [College of Charleston, Charleston, SC (United States); Gray, Richard O. [Appalachian State Univ., Boone, NC (United States); Corbally, Christopher J. [Vatican Observatory, Tucson, AZ (United States)

    2016-04-15

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.

  6. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    International Nuclear Information System (INIS)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind; Neff, James E.; Steele, Patricia A.; Gray, Richard O.; Corbally, Christopher J.

    2016-01-01

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  8. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  9. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  10. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  11. Chromospherically active stars. VIII - HD 155638 = V792 Herculis: Observational constraints on evolutionary theory

    International Nuclear Information System (INIS)

    Fekel, F.C.

    1991-01-01

    V792 Her is an eclipsing RS CVn binary with an orbital period of 27.54 days whose components have spectral types of K0 III and F2 IV. New spectroscopic observations combined with existing photometry have resulted in masses of 1.47 + or - 0.003 solar mass and 1.41 + or - 0.003 solar mass for the K giant and F star, respectively. Additional fundamental parameters are derived. Standard evolutionary models were specifically computed by VandenBerg (1990) for the two stars. The best fit occurs if the components are somewhat metal poor with Fe/H/ = - 0.46. Ages of about 2.3 x 10 to the 9th yr derived for the two components differ by less than 3 percent. Thus, standard evolutionary models with no convective overshoot are able to fit the observed parameters of stars as massive as 1.45 solar mass. However, a definitive comparison is not yet possible since the metal abundance of the stars is unknown and metal-poor convective-overshoot tracks in this mass range are needed. 35 refs

  12. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    Science.gov (United States)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  13. The Ital-FLAMES survey of the Sagittarius dwarf Spheroidal galaxy. I. Chemical abundances of bright RGB stars

    OpenAIRE

    Monaco, L.; Bellazzini, M.; Bonifacio, P.; Ferraro, F. R.; Marconi, G.; Pancino, E.; Sbordone, L.; Zaggia, S.

    2005-01-01

    We present iron and $\\alpha$ element (Mg, Ca, Ti) abundances for a sample of 15 Red Giant Branch stars belonging to the main body of the Sagittarius dwarf Spheroidal galaxy. Abundances have been obtained from spectra collected using the high resolution spectrograph FLAMES-UVES mounted at the VLT. Stars of our sample have a mean metallicity of [Fe/H]=-0.41$\\pm$0.20 with a metal poor tail extending to [Fe/H]=-1.52. The $\\alpha$ element abundance ratios are slightly subsolar for metallicities hi...

  14. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Science.gov (United States)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  15. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  16. The role of turbulence in star formation laws and thresholds

    International Nuclear Information System (INIS)

    Kraljic, Katarina; Renaud, Florent; Bournaud, Frédéric; Combes, Françoise; Elmegreen, Bruce; Emsellem, Eric; Teyssier, Romain

    2014-01-01

    The Schmidt-Kennicutt relation links the surface densities of gas to the star formation rate in galaxies. The physical origin of this relation, and in particular its break, i.e., the transition between an inefficient regime at low gas surface densities and a main regime at higher densities, remains debated. Here, we study the physical origin of the star formation relations and breaks in several low-redshift galaxies, from dwarf irregulars to massive spirals. We use numerical simulations representative of the Milky Way and the Large and Small Magellanic Clouds with parsec up to subparsec resolution, and which reproduce the observed star formation relations and the relative variations of the star formation thresholds. We analyze the role of interstellar turbulence, gas cooling, and geometry in drawing these relations at 100 pc scale. We suggest in particular that the existence of a break in the Schmidt-Kennicutt relation could be linked to the transition from subsonic to supersonic turbulence and is independent of self-shielding effects. With this transition being connected to the gas thermal properties and thus to the metallicity, the break is shifted toward high surface densities in metal-poor galaxies, as observed in dwarf galaxies. Our results suggest that together with the collapse of clouds under self-gravity, turbulence (injected at galactic scale) can induce the compression of gas and regulate star formation.

  17. The role of turbulence in star formation laws and thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Kraljic, Katarina; Renaud, Florent; Bournaud, Frédéric [CEA, IRFU, SAp, F-91191 Gif-sur-Yvette Cedex (France); Combes, Françoise [Observatoire de Paris, LERMA et CNRS, 61 Av de l' Observatoire, F-75014 Paris (France); Elmegreen, Bruce [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Emsellem, Eric [European Southern Observatory, D-85748 Garching bei Muenchen (Germany); Teyssier, Romain [Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich (Switzerland)

    2014-04-01

    The Schmidt-Kennicutt relation links the surface densities of gas to the star formation rate in galaxies. The physical origin of this relation, and in particular its break, i.e., the transition between an inefficient regime at low gas surface densities and a main regime at higher densities, remains debated. Here, we study the physical origin of the star formation relations and breaks in several low-redshift galaxies, from dwarf irregulars to massive spirals. We use numerical simulations representative of the Milky Way and the Large and Small Magellanic Clouds with parsec up to subparsec resolution, and which reproduce the observed star formation relations and the relative variations of the star formation thresholds. We analyze the role of interstellar turbulence, gas cooling, and geometry in drawing these relations at 100 pc scale. We suggest in particular that the existence of a break in the Schmidt-Kennicutt relation could be linked to the transition from subsonic to supersonic turbulence and is independent of self-shielding effects. With this transition being connected to the gas thermal properties and thus to the metallicity, the break is shifted toward high surface densities in metal-poor galaxies, as observed in dwarf galaxies. Our results suggest that together with the collapse of clouds under self-gravity, turbulence (injected at galactic scale) can induce the compression of gas and regulate star formation.

