WorldWideScience

Sample records for metal-organic frameworks mofs

  1. Metal Organic Frameworks (MOFs)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Molecule Matters - Metal Organic Frameworks (MOFs). R Sarvanakumar S Sankararaman. Feature Article Volume 12 Issue 11 November 2007 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  3. The relevance of metal organic frameworks (MOFs)

    Indian Academy of Sciences (India)

    The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes ...

  4. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  5. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    Science.gov (United States)

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-01-01

    Full Text Available A modulated synthesis of Zr-metal organic framework (Zr-MOF) with improved ease of handling and decreased reaction time is reported to yield highly crystalline Zr-MOF with well-defined octahedral shaped crystals for practical hydrogen storage...

  7. Metal-Organic Frameworks: Building Block Design Strategies for the Synthesis of MOFs.

    KAUST Repository

    Luebke, Ryan

    2014-01-01

    A significant and ongoing challenge in materials chemistry and furthermore solid state chemistry is to design materials with the desired properties and characteristics. The field of Metal-Organic Frameworks (MOFs) offers several strategies

  8. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  9. Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture.

    Science.gov (United States)

    Park, Jeehyun; Oh, Moonhyun

    2017-09-14

    The conjugation of metal-organic frameworks (MOFs) with other materials is an excellent strategy for the production of advanced materials having desired properties and so appropriate applicability. In particular, the integration of MOFs with a flexible paper is expected to form valuable materials in separation technology. Here we report a simple method for the generation of MOF papers through the compact and uniform growth of MOF nanoparticles on the cellulose surface of a carboxymethylated filter paper. The resulting MOF papers show a selective capture ability for negatively charged organic dyes and they can be used for dye separation through simple filtration of a dye solution on the MOF papers. In addition, MOF papers can be reused after a simple washing process without losing their effective dye capture ability.

  10. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)

  11. 2-periodic metal-organic frameworks (MOFs) as supermolecular building layers (SBLs) for making targeted 3-periodic MOFs

    KAUST Repository

    Eddaoudi, Mohamed; Eubank, Jarrod F.

    2015-01-01

    Embodiments of the present disclosure provide for chemical assemblies, multidimensional metal-organic frameworks (MOFs), supermolecular building layers (SBLs), inorganic molecular building blocks (MBBs), organic MBBs (designed ligands), methods of making each, and methods of using each, and the like. In an embodiment, the composition can be used in catalysis, separations, gas storage, and drug delivery.

  12. 2-periodic metal-organic frameworks (MOFs) as supermolecular building layers (SBLs) for making targeted 3-periodic MOFs

    KAUST Repository

    Eddaoudi, Mohamed

    2015-09-22

    Embodiments of the present disclosure provide for chemical assemblies, multidimensional metal-organic frameworks (MOFs), supermolecular building layers (SBLs), inorganic molecular building blocks (MBBs), organic MBBs (designed ligands), methods of making each, and methods of using each, and the like. In an embodiment, the composition can be used in catalysis, separations, gas storage, and drug delivery.

  13. Preparation of value-added metal-organic frameworks (MOFs) using waste PET bottles as source of acid linker

    CSIR Research Space (South Africa)

    Dyosiba, Xoliswa

    2016-12-01

    Full Text Available of Value-added Metal-organic Frameworks (MOFs) Using Waste PET Bottles as Source of Acid Linker Xoliswa Dyosiba, Jianwei Ren, Nicholas M. Musyoka, Henrietta W. Langmi, Mkhulu Mathe, Maurice S. Onyango PII: S2214-9937(16)30053-7 DOI: doi:10.1016/j..., Hen- rietta W. Langmi, Mkhulu Mathe, Maurice S. Onyango, Preparation of Value-added Metal-organic Frameworks (MOFs) Using Waste PET Bottles as Source of Acid Linker, Sustainable Materials and Technologies (2016), doi:10.1016/j.susmat.2016...

  14. Metal organic framework synthesis in the presence of surfactants : Towards hierarchical MOFs?

    NARCIS (Netherlands)

    Seoane, B.; Dikhtiarenko, A.; Mayoral, A.; Tellez, C.; Coronas, J.; Kapteijn, F.; Gascon, J.

    2015-01-01

    The effect of synthesis pH and H2O/EtOH molar ratio on the textural properties of different aluminium trimesate metal organic frameworks (MOFs) prepared in the presence of the well-known cationic surfactant cetyltrimethylammonium bromide (CTAB) at 120 °C was studied with the purpose of obtaining a

  15. Metal Organic Frameworks: Explorations and Design Strategies for MOF Synthesis

    KAUST Repository

    AbdulHalim, Rasha

    2016-11-27

    Metal-Organic Frameworks (MOFs) represent an emerging new class of functional crystalline solid-state materials. In the early discovery of this now rapidly growing class of materials significant challenges were often encountered. However, MOFs today, with its vast structural modularity, reflected by the huge library of the available chemical building blocks, and exceptional controlled porosity, stand as the most promising candidate to address many of the overbearing societal challenges pertaining to energy and environmental sustainability. A variety of design strategies have been enumerated in the literature which rely on the use of predesigned building blocks paving the way towards potentially more predictable structures. The two major design strategies presented in this work are the molecular building block (MBB) and supermolecular building block (SBB) -based approaches for the rationale assembly of functional MOF materials with the desired structural features. In this context, we targeted two highly connected MOF platforms, namely rht-MOF and shp-MOF. These two MOF platforms are classified based on their topology, defined as the underlying connectivity of their respective net, as edge transitive binodal nets; shp being (4,12)-connected net and rht being (3,24)-connected net. These highly connected nets were deliberately targeted due to the limited number of possible nets for connecting their associated basic building units. Two highly porous materials were designed and successfully constructed; namely Y-shp-MOF-5 and rht-MOF-10. The Y-shp-MOF-5 features a phenomenal water stability with an exquisite behavior when exposed to water, positioning this microporous material as the best adsorbent for moisture control applications. The shp-MOF platform proved to be modular to ligand functionalization and thus imparting significant behavioral changes when hydrophilic and hydrophobic functionalized ligands were introduced on the resultant MOF. On the other hand, rht-MOF

  16. Minerals with metal-organic framework structures.

    Science.gov (United States)

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  17. Metal organic frameworks for gas storage

    KAUST Repository

    Alezi, Dalal

    2016-06-09

    Embodiments provide a method of storing a compound using a metal organic framework (MOF). The method includes contacting one or more MOFs with a fluid and sorbing one or more compounds, such as O2 and CH4. O2 and CH4 can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF, wherein M can include aluminum, iron, gallium, indium, vanadium, chromium, titanium, or scandium.

  18. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  19. Theoretical model estimation of guest diffusion in Metal-Organic Frameworks (MOFs)

    KAUST Repository

    Zheng, Bin

    2015-08-11

    Characterizing molecule diffusion in nanoporous matrices is critical to understanding the novel chemical and physical properties of metal-organic frameworks (MOFs). In this paper, we developed a theoretical model to fastly and accurately compute the diffusion rate of guest molecules in a zeolitic imidazolate framework-8 (ZIF-8). The ideal gas or equilibrium solution diffusion model was modified to contain the effect of periodical media via introducing the possibility of guests passing through the framework gate. The only input in our model is the energy barrier of guests passing through the MOF’s gate. Molecular dynamics (MD) methods were employed to gather the guest density profile, which then was used to deduce the energy barrier values. This produced reliable results that require a simulation time of 5 picoseconds, which is much shorter when using pure MD methods (in the billisecond scale) . Also, we used density functional theory (DFT) methods to obtain the energy profile of guests passing through gates, as this does not require specification of a force field for the MOF degrees of freedom. In the DFT calculation, we only considered one gate of MOFs each time; as this greatly reduced the computational cost. Based on the obtained energy barrier values we computed the diffusion rate of alkane and alcohol in ZIF-8 using our model, which was in good agreement with experimental test results and the calculation values from standard MD model. Our model shows the advantage of obtaining accurate diffusion rates for guests in MOFs for a lower computational cost and shorter calculation time. Thus, our analytic model calculation is especially attractive for high-throughput computational screening of the dynamic performance of guests in a framework.

  20. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    Science.gov (United States)

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  1. Influence of metal doping of a MOF-74 framework on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Botas, J.A.; Calleja, G.; Orcajo, M.G. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Energy Technology; Sanchez-Sanchez, M. [CSIC, Madrid (Spain). Inst. de Catalisis y Petroleoquimica

    2010-07-01

    Microporous Metal-Organic Framework (MOF) adsorbents are considered an interesting option for hydrogen storage. Due to their porous nature and unusually high surface areas, these materials show an exceptional H{sub 2} uptake. Unfortunately, their interaction with H{sub 2} molecules is weak, so cryogenic temperatures are required to reach competitive H{sub 2} storage capacities. In this sense, the presence of coordinatively unsaturated and exposed metal centers in some MOF frameworks could increase the affinity for H{sub 2} through stronger metal-H{sub 2} interactions. In this preliminary work, the effect of doping a Zn{sup 2+}-MOF-74 framework with Co{sup 2+}, Cu{sup 2+} and Mg{sup 2+} on its adsorption properties for H{sub 2} has been studied. Characterization studies suggest that the samples prepared have actually the MOF-74 structure, in which the different tested heteroatom ions have been successfully incorporated. The differences in H{sub 2} adsorption at 77 K and 87 K between the MOF-74 samples doped with the mentioned divalent metal ions were discussed as a function of their free pore volume and amount of metal incorporation. (orig.)

  2. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    Science.gov (United States)

    Anstoetz, Manuela; Rose, Terry J.; Clark, Malcolm W.; Yee, Lachlan H.; Raymond, Carolyn A.; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha-1). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils. PMID:26633174

  3. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  4. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  5. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  6. Design and synthesis of a water-stable anionic uranium-based metal-organic framework (MOF) with ultra large pores

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Vermeulen, Nicolaas A.; Gong, Xirui; Malliakas, Christos D.; Stoddart, J. Fraser; Hupp, Joseph T. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Farha, Omar K. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry

    2016-08-22

    Ionic metal-organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion-exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water-stable anionic mesoporous MOF based on uranium and featuring tbo-type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO{sub 2} activation, a record-high Brunauer-Emmett-Teller (BET) surface area (2100 m{sup 2} g{sup -1}) for actinide-based MOFs has been obtained. Most importantly, however, this new uranium-based MOF is water-stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules.

  7. Hydrogen storage in metal-organic frameworks: A review

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2014-05-01

    Full Text Available Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong...

  8. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  9. Design and synthesis of a water-stable anionic uranium-based metal-organic framework (MOF) with ultra large pores

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Vermeulen, Nicolaas A.; Gong, Xirui; Malliakas, Christos D.; Stoddart, J. Fraser; Hupp, Joseph T. [Department of Chemistry, Northwestern University, Evanston, IL (United States); Farha, Omar K. [Department of Chemistry, Northwestern University, Evanston, IL (United States); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2016-08-22

    Ionic metal-organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion-exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water-stable anionic mesoporous MOF based on uranium and featuring tbo-type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO{sub 2} activation, a record-high Brunauer-Emmett-Teller (BET) surface area (2100 m{sup 2} g{sup -1}) for actinide-based MOFs has been obtained. Most importantly, however, this new uranium-based MOF is water-stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  11. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Eddaoudi [USF; Zaworotko, Michael [USF; Space, Brian [USF; Eckert, Juergen [USF

    2013-05-08

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  12. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  13. Metal-Organic Frameworks: Building Block Design Strategies for the Synthesis of MOFs.

    KAUST Repository

    Luebke, Ryan

    2014-09-01

    A significant and ongoing challenge in materials chemistry and furthermore solid state chemistry is to design materials with the desired properties and characteristics. The field of Metal-Organic Frameworks (MOFs) offers several strategies to address this challenge and has proven fruitful at allowing some degree of control over the resultant materials synthesized. Several methodologies for synthesis of MOFs have been developed which rely on use of predetermined building blocks. The work presented herein is focused on the utilization of two of these design principles, namely the use of molecular building blocks (MBBs) and supermolecular building blocks (SBBs) to target MOF materials having desired connectivities (topologies). These design strategies also permit the introduction of specific chemical moieties, allowing for modification of the MOFs properties. This research is predominantly focused on two platforms (rht-MOFs and ftw-MOFs) which topologically speaking are edge transitive binodal nets; ftw being a (4,12)-connected net and rht being a (3,24)-connected net. These highly connected nets (at least one node having connectivity greater than eight) have been purposefully targeted to increase the predictability of structural outcome. A general trend in topology is that there is an inverse relationship between the connectivity of the node(s) and the number of topological outcomes. Therefore the key to this research (and to effective use of the SBB and MBB approaches) is identification of conditions which allow for reliable formation of the targeted MBBs and SBBs. In the case of the research presented herein: a 12-connected Group IV or Rare Earth based hexanuclear MBB and a 24-connected transition metal based SBB were successfully targeted and synthesized. These two synthetic platforms will be presented and used as examples of how these design methods have been (and can be further) utilized to modify existing materials or develop new materials for gas storage and

  14. Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules

    NARCIS (Netherlands)

    Das, M. C.; Guo, Q.; He, Y.; Kim, J.; Zhao, C.-G.; Hong, K.; Xiang, S.; Zhang, Z.; Thomas, K. M.; Krishna, R.; Chen, B.

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M′MOFs) have been synthesized and structurally characterized. The pores within these M′MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly

  15. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  16. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    Science.gov (United States)

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  17. Metal organic frameworks for gas storage

    KAUST Repository

    Alezi, Dalal; Belmabkhout, Youssef; Eddaoudi, Mohamed

    2016-01-01

    Embodiments provide a method of storing a compound using a metal organic framework (MOF). The method includes contacting one or more MOFs with a fluid and sorbing one or more compounds, such as O2 and CH4. O2 and CH4 can be sorbed simultaneously

  18. Metal-organic frameworks in chromatography.

    Science.gov (United States)

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Supercapacitors of nanocrystalline metal-organic frameworks.

    Science.gov (United States)

    Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Zhang, Yue-Biao; Kang, Jeung Ku; Yaghi, Omar M

    2014-07-22

    The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

  20. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    Science.gov (United States)

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  1. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-01-01

    are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due

  2. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: leiw@buaa.edu.cn; Wang, Cong, E-mail: congwang@buaa.edu.cn; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-06-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  3. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Cong; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-01-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  4. Liquid metal-organic frameworks

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  5. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  6. Nanomaterials derived from metal-organic frameworks

    Science.gov (United States)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  7. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    Science.gov (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  8. Morphology and adsorption of chromium ion on uranium 1,2,4,5-benzenetetracarboxylic acid metal organic framework (MOF

    Directory of Open Access Journals (Sweden)

    Vala Remy M.K.