  18. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  19. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  20. RAVE J203843.2-002333: The First Highly R-process-enhanced Star Identified in the RAVE Survey

    Science.gov (United States)

    Placco, Vinicius M.; Holmbeck, Erika M.; Frebel, Anna; Beers, Timothy C.; Surman, Rebecca A.; Ji, Alexander P.; Ezzeddine, Rana; Points, Sean D.; Kaleida, Catherine C.; Hansen, Terese T.; Sakari, Charli M.; Casey, Andrew R.

    2017-07-01

    We report the discovery of RAVE J203843.2-002333, a bright (V = 12.73), very metal-poor ([{Fe}/{{H}}] = -2.91), r-process-enhanced ([{Eu}/{Fe}] = +1.64 and [{Ba}/{Eu}] = -0.81) star selected from the RAVE survey. This star was identified as a metal-poor candidate based on its medium-resolution (R ˜ 1600) spectrum obtained with the KPNO/Mayall Telescope, and followed up with high-resolution (R ˜ 66,000) spectroscopy with the Magellan/Clay Telescope, allowing for the determination of elemental abundances for 24 neutron-capture elements, including thorium and uranium. RAVE J2038-0023 is only the fourth metal-poor star with a clearly measured U abundance. The derived chemical abundance pattern exhibits good agreement with those of other known highly r-process-enhanced stars, and evidence suggests that it is not an actinide-boost star. Age estimates were calculated using U/X abundance ratios, yielding a mean age of 13.0 ± 1.1 Gyr. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; Kitt Peak National Observatory, National Optical Astronomy Observatory (NOAO Prop. ID: 14B-0231; PI: Placco), which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. The authors are honored to be permitted to conduct astronomical research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham.

  1. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  2. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    OpenAIRE

    Kepler, S. O.; Pelisoli, Ingrid; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J.; Eisenstein, Daniel J.; Valois, A. Dean M.; Amaral, Larissa A.

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmospherewhite dwarf stars (DAs) and helium atmospherewhite dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra (DQs). We found one central star of a planetary nebula, one ultracompact helium binary (AM ...

  3. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    Science.gov (United States)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  4. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Crowther, P. A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Sidoli, F., E-mail: lsmith@stsci.edu [London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom)

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy of #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.

  5. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  6. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  7. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.

    1976-01-01

    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  8. Degenerate stars. XII - Recognition of hot nondegenerates

    Science.gov (United States)

    Greenstein, J. L.

    1980-12-01

    Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.

  9. The evolutionary status of symbiotic stars

    International Nuclear Information System (INIS)

    Rudak, B.

    1982-01-01

    The evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed. (Auth.)

  10. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  11. Elemental diffusion in stars

    International Nuclear Information System (INIS)

    Michaud, Georges; Montmerle, Thierry

    1977-01-01

    This paper is dealing with the origin of the elements in the universe. The scheme of nucleosynthesis is kept to explain the stellar generation of helium, carbon, etc... from the initial hydrogen; but a nonlinear theory is then elaborated to account for the anomalous abundances which were observed. The chemical elements would diffuse throughout the outer layers of a star under the action of the opposite forces of gravitation and radiation. This theory, with completing the nucleosynthesis, would contribute to give a consistent scheme of the elemental origin and abundances [fr

  12. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  13. Element Production in the S-Cl Region During Carbon Burning in Massive Stars. Using Computer Systems for Modeling of the Nuclear-Reaction Network

    CERN Document Server

    Szalanski, P; Marganeic, A; Gledenov, Yu M; Sedyshev, P V; Machrafi, R; Oprea, A; Padureanu, I; Aranghel, D

    2002-01-01

    This paper presents results of calculations for nuclear network in S-Cl region during helium burning in massive stars (25 M_{\\odot}) using integrated mathematical systems. The authors also examine other application of presented method in different physical tasks.

  14. Element production in the S - Cl region during carbon burning in massive stars. Using computer systems for modeling of the nuclear-reaction network

    International Nuclear Information System (INIS)

    Szalanski, P.; Stepinski, M.; Marganiec, A.; Gledenov, Yu.M.; Sedyshev, P.V.; Machrafi, R.; Oprea, A.; Padureanu, I.; Aranghel, D.

    2002-01-01

    This paper presents results of calculations for nuclear network in S - Cl region during helium burning in massive stars (25 solar mass) using integrated mathematical systems. The authors also examine other application of the presented method in different physical tasks. (author)

  15. Star-shaped poly[(trimethylene carbonate)-co-(epsilon-caprolactone)] and its block copolymers with lactide/glycolide : synthesis, characterization and properties

    NARCIS (Netherlands)

    Joziasse, CAP; Grablowitz, H; Pennings, AJ

    Linear and star-shaped copolymers of trimethylene carbonat/epsilon-caprolactone were synthesized using different polyol initiators and catalysts. Unexpectedly, when dipentaerythritol was used as an initiator cross-linked rubbers were obtained, that swell in chlorofonn. This network formation can be

  16. Symbiotic and VV Cephei stars in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Walker, A.R.

    1983-01-01

    Three symbiotic stars, including a carbon symbiotic star, are identified in the Small Magellanic Cloud, thus two out of five known symbiotic stars in the Magellanic Clouds have C rather than M components, compared to our own Galaxy where the proportion is much lower. This supports the assertion that the symbiotic phenomenon follows the higher C:M star ratio in the Magellanic Clouds and is not a property of M binaries alone. Two other emission-line stars are discussed; one is the only known VV Cephei star in the SMC while the second is a composite Be + K supergiant system. (author)

  17. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  18. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  19. An elemental abundance analysis of the superficially normal A star Vega

    International Nuclear Information System (INIS)

    Adelman, S.J.; Gulliver, A.F.