    2016-01-01

    Full Text Available In this paper, we report the synthesis of metal organic framework of uranium 1,2,4,5-benzene tetracarboxylic acid (U-H4btec MOF by solvothermal method. The obtained MOF was characterized by Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, Energy dispersive spectroscopy (EDS, thermogravimetric and differential thermogravimetric analysis (TGA/DTA. The morphology of the uranium 1,2,4,5-benzene tetracarboxylic acid MOF observed by SEM, revealed the presence of flaky porous structure. Adsorption of Cr3+ from aqueous solution onto the uranium 1,2,4,5-benzene tetracarboxylic acid MOF was systematically studied. Langmuir and Freundlich adsorption isotherms were applied to determine the adsorption capacity of the MOF to form a monolayer. Kinetic determination of the adsorption of Cr3+ suggested both chemisorption and physisorption probably due to the presence of carbonyl groups within the MOF and its porous structure.

  9. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peifu; Hu, Yun Hang

    2016-01-01

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C_2H_2 adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C_2H_2 adsorption on MOFs are consistent with BET surface areas from N_2 adsorption. • C_2H_2 on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C_2H_2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C_2H_2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C_2H_2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C_2H_2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C_2H_2 adsorption on those MOFs.

  10. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xianglin [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074 (China); Toh, Yong Siang [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Zhao, Jun [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Nie, Lina [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi; Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Li, Dongsheng [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) have been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.

  11. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    International Nuclear Information System (INIS)

    Yu, Xianglin; Toh, Yong Siang; Zhao, Jun; Nie, Lina; Ye, Kaiqi; Wang, Yue; Li, Dongsheng; Zhang, Qichun

    2015-01-01

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA)_3[Co_3(BTC)_3] (NTU-Z33) and (HTEA)[Co_3(HBTC)_2(BTC)] (NTU-Z34) (H_3BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co_3(COO)_9] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) have been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.

  12. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-03

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  13. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef

    2016-01-01

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  14. Increasing the Stability of Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Mathieu Bosch

    2014-01-01

    Full Text Available Metal-organic frameworks (MOFs are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapse upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.

  15. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    Science.gov (United States)

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  16. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peifu; Hu, Yun Hang, E-mail: yunhangh@mtu.edu

    2016-07-30

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C{sub 2}H{sub 2} adsorption on MOFs are consistent with BET surface areas from N{sub 2} adsorption. • C{sub 2}H{sub 2} on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C{sub 2}H{sub 2}) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C{sub 2}H{sub 2} adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C{sub 2}H{sub 2} adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C{sub 2}H{sub 2} adsorption on those MOFs.

  17. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  18. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Alistair C. McKinlay

    2014-12-01

    Full Text Available The highly porous nature of metal-organic frameworks (MOFs offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  19. Tunable photoluminescent metal-organic-frameworks and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Rohwer, Lauren E.S.

    2017-08-22

    The present disclosure is directed to new photoluminescent metal-organic frameworks (MOFs). The newly developed MOFs include either non rare earth element (REE) transition metal atoms or limited concentrations of REE atoms, including: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Ru, Ag, Cd, Sn, Sb, Ir, Pb, Bi, that are located in the MOF framework in site isolated locations, and have emission colors ranging from white to red, depending on the metal concentration levels and/or choice of ligand.

  20. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis.

    Science.gov (United States)

    Wang, Xuan; Ye, Nengsheng

    2017-12-01

    In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF- or COF-based solid-phase extraction (SPE), solid-phase microextraction (SPME), gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    Science.gov (United States)

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    Science.gov (United States)

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  4. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Eddaoudi, Mohamed; Bhatt, Prashant M.

    2017-01-01

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  5. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja

    2017-05-04

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  6. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    Science.gov (United States)

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  7. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  8. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-free Metal-Organic Framework Composite Membrane

    KAUST Repository

    Barankova, Eva

    2017-02-06

    Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating polythiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.

  9. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks

    KAUST Repository

    Feng, Liang

    2018-01-18

    Sufficient pore size, appropriate stability and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization and catalysis involving large molecules. Herein, we report a powerful and general strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxyla-tion process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultra-small metal oxide (MO) nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid catalyzed reactions. Most importantly, this work pro-vides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on prob-ing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  10. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  11. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  12. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    Science.gov (United States)

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  13. The relevance of metal organic frameworks (MOFs) in inorganic ...

    Indian Academy of Sciences (India)

    nal design.3 The assemblage of the many components in a MOF structure ... in a short span of time. This approach .... single-crystal to-single-crystal (SCSC) transformation ..... The exchanges through the carboxylate bridges linking the metal ...

  14. Applications of Total Scattering & Pair Distribution Function Analysis in Metal-Organic Framework Materials

    DEFF Research Database (Denmark)

    Xu, Hui; Birgisson, Steinar; Sommer, Sanna

    structure. At the same time, there is an ongoing debate on whether the SBU is present prior, or during MOF crystallization in MOF chemistry. However, little is known about MOFs formation mechanism. Currently techniques to study the in situ MOF formation process mainly focused on after......-crystallization process, for example in situ XRD and SAXS/WAXS study on MOF formation. However, the pre-crystallization process in the early stage of MOF formation is still unexplored. In this project, total scattering and PDF study will be carried out to explore the MOF formation process in early stage. This includes......Metal-Organic Frameworks (MOFs) is constructed by metal-oxide nodes and organic ligands. The formation of different structures of metal-oxide nodes (also called secondary building units, SBU) is crucial for MOF final structures, because the connectivity of SBU greatly influence the final MOF...

  15. Metal organic framework MIL-101 for radioiodine capture and storage

    Science.gov (United States)

    Assaad, Thaer; Assfour, Bassem

    2017-09-01

    we report on the use of metal organic frameworks(MOFs) for radioiodine recovery and storage. One MOF (namely MIL-101) was prepared and investigated in detail to demonstrate the iodine removal efficiency and capacity of MOFs. The typical sorption kinetics and uptake isotherms were measured using radioactive iodine (123 I) for the first time. Our measurements indicate that MOFs can capture and store radioiodine in very high efficiency and fast kinetics.

  16. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    Science.gov (United States)

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  17. Understanding Hydrogen Sorption in In- soc -MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions

    KAUST Repository

    Pham, Tony

    2015-03-04

    © 2015 American Chemical Society. Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in In-soc-MOF, a charged metal-organic framework (MOF) that contains In3O trimers coordinated to 5,5′-azobis(1,3-benzenedicarboxylate) linkers. The MOF contains nitrate counterions that are located in carcerand-like capsules of the framework. This MOF was shown to have a high hydrogen uptake at 77 K and 1.0 atm. The simulations were performed with a potential that includes explicit many-body polarization interactions, which were important for modeling gas sorption in a charged/polar MOF such as In-soc-MOF. The simulated hydrogen sorption isotherms were in good agreement with experiment in this challenging platform for modeling. The simulations predict a high initial isosteric heat of adsorption, Qst, value of about 8.5 kJ mol-1, which is in contrast to the experimental value of 6.5 kJ mol-1 for all loadings. The difference in the Qst behavior between experiment and simulation is attributed to the fact that, in experimental measurements, the sorbate molecules cannot access the isolated cages containing the nitrate ions, the most energetically favorable site in the MOF, at low pressures due to an observed diffusion barrier. In contrast, the simulations were able to capture the sorption of hydrogen onto the nitrate ions at low loading due to the equilibrium nature of GCMC simulations. The experimental Qst values were reproduced in simulation by blocking access to all of the nitrate ions in the MOF. Furthermore, at 77 K, the sorbed hydrogen molecules were reminiscent of a dense fluid in In-soc-MOF starting at approximately 5.0 atm, and this was verified by monitoring the isothermal compressibility, βT, values. The favorable sites for hydrogen sorption were identified from the polarization distribution as the nitrate ions, the In3O trimers, and the azobenzene nitrogen atoms. Lastly, the two-dimensional quantum rotational levels

  18. Light-enhanced acid catalysis over a metal-organic framework.

    Science.gov (United States)

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  19. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Science.gov (United States)

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  20. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  1. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.

    Science.gov (United States)

    Mjejri, Issam; Doherty, Cara M; Rubio-Martinez, Marta; Drisko, Glenna L; Rougier, Aline

    2017-11-22

    Devices displaying controllably tunable optical properties through an applied voltage are attractive for smart glass, mirrors, and displays. Electrochromic material development aims to decrease power consumption while increasing the variety of attainable colors, their brilliance, and their longevity. We report the first electrochromic device constructed from metal organic frameworks (MOFs). Two MOF films, HKUST-1 and ZnMOF-74, are assembled so that the oxidation of one corresponds to the reduction of the other, allowing the two sides of the device to simultaneously change color. These MOF films exhibit cycling stability unrivaled by other MOFs and a significant optical contrast in a lithium-based electrolyte. HKUST-1 reversibly changed from bright blue to light blue and ZnMOF-74 from yellow to brown. The electrochromic device associates the two MOF films via a PMMA-lithium based electrolyte membrane. The color-switching of these MOFs does not arise from an organic-linker redox reaction, signaling unexplored possibilities for electrochromic MOF-based materials.

  3. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-01-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good

  4. Synthesis and Characterization of Metal-Organic Frameworks (MOFs) for Photon Collection and Energy Transfer

    Science.gov (United States)

    So, Monica C.

    . To address problem (a), we incorporated antenna molecules (i.e. perylene diimides) to expand light collection and then transfer energy to the primary chromophores. To address problem (b), we observed that excitons can achieve up to 2,025 hops in a porphyrin-based metal-organic framework (MOF) single crystal within its 3 ns lifetime. By precisely aligning the chromophores in the MOF, we showed that long-distance exciton transport (i.e. ultra-fast, sequential hopping) was consistent with the well-established Forster theory. To address problems (c) and (d), we introduced MOF components one step at a time to optimize optical path length and crystal-thickness. This allowed us to incorporate MOFs (normally bulk crystals) into a MOF film. The approach exploited both MOF chemistry and layer-by-layer (LbL) assembly of crystalline MOFs in a highly controlled fashion on functional surfaces. We also incorporated good light-harvesting molecules as struts in MOFs to increase the visible absorption. Designing MOF-based OPVs can provide insight into solar energy conversion. This can potentially lead to much higher efficiencies, based on the simultaneous resolution of the four challenges hindering OPV performance.

  5. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  6. The Functionalization, Size Control and Properties of Metal-Organic Frameworks

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    Recent years, Metal-Organic Framework (MOF) materials have drawn great attentions due to their potential applications in gas sorption/separation and luminescent sensing. In this dissertation, the recent progress of MOF materials is reviewed, with specific focus on the functionalization, size....... A nanoscale MOF material with controllable size was realized whose morphology has been simulated base on the BFDH method, and the sensing of bacteria endospores was research in detail. We also report the synthesis and sensing of nitroaromatic explosives of a nanoscale MOF material....

  7. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of ultrasound on properties of ni-metal organic framework nanostructures

    Directory of Open Access Journals (Sweden)

    Abbas Pardakhty

    2016-10-01

    Full Text Available Objective(s: According to the unique properties of magnetic nanoparticles, Nickel Metal-Organic Frameworks (MOF was synthesized successfully by ultrasound irradiation. Metal-organic frameworks (MOFs are organic–inorganic hybrid extended networks that are constructed via covalent linkages between metal ions/metal clusters and organic ligands called a linker. Materials and Methods: The nanoparticles were synthesized by Ultrasound  Method Under a synthesis conditions, All chemicals were used as received without further purification. Scanning electron microscopy (SEM images were obtained on LEO- 1455VP equipped with an energy dispersive X-ray spectroscopy at university of Kashan in Iran. Transition electron microscopy (TEM images were obtained on EM208 Philips transmission electron microscope with an accelerating voltage of 200 kV. Results: Results showed that Ni-MOF synthesized by this method, had smaller particle size distribution and It was found that the different kinds of ligand leads to preparation products with different morphologies and textural properties. Moreover, ultrasound irradiation method has significant effect on microstructures of as-synthesized MOFs and can improve their textural properties compared to method without using hydrothermal route.The XRD patterns of the samples obtained from ultrasound irradiation was well matched with that of as-prepared Ni-MOF by solvothermal method. Conclusion: This rapid method of ultrasonic radiation as compared to the classical solvothermal synthesis, showed promising results in terms of size distribution, surface area, pore diameter and pore volume.

  9. Construction of hierarchically porous metal-organic frameworks through linker labilization

    Science.gov (United States)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  10. A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency

    International Nuclear Information System (INIS)

    Liu, Shuqin; Xie, Lijun; Hu, Qingkun; Yang, Huangsheng; Pan, Guanrui; Zhu, Fang; Yang, Shenghong; Ouyang, Gangfeng

    2017-01-01

    This study presents the preparation and the characterizations of six tri-metal centered metal-organic frameworks (tM-MOFs) as solid-phase microextraction (SPME) adsorbents. Possessing different proportions of Al, Ga and In atoms in their frameworks, the tM-MOF-based SPME coatings exhibited different extraction performance towards the organic pollutants. Extraction results showed that the M4 (Al 0.593 Ga 0.167 In 0.240 (O 2 C 2 H 4 )(h 2 fipbb)) coating exhibited the best enrichment ability among six tM-MOFs. In addition, it showed better extraction efficiency towards the analytes than three single-metal centered MOFs coatings and a commercial polydimethylsiloxane (PDMS) coating. The adsorption process of the M4 coating was physical adsorption and it was mainly affected by the diffusion process of the compound from the sample to the material, which is the same with the adsorption processes of the single-metal centered MOFs coatings. Under optimal conditions (extraction time, 3 min; NaCl concentration, 25% (w/v); desorption temperature, 270 °C; extraction temperature, 30 °C), the M4 coating achieved low detection limits (0.13–0.88 ng L −1 ) and good linearity (5–2000 and 5–5000 ng L −1 ) for benzene series compounds. The repeatabilities (n = 5) for single fiber were between 4.3 and 8.1%, while the reproducibilities (n = 3) of fiber-to-fiber were in the range of 7.9–12.7%. Finally, a M4 coated SPME fiber was successfully applied to the analysis of environmental water samples with satisfactory recoveries (80.8%–119.5%). - Highlights: • Six tri-metal centered metal-organic frameworks were synthesized and characterized. • Novel SPME fibers were fabricated with silicone sealant film and tri-metal centered metal-organic frameworks crystals. • The self-made fiber exhibited excellent extraction performance to organic pollutants. • The self-made fiber was used for analysis of benzene series compounds in environmental water samples.