    1990-01-01

    An elemental abundance analysis of Vega has been performed using high-signal-to-noise 2.4 A/mm Reticon observations of the region 4313-4809 A. Vega is found to be a metal-poor star with a mean underabundance of 0.60 dex. The He/H ratio of 0.03 as derived from He I 4472 A suggests that the superficial helium convection zone has disappeared and that radiative diffusion is producing the photospheric abundance anomalies. 45 refs

  20. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  1. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305 (United States)

    2016-04-10

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), and lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  2. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    Science.gov (United States)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  4. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    Science.gov (United States)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  5. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  6. Nuclear processing during star formation

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    A preliminary survey was conducted of the thermonuclear energy release expected during star formation. The destruction of primordial deuterium provides substantial amounts of energy at surprisingly low temperatures, and must be considered in any meaningful treatment of star formation carried to stages in which the internal temperature exceeds a few hundred thousand degrees. Significant energy generation from consumption of initial lithium requires higher temperatures, of the order of a few million degrees. Depletion of primordial beryllium and boron may never provide an important energy source. The approach to equilibrium of the carbon--nitrogen cycle is dominant at temperatures approaching those characteristic of the central regions of main sequence stars. The present calculation should serve as a useful guide in choosing those nuclear processes to be included in a more detailed study. 8 figures, 2 tables

  7. No Place to Hide: Missing Primitive Stars Outside Milky Way Uncovered

    Science.gov (United States)

    2010-02-01

    After years of successful concealment, the most primitive stars outside our Milky Way galaxy have finally been unmasked. New observations using ESO's Very Large Telescope have been used to solve an important astrophysical puzzle concerning the oldest stars in our galactic neighbourhood - which is crucial for our understanding of the earliest stars in the Universe. "We have, in effect, found a flaw in the forensic methods used until now," says Else Starkenburg, lead author of the paper reporting the study. "Our improved approach allows us to uncover the primitive stars hidden among all the other, more common stars." Primitive stars are thought to have formed from material forged shortly after the Big Bang, 13.7 billion years ago. They typically have less than one thousandth the amount of chemical elements heavier than hydrogen and helium found in the Sun and are called "extremely metal-poor stars" [1]. They belong to one of the first generations of stars in the nearby Universe. Such stars are extremely rare and mainly observed in the Milky Way. Cosmologists think that larger galaxies like the Milky Way formed from the merger of smaller galaxies. Our Milky Way's population of extremely metal-poor or "primitive" stars should already have been present in the dwarf galaxies from which it formed, and similar populations should be present in other dwarf galaxies. "So far, evidence for them has been scarce," says co-author Giuseppina Battaglia. "Large surveys conducted in the last few years kept showing that the most ancient populations of stars in the Milky Way and dwarf galaxies did not match, which was not at all expected from cosmological models." Element abundances are measured from spectra, which provide the chemical fingerprints of stars [2]. The Dwarf galaxies Abundances and Radial-velocities Team [3] used the FLAMES instrument on ESO's Very Large Telescope to measure the spectra of over 2000 individual giant stars in four of our galactic neighbours, the Fornax

  8. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. THE COMPACT STAR-FORMING COMPLEX AT THE HEART OF NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J., E-mail: tim.davidge@nrc.ca [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-02-20

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C{sub 2} bandhead. If this feature is due to C{sub 2} then the star-forming complex has been in place for at least a few hundred Myr. Emission lines of Brγ, [Fe ii], and He i 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages <8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf–Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages <8 Myr. If the present-day star formation rate is maintained then the timescale to double its stellar mass ranges from a few Myr to a few tens of Myr, depending on the contribution made by stars older than ∼8 Myr. If—as suggested by some studies—the star-forming complex is centered on the galaxy’s nucleus, which presumably contains a large population of old and intermediate-age stars, then the nucleus of NGC 253 is currently experiencing a phase of rapid growth in its stellar mass.

  10. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  11. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  12. Fluorine and Sodium in C-rich Low-metallicity Stars

    Science.gov (United States)

    Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk

    2011-03-01

    We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  13. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  14. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    Science.gov (United States)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  15. Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-06-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.

  16. A new search for R Coronae Borealis stars in the SMC

    Directory of Open Access Journals (Sweden)

    Nikzat Fatemeh

    2017-01-01

    Full Text Available R Coronae Borealis (RCB stars are rare, and their evolutionary origin is not well understood. Since they are obscured due to formation of carbon dust around the star during their mass loss events, RCB stars can be classified as self-eclipsing variable stars. The purpose of this work is to present a new search for RCB stars in the Small Magellanic Cloud (SMC, by analysing VI data from the OGLE project.