  11. A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal-Organic Framework Materials HKUST-1 and Cu-MOF-2.

    Science.gov (United States)

    Kim, Hong Ki; Yun, Won Seok; Kim, Min-Bum; Kim, Jeung Yoon; Bae, Youn-Sang; Lee, JaeDong; Jeong, Nak Cheon

    2015-08-12

    Open coordination sites (OCSs) in metal-organic frameworks (MOFs) often function as key factors in the potential applications of MOFs, such as gas separation, gas sorption, and catalysis. For these applications, the activation process to remove the solvent molecules coordinated at the OCSs is an essential step that must be performed prior to use of the MOFs. To date, the thermal method performed by applying heat and vacuum has been the only method for such activation. In this report, we demonstrate that methylene chloride (MC) itself can perform the activation role: this process can serve as an alternative "chemical route" for the activation that does not require applying heat. To the best of our knowledge, no previous study has demonstrated this function of MC, although MC has been popularly used in the pretreatment step prior to the thermal activation process. On the basis of a Raman study, we propose a plausible mechanism for the chemical activation, in which the function of MC is possibly due to its coordination with the Cu(2+) center and subsequent spontaneous decoordination. Using HKUST-1 film, we further demonstrate that this chemical activation route is highly suitable for activating large-area MOF films.

  12. Catalysis by metal-organic frameworks: fundamentals and opportunities.

    Science.gov (United States)

    Ranocchiari, Marco; van Bokhoven, Jeroen Anton

    2011-04-14

    Crystalline porous materials are extremely important for developing catalytic systems with high scientific and industrial impact. Metal-organic frameworks (MOFs) show unique potential that still has to be fully exploited. This perspective summarizes the properties of MOFs with the aim to understand what are possible approaches to catalysis with these materials. We categorize three classes of MOF catalysts: (1) those with active site on the framework, (2) those with encapsulated active species, and (3) those with active sites attached through post-synthetic modification. We identify the tunable porosity, the ability to fine tune the structure of the active site and its environment, the presence of multiple active sites, and the opportunity to synthesize structures in which key-lock bonding of substrates occurs as the characteristics that distinguish MOFs from other materials. We experience a unique opportunity to imagine and design heterogeneous catalysts, which might catalyze reactions previously thought impossible.

  13. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from the exhaust gas, contacting the separated CO2 with one or more of a second MOF composition sufficient to store the CO2 and wherein the one or more first MOF composition comprises one or more SIFSIX-n-M MOF and wherein M is a metal and n is 2 or 3. Embodiments also describe an apparatus or system for capturing and storing CO2 onboard a vehicle.

  14. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  15. Text Mining Metal-Organic Framework Papers.

    Science.gov (United States)

    Park, Sanghoon; Kim, Baekjun; Choi, Sihoon; Boyd, Peter G; Smit, Berend; Kim, Jihan

    2018-02-26

    We have developed a simple text mining algorithm that allows us to identify surface area and pore volumes of metal-organic frameworks (MOFs) using manuscript html files as inputs. The algorithm searches for common units (e.g., m 2 /g, cm 3 /g) associated with these two quantities to facilitate the search. From the sample set data of over 200 MOFs, the algorithm managed to identify 90% and 88.8% of the correct surface area and pore volume values. Further application to a test set of randomly chosen MOF html files yielded 73.2% and 85.1% accuracies for the two respective quantities. Most of the errors stem from unorthodox sentence structures that made it difficult to identify the correct data as well as bolded notations of MOFs (e.g., 1a) that made it difficult identify its real name. These types of tools will become useful when it comes to discovering structure-property relationships among MOFs as well as collecting a large set of data for references.

  16. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

    Directory of Open Access Journals (Sweden)

    Hikaru Iwami

    2017-01-01

    Full Text Available Lanthanoid metal-organic frameworks (Ln-MOFs can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III and Tb(III ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB as a ligand, two new Ln-MOFs, [Dy(TATB(DMF2] (1 and [Tb(TATB(DMF2] (2, were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets.

  17. Synthesis of metal-organic framework films by pore diffusion method

    Science.gov (United States)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  18. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

    Science.gov (United States)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida

    2016-04-01

    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  19. Expanded Organic Building Units for the Construction of Highly Porous Metal-Organic Frameworks

    NARCIS (Netherlands)

    Kong, G.Q.; Han, Z.D.; He, Y.; Qu, S.; Zhou, W.; Yildirim, T.; Krishna, R.; Zou, C.; Chen, B.; Wu, C.D.

    2013-01-01

    wo new organic building units that contain dicarboxylate sites for their self-assembly with paddlewheel [Cu2(CO2)4] units have been successfully developed to construct two isoreticular porous metal-organic frameworks (MOFs), ZJU-35 and ZJU-36, which have the same tbo topologies (Reticular Chemistry

  20. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  1. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    Science.gov (United States)

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  3. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  4. Antifungal activity of water-stable copper-containing metal-organic frameworks

    Science.gov (United States)

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn; Sawangphruk, Montree

    2017-10-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries.

  5. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks

    KAUST Repository

    Guillerm, Vincent

    2014-06-29

    Metal-organic frameworks (MOFs) are a promising class of porous materials because it is possible to mutually control their porous structure, composition and functionality. However, it is still a challenge to predict the network topology of such framework materials prior to their synthesis. Here we use a new rare earth (RE) nonanuclear carboxylate-based cluster as an 18-connected molecular building block to form a gea-MOF (gea-MOF-1) based on a (3,18)-connected net. We then utilized this gea net as a blueprint to design and assemble another MOF (gea-MOF-2). In gea-MOF-2, the 18-connected RE clusters are replaced by metal-organic polyhedra, peripherally functionalized so as to have the same connectivity as the RE clusters. These metal-organic polyhedra act as supermolecular building blocks when they form gea-MOF-2. The discovery of a (3,18)-connected MOF followed by deliberate transposition of its topology to a predesigned second MOF with a different chemical system validates the prospective rational design of MOFs. © 2014 Macmillan Publishers Limited. All rights reserved.

  6. Nanosheets of Nonlayered Aluminum Metal-Organic Frameworks through a Surfactant-Assisted Method

    KAUST Repository

    Pustovarenko, Alexey

    2018-05-18

    During the last decade, the synthesis and application of metal-organic framework (MOF) nanosheets has received growing interest, showing unique performances for different technological applications. Despite the potential of this type of nanolamellar materials, the synthetic routes developed so far are restricted to MOFs possessing layered structures, limiting further development in this field. Here, a bottom-up surfactant-assisted synthetic approach is presented for the fabrication of nanosheets of various nonlayered MOFs, broadening the scope of MOF nanosheets application. Surfactant-assisted preorganization of the metallic precursor prior to MOF synthesis enables the manufacture of nonlayered Al-containing MOF lamellae. These MOF nanosheets are shown to exhibit a superior performance over other crystal morphologies for both chemical sensing and gas separation. As revealed by electron microscopy and diffraction, this superior performance arises from the shorter diffusion pathway in the MOF nanosheets, whose 1D channels are oriented along the shortest particle dimension.

  7. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations

    Science.gov (United States)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.

    2008-07-01

    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  8. Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Walton, Krista S.; Sholl, David S.

    2012-01-01

    is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster......Understanding the adsorption and mobility of metal–organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density...... functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au8, Pd8, and Au4Pd4 we find that the organic part of the MOF...

  9. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.

    Science.gov (United States)

    Yin, Zheng; Zhou, Yan-Ling; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2015-03-28

    The research on metal-organic frameworks (MOFs) has been developing at an extraordinary pace in its two decades of existence, as judged by the exponential growth of novel structures and the constant expansion of its applicability and research scope. A major part of the research and its success are due to the vital role of the concept of mixed organic ligands in the design, tuning and functions. This perspective, therefore, reviews the recent advances in MOFs based on this concept, which is generally based on employing a small polydentate ligand (here labelled as "nodal ligand") to form either clusters, rods or layers, which are then connected by a second ditopic linker ligand to form the framework. The structures of the materials can be grouped into the following three categories: layer-spacer (usually known as pillared-layer), rod-spacer, and cluster-spacer based MOFs. Depending on the size and geometry of the spacer ligands, interpenetrations of frameworks are occasionally found. These MOFs show a wide range of properties such as (a) crystal-to-crystal transformations upon solvent modifications, post-synthetic metal exchange or ligand reactions, (b) gas sorption, solvent selectivity and purification, (c) specific catalysis, (d) optical properties including colour change, luminescence, non-linear optic, (e) short- and long range magnetic ordering, metamagnetism and reversible ground-state modifications and (f) drug and iodine carriers with controlled release. In the following, we will highlight the importance of the above concept in the design, tuning, and functions of a selection of existing MOFs having mixed organic ligands and their associated structures and properties. The results obtained so far using this concept look very promising for fine-tuning the pore size and shape for selective adsorption and specificity in catalytic reactions, which appears to be one way to propel the advances in the application and commercialization of MOFs.

  11. A high rotational barrier for physisorbed hydrogen in an fcu-metal-organic framework

    KAUST Repository

    Pham, Tony T.; Forrest, Katherine A.; Georgiev, Peter A L; Lohstroh, Wiebke; Xue, Dongxu; Hogan, Adam; Eddaoudi, Mohamed; Space, Brian; Eckert, Juergen

    2014-01-01

    A combined inelastic neutron scattering (INS) and theoretical study of H2 sorption in Y-FTZB, a recently reported metal-organic framework (MOF) with fcu topology, reveals that the strongest binding site in the MOF causes a high barrier to rotation on the sorbed H2. This rotational barrier for H2 is the highest yet of reported MOF materials based on physisorption. This journal is

  12. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Univ. of New Mexico, Albuquerque, NM (United States); Xiang, Guolei [Univ. of Cambridge (United Kingdom); Shang, Jin [Univ. of Hong Kong (China); Guo, Jimin [Univ. of New Mexico, Albuquerque, NM (United States); Motevalli, Benyamin [Monash Univ., Clayton, VIC (Australia); Durfee, Paul [Univ. of New Mexico, Albuquerque, NM (United States); Agola, Jacob Ongudi [Univ. of New Mexico, Albuquerque, NM (United States); Coker, Eric N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-22

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

  13. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  14. Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids

    DEFF Research Database (Denmark)

    Bennett, T.D.; Tan, J.C.; Yue, Yuanzheng

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship betwee...

  15. Structural versatility of Metal-organic frameworks: Synthesis and Characterization

    KAUST Repository

    Alsadun, Norah S.

    2017-05-01

    Metal-Organic Frameworks (MOFs), an emerging class of porous crystalline materials, have shown promising properties for diverse applications such as catalysis, gas storage and separation. The high degree of tunability of MOFs vs other solid materials enable the assembly of advanced materials with fascinating properties for specific applications. Nevertheless, the precise control in the construction of MOFs at the molecular level remains challenging. Particularly, the formation of pre-targeted multi-nuclear Molecular Building Block (MBB) precursors to unveil materials with targeted structural characteristics is captivating. The aim of my master project in the continuous quest of the group of Prof. Eddaoudi in exploring different synthetic pathways to control the assembly of Rare Earth (RE) based MOF. After giving a general overview about MOFs, I will discuss in this thesis the results of my work on the use of tri-topic oriented organic carboxylate building units with the aim to explore the assembly/construction of new porous RE based MOFs. In chapter 2 will discuss the assembly of 3-c linkers with RE metals was then evaluated based on symmetry and angularity of the three connected linkers. The focus of chapter 3 is cerium based MOFs and heterometallic system, based on 3-c ligands with different length and symmetry. Overall, the incompatibility of 3-c ligands with the 12-c cuo MBB did not allow to any formation of higher neuclearity (˃6), but it has resulted in affecting the connectivity of the cluster.

  16. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    Science.gov (United States)

    Cheng, Peifu; Hu, Yun Hang

    2016-07-01

    Acetylene (C2H2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C2H2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C2H2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C2H2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C2H2 adsorption on those MOFs.

  17. Sonochemical Synthesis of Photoluminescent Nanoscale Eu(III-Containing Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Cheng-an TAO

    2015-11-01

    Full Text Available Nanoscale lanthanide-containing metal-organic frameworks (MOFs have more and more interest due to their great properties and potential applications, but how to construct them easily is still challenging. Here, we present a facile and rapid synthesis of Eu(III-containing Nanoscale MOF (denoted as NMOF under ultrasonic irradiation. The effect of the ratio and the addition order of metal ions and linkers on the morphology and size of MOFs was investigated. It is found that both of the ratio and the addition order can affect the morphology and size of 1.4-benzenedicarboxylic acid(H2BDC -based MOFs, but they show no evident influence on that of H2aBDC-based MOFs. The former exhibit typical emission bands of Eu(III ions, while the latter only show the photoluminescent properties of ligands.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9695

  18. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal

    2017-01-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials

  19. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  20. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  1. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  2. Nano-architecture of metal-organic frameworks

    Science.gov (United States)

    Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.

    2017-09-01

    Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.

  3. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis.

    Science.gov (United States)

    Liu, Wan-Ling; Yang, Ni-Shin; Chen, Ya-Ting; Lirio, Stephen; Wu, Cheng-You; Lin, Chia-Her; Huang, Hsi-Ya

    2015-01-02

    A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase-supported metal-organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Degradation of Paraoxon and the Chemical Warfare Agents VX, Tabun, and Soman by the Metal-Organic Frameworks UiO-66-NH2, MOF-808, NU-1000, and PCN-777

    NARCIS (Netherlands)

    Koning, M.C. de; Grol, M. van; Breijaert, T.

    2017-01-01

    In recent years, Zr-based metal-organic frameworks (MOFs) have been developed that facilitate catalytic degradation of toxic organophosphate agents, such as chemical warfare agents (CWAs). Because of strict regulations, experiments using live agents are not possible for most laboratories and, as a

  5. Loading of Two Related Metal-Organic Frameworks (MOFs, [Cu2(bdc2(dabco] and [Cu2(ndc2(dabco], with Ferrocene

    Directory of Open Access Journals (Sweden)

    Wolfgang Wenzel

    2011-09-01

    Full Text Available We have studied the loading of two related, similar porous metal-organic frameworks (MOFs [Cu2(bdc2(dabco] (1, and [Cu2(ndc2(dabco] (2 with ferrocene by exposing bulk powder samples to the corresponding vapor. On the basis of powder X-ray diffraction data and molecular dynamics (MD calculations we propose that each pore can store one ferrocene molecule. Despite the rather pronounced similarity of the two MOFs a quite different behavior is observed, for 1 loading with ferrocene leads to an anisotropic 1% contraction, whereas for 2 no deformation is observed. Mössbauer spectroscopy studies reveal that the Fe oxidation level remains unchanged during the process. Time dependent studies reveal that the diffusion constant governing the loading from the gas-phase for 1 is approximately three times larger than the value for 2.

  6. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    Science.gov (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  7. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    Science.gov (United States)

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.

    Science.gov (United States)

    Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda

    2017-07-21

    Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    Science.gov (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef; Shekhah, Osama

    2016-01-01

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from

  11. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    Science.gov (United States)

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  12. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  13. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release.

    Science.gov (United States)

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-08-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future.

  14. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  15. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.

    Science.gov (United States)

    Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T

    2017-04-18

    Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe

  16. Block Copolymer-Templated Approach to Nanopatterned Metal-Organic Framework Films.

    Science.gov (United States)

    Zhou, Meimei; Wu, Yi-Nan; Wu, Baozhen; Yin, Xianpeng; Gao, Ning; Li, Fengting; Li, Guangtao

    2017-08-17

    The fabrication of patterned metal-organic framework (MOF) films with precisely controlled nanoscale resolution has been a fundamental challenge in nanoscience and nanotechnology. In this study, nanopatterned MOF films were fabricated using a layer-by-layer (LBL) growth method on functional templates (such as a bicontinuous nanoporous membrane or a structure with highly long-range-ordered nanoscopic channels parallel to the underlying substrate) generated by the microphase separation of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymers. HKUST-1 can be directly deposited on the templates without any chemical modification because the pyridine groups in P2VP interact with metal ions via metal-BCP complexes. As a result, nanopatterned HKUST-1 films with feature sizes below 50 nm and controllable thicknesses can be fabricated by controlling the number of LBL growth cycles. The proposed fabrication method further extends the applications of MOFs in various fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework.

    Science.gov (United States)

    Chen, Qishui; Sun, Junling; Li, Peng; Hod, Idan; Moghadam, Peyman Z; Kean, Zachary S; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K; Stoddart, J Fraser

    2016-11-02

    We describe the incorporation of a bistable mechanically interlocked molecule (MIM) into a robust Zr-based metal-organic framework (MOF), NU-1000, by employing a post-synthetic functionalization protocol. On average, close to two bistable [2]catenanes can be incorporated per repeating unit of the hexagonal channels of NU-1000. The reversible redox-switching of the bistable [2]catenanes is retained inside the MOF, as evidenced by solid-state UV-vis-NIR reflectance spectroscopy and cyclic voltammetry. This research demonstrates that bistable MIMs are capable of exhibiting robust dynamics inside the nanopores of a MOF.

  18. Metal-directed topological diversity of three fluorescent metal-organic frameworks based on a new tetracarboxylate strut

    KAUST Repository

    Lou, Xinhua

    2013-01-01

    Three d- or p-block metal ions based metal-organic frameworks (MOFs) were isolated by employing a new tetracarboxylate linker, featuring unusual flu, self-interpenetrated lvt and new (3,5)-c topological nets, respectively. Interesting photoluminescent properties of these solid-state materials were also observed. © 2013 The Royal Society of Chemistry.

  19. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Yuan, Gang; Wang, Xin-Long [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2013-02-15

    Three metal-organic frameworks (MOFs), [Co{sub 2}(BPDC){sub 2}(4-BPH){center_dot}3DMF]{sub n} (1), [Cd{sub 2}(BPDC){sub 2}(4-BPH){sub 2}{center_dot}2DMF]{sub n} (2) and [Ni{sub 2}(BDC){sub 2}(3-BPH){sub 2} (H{sub 2}O){center_dot}4DMF]{sub n} (3) (H{sub 2}BPDC=biphenyl-4,4 Prime -dicarboxylic acid, H{sub 2}BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N Prime -dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has 'single-pillared' MOF-5-like motif with inner cage diameters of up to 18.6 A. Framework 2 has 'double pillared' MOF-5-like motif with cage diameters of 19.2 A while 3 has 'double pillared' 8-connected framework with channel diameters of 11.0 A. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework. - Graphical abstract: By insertion of flexible BPH pillars based on 'pillaring' strategy, three metal-organic frameworks are obtained showing that the porous frameworks can be constructed in a much greater variety. Highlights: Black-Right-Pointing-Pointer Frameworks 1 and 2 have MOF-5 like motif. Black-Right-Pointing-Pointer The cube-like cages in 1 and 2 are quite large, comparable to the IRMOF-10. Black-Right-Pointing-Pointer Framework 1 is 'single-pillared' mode while 2 is 'double-pillared' mode. Black-Right-Pointing-Pointer PXRD and gas adsorption analysis show that 3 is a dynamic porous framework.

  20. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    Science.gov (United States)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  1. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.

    Science.gov (United States)

    Chen, Wei; Wu, Chunsheng

    2018-02-13

    Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.

  2. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework.

    Science.gov (United States)

    Xu, Yang; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2015-06-15

    The marriage of metal-organic frameworks (MOFs) and electrochemiluminescence (ECL) can combine their merits together. Designing ECL-active MOF with a high electron transfer capacity and high stability is critical for ECL emission. Here we reported the ECL from a redox-active MOF prepared from {Ru[4,4'-(HO2C)2-bpy]2bpy}(2+) and Zn(2+); a property of MOFs has not been reported previously. The MOF structure is independent of its charge and is therefore stable electrochemically. The redox-activity and well-ordered porous structure of the MOF were confirmed by its electrochemical properties and ECL emission. The high ECL emission indicated the ease of electron transfer between the MOF and co-reactants. Furthermore, the MOF exhibited permselectivity, charge selectivity, and catalytic selectivity along with a stable and concentration-dependent ECL emission toward co-reactants. ECL mechanism was proposed based on the results. The detection and recovery of cocaine in the serum sample was used to validate the feasibility of MOF- based ECL system. The information obtained in this study provides a better understanding of the redox properties of MOFs and their potential electrochemical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    Science.gov (United States)

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  4. Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Sholl, David S.

    2012-01-01

    Metal organic frameworks (MOFs) have experimentally been demonstrated to be capable of supporting isolated transition-metal clusters, but the stability of these clusters with respect to aggregation is unclear. In this letter we use a genetic algorithm together with density functional theory...... calculations to predict the structure of Pd clusters in UiO-66. The cluster sizes examined are far larger than those in any previous modeling studies of metal clusters in MOFs and allow us to test the hypothesis that the physically separated cavities in UiO-66 could stabilize isolated Pd clusters. Our...... calculations show that Pd clusters in UiO-66 are, at best, metastable and will aggregate into connected pore filling structures at equilibrium....

  5. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    Science.gov (United States)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  6. Mechanistic Insights into Growth of Surface-Mounted Metal-Organic Framework Films Resolved by Infrared (Nano-) Spectroscopy

    NARCIS (Netherlands)

    Delen, Guusje; Ristanovic, Zoran; Mandemaker, Laurens D. B.; Weckhuysen, Bert M.

    2018-01-01

    Control over assembly, orientation, and defect-free growth of metal-organic framework (MOF) films is crucial for their future applications. A layer-by-layer approach is considered a suitable method to synthesize highly oriented films of numerous MOF topologies, but the initial stages of the film

  7. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    International Nuclear Information System (INIS)

    Qiu Lingguang; Gu Lina; Hu Gang; Zhang Lide

    2009-01-01

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen) 2 (H 2 O) 2 ] 2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M 1 (H 2 O) 6 ].[M 2 (phen) 2 (H 2 O) 2 ] 2 .2(BTC).xH 2 O (M 1 , M 2 =Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit

  8. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    Science.gov (United States)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  9. A rare earth-based metal-organic framework for moisture removal and control in confined spaces

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-13

    A method for preparing a metal-organic framework (MOF) comprising contacting one or more of a rare earth metal ion component with one or more of a tetratopic ligand component, sufficient to form a rare earth-based MOF for controlling moisture in an environment. A method of moisture control in an environment comprising adsorbing and/or desorbing water vapor in an environment using a MOF, the MOF including one or more of a rare earth metal ion component and one or more of a tetratopic ligand component. A method of controlling moisture in an environment comprising sensing the relative humidity in the environment comprising a MOF; and adsorbing water vapor on the MOF if the relative humidity is above a first level, sufficient to control moisture in an environment. The examples relate to a MOF created from 1,2,4,5-Tetrakis(4-carboxyphenyl )benzene (BTEB) as tetratopic ligand, 2-fluorobenzoic acid and Y(NO3)3, Tb(NO3)3 and Yb(NO3)3 as rare earth metals.

  10. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    Science.gov (United States)

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  12. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei, E-mail: paper_mail@126.com [Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Baochun; Cai, Jing [Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Jiang, Yaodong [Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Xu, Jun [Department of Health Economy Administration, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Shan [Department of Pharmacy, Winthrop University Hospital, Mineola, NY 11501 (United States)

    2014-04-01

    Highlights: • Metal-organic frameworks (MOFs) represent a newborn family of hybrid materials. • MOFs have already shown promise in a number of biological applications. • The biological applications of MOFs raise concerns for potential cytotoxicity. • Substantial information about MOF's neurotoxicity is still quite scarce. • This study reveals for the first time the interaction of MOFs with neural cells. - Abstract: Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn{sup 2+} into the cytosol to cause increased intracellular concentration of Zn{sup 2+}. We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application.

  13. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro

    International Nuclear Information System (INIS)

    Ren, Fei; Yang, Baochun; Cai, Jing; Jiang, Yaodong; Xu, Jun; Wang, Shan

    2014-01-01

    Highlights: • Metal-organic frameworks (MOFs) represent a newborn family of hybrid materials. • MOFs have already shown promise in a number of biological applications. • The biological applications of MOFs raise concerns for potential cytotoxicity. • Substantial information about MOF's neurotoxicity is still quite scarce. • This study reveals for the first time the interaction of MOFs with neural cells. - Abstract: Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn 2+ into the cytosol to cause increased intracellular concentration of Zn 2+ . We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application

  14. Surface nano-architecture of a metal-organic framework.

    Science.gov (United States)

    Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi; Yamanaka, Hiroaki; Sakata, Osami; Kitagawa, Hiroshi

    2010-07-01

    The rational assembly of ultrathin films of metal-organic frameworks (MOFs)--highly ordered microporous materials--with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir-Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.

  15. Homochiral metal-organic frameworks and their application in chromatography enantioseparations.

    Science.gov (United States)

    Peluso, Paola; Mamane, Victor; Cossu, Sergio

    2014-10-10

    The last frontier in the chiral stationary phases (CSPs) field for chromatography enantioseparations is represented by homochiral metal-organic frameworks (MOFs), a class of organic-inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. The modular nature of these materials allows to design focused structures by combining properly metal, organic ligands and rigid polytopic spacers. Intriguingly, chiral ligands introduce molecular chirality in the MOF-network as well as homochirality in the secondary structure of materials (such as homohelicity) producing homochiral nets in a manner mimicking biopolymers (proteins, polysaccharides) which are characterized by a definite helical sense associated with the chirality of their building blocks (amino acids or sugars). Nowadays, robust and flexible materials characterized by high porosity and surface area became available by using preparative procedures typical of the so-called reticular synthesis. This review focuses on recent developments in the synthesis and applications of homochiral MOFs as supports for chromatography enantioseparations. Indeed, despite this field is in its infancy, interesting results have been produced and a critical overview of the 12 reported applications for gas chromatography (GC) and high-performance liquid chromatography (HPLC) can orient the reader approaching the field. Mechanistic aspects are shortly discussed and a view regarding future trends in this field is provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.

    Science.gov (United States)

    Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars

    2017-07-13

    Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.

  17. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.

    Science.gov (United States)

    Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun

    Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.

  18. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Wencai Zhou

    2015-06-01

    Full Text Available The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs, is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM, the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1, whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  19. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Science.gov (United States)

    Zhou, Wencai; Wöll, Christof; Heinke, Lars

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  20. Metal-Organic Frameworks For Adsorption Driven Energy Transformation : From Fundamentals To Applications

    NARCIS (Netherlands)

    De Lange, M.F.

    2015-01-01

    A novel class of materials, i.e. Metal-Organic Frameworks (MOFs), has successfully been developed that is extremely suited for application in heat pumps and chillers. They have a superior performance over commercial sorbents and may potentially contribute to considerable energy savings worldwide.

  1. High-Throughput Molecular Simulations of Metal Organic Frameworks for CO2 Separation: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Ilknur Erucar

    2018-02-01

    Full Text Available Metal organic frameworks (MOFs have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure–performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  2. Porous Hydrogen-Bonded Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Yi-Fei Han

    2017-02-01

    Full Text Available Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  3. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  4. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  5. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    Science.gov (United States)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    Science.gov (United States)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  7. An Electrically Switchable Metal-Organic Framework

    Science.gov (United States)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  8. A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu; Doan, Tan L. H.; Cordova, Kyle E.; Yaghi, Omar M.

    2016-04-06

    A crystalline material with a two-dimensional structure, termed metal–organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent–organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol–1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.

  9. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.

    Science.gov (United States)

    Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke

    2017-11-08

    Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

  10. Molecule@MOF: A New Class of Opto-electronic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Talin, Albert Alec [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Reese E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spataru, Dan Catalin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leonard, Francois Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); He, Yuping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavila, Vitalie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States)

    2017-09-01

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2) metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.

  11. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.

    Science.gov (United States)

    Tian, Bingbing; Ning, Guo-Hong; Gao, Qiang; Tan, Li-Min; Tang, Wei; Chen, Zhongxin; Su, Chenliang; Loh, Kian Ping

    2016-11-16

    Metal-organic frameworks (MOFs) possess great structural diversity because of the flexible design of linker groups and metal nodes. The structure-property correlation has been extensively investigated in areas like chiral catalysis, gas storage and absorption, water purification, energy storage, etc. However, the use of MOFs in lithium storage is hampered by stability issues, and how its porosity helps with battery performance is not well understood. Herein, through anion and thermodynamic control, we design a series of naphthalenediimide-based MOFs 1-4 that can be used for cathode materials in lithium-ion batteries (LIBs). Complexation of the N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide (DPNDI) ligand and CdX 2 (X = NO 3 - or ClO 4 - ) produces complexes MOFs 1 and 2 with a one-dimensional (1D) nonporous network and a porous, noninterpenetrated two-dimensional (2D) square-grid structure, respectively. With the DPNDI ligand and Co(NCS) 2 , a porous 1D MOF 3 as a kinetic product is obtained, while a nonporous, noninterpenetrated 2D square-grid structure MOF 4 as a thermodynamic product is formed. The performance of LIBs is largely affected by the stability and porosity of these MOFs. For instance, the initial charge-discharge curves of MOFs 1 and 2 show a specific capacity of ∼47 mA h g -1 with a capacity retention ratio of >70% during 50 cycles at 100 mA g -1 , which is much better than that of MOFs 3 and 4. The better performances are assigned to the higher stability of Cd(II) MOFs compared to that of Co(II) MOFs during the electrochemical process, according to X-ray diffraction analysis. In addition, despite having the same Cd(II) node in the framework, MOF 2 exhibits a lithium-ion diffusion coefficient (D Li ) larger than that of MOF 1 because of its higher porosity. X-ray photoelectron spectroscopy and Fourier transform infrared analysis indicate that metal nodes in these MOFs remain intact and only the DPNDI ligand undergoes the revisible redox reaction

  12. Microstructural Engineering and Architectural Design of Metal-Organic Framework Membranes.

    Science.gov (United States)

    Liu, Yi; Ban, Yujie; Yang, Weishen

    2017-08-01

    In the past decade, a huge development in rational design, synthesis, and application of molecular sieve membranes, which typically included zeolites, metal-organic frameworks (MOFs), and graphene oxides, has been witnessed. Owing to high flexibility in both pore apertures and functionality, MOFs in the form of membranes have offered unprecedented opportunities for energy-efficient gas separations. Reports on the fabrication of well-intergrown MOF membranes first appeared in 2009. Since then there has been tremendous growth in this area along with an exponential increase of MOF-membrane-related publications. In order to compete with other separation and purification technologies, like cryogenic distillation, pressure swing adsorption, and chemical absorption, separation performance (including permeability, selectivity, and long-term stability) of molecular sieve membranes must be further improved in an attempt to reach an economically attractive region. Therefore, microstructural engineering and architectural design of MOF membranes at mesoscopic and microscopic levels become indispensable. This review summarizes some intriguing research that may potentially contribute to large-scale applications of MOF membranes in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rapid Formation of Metal-Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO2 Photoreduction.