  17. Nonradial pulsations of hot evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1987-01-01

    There are three classes of faint blue variable stars: the ZZ Ceti variables (DAV degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DOV degenerate dwarfs). None of these classes of variable stars were known at the time of the last blue star meeting. Observational and theoretical studies of the ZZ Ceti variables, the DBV variables, and the GW Vir variables have shown them to be pulsating in nonradial g-modes. The cause of the pulsation has been determined for each class of variable star and, in all cases, also involves predictions of the stars envelope composition. The predictions are that the ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers with less than 30% (by mass) of helium. Given these compositions, it is found that pulsation driving occurs as a result of the kappa and gamma effects operating in the partial ionization zones of either hydrogen or helium. In addition, a new driving mechanism, called convection blocking, also occurs in these variables. For the GW Vir variables, it is the kappa and gamma effects in the partial ionization regions of carbon and oxygen. 45 refs

  18. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  19. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  20. Chemistry between the stars

    International Nuclear Information System (INIS)

    Kroto, H.W.

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned. (author)

  1. Chemistry between the stars

    Energy Technology Data Exchange (ETDEWEB)

    Kroto, H W

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned.

  2. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  3. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  4. Wolf--Rayet stars of M33

    International Nuclear Information System (INIS)

    Corso, G.J. Jr.

    1975-01-01

    A comprehensive study of the 54 known Wolf--Rayet stars of M33 is undertaken with the intention of improving our knowledge of the Wolf--Rayet phenomenon, identifying significant features of their distribution in an Sc galaxy, and discerning possible trends in the variation of chemical composition of the interstellar medium from place to place within that galaxy. Thirty-seven of these stars were classified for the first time into carbon and nitrogen sequences on the basis of photographic photometry of image tube plates obtained with the Kitt Peak 84-inch telescope and an ITT magnetically focused image tube equipped with a set of narrow-band interference filters designed to isolate the broad emission features between 4640 A and 4686 A due to N III, C III-IV, and He II. The subclasses WC6-9, missing in the Large Magellanic Cloud, were found in M33, although there is a tendency for the known stars of both sequences to belong to the high-excitation subclasses. The distribution of these stars was compared with the distributions of luminous blue stars, dust, and H II regions. Star counts on the image tube plates indicated that one out of every 75 stars in M33 brighter than M/sub B/ = --4.5 is a Wolf--Rayet star

  5. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  6. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  7. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  8. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  9. Infrared studies of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1982-01-01

    Infrared photometry and spectroscopy of symbiotic stars is reviewed. It is shown that at wavelengths beyond 1 μm these systems are generally dominated by the cool star's photosphere and, indeed, are indistinguishable from ordinary late-type giants. About 25% of symbiotic stars exhibit additional emission due to circumstellar dust. Most of the dusty systems probably involve Mira variables, the dust forming in the atmospheres of the Miras. In a few cases the dust is much cooler and the cool component hotter; the dust must then form in distant gas shielded from the hot component, perhaps by an accretion disk. Spectroscopy at 2 μm can be used to spectral type the cool components, even in the presence of some dust emission. Distances may thereby be estimated, though with some uncertainty. Spectroscopy at longer wavelengths reveals information about the dust itself. In most cases this dust appears to include silicate grains, which form in the oxygen-rich envelope of an M star. In the case of HD 33036, however, different emission features are found which suggest a carbon-rich environment. (Auth.)

  10. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  11. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    current ESO-ESA CERN educational programme on "Life in the Universe". [3] In the case of exoplanets, the planet itself is not visible, but the spectral lines from the star are seen to wobble due to the gravitational influence of the planet, cf. ESO PR 07/01. [4] Several ESO Press Releases concern observations of the element Lithium in stars, e.g., PR 03/99 (in a giant star), PR 08/00 (in a metal-poor star) and PR 10/01 (from a "swallowed" exoplanet).

  12. The SUPERBLINK catalog of stars with large proper motions, with enhancements from the first GAIA release.

    Science.gov (United States)

    Lepine, Sebastien

    2018-01-01

    The SUPERBLINK survey of stars with proper motion larger than 40 mas/yr is now complete for the entire sky down to magnitude V=20. The SUPERBLINK catalog provides astrometric and photometric data for a little over 2.7 million individual stars, and identifies their counterparts in a variety of large catalogs including ROSAT in the X-ray, GALEX in the ultraviolet, GAIA and SDSS in the optical, and 2MASS and WISE in the infrared. The addition of GAIA data notably yields proper motions to an accuracy of ~2mas/yr for 94% of the entries. Parallaxes with accuracies better than 10% are also now available for about 155,000 of these stars. Besides from identifying local populations of low-mass stars and white dwarfs, the catalog nows begins to map out with some detail the distribution in velocity space of various local stellar populations, including young M dwarfs and old metal-poor M subdwarfs. The catalog also allows one to search for common proper motion pairs, and other kinematic groups like nearby cluster members, moving group members, and local streams. This demonstrates the potential for nearby star research as more complete data becomes available from the GAIA mission.