    Science.gov (United States)

    He, Xiang; Gan, Zhuoran; Fisenko, Sergey; Wang, Dawei; El-Kaderi, Hani M; Wang, Wei-Ning

    2017-03-22

    A copper-based metal-organic framework (MOF), [Cu 3 (TMA) 2 (H 2 O) 3 ] n (also known as HKUST-1, where TMA stands for trimesic acid), and its TiO 2 nanocomposites were directly synthesized in micrometer-sized droplets via a rapid aerosol route for the first time. The effects of synthesis temperature and precursor component ratio on the physicochemical properties of the materials were systematically investigated. Theoretical calculations on the mass and heat transfer within the microdroplets revealed that the fast solvent evaporation and high heat transfer rates are the major driving forces. The fast droplet shrinkage because of evaporation induces the drastic increase in the supersaturation ratio of the precursor, and subsequently promotes the rapid nucleation and crystal growth of the materials. The HKUST-1-based nanomaterials synthesized via the aerosol route demonstrated good crystallinity, large surface area, and great photostability, comparable with those fabricated by wet-chemistry methods. With TiO 2 embedded in the HKUST-1 matrix, the surface area of the composite is largely maintained, which enables significant improvement in the CO 2 photoreduction efficiency, as compared with pristine TiO 2 . In situ diffuse reflectance infrared Fourier transform spectroscopy analysis suggests that the performance enhancement was due to the stable and high-capacity reactant adsorption by HKUST-1. The current work shows great promise in the aerosol route's capability to address the mass and heat transfer issues of MOFs formation at the microscale level, and ability to synthesize a series of MOFs-based nanomaterials in a rapid and scalable manner for energy and environmental applications.

  14. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    Science.gov (United States)

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber

    NARCIS (Netherlands)

    Krishna, R.; Long, J.R.

    2011-01-01

    Metal-organic frameworks (MOFs) offer considerable potential for separating a variety of mixtures that are important in applications such as CO2 capture and H2 purification. In view of the vast number of MOFs that have been synthesized, there is a need for a reliable procedure for comparing

  16. Controlling Thermal Expansion: A Metal-Organic Frameworks Route.

    Science.gov (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-11-22

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  17. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.

    Science.gov (United States)

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  18. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2

    Science.gov (United States)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei

    2018-01-01

    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  19. Metal-organic frameworks and their applications in catalysis; Redes metalorganicas e suas aplicacoes em catalise

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Andre Luis Dantas, E-mail: aldramos@ufs.br [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Departamento de Engenharia Quimica; Tanase, Stefania; Rothenberg, Gadi [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam (Netherlands)

    2014-07-01

    Metal-organic frameworks (MOFs) form a new class of materials with well-defined yet tunable properties. These are crystalline, highly porous and exhibit strong metal-ligand interactions. Importantly, their physical and chemical properties, including pore size, pore structure, acidity, and magnetic and optical characteristics, can be tailored by choosing the appropriate ligands and metal precursors. Here we review the key aspects of synthesis and characterization of MOFs, focusing on lanthanide-based and vanadium-based materials. We also outline some of their applications in catalysis and materials science. (author)

  20. Designing Kitaev Spin Liquids in Metal-Organic Frameworks

    Science.gov (United States)

    Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki

    2017-08-01

    Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.

  1. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials

    NARCIS (Netherlands)

    Oar-Arteta Gonzalez, L.; Wezendonk, T.A.; Sun, X.; Kapteijn, F.; Gascon Sabate, J.

    The use of metal organic frameworks as hard templates for the preparation of heterogeneous catalysts is thoroughly reviewed. In this critical article, the main factors to consider when using a MOF as a sacrificial template are first discussed. Then, the existing literature on the topic is reviewed,

  2. Computational design of metal-organic frameworks with paddlewheel-type secondary building units

    Science.gov (United States)

    Schwingenschlogl, Udo; Peskov, Maxim V.; Masghouni, Nejib

    We employ the TOPOS package to study 697 coordination polymers containing paddlewheel-type secondary building units. The underlying nets are analyzed and 3 novel nets are chosen as potential topologies for paddlewheel-type metal organic frameworks (MOFs). Dicarboxylate linkers are used to build basic structures for novel isoreticular MOF series, aiming at relatively compact structures with a low number of atoms per unit cell. The structures are optimized using density functional theory. Afterwards the Grand Canonical Monte Carlo approach is employed to generate adsorption isotherms for CO2, CO, and CH4 molecules. We utilize the universal forcefield for simulating the interaction between the molecules and hosting MOF. The diffusion behavior of the molecules inside the MOFs is analyzed by molecular dynamics simulations.

  3. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  4. Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1.

    Science.gov (United States)

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2018-01-24

    Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.

  5. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems.

    Science.gov (United States)

    Oveisi, Mina; Asli, Mokhtar Alina; Mahmoodi, Niyaz Mohammad

    2018-04-05

    Herein, 1,4-benzenedicarboxylate (BDC) and 2-amino-1,4-benzenedicarboxylate (NH 2 -BDC) as organic linkers and tetraisopropyl orthotitanate as a metal source were used to synthesize several metal-organic frameworks (MOFs) nanomaterials. Five Materials Institut Lavoisiers (MILs) as MOFs include MIL-125(Ti), NH 2 -MIL-125(Ti) and three MILs with different organic linkers molar ratios (BDC/NH 2 -BDC: 75/25, 50/50 and 25/75 denoted as MIL-X1, MIL-X2 and MIL-X3, respectively). The synthesized nanomaterials were used for ultrasound-aided adsorption of cationic dyes (Basic Red 46 (BR46), Basic Blue 41 (BB41) and Methylene Blue (MB)) from single and multicomponent (binary) systems. The BET, XRD, FTIR, SEM, TEM, TGA and zeta potential were used for characterizing the MILs. Dye removal followed pseudo-second order kinetics with constant rate of 0.20833, 0.00481 and 0.00051 mg/g min for BR46, BB41 and MB, respectively. In addition dye adsorption obeyed the Langmuir isotherm model and the experimental dye adsorption capacity for BR46, BB41 and MB was 1296, 1257 and 862 mg/g, respectively. The synthesized MIL showed high reusability and stability over three cycles. The adsorption thermodynamics data presented that dye removal was a spontaneous, endothermic and physical reaction. The free Gibbs energy for dye removal by the NH 2 -MIL-125(Ti) at 308K was -19.424, -15.721 and -17.413 kJ/mol for BR46, BB41 and MB, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Understanding Hydrogen Sorption in In- soc -MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; Hogan, Adam; Tudor, Brant; McLaughlin, Keith; Belof, Jonathan L.; Eckert, Juergen; Space, Brian

    2015-01-01

    ,3-benzenedicarboxylate) linkers. The MOF contains nitrate counterions that are located in carcerand-like capsules of the framework. This MOF was shown to have a high hydrogen uptake at 77 K and 1.0 atm. The simulations were performed with a potential that includes

  7. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications.

    Science.gov (United States)

    Xie, Zhiqiang; Xu, Wangwang; Cui, Xiaodan; Wang, Ying

    2017-04-22

    Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted increasing interest from research communities due to their extremely high surface areas, diverse nanostructures, and unique properties. In recent years, there is a growing body of evidence to indicate that MOFs can function as ideal templates to prepare various nanostructured materials for energy and environmental cleaning applications. Recent progress in the design and synthesis of MOFs and MOF-derived nanomaterials for particular applications in lithium-ion batteries, sodium-ion batteries, supercapacitors, dye-sensitized solar cells, and heavy-metal-ion detection and removal is reviewed herein. In addition, the remaining major challenges in the above fields are discussed and some perspectives for future research efforts in the development of MOFs are also provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, S.J.H.; Sabetghadam Esfahani, A.; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon Sabate, J.; de Smet, L.C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al)

  9. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, Sumit; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, Ernst J.R.; Gascon, Jorge; Smet, De Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  10. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  11. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  12. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  13. Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination

    KAUST Repository

    So, Monica; Beyzavi, M. Hassan; Sawhney, Rohan; Shekhah, Osama; Eddaoudi, Mohamed; Al-Juaid, Salih Salem; Hupp, Joseph T.; Farha, Omar K.

    2015-01-01

    Herein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.

  14. Metal-organic frameworks for lithium ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-01-01

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m 2 g −1 ) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m 2 g −1 ), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study

  15. Hybrid glasses from strong and fragile metal-organic framework liquids.

    Science.gov (United States)

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  16. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  17. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-05-01

    Full Text Available Zirconium-based metal–organic framework (Zr-MOF) was synthesized using a microwave-assisted modulated method in a short reaction time of 5 min. The Zr-MOF material was highly crystalline with well-defined octahedral shaped crystals, and it exhibited...

  18. Amino-functionalized metal-organic frameworks as tunable heterogeneous basic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M.; Hartmann, M. [Erlangen-Nuernberg Univ., Erlangen (Germany). Erlangen Catalysis Resource Center

    2011-07-01

    Metal-organic framework (MOF) materials have been explored for applications in heterogeneous catalysis in recent years. In addition to the use of MOFs as supports for the deposition of highly dispersed metal particles, the incorporation of active centers such as coordinatively unsaturated metal sites and the functionalization of the organic linkers with acidic or basic groups seems to be most promising. In our contribution, three different MOFs carrying amino groups at their organic linkers, namely Fe-MIL-101-NH{sub 2} (S{sub BET} = 3438 m{sup 2}g{sup -1}), Al-MIL-101-NH{sub 2} (S{sub BET} = 3099 m{sup 2}g{sup -1}) and CAU-1 (S{sub BET} = 1492 m{sup 2}g{sup -1}), were synthesized and tested in the Knoevenagel condensation of benzaldehyde with malononitrile and with ethyl cyanoacetate, respectively. It is shown that the expected products benzylidenemalononitrile (BzMN) and ethyl a-cyanocinnamate (EtCC) are formed with selectivities of more than 99 % and yields of 90 to 95 % after 3 h (for BzMN). Due to the very small pore windows of CAU-1 (0.3 to 0.4 nm) the reaction proceeds much slower over this catalyst in comparison to the amino-MIL-101 derivatives, which possess open pore windows of up to 1.6 nm. Finally, leaching tests confirm that the reaction is heterogeneously catalyzed. Moreover, the catalysts are recyclable without significant loss of activity. (orig.)

  19. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  20. Hydrogen storage for fuel cell applications: Challenges, opportunities and prospects for metal-organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-07-01

    Full Text Available and release, and cycle life of the materials. In the past decade, there has been growing interest in metal organic frameworks (MOFs) as hydrogen storage materials and significant progress has been made in this regard. The challenges, opportunities...

  1. A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores.

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dawei; Wang, Kecheng; Su, Jie; Liu, Tian-Fu; Park, Jihye; Wei, Zhangwen; Bosch, Mathieu; Yakovenko, Andrey; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-02

    Through topological rationalization, a zeotype mesoporous Zr-containing metal-organic framework (MOF), namely PCN-777, has been designed and synthesized. PCN-777 exhibits the largest cage size of 3.8nm and the highest pore volume of 2.8cm(3)g(-1) among reported Zr-MOFs. Moreover, PCN-777 shows excellent stability in aqueous environments, which makes it an ideal candidate as a support to incorporate different functional moieties. Through facile internal surface modification, the interaction between PCN-777 and different guests can be varied to realize efficient immobilization

  2. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    Science.gov (United States)

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  3. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  4. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    Science.gov (United States)

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    International Nuclear Information System (INIS)

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-01-01

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn_3L_3(DMF)_2 (1) and Zn_3L_3(DMA)_2(H_2O)_3 (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe"3"+ and Al"3"+ by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe"3"+. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe"3"+ or Al"3"+.

  6. Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Simmons, Blake

    2008-09-01

    Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and "flexible" force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing $2.75 M in

  7. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    Science.gov (United States)

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  8. Missing Linker Defects in a Homochiral Metal-Organic Framework: Tuning the Chiral Separation Capacity.

    Science.gov (United States)

    Slater, Benjamin; Wang, Zeru; Jiang, Shanxue; Hill, Matthew R; Ladewig, Bradley P

    2017-12-20

    Efficient chiral separation remains a very challenging task due to the identical physical and chemical properties of the enantiomers of a molecule. Enantiomers only behave differently from each other in the presence of other chiral species. Homochiral metal-organic frameworks (MOFs) have received much attention for their promising enantioseparation properties. However, there are still challenges to overcome in this field such as high enantiomeric separation. Structural defects play an important role in the properties of MOFs and can significantly change the pore architecture. In this work, we introduced missing linker defects into a homochiral metal-organic framework [Zn 2 (bdc)(l-lac)(dmf)] (ZnBLD; bdc = 1,4-benzenedicarboxylic acid, l-lac = l-lactic acid, dmf = N,N'-dimethylformamide) and observed an increase in enantiomeric excess for 1-phenylethanol of 35% with the defective frameworks. We adjusted the concentration of monocarboxylic acid ligand l-lactic acid by varying the ratio of Zn 2+ to ligand from 0.5 to 0.85 mmol. Additionally, a defective framework was synthesized with propanoic acid as modulator. In order to elucidate the correlation between defects and enantiomeric excess, five characterization techniques (FTIR, TGA, 1 H NMR, ICP, and PXRD) were employed. Full width at half-maximum analysis (fwhm) was performed on the powder X-ray diffraction traces and showed that the higher concentration of monocarboxylic acid MOFs were isostructural but suffered from increased fwhm values.

  9. Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation.

    Science.gov (United States)

    Amirjalayer, Saeed; Tafipolsky, Maxim; Schmid, Rochus

    2014-09-18

    The surface morphology and termination of metal-organic frameworks (MOF) is of critical importance in many applications, but the surface properties of these soft materials are conceptually different from those of other materials like metal or oxide surfaces. Up to now, experimental investigations are scarce and theoretical simulations have focused on the bulk properties. The possible surface structure of the archetypal MOF HKUST-1 is investigated by a first-principles derived force field in combination with DFT calculations of model systems. The computed surface energies correctly predict the [111] surface to be most stable and allow us to obtain an unprecedented atomistic picture of the surface termination. Entropic factors are identified to determine the preferred surface termination and to be the driving force for the MOF growth. On the basis of this, reported strategies like employing "modulators" during the synthesis to tailor the crystal morphology are discussed.

  10. Applications of Immobilized Bio-Catalyst in Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2018-04-01

    Full Text Available Immobilization of bio-catalysts in solid porous materials has attracted much attention in the last few decades due to its vast application potential in ex vivo catalysis. Despite the high efficiency and selectivity of enzymatic catalytic processes, enzymes may suffer from denaturation under industrial production conditions, which, in turn, diminish their catalytic performances and long-term recyclability. Metal-organic frameworks (MOFs, as a growing type of hybrid materials, have been identified as promising platforms for enzyme immobilization owing to their enormous structural and functional tunability, and extraordinary porosity. This review mainly focuses on the applications of enzyme@MOFs hybrid materials in catalysis, sensing, and detection. The improvements of catalytic activity and robustness of encapsulated enzymes over the free counterpart are discussed in detail.

  11. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  12. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  13. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang; Cai, Rong; Pham, Tony T.; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick S.; Williams, Kia R.; Wojtas, Łukasz; Luebke, Ryan; Weselinski, Lukasz Jan; Zaworotko, Michael J.; Space, Brian; Chen, Yusheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-01-01

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  14. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  15. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Univ. of Chicago, Chicago, IL (United States); Zhang, Teng [Univ. of Chicago, Chicago, IL (United States); Greene, Francis X. [Univ. of Chicago, Chicago, IL (United States); Lin, Wenbin [Univ. of Chicago, Chicago, IL (United States)

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  16. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  17. Gas phase sensing of alcohols by Metal Organic Framework – polymer composite materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, D.; Gravesteijn, Dirk J; Kapteijn, Freek; Sudholter, Ernst J.R.; Gascon, Jorge; de Smet, Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  18. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  19. Understanding the origins of metal-organic framework/polymer compatibility.

    Science.gov (United States)

    Semino, R; Moreton, J C; Ramsahye, N A; Cohen, S M; Maurin, G

    2018-01-14

    The microscopic interfacial structures for a series of metal-organic framework/polymer composites consisting of the Zr-based UiO-66 coupled with different polymers are systematically explored by applying a computational methodology that integrates density functional theory calculations and force field-based molecular dynamics simulations. These predictions are correlated with experimental findings to unravel the structure-compatibility relationship of the MOF/polymer pairs. The relative contributions of the intermolecular MOF/polymer interactions and the flexibility/rigidity of the polymer with respect to the microscopic structure of the interface are rationalized, and their impact on the compatibility of the two components in the resulting composite is discussed. The most compatible pairs among those investigated involve more flexible polymers, i.e. polyvinylidene fluoride (PVDF) and polyethylene glycol (PEG). These polymers exhibit an enhanced contact surface, due to a better adaptation of their configuration to the MOF surface. In these cases, the irregularities at the MOF surface are filled by the polymer, and even some penetration of the terminal groups of the polymer into the pores of the MOF can be observed. As a result, the affinity between the MOF and the polymer is very high; however, the pores of the MOF may be sterically blocked due to the strong MOF/polymer interactions, as evidenced by UiO-66/PEG composites. In contrast, composites involving polymers that exhibit higher rigidity, such as the polymer of intrinsic microporosity-1 (PIM-1) or polystyrene (PS), present interfacial microvoids that contribute to a decrease in the contact surface between the two components, thus reducing the MOF/polymer affinity.

  20. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    Science.gov (United States)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  1. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal$-$Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jacob A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Petersen, Brenna M. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Kormos, Attila [Hungarian Academy of Sciences, Budapest (Hungary); Echeverría, Elena [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Chen, Yu-Sheng [Univ. of Chicago, Argonne, IL (United States). ChemMatCARS, Center for Advanced Radiation Sources; Zhang, Jian [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2017-02-28

    Here, we describe a new strategy to generate non-coordinating anions using zwitterionic metal–organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO2)4]$-$) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of MnIII- and FeIII-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes. Lastly, this work paves a new way to design functional MOFs for tunable chemical catalysis.

  2. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  3. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  4. Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water-Stable Zinc-Based Metal-Organic Framework.

    Science.gov (United States)

    Altaf, Muhammad; Sohail, Manzar; Mansha, Muhammad; Iqbal, Naseer; Sher, Muhammad; Fazal, Atif; Ullah, Nisar; Isab, Anvarhusein A

    2018-02-09

    Metal-organic frameworks (MOFs) are class of porous materials that can be assembled in a modular manner by using different metal ions and organic linkers. Owing to their tunable structural properties, these materials are found to be useful for gas storage and separation technologies, as well as for catalytic applications. A cost-effective zinc-based MOF ([Zn(bpcda)(bdc)] n ) is prepared by using N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine [N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine] and benzenedicarboxylic acid (bdc) linkers. This new material exhibits remarkable photoelectrochemical (PEC) catalytic activity in water splitting for the evolution of oxygen. Notably, this non-noble metal-based MOF, without requiring immobilization on other supports or containing metal particles, produced a highest photocurrent density of 31 μA cm -2 at 0.9 V, with appreciable stability and negligible photocorrosion. Advantageously for the oxygen evolution process, no external reagents or sacrificial agents are required in the aqueous electrolyte solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evaluation of MOF-74, MOF-177, and ZIF-8 for the Removal of Toxic Industrial Chemicals

    National Research Council Canada - National Science Library

    Peterson, Gregory W; Mahle, John; Balboa, Alex; Wagner, George; Sewell, Tara; Karwacki, Christopher J

    2008-01-01

    .... Metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) are two novel classes of materials that allow for specific functionalities to be designed directly into a porous framework...

  6. Formation of bimetallic metal-organic framework nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors.

    Science.gov (United States)

    Chen, Chen; Wu, Meng-Ke; Tao, Kai; Zhou, Jiao-Jiao; Li, Yan-Li; Han, Xue; Han, Lei

    2018-04-24

    Metal-organic frameworks (MOFs) show great advantages as new kinds of active materials for energy storage. In this study, bimetallic metal-organic frameworks (Ni/Co-MOFs) with nanosheet-assembled flower-like structures were synthesized by etching Ni-MOF microspheres in a cobalt nitrate solution. It can be clearly observed that the amount of Co(NO3)2 and etching time play crucial roles in the formation of Ni/Co-MOF nanosheets. The Ni/Co-MOFs were used as electrode materials for supercapacitors and the optimized Ni/Co-MOF-5 exhibited the highest capacitances of 1220.2 F g-1 and 986.7 F g-1 at current densities of 1 A g-1 and 10 A g-1, respectively. Ni/Co-MOF-5 was further sulfurized, and the derived Ni-Co-S electrode showed a higher specific capacitance of 1377.5 F g-1 at a current density of 1 A g-1 and a retention of 89.4% when the current density was increased to 10 A g-1, indicating superior rate capability. Furthermore, Ni/Co-MOF-5 and Ni-Co-S showed excellent cycling stability, i.e. about 87.8% and 93.7% of initial capacitance can be still maintained after 3000 cycles of charge-discharge. More interestingly, the Ni/Co-MOF-5//AC ASC shows an energy density of 30.9 W h kg-1 at a power density of 1132.8 W kg-1, and the Ni-Co-S//AC ASC displays a high energy density of 36.9 W h kg-1 at a power density of 1066.42 W kg-1. These results demonstrate that the as-synthesized bimetallic Ni/Co-MOF nanosheets and their derived nickel-cobalt sulfides have promising applications in electrochemical supercapacitors.

  7. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2016-05-07

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  8. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    International Nuclear Information System (INIS)

    Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B.

    2016-01-01

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO 2 -MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO 2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  9. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jie [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Usov, Pavel M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Xu, Wenqian [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Celis-Salazar, Paula J. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Lin, Shaoyang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Kessinger, Matthew C. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Landaverde-Alvarado, Carlos [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemical Engineering and Macromolecules Innovation Inst.; Cai, Meng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; May, Ann M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Slebodnick, Carla [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Zhu, Dunru [Nanjing Univ. of Technology (China). State Key Lab. of Materials-Oriented Chemical Engineering (MCE) and College of Chemical Engineering; Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Morris, Amanda J. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry and Macromolecules Innovation Inst.

    2017-12-22

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr-6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to similar to 9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

  10. Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State.

    Science.gov (United States)

    Gui, Bo; Meng, Yi; Xie, Yang; Du, Ke; Sue, Andrew C-H; Wang, Cheng

    2018-01-01

    Organic-based molecular switches (OMS) are essential components for the ultimate miniaturization of nanoscale electronics and devices. For practical applications, it is often necessary for OMS to be incorporated into functional solid-state materials. However, the switching characteristics of OMS in solution are usually not transferrable to the solid state, presumably because of spatial confinement or inefficient conversion in densely packed solid phase. A promising way to circumvent this issue is harboring the functional OMS within the robust and porous environment of metal-organic frameworks (MOFs) as their organic components. In this feature article, recent research progress of OMS-based MOFs is briefly summarized. The switching behaviors of OMS under different stimuli (e.g., light, redox, pH, etc.) in the MOF state are first introduced. After that, the technological applications of these OMS-based MOFs in different areas, including CO 2 adsorption, gas separation, drug delivery, photodynamic therapy, and sensing, are outlined. Finally, perspectives and future challenges are discussed in the conclusion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    Science.gov (United States)

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun; Xue, Ming; Zhu, Guangshan

    2014-01-01

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new

  14. Direct Synthesis of 7 nm Thick Zinc(II)-Benzimidazole-Acetate Metal-Organic Framework Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Feng; Kumar, Prashant; Xu, Wenqian; Mkhoyan, K. Andre; Tsapatsis, Michael

    2018-01-09

    Two-dimensional metal-organic frameworks (MOFs) are promising candidates for high performance gas sepa-ration membranes. Currently, MOF nanosheets are mostly fabricated through delamination of layered MOFs, which often re-sults in a low yield of intact free-standing nanosheets. In this work, we present a direct synthesis method for zinc(II)-benzimidazole-acetate (Zn(Bim)OAc) MOF nanosheets. The obtained nanosheets have a lateral dimension of 600 nm when synthesized at room temperature. By adjusting the synthesis temperature, the morphology of obtained nanosheets can be readily tuned from nanosheets to nanobelts. A thickness of 7 nm is determined for Zn(Bim)OAc using high-angle annular dark-field scanning transmission electron microscopy, which makes these nanosheets promising building blocks of gas sepa-ration membranes.

  15. Chromium metal organic frameworks and synthesis of metal organic frameworks

    Science.gov (United States)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen; Zou, Lanfang; Feng, Dawei

    2018-04-24

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  16. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.

    Science.gov (United States)

    Yazaydin, A Ozgür; Snurr, Randall Q; Park, Tae-Hong; Koh, Kyoungmoo; Liu, Jian; Levan, M Douglas; Benin, Annabelle I; Jakubczak, Paulina; Lanuza, Mary; Galloway, Douglas B; Low, John J; Willis, Richard R

    2009-12-30

    A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.

  18. Metal-organic frameworks in mixed-matrix membranes for gas separation.

    Science.gov (United States)

    Tanh Jeazet, Harold B; Staudt, Claudia; Janiak, Christoph

    2012-12-14

    Mixed-matrix membranes (MMMs) with metal-organic frameworks (MOFs) as additives (fillers) exhibit enhanced gas permeabilities and possibly also selectivities when compared to the pure polymer. Polyimides (Matrimid®) and polysulfones are popular polymer matrices for MOF fillers. Presently investigated MOFs for MMMs include [Cu(SiF(6))(4,4'-BIPY)(2)], [Cu(3)(BTC)(2)(H(2)O)(3)] (HKUST-1, Cu-BTC), [Cu(BDC)(DMF)], [Zn(4)O(BDC)(3)] (MOF-5), [Zn(2-methylimidazolate)(2)] (ZIF-8), [Zn(purinate)(2)] (ZIF-20), [Zn(2-carboxyaldehyde imidazolate)(2)] (ZIF-90), Mn(HCOO)(2), [Al(BDC)(μ-OH)] (MIL-53(Al)), [Al(NH(2)-BDC)(μ-OH)] (NH(2)-MIL-53(Al)) and [Cr(3)O(BDC)(3)(F,OH)(H(2)O)(2)] (MIL-101) (4,4'-BIPY = 4,4'-bipyridine, BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, terephthalate). MOF particle adhesion to polyimide and polysulfone organic polymers does not represent a problem. MOF-polymer MMMs are investigated for the permeability of the single gases H(2), N(2), O(2), CH(4), CO(2) and of the gas mixtures O(2)/N(2), H(2)/CH(4), CO(2)/CH(4), H(2)/CO(2), CH(4)/N(2) and CO(2)/N(2) (preferentially permeating gas named first). Permeability increases can be traced to the MOF porosity. Since the porosity of MOFs can be tuned very precisely, which is not possible with polymeric material, MMMs offer the opportunity of significantly increasing the selectivity compared to the pure polymeric matrix. Additionally in most of the cases the permeability is increased for MMM membranes compared to the pure polymer. Addition of MOFs to polymers in MMMs easily yields performances similar to the best polymer membranes and gives higher selectivities than those reported to date for any pure MOF membrane for the same gas separation. MOF-polymer MMMs allow for easier synthesis and handability compared to pure MOF membranes.

  19. Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal-Organic Framework

    NARCIS (Netherlands)

    Chen, X.; Plonka, A.M.; Banerjee, D.; Krishna, R.; Schaef, H.T.; Ghose, S.; Thallapally, P.K.; Parise, J.B.

    2015-01-01

    The cryogenic separation of noble gases is energy-intensive and expensive, especially when low concentrations are involved. Metal organic frameworks (MOFs) containing polarizing groups within their pore spaces are predicted to be efficient Xe/Kr solid,state adsorbents, but no experimental insights

  20. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    Science.gov (United States)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  1. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qun; Li, Peng-Fei [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Zheng [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Shu-Xia, E-mail: liusx@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.

  2. Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation.

    Science.gov (United States)

    Khatua, Sajal; Bar, Arun Kumar; Sheikh, Javeed Ahmad; Clearfield, Abraham; Konar, Sanjit

    2018-01-19

    Treatment of a pyrazine (pz)-impregnated Cu I metal-organic framework (MOF) ([1⊃pz]) with HCl vapor renders an interstitial pyrazinium chloride salt-hybridized MOF ([1⊃pz⋅6 HCl]) that exhibits proton conductivity over 10 -2  S cm -1 both in anhydrous and under humid conditions. Framework [1⊃pz⋅6 HCl] features the highest anhydrous proton conductivity among the lesser-known examples of MOF-based materials exhibiting proton conductivity under both anhydrous and humid conditions. Moreover, [1⊃pz] and corresponding pyrazinium sulfate- and pyrazinium phosphate-hybridized MOFs also exhibit superprotonic conductivity over 10 -2  S cm -1 under humid conditions. The impregnated pyrazinium ions play a crucial role in protonic conductivity, which occurs through a Grotthuss mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solvent-Induced Cadmium(II) Metal-Organic Frameworks with Adjustable Guest-Evacuated Porosity: Application in the Controllable Assembly of MOF-Derived Porous Carbon Materials for Supercapacitors.