  13. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  14. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  15. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  16. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    Science.gov (United States)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  17. Quark core stars, quark stars and strange stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1988-01-01

    A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs

  18. EXTENDED STAR CLUSTERS IN THE REMOTE HALO OF THE INTRIGUING DWARF GALAXY NGC 6822

    International Nuclear Information System (INIS)

    Hwang, Narae; Lee, Myung Gyoon; Lee, Jong Chul; Park, Hong Soo; Park, Won-Kee; Kim, Sang Chul; Park, Jang-Hyun

    2011-01-01

    We present a study on four new star clusters discovered in the halo of the intriguing dwarf irregular galaxy NGC 6822 from a wide-field survey covering 3 0 x 3 0 area carried out with MegaCam at the Canada-France-Hawaii Telescope. The star clusters have extended structures with half-light radii R h ∼ 7.5-14.0 pc, larger than typical Galactic globular clusters and other known globular clusters in NGC 6822. The integrated colors and color-magnitude diagrams of resolved stars suggest that the new star clusters are 2-10 Gyr old and relatively metal poor with Z = 0.0001-0.004 based on the comparison with theoretical models. The projected distance of each star cluster from the galaxy center ranges from 10.'7 (∼1.5 kpc) to 77' (∼11 kpc), far beyond the optical body of the galaxy. Interestingly, the new star clusters are aligned along the elongated old stellar halo of NGC 6822, which is almost perpendicular to the H I gas distribution where young stellar populations exist. We also find that the colors and half-light radii of the new clusters are correlated with the galactocentric distance: clusters farther from the galaxy center are larger and bluer than those closer to the galaxy center. We discuss the stellar structure and evolution of NGC 6822 implied by these new extended star clusters in the halo. We also discuss the current status of observational and theoretical understandings regarding the origin of extended star clusters in NGC 6822 and other galaxies.

  19. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  20. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  1. ENERGY STAR Certified Televisions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Televisions that are effective as of October 30,...

  2. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  3. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  4. ENERGY STAR Certified Telephones

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP...

  5. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  6. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  7. Chemical Compositions of RV Tauri Stars and Related Objects

    Science.gov (United States)

    Rao, S. S.; Giridhar, S.

    2014-04-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and a grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and aided by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  8. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  9. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  10. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  11. INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2007-09-01

    Full Text Available We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX, the two micron sky survey (2MASS, and the IRAS point source catalog (PSC. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

  12. The Westerlund-Olander sample of S stars in the southern Milky Way

    International Nuclear Information System (INIS)

    Evans, T.L.; Catchpole, R.M.

    1989-01-01

    Infrared (JHKL) photometry and spectroscopy (5200-7700 A, 6 A resolution) is given for 72 stars classed as type S by Westerlund and Olander. There are 38 S stars, 26 M stars, of which most are supergiants, and eight stars without prominent absorption bands. The S stars are predominantly of the nearly pure S type (S index ∼ 6) and represent a substantial addition to the known sample of such stars. Several probable Mira variables and three stars with strong Li I 6707 A are included. A wide range in LaO strength for stars of similar temperature and ZrO strength may result from differing ratios of heavy to light s-process elements. A possible dependence of Na D strength on luminosity is found. The galactic distribution of the S stars is not significantly different from that of carbon stars in the same field, excluding the suggestion that these S stars are of much higher mass than carbon stars. The infrared colours, taken in conjunction with IRAS data, reveal heavy interstellar reddening as well as circumstellar shells around many stars of all three groups. One of the bandless stars, WO48, has a particularly extensive shell. (author)

  13. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  14. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  15. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  16. STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-01-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  17. Gas and dust from solar metallicity AGB stars

    Science.gov (United States)

    Ventura, P.; Karakas, A.; Dell'Agli, F.; García-Hernández, D. A.; Guzman-Ramirez, L.

    2018-04-01

    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M⊙and8.5 M⊙. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass ≥3.5 M⊙ experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than ˜3 × 105 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low-mass stars with 1.5 M⊙ ≤ M ≤ 3 M⊙ become carbon stars. During the final phases, the C/O ratio grows to ˜3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.

  18. Violet and visual flux problems in red giant stars

    International Nuclear Information System (INIS)

    Faulkner, D.R.

    1989-01-01

    Red giant stars are sites of many astrophysically interesting processes and are important links to late stages of stellar evolution and the chemical history of the galaxy. Much of what is known about stars comes from their spectra, which are formed in the outer layers (atmospheres). Unfortunately the low temperatures in red giant atmospheres promote the formation of many molecules, and the resultant complexity of the spectra has slowed progress in obtaining good models of these objects and leaves many unanswered questions. Several of these problems are investigated. Spectra of red giants provide a natural classification according to composition: M stars are oxygen rich, C stars are carbon rich, while S stars are intermediate. One long standing problem with C stars has been the explanation of the severe lack of energy flux in the violet and near ultraviolet part of their spectrum, generally attributed to an unusual opacity. Results show that one source, SiC, is untenable, while the case for the other, C3, is severely weakened. Synthetic spectra from atmospheric models are compared to spectra of TX Psc, a C star, to show that the contribution of thousands of atomic lines are probably responsible for the violet and ultraviolet flux deficiency. The agreement between the synthetic spectra and observations is very good. K and M type stars also have a violet flux deficiency, though it is less severe than with carbon stars

  19. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  20. Chemo-orbital evidence from SDSS/SEGUE G dwarf stars for a mixed origin of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    van de Ven G.

    2012-02-01

    Full Text Available About 13,000 G dwarf within 7stars and smoothly extends into a thick disk with α-enhanced stars, consistent with an in-situ formation through radial migration. On the other hand, the metal-poor population with enhanced α-abundance, higher scale height, and disperse kinematical properties, is difficult to explain with radial migration but might have originated from gas-rich mergers. The thick disk of the Milky Way seems to have a mixed origin.