    Science.gov (United States)

    Yue, Man-Li; Jiang, Yi-Fan; Zhang, Lin; Yu, Cheng-Yan; Zou, Kang-Yu; Li, Zuo-Xi

    2017-11-07

    In this work, five new cadmium metal-organic frameworks (Cd-MOFs 1-5) have been synthesized from solvothermal reactions of Cd(NO 3 ) 2 ⋅4 H 2 O with isophthalic acid and 1,4-bis(imidazol-1-yl)-benzene under different solvent systems of CH 3 OH, C 2 H 5 OH, (CH 3 ) 2 CHOH, DMF, and N-methyl-2-pyrrolidone (NMP), respectively. Cd-MOF 1 shows a 3D diamondoid framework with 1D rhombic and hexagonal channels, and the porosity is 12.9 %. Cd-MOF 2 exhibits a 2D (4,4) layer with a 1D parallelogram channel and porosity of 23.6 %. Cd-MOF 3 has an 8-connected dense network with the Schäfli symbol of [4 24 ⋅6 4 ] based on the Cd 6 cluster. Cd-MOFs 4-5 are isomorphous, and display an absolutely double-bridging 2D (4,4) layer with 1D tetragonal channels and porosities of 29.2 and 28.2 %, which are occupied by DMF and NMP molecules, respectively. Followed by the calcination-thermolysis procedure, Cd-MOFs 1-5 are employed as precursors to prepare MOF-derived porous carbon materials (labeled as PC-me, PC-eth, PC-ipr, PC-dmf and PC-nmp), which have the BET specific surface area of 23, 51, 10, 122, and 96 m 2  g -1 , respectively. The results demonstrate that the specific surface area of PCs is tuned by the porosity of Cd-MOFs, where the later is highly dependent on the solvent. Thereby, the specific surface area of PCs could be adjusted by the solvent used in the synthese of MOF precusors. Significantly, PCs have been further activated by KOH to obtain activated carbon materials (APCs), which possess even higher specific surface area and larger porosity. After a series of characterization and electrochemical investigations, the APC-dmf electrode exhibits the best porous properties and largest specific capacitances (153 F g -1 at 5 mV s -1 and 156 F g -1 at 0.5 Ag -1 ). Meanwhile, the APC-dmf electrode shows excellent cycling stability (ca. 84.2 % after 5000 cycles at 1 Ag -1 ), which can be applied as a suitable electrode material for

  4. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade.

    Science.gov (United States)

    Wen, Jia; Fang, Ying; Zeng, Guangming

    2018-06-01

    The efficient removal of heavy metals (HMs) from the environment has become an important issue from both biological and environmental perspectives. Recently, porous metal-organic frameworks (MOFs), combining central metals and organic ligands, have been proposed as promising materials in the capture of various toxic substances, including HMs, due to their unique characteristics. Here we review recent progress in the field of water remediation from the perspective of primary HMs (including divalent metals and variable-valent metals) in water pollution and the corresponding MOFs (including virgin and modified MOFs, magnetic MOFs composites and so on) that can remove these metals from water. The reported values of various MOFs for adsorption of heavy metal ions were 8.40-313 mg Pb(II) g -1 , 0.65-2173 mg Hg(II) g -1 , 3.63-145 mg Cd(II) g -1 , 14.0-127 mg Cr(III) g -1 , 15.4-145 mg Cr(VI) g -1 , 49.5-123 mg As(III) g -1 , and 12.3-303 mg As(V) g -1 . The main adsorption mechanisms associated with these processes are chemical (including coordination interaction, chemical bonding and acid-base interactions) and physical (including electrostatic interaction, diffusion and van der Waals force) adsorption, which were discussed in detailed. Further efforts should be made towards expanding the repertoire of MOFs that effectively remove multiple targeted HMs, as well as exploring possible applications of MOFs in the removal of HMs from non-aqueous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    Science.gov (United States)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  6. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF

    KAUST Repository

    Alezi, Dalal

    2016-10-05

    The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or “cubic graphite” structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal–organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm3 g–1, respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g–1 and 210.4 cm3 (STP) cm–3 at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm–3 at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.

  7. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF

    KAUST Repository

    Alezi, Dalal; Spanopoulos, Ioannis; Tsangarakis, Constantinos; Shkurenko, Aleksander; Adil, Karim; Belmabkhout, Youssef; O'Keeffe, Michael; Eddaoudi, Mohamed; Trikalitis, Pantelis N.

    2016-01-01

    The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or “cubic graphite” structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal–organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm3 g–1, respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g–1 and 210.4 cm3 (STP) cm–3 at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm–3 at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.

  8. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    Science.gov (United States)

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  9. Theoretical model estimation of guest diffusion in Metal-Organic Frameworks (MOFs)

    KAUST Repository

    Zheng, Bin; Huang, Kuo-Wei; Du, Huiling

    2015-01-01

    through gates, as this does not require specification of a force field for the MOF degrees of freedom. In the DFT calculation, we only considered one gate of MOFs each time; as this greatly reduced the computational cost. Based on the obtained energy

  10. Fluorometric sensing of Triton X-100 based organized media in water by a MOF

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Biswajit, E-mail: bdeychem@gmail.com [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Mondal, Ranjan Kumar; Dhibar, Subhendu [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Chattopadhyay, Asoke Prasun [Department of Chemistry, University of Kalyani, Kalyani 741235 (India); Bhattacharya, Subhash Chandra [Department of Chemistry, Jadavpur University, Kolkata 700032 (India)

    2016-04-15

    The fluorescent property of the aqueous solution of a metal organic framework (MOF) of Mn(II), having a sedimentary rocks like microstructure in solid-state, has been investigated. The luminescent feature of the the aqueous solution of MOF has been employed for studying the interactions of MOF with different surfactants including neutral, cationic, and anionic types in water medium. Interestingly, the MOF can very selective sense Triton X-100 based micelle in water medium. During the sensing process the fluorescent monomer of the MOF gets accommodated at the palisade layer of Triton X-100 in water medium and this has also been justified by simple fluorescence spectral and FE-SEM microstructural analysis. Thus, a MOF of Mn(II) can act as a selective fluorescent sensor for Triton X-100 based organized medium in water. - Highlights: • Microstructural and crystallographic studies of a water-soluble MOF are performed. • The luminescent property of MOF in water medium is explored. • The interaction between Triton X-100 and the MOF in water medium is studied by fluorometric and microstructural analysis. • The MOF acts as a selective fluorometric sensor for the Triton X-100 based organized media in water. • The monomer of MOF presents in the Triton X-100 micelle in water.

  11. Fluorometric sensing of Triton X-100 based organized media in water by a MOF

    International Nuclear Information System (INIS)

    Dey, Biswajit; Mondal, Ranjan Kumar; Dhibar, Subhendu; Chattopadhyay, Asoke Prasun; Bhattacharya, Subhash Chandra

    2016-01-01

    The fluorescent property of the aqueous solution of a metal organic framework (MOF) of Mn(II), having a sedimentary rocks like microstructure in solid-state, has been investigated. The luminescent feature of the the aqueous solution of MOF has been employed for studying the interactions of MOF with different surfactants including neutral, cationic, and anionic types in water medium. Interestingly, the MOF can very selective sense Triton X-100 based micelle in water medium. During the sensing process the fluorescent monomer of the MOF gets accommodated at the palisade layer of Triton X-100 in water medium and this has also been justified by simple fluorescence spectral and FE-SEM microstructural analysis. Thus, a MOF of Mn(II) can act as a selective fluorescent sensor for Triton X-100 based organized medium in water. - Highlights: • Microstructural and crystallographic studies of a water-soluble MOF are performed. • The luminescent property of MOF in water medium is explored. • The interaction between Triton X-100 and the MOF in water medium is studied by fluorometric and microstructural analysis. • The MOF acts as a selective fluorometric sensor for the Triton X-100 based organized media in water. • The monomer of MOF presents in the Triton X-100 micelle in water.

  12. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  13. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth.

    Science.gov (United States)

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2017-03-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.

  14. Coordination Polymers and Metal Organic Frameworks Derived from 1,2,4-Triazole Amino Acid Linkers

    Directory of Open Access Journals (Sweden)

    Yann Garcia

    2011-10-01

    Full Text Available The perceptible appearance of biomolecules as prospective building blocks in the architecture of coordination polymers (CPs and metal-organic frameworks (MOFs are redolent of their inclusion in the synthon/tecton library of reticular chemistry. In this frame, for the first time a synthetic strategy has been established for amine derivatization in amino acids into 1,2,4-triazoles. A set of novel 1,2,4-triazole derivatized amino acids were introduced as superlative precursors in the design of 1D coordination polymers, 2D chiral helicates and 3D metal-organic frameworks. Applications associated with these compounds are diverse and include gas adsorption-porosity partitioning, soft sacrificial matrix for morphology and phase selective cadmium oxide synthesis, FeII spin crossover materials, zinc-b-lactamases inhibitors, logistics for generation of chiral/non-centrosymmetric networks; and thus led to a foundation of a new family of functional CPs and MOFs that are reviewed in this invited contribution.

  15. Synthesis of Cr-MOF derived porous carbon for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-07-01

    Full Text Available Over the recent years, applications of porous metal-organic frameworks (MOFs) in hydrogen storage have received increasing attention in the scientific community. Conversion of organic moiety in MOFs to porous carbon, as well as the use of MOFs as a...

  16. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    Science.gov (United States)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  17. A metal-organic framework-based splitter for separating propylene from propane

    KAUST Repository

    Cadiau, Amandine

    2016-07-07

    The chemical industry is dependent on the olefin/paraffin separation, which is mainly accomplished by using energy-intensive processes. We report the use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni, also referred to as KAUST-7). The bridging of Ni(II)-pyrazine square-grid layers with (NbOF5)2- pillars afforded the construction of a three-dimensional MOF, enclosing a periodic array of fluoride anions in contracted square-shaped channels. The judiciously selected bulkier (NbOF5)2- caused the looked-for hindrance of the previously free-rotating pyrazine moieties, delimiting the pore system and dictating the pore aperture size and its maximum opening. The restricted MOF window resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies.

  18. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin-Films as Effective Chemical Capacitive Sensors.

    KAUST Repository

    Assen, Ayalew Hussen Assen; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N.

    2017-01-01

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH3) at room temperature. Namely, the MOF thin film sensing layer

  19. Strategies for the design of functional MOFs: addressing energy-intensive separations

    KAUST Repository

    Eddaoudi, Mohamed

    2017-12-19

    Metal Organic Frameworks (MOFs) are a promising class of crystalline solid-state materials amenable to tailoring their porosity and functionality towards various applications. MOF reticular chemistry using the Molecular Building Block (MBB) approach offers potential to construct robust made-to-order MOFs, where desired structural and geometrical information are incorporated into the building blocks prior to the assembly process. We will discuss two recently implemented conceptual approaches facilitating the design and deliberate construction of metal–organic frameworks (MOFs), namely supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Additionally, the concept of net-coded building units (net-cBUs), where precise embedded geometrical information codes uniquely and matchlessly a selected net, as a compelling route for the rational design of MOFs will be presented. Our progress in the development of functional metal-organic frameworks (MOFs) to address some energy-intensive separations will be discussed. Namely, the successful practice of reticular chemistry affording the fabrication of various stable MOFs with controlled pore-aperture size and allowing effective separation of various gas or vapors pairs.

  20. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  1. The Cooperativity of Fe3O4 and Metal-Organic Framework as Multifunctional Nanocomposites for Laser Desorption Ionization Process.

    Science.gov (United States)

    Fu, Chung-Wei; Lirio, Stephen; Shih, Yung-Han; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2018-05-10

    We report a novel and facile strategy for developing a water stable magnetic metal organic framework nanocomposite (Fe3O4@MOF), in which a Keggin polyoxometalate, phosphotungstic acid (HPW), was encapsulated within the MOF framework via one-pot synthesis method. The combination of HPW-embedded MOF and Fe3O4 endowed the composite with high surface area, strong UV absorption, good hydrophilicity, and enhanced water stability. With these unique properties, the Fe3O4@MOF embedded HPW were served as adsorbent as well as matrix for (surface-assisted laser desorption ionization mass spectrometry) SALDI-MS analysis of polar and non-polar compounds. The synergistic effect of Fe3O4 and MOF showed an interference-free background at low mass region than the pristine MOF or Fe3O4 counterpart. This simple approach can be used as new platform in developing magnetic MOF composites without the time consuming and labor-intensive preparation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal–organic frameworks as heterogeneous photocatalysts : Advantages and challenges

    NARCIS (Netherlands)

    Nasalevich, M.A.; Van der Veen, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The use of metal organic frameworks (MOFs) as heterogeneous photocatalysts is critically reviewed. First we revisit the general assumption of MOFs behaving truly as semiconductors, demonstrating that such semiconducting behaviour only occurs in a very limited subset of materials. Further, the main

  3. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    Science.gov (United States)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  4. Synthesis, characterization and application of metal organic frameworks in the adsorption of dimethylamine

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Bravo Hualpa, Fabiola; Beltran Suito, Rodrigo; Samanamu, Christian; Picasso Escobar, Gino

    2014-01-01

    This study investigated the removal of dimethylamine (DMA) by an adsorption mechanism using metal-organic frameworks (MOFs). The synthesis of the MOFs was performed by solvothermal methods. The characterization of the MOF obtained was made by attenuated total reflectance spectroscopy (ATR), proton nuclear magnetic resonance spectroscopy ("1H-NMR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The XRD diffractograms allowed to identify the structure of MOF as Dashkovaite, which has the molecular formula Mg(HCOO)_2.2H_2O; while the ATR studies revealed the presence of carbonyl group as most important functional group in the MOF structure. The morphological analysis showed that the MOF crystalline particles had a hexagonal shape, formed from filaments of around 7,5-8 microns in length. Adsorption experiments showed that the MOF had a high adsorption capacity of DMA (q_e= 307,96 mg.g"-"1). The kinetic data were fitted to the pseudo second order equation and the Elovich equation, while the adsorption isotherm was fitted to the Temkin equation and the Dubinin - Radushkevich equation, processes related to chemisorptions preferably on a heterogeneous surface. (author)

  5. [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal-Organic Frameworks.