  1. Binary stars as sources of iron and of s-process isotopes

    International Nuclear Information System (INIS)

    Iben, Icko Jr.; Bologna Univ.; Sussex Univ., Brighton

    1986-01-01

    Sources of elements and isotopes in stars, during the development of stars, is examined. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. Intermediate mass stars in their asymptotic giant branch phase of evolution as sources of carbon, merging white dwarfs as sources of iron, and helium star cataclysmics as sources of s-process elements, are all discussed. (U.K.)

  2. A non-local thermodynamical equilibrium line formation for neutral and singly ionized titanium in model atmospheres of reference A-K stars

    Science.gov (United States)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2016-09-01

    We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.

  3. The Be-test in the Li-rich star #1657 of NGC 6397: evidence for Li-flash in RGB stars?

    Science.gov (United States)

    Pasquini, L.; Koch, A.; Smiljanic, R.; Bonifacio, P.; Modigliani, A.

    2014-03-01

    Context. The Li-rich turn-off star recently discovered in the old, metal-poor globular cluster NGC 6397 could represent the smoking gun for some fundamental, but very rare episode of Li enrichment in globular clusters and in the early Galaxy. Aims: We aim to understand the nature of the Li enrichment by performing a spectroscopic analysis of the star, in particular of its beryllium (Be) abundance, and by investigating its binary nature. Methods: We used the VLT/UVES spectrograph to observe the near UV region where the Be ii resonance doublet and the NH bands are located. We also re-analyzed an archival Magellan/MIKE spectra for C and O abundance determination. Results: We could not detect the Be ii lines and derive an upper limit of log (Be/H) contaminated by telluric absorptions but is consistent with [O/Fe] ~ 0.5. Combining the UVES and Mike data, we could not detect any variation in the radial velocity greater than 0.95 kms-1 over 8 years. Conclusions: The chemical composition of the star strongly resembles that of "first generation" NGC 6397 stars, with the huge Li as the only deviating abundance. Not detecting Be rules out two possible explanations of the Li overabundance: capture of a substellar body and spallation caused by a nearby type II SNe. Discrepancies are also found with respect to other accretion scenarios, except for contamination by the ejecta of a star that has undergone the RGB Li-flash. This is at present the most likely possibility for explaining the extraordinary Li enrichment of this star. Based on observations collected at ESO, VLT, Chile, Proposal 091.D-0198(A).

  4. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela; Gran, Felipe [Instituto Milenio de Astrofisica, Santiago (Chile); Rejkuba, Marina; Valenti, Elena [European Southern Observatory, Karl-Schwarszchild-Str. 2, D-85748 Garching bei Muenchen (Germany); Gonzalez, Oscar A., E-mail: dante@astrofisica.cl, E-mail: rcontrer@astro.puc.cl [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2016-10-10

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RR Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.

  5. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    Science.gov (United States)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  6. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  7. Origin and evolutionary stage of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Tutukov, A V; Yungel' son, L R [AN SSSR, Moscow. Astronomicheskij Sovet

    1976-08-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter at the rate of 10/sup -5/-10/sup -6/ M/yr over the period of 10/sup 5/-10/sup 6/ years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the red giant stage,, and also of closer pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10/sup -6/-10/sup -9/ M/yr, and some consequencies of accretion on a C-O dwarf have been considered.

  8. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  9. VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 2808

    International Nuclear Information System (INIS)

    Kunder, Andrea; Walker, Alistair R.; Stetson, Peter B.; Catelan, Márcio; Amigo, Pía

    2013-01-01

    The first calibrated broadband BVI time-series photometry is presented for the variable stars in NGC 2808, with observations spanning a range of 28 years. We have also redetermined the variability types and periods for the variable stars identified previously by Corwin et al., revising the number of probable fundamental-mode RR Lyrae variables (RR0) to 11 and the number of first-overtone variables (RR1) to five. Our observations were insufficient to discern the nature of the previously identified RR1 star, V24, and the tentatively identified RR1 star, V13. These two variables are ∼0.8 mag brighter than the RR Lyrae variables, appear to have somewhat erratic period and/or luminosity changes, and lie inside the RR Lyrae instability strip. Curiously, all but one of the RR Lyrae stars studied in this relatively metal-rich cluster exhibit the Blazhko phenomenon, an effect thought to occur with higher frequency in metal-poor environments. The mean periods of the RR0 and RR1 variables are (P) RR0 = 0.56 ± 0.01 d and RR1 = 0.30 ± 0.02 d, respectively, supporting an Oosterhoff I classification of the cluster. On the other hand, the number ratio of RR1-to-RR0-type variables is high, though not unprecedented, for an Oosterhoff I cluster. The RR Lyrae variables have no period shifts at a given amplitude compared to the M3 variables, making it unlikely that these variables are He enhanced. Using the recent recalibration of the RR Lyrae luminosity scale by Catelan and Cortés, a mean distance modulus of (m – M) V = 15.57 ± 0.13 mag for NGC 2808 is obtained, in good agreement with that determined here from its type II Cepheid and SX Phoenicis population. Our data have also allowed the discovery of two new candidate SX Phoenicis stars and an eclipsing binary in the blue straggler region of the NGC 2808 color-magnitude diagram.

  10. Effects of rotation on the evolution of primordial stars

    Science.gov (United States)

    Ekström, S.; Meynet, G.; Chiappini, C.; Hirschi, R.; Maeder, A.

    2008-10-01

    Context: Although still beyond our observational abilities, Population III stars are interesting objects from many perspectives. They are responsible for the re-ionisation of the inter-galactic medium. They also left their chemical imprint in the early Universe, which can be deciphered in the most metal-poor stars in the halo of our Galaxy. Aims: Rotation has been shown to play a determinant role at very low metallicity, bringing heavy mass loss where almost none was expected. Is this still true when the metallicity strictly equals zero? The aim of our study is to answer this question, and to determine how rotation changes the evolution and the chemical signature of the primordial stars. Methods: We have calculated seven differentially-rotating stellar models at zero metallicity, with masses between 9 and 200 M⊙. For each mass, we also calculated a corresponding model without rotation. The evolution is followed up to the pre-supernova stage. Results: We find that Z=0 models rotate with an internal profile Ω(r) close to local angular momentum conservation, because of a very weak core-envelope coupling. Rotational mixing drives an H-shell boost due to a sudden onset of the CNO cycle in the shell. This boost leads to a high 14N production, which can be as much as 106 times higher than the production of the non-rotating models. Generally, the rotating models produce much more metal than their non-rotating counterparts. The mass loss is very low, even for the models that reach critical velocity during the main sequence. It may however have an impact on the chemical enrichment of the Universe, because some of the stars are supposed to collapse directly into black holes. They would contribute to the enrichment only through their winds. While in that case non-rotating stars would not contribute at all, rotating stars may leave an imprint on their surrounding. Due to the low mass loss and the weak coupling, the core retains a high angular momentum at the end of the

  11. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  12. The process of carbon creation

    CERN Multimedia

    El-Eid, M F

    2005-01-01

    In the Universe, the element carbon is created only in stars, in a remarkable reaction called the triple-α process. Fresh insights into the reaction now come from the latest experiments carried out on Earth

  13. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  14. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  15. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  16. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  17. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  18. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  19. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  20. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  1. Chemical Composition of Young Stars in the Leading Arm of the Magellanic System

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Zhao, Gang [Key Lab. of Optical Astronomy, National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, 100012 Beijing (China); Moni Bidin, Christian [Instituto de Astronomía, Universidad Católica del Norte, Av. Angomos 0610, Antofagasta (Chile); Casetti-Dinescu, Dana I. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Méndez, Réne A. [Departamento de Astronomia Universidad de Chile, Camino El Observatorio #1515, Las Condes, Santiago (Chile); Girard, Terrence M. [14 Dunn Rd, Hamden, Connecticut, CT 06518 (United States); Korchagin, Vladimir I. [Institute of Physics, Southern Federal University, Stachki st/194, 344090, Rostov-on-Don (Russian Federation); Vieira, Katherine; Van Altena, William F. [Centro de Investigaciones de Astronomiá, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2017-02-01

    Chemical abundances of eight O- and B-type stars are determined from high-resolution spectra obtained with the MIKE instrument on the Magellan 6.5 m Clay telescope. The sample is selected from 42 candidates for membership in the Leading Arm (LA) of the Magellanic System. Stellar parameters are measured by two independent grids of model atmospheres and analysis procedures, confirming the consistency of the stellar parameter results. Abundances of seven elements (He, C, N, O, Mg, Si, and S) are determined for the stars, as are their radial velocities and estimates of distances and ages. Among the seven B-type stars analyzed, the five that have radial velocities compatible with membership of the LA have an average [Mg/H] of −0.42 ± 0.16, significantly lower than the average of the remaining two, [Mg/H] = −0.07±0.06, which are kinematical members of the Galactic disk. Among the five LA members, four have individual [Mg/H] abundance compatible with that in the LMC. Within errors, we cannot exclude the possibility that one of these stars has an [Mg/H] consistent with the more metal-poor, SMC-like material. The remaining fifth star has an [Mg/H] close to Milky Way values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ∼50–70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. V {sub LSR} of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies.

  2. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    Science.gov (United States)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  3. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  4. Lithium abundance patterns of late-F stars: an in-depth analysis of the lithium desert

    Science.gov (United States)

    Aguilera-Gómez, Claudia; Ramírez, Iván; Chanamé, Julio

    2018-06-01

    Aims: We address the existence and origin of the lithium (Li) desert, a region in the Li-Teff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods: To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the Teff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert. Results: We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions: Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert). Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A55This paper includes observations collected at The McDonald Observatory and

  5. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  6. European Stars and Stripes

    National Research Council Canada - National Science Library

    Hendricks, Nancy

    1994-01-01

    The European Stars and Stripes (ES&S) organization publishes a daily newspaper, The Stars and Stripes, for DoD personnel stationed in Germany, Italy, the United Kingdom, and other DoD activities in the U.S. European Command...

  7. Nebraska STARS: Achieving Results

    Science.gov (United States)

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  8. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  9. By Draconis Stars

    Science.gov (United States)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  10. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  11. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  12. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  13. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  14. THE COMPLEXITY THAT THE FIRST STARS BROUGHT TO THE UNIVERSE: FRAGILITY OF METAL-ENRICHED GAS IN A RADIATION FIELD

    International Nuclear Information System (INIS)

    Aykutalp, A.; Spaans, M.

    2011-01-01

    The initial mass function (IMF) of the first (Population III) stars and Population II (Pop II) stars is poorly known due to a lack of observations of the period between recombination and reionization. In simulations of the formation of the first stars, it has been shown that, due to the limited ability of metal-free primordial gas to cool, the IMF of the first stars is a few orders of magnitude more massive than the current IMF. The transition from a high-mass IMF of the first stars to a lower-mass current IMF is thus important to understand. To study the underlying physics of this transition, we performed several simulations using the cosmological hydrodynamic adaptive mesh refinement code Enzo for metallicities of 10 -4 , 10 -3 , 10 -2 , and 10 -1 Z sun . In our simulations, we include a star formation prescription that is derived from a metallicity-dependent multi-phase interstellar medium (ISM) structure, an external UV radiation field, and a mechanical feedback algorithm. We also implement cosmic ray heating, photoelectric heating, and gas-dust heating/cooling, and follow the metal enrichment of the ISM. It is found that the interplay between metallicity and UV radiation leads to the coexistence of Pop III and Pop II star formation in non-zero-metallicity (Z/Z sun ≥ 10 -2 ) gas. A cold (T 10 -22 g cm -3 ) gas phase is fragile to ambient UV radiation. In a metal-poor (Z/Z sun ≤ 10 -3 ) gas, the cold and dense gas phase does not form in the presence of a radiation field of F 0 ∼ 10 -5 -10 -4 erg cm -2 s -1 . Therefore, metallicity by itself is not a good indicator of the Pop III-Pop II transition. Metal-rich (Z/Z sun ≥ 10 -2 ) gas dynamically evolves two to three orders of magnitude faster than metal-poor gas (Z/Z sun ≤ 10 -3 ). The simulations including supernova explosions show that pre-enrichment of the halo does not affect the mixing of metals.

  15. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  16. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Science.gov (United States)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  17. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    International Nuclear Information System (INIS)

    Theodorakis, P E; Avgeropoulos, A; Freire, J J; Kosmas, M; Vlahos, C

    2007-01-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results

  18. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    International Nuclear Information System (INIS)

    Thronson, H.A. Jr.; Latter, W.B.; Black, J.H.; Bally, J.; Hacking, P.; Steward Observatory, Tucson, AZ; AT and T Bell Laboratories, Holmdel, NJ; Cornell Univ., Ithaca, NY; California Institute of Technology, Pasadena)

    1987-01-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting carbon stars shows no variation with Galactocentric radius, while the evolved oxygen star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars. 53 references

  19. The Discovery of λ Bootis Stars: The Southern Survey I

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Riggs, Q. S.; Newsome, I. M. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Koen, C. [Department of Statistics, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town (South Africa); Murphy, S. J. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ, 85721-0065 (United States); Cheng, K.-P. [California State University, Fullerton, Fullerton, CA (United States); Neff, J. E. [National Science Foundation, Arlington, VA (United States)

    2017-07-01

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μ m. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μ m.

  20. The Discovery of λ Bootis Stars: The Southern Survey I

    International Nuclear Information System (INIS)

    Gray, R. O.; Riggs, Q. S.; Newsome, I. M.; Koen, C.; Murphy, S. J.; Corbally, C. J.; Cheng, K.-P.; Neff, J. E.

    2017-01-01

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μ m. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μ m.

  1. The Discovery of λ Bootis Stars: The Southern Survey I

    Science.gov (United States)

    Gray, R. O.; Riggs, Q. S.; Koen, C.; Murphy, S. J.; Newsome, I. M.; Corbally, C. J.; Cheng, K.-P.; Neff, J. E.

    2017-07-01

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μm. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μm.

  2. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    Energy Technology Data Exchange (ETDEWEB)

    Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122, Padova (Italy)

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  3. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  4. A New Test of Copper and Zinc Abundances in Late-type Stars Using Ultraviolet Cu II and Zn II Lines

    Science.gov (United States)

    Roederer, Ian U.; Barklem, Paul S.

    2018-04-01

    We present new abundances derived from Cu I, Cu II, Zn I, and Zn II lines in six warm (5766 ≤ {T}eff} ≤ 6427 K), metal-poor (‑2.50 ≤ [Fe/H] ≤ ‑0.95) dwarf and subgiant (3.64 ≤ log g ≤ 4.44) stars. These abundances are derived from archival high-resolution ultraviolet spectra from the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and ground-based optical spectra from several observatories. Ionized Cu and Zn are the majority species, and abundances derived from Cu II and Zn II lines should be largely insensitive to departures from local thermodynamic equilibrium (LTE). We find good agreement between the [Zn/H] ratios derived separately from Zn I and Zn II lines, suggesting that departures from LTE are, at most, minimal (≲0.1 dex). We find that the [Cu/H] ratios derived from Cu II lines are 0.36 ± 0.06 dex larger than those derived from Cu I lines in the most metal-poor stars ([Fe/H] McDonald Observatory of the University of Texas at Austin.

  5. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    OpenAIRE

    McDonald, Iain; Zijlstra, Albert A.; Lagadec, Eric; Sloan, Gregory C.; Boyer, Martha L.; Matsuura, Mikako; Smith, Rowan J.; Smith, Christina L.; Yates, Jeremy A.; van Loon, Jacco Th.; Jones, Olivia C.; Ramstedt, Sofia; Avison, Adam; Justtanont, Kay; Olofsson, Hans

    2015-01-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be similar to 1.2-3.5x10(-7) M-circle dot yr(-1). We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 4...

  6. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    Science.gov (United States)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Making star teams out of star players.

    Science.gov (United States)

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  8. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  9. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1)