    Science.gov (United States)

    Yuan, Shuai; Qin, Jun-Sheng; Xu, Hai-Qun; Su, Jie; Rossi, Daniel; Chen, Yuanping; Zhang, Liangliang; Lollar, Christina; Wang, Qi; Jiang, Hai-Long; Son, Dong Hee; Xu, Hongyi; Huang, Zhehao; Zou, Xiaodong; Zhou, Hong-Cai

    2018-01-24

    Metal-organic frameworks (MOFs) based on Ti-oxo clusters (Ti-MOFs) represent a naturally self-assembled superlattice of TiO 2 nanoparticles separated by designable organic linkers as antenna chromophores, epitomizing a promising platform for solar energy conversion. However, despite the vast, diverse, and well-developed Ti-cluster chemistry, only a scarce number of Ti-MOFs have been documented. The synthetic conditions of most Ti-based clusters are incompatible with those required for MOF crystallization, which has severely limited the development of Ti-MOFs. This challenge has been met herein by the discovery of the [Ti 8 Zr 2 O 12 (COO) 16 ] cluster as a nearly ideal building unit for photoactive MOFs. A family of isoreticular photoactive MOFs were assembled, and their orbital alignments were fine-tuned by rational functionalization of organic linkers under computational guidance. These MOFs demonstrate high porosity, excellent chemical stability, tunable photoresponse, and good activity toward photocatalytic hydrogen evolution reactions. The discovery of the [Ti 8 Zr 2 O 12 (COO) 16 ] cluster and the facile construction of photoactive MOFs from this cluster shall pave the way for the development of future Ti-MOF-based photocatalysts.

  6. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    Science.gov (United States)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  7. Light Hydrocarbons Adsorption Mechanisms in Two Calcium-based Microporous Metal Organic Frameworks

    KAUST Repository

    Plonka, Anna M.

    2016-01-25

    The adsorption mechanism of ethane, ethylene and acetylene (C2Hn; n=2, 4, 6) on two microporous metal organic frameworks (MOFs) is described here that is consistent with observations from single crystal and powder X-ray diffraction, calorimetric measurments and gas adsorption isotherm measurements. Two calcium-based MOFs, designated as SBMOF-1 and SBMOF-2 (SB: Stony Brook), form three-dimensional frameworks with one-dimensional open channels. As determined form single crystal diffraction experiments channel geometries of both SBMOF-1 and SBMOF-2 provide multiple adsorption sites for hydrocarbon molecules trough C-H…π and C-H…O interactions, similarly to interactions in the molecular and protein crystals. Both materials selectively adsorb C2 hydrocarbon gases over methane as determined with IAST and breakthrough calculations, with C2H6/CH4 selectivity as high as 74 in SBMOF-1.

  8. Anti-UV Radiation Textiles Designed by Embracing with Nano-MIL (Ti, In)-Metal Organic Framework.

    Science.gov (United States)

    Emam, Hossam E; Abdelhameed, Reda M

    2017-08-23

    Protective textiles against harmful solar radiation are quite important materials for outdoor workers to secure their skin from several diseases. Current report focuses on production of anti-ultraviolet radiation (UVR) textiles by incorporation of nano-metal-organic frameworks (n-MOFs). Two different MIL-MOFs, namely, MIL-68(In)-NH 2 and MIL-125(Ti)-NH 2 , were immediately formed inside natural textiles (cotton and silk) matrix in nano size using quite simple and one-pot process. The formation of n-MIL-MOFs inside textiles were confirmed by using electron microscope and X-ray diffraction. Different size and morphology were seen depending on textile type reflecting the textiles' chemical composition role in the nature of prepared MIL-MOFs. For MIL-68(In)-NH 2 , particles with size distribution of 70.6-44.5 nm in cotton and 81.3-52.2 nm in silk were detected, while crystalline disc of MIL-125(Ti)-NH 2 was clearly seen inside textiles. The natural textiles exhibited full UVR blocking after modification, and the UV protection factor (UPF) was linearly proportional with MIL-MOFs and metal contents. Whatever metal type, direct incorporation of MIL-MOF contents greater than or equal to 10.4 g/kg was sufficient to attain excellent UV blocking property. Although 38.5-41.0% of MIL-MOFs was lost during five washings, the washed samples showed very good blocking rate (UPF = 26.7-36.2) supporting good laundering durability.

  9. A Stable Metal-Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation.

    Science.gov (United States)

    He, Hongming; Sun, Qi; Gao, Wenyang; Perman, Jason A; Sun, Fuxing; Zhu, Guangshan; Aguila, Briana; Forrest, Katherine; Space, Brian; Ma, Shengqian

    2018-04-16

    A majority of metal-organic frameworks (MOFs) fail to preserve their physical and chemical properties after exposure to acidic, neutral, or alkaline aqueous solutions, therefore limiting their practical applications in many areas. The strategy demonstrated herein is the design and synthesis of an organic ligand that behaves as a buffer to drastically boost the aqueous stability of a porous MOF (JUC-1000), which maintains its structural integrity at low and high pH values. The local buffer environment resulting from the weak acid-base pairs of the custom-designed organic ligand also greatly facilitates the performance of JUC-1000 in the chemical fixation of carbon dioxide under ambient conditions, outperforming a series of benchmark catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Postsynthesis Modification of a Metallosalen-Containing Metal-Organic Framework for Selective Th(IV)/Ln(III) Separation.

    Science.gov (United States)

    Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi

    2017-10-16

    An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.

  11. Structural properties of metal-organic frameworks within the density-functional based tight-binding method

    Energy Technology Data Exchange (ETDEWEB)

    Lukose, Binit; Supronowicz, Barbara; Kuc, Agnieszka B.; Heine, Thomas [School of Engineering and Science, Jacobs University Bremen (Germany); Petkov, Petko S.; Vayssilov, Georgi N. [Faculty of Chemistry, University of Sofia (Bulgaria); Frenzel, Johannes [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Seifert, Gotthard [Physikalische Chemie, Technische Universitaet Dresden (Germany)

    2012-02-15

    Density-functional based tight-binding (DFTB) is a powerful method to describe large molecules and materials. Metal-organic frameworks (MOFs), materials with interesting catalytic properties and with very large surface areas, have been developed and have become commercially available. Unit cells of MOFs typically include hundreds of atoms, which make the application of standard density-functional methods computationally very expensive, sometimes even unfeasible. The aim of this paper is to prepare and to validate the self-consistent charge-DFTB (SCC-DFTB) method for MOFs containing Cu, Zn, and Al metal centers. The method has been validated against full hybrid density-functional calculations for model clusters, against gradient corrected density-functional calculations for supercells, and against experiment. Moreover, the modular concept of MOF chemistry has been discussed on the basis of their electronic properties. We concentrate on MOFs comprising three common connector units: copper paddlewheels (HKUST-1), zinc oxide Zn{sub 4}O tetrahedron (MOF-5, MOF-177, DUT-6 (MOF-205)), and aluminum oxide AlO{sub 4}(OH){sub 2} octahedron (MIL-53). We show that SCC-DFTB predicts structural parameters with a very good accuracy (with less than 5% deviation, even for adsorbed CO and H{sub 2}O on HKUST-1), while adsorption energies differ by 12 kJ mol{sup -1} or less for CO and water compared to DFT benchmark calculations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds

    NARCIS (Netherlands)

    Sargazi, G.; Afzali, D.; Daldosso, N.; Kazemian, H.; Chauhan, N.P.S.; Sadeghian, Z.; Tajerian, T.; Ghafarinazari, A.; Mozafari, M.

    2015-01-01

    A nickel metal-organic framework (Ni-MOF) was successfully synthesized using ultrasound irradiation. Further to this, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry

  13. Diffusion of Vitamin B12 Across a Mesoporous Metal Organic Framework

    Directory of Open Access Journals (Sweden)

    Veronica Valencia

    2013-01-01

    Full Text Available We measure the rate of uptake and the rate of release of a Vitamin B12 solution (dissolved in water at 2 different temperatures (room temperature and 37°C by the mesoporous metal organic framework TbMOF-100 at 1-hour intervals using a spectrophotometer. Using the Beer-Lambert law, we calculate the concentration of the stock solution based on the absorbance values obtained with the spectrophotometer. These values allow for the quantification of the initial rate of uptake and the rate of uptake at a random incubation time of the Vitamin B12 by the TbMOF-100. We also calculate the value of the coefficient of diffusion for this 2-phase system using Fick’s laws of diffusion.

  14. Synthesis and applications of MOF-derived porous nanostructures

    Directory of Open Access Journals (Sweden)

    Min Hui Yap

    2017-07-01

    Full Text Available Metal organic frameworks (MOFs represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability. Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017, on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture. Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed. Keywords: Metal organic frameworks, Porous nanostructures, Supercapacitors, Lithium ion batteries, Heterogeneous catalyst

  15. Diffusion Control in the in Situ Synthesis of Iconic Metal-Organic Frameworks within an Ionic Polymer Matrix.

    Science.gov (United States)

    Lim, Jungho; Lee, Eun Ji; Choi, Jae Sun; Jeong, Nak Cheon

    2018-01-31

    Ionic polymers that possess ion-exchangeable sites have been shown to be a greatly useful platform to fabricate mixed matrices (MMs) where metal-organic frameworks (MOFs) can be in situ synthesized, although the in situ synthesis of MOF has been rarely studied. In this study, alginate (ALG), an anionic green polymer that possesses metal-ion-exchangeable sites, is employed as a platform of MMs for the in situ synthesis of iconic MOFs, HKUST-1, and MOF-74(Zn). We demonstrate for the first time that the sequential order of supplying MOF ingredients (metal ion and deprotonated ligand) into the alginate matrix leads to substantially different results because of a difference in the diffusion of the MOF components. For the examples examined, whereas the infusion of BTC 3- ligand into Cu 2+ -exchanged ALG engendered the eggshell-shaped HKUST-1 layers on the surface of MM spheres, the infusion of Cu 2+ ions into BTC 3- -included alginate engendered the high dispersivity and junction contact of HKUST-1 crystals in the alginate matrix. This fundamental property has been exploited to fabricate a flexible MOF-containing mixed matrix membrane by coincorporating poly(vinyl alcohol). Using two molecular dyes, namely, methylene blue and rhodamine 6G, further, we show that this in situ strategy is suitable for fabricating an MOF-MM that exhibits size-selective molecular uptake.

  16. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Science.gov (United States)

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  17. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    Science.gov (United States)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  18. Computational evaluation of metal-organic frameworks for carbon dioxide capture

    Science.gov (United States)

    Yu, Jiamei

    Metal-organic frameworks (MOFs), a new class of porous solids comprised of metal-containing nodes linked by organic ligands, have become promising materials for gas separations. In particular, their flexible chemistry makes them attractive for CO2 capture from flue gas streams in post-combustion plants. Although numerous efforts have been exerted on the investigation of MOFs for CO2 capture, the exploration of the effects from coexisting components present in very dilute proportions in flue gases is limited because of the experimental difficulty to determine the coadsorption of CO2 with trace components. In this regard, molecular simulations show superiority. In this study, molecular simulations are used to estimate the influence of impurities: water, O2, and SO2 on post-combustion CO2 capture in MOFs. Firstly, two MOFs with coordinatively unsaturated metal sites (CUMs), HKUST-1 and Mg-MOF-74 are explored. Increase of CO 2 adsorption is observed for hydrated HKUST-1; on the contrary, the opposite water adsorption behavior is observed in hydrated Mg-MOF-74, leading to decrease of CO2 adsorption. Further, water effects on CO 2 capture in M-HKUST1 (M = Mg, Zn, Co, Ni) are evaluated to test whether comparing the binding energy could be a general method to evaluate water effects in MOFs with CUMs. It is found that the method works well for Zn-, Co-, and Ni-HKUST1 but partially for Mg-HKUST1. In addition, the effects of O2 and SO2 on CO2 capture in MOFs are also investigated for the first time, showing that the effects of O2 may be negligible but SO2 has negative effects in the CO 2 capture process in HKUST-1 systems. Secondly, the influences of water on CO2 capture in three UiO-66 MOFs with functional groups, --NH2, --OH and --Br are explored, respectively. For UiO-66-NH2 and -OH, the presence of water lowers CO2 adsorption significantly; in contrast, water shows much smaller effects in UiO-66-Br. Moreover, the presence of SO 2 decreases water adsorption but enhances CO

  19. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    Science.gov (United States)

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng; Lin, Wenbin (UC); (Xiamen)

    2016-12-02

    A series of porous twofold interpenetrated In-CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

  1. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks.

    Science.gov (United States)

    Shustova, Natalia B; Cozzolino, Anthony F; Dincă, Mircea

    2012-12-05

    Minimization of the torsional barrier for phenyl ring flipping in a metal-organic framework (MOF) based on the new ethynyl-extended octacarboxylate ligand H(8)TDPEPE leads to a fluorescent material with a near-dark state. Immobilization of the ligand in the rigid structure also unexpectedly causes significant strain. We used DFT calculations to estimate the ligand strain energies in our and all other topologically related materials and correlated these with empirical structural descriptors to derive general rules for trapping molecules in high-energy conformations within MOFs. These studies portend possible applications of MOFs for studying fundamental concepts related to conformational locking and its effects on molecular reactivity and chromophore photophysics.

  2. Recent advances in syntheses and biomedical applications of nano-rare earth metal-organic framework materials

    Directory of Open Access Journals (Sweden)

    Xin Pengyan

    2017-12-01

    Full Text Available In recent years,the syntheses of nano-rare earth metal-organic framework (MOF materials and their applications in biomedicine,especially in the diagnosis and treatment of cancer have attracted extensive attentions.On the one hand,nano-rare earth MOFs,which have unique optical and magnetic properties,are promising multimodal imaging contrast agents for biomedical imaging,such as fluorescence imaging and magnetic resonance imaging.On the other hand,nano-rare earth MOFs have various compositions and structures,and excellent intrinsic properties such as large specific surface area,high pore volume and tunable pore size,which enable them to perform as promising nanoplatforms for drug delivery.Therefore,nano-rare earth MOFs may provide a new platform for the development of diagnostic and therapeutic reagents.In this article,the recent advances in the syntheses of nano-rare earth MOFs and their applications in biomedicine are summarized.

  3. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  4. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    Directory of Open Access Journals (Sweden)

    Mathieu Bosch

    2014-12-01

    Full Text Available Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in {Li [In(1,3 − BDC2]}n and enhancement of the H2 uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  5. Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene

    International Nuclear Information System (INIS)

    Yadav, Dharmendra Kumar; Ganesan, Vellaichamy; Sonkar, Piyush Kumar; Gupta, Rupali; Rastogi, Pankaj Kumar

    2016-01-01

    Highlights: • Gold nanoparticles incorporated zinc based metal-organic framework is synthesized. • It electro-catalyzes nitrite oxidation and nitrobenzene reduction. • Nitrite and nitrobenzene is determined with high sensitivity. • Hydrodynamic voltammetry studies of nitrite oxidation and nitrobenzene reduction are reported. - Abstract: An electrochemical sensing platform which comprises gold nanoparticles (Au NPs) incorporated zinc based metal-organic framework (MOF-5) is developed for the sensitive determination of nitrite and nitrobenzene. MOF-5 and Au NPs incorporated MOF-5 (Au-MOF-5) are synthesized and characterized by UV-vis absorption, powder X-ray diffraction, FT-IR, scanning electron microscopy with energy dispersive X-ray analysis and elemental mapping, transmission electron microscopy and atomic force microscopy. Oxidation of nitrite is effectively electrocatalyzed at Au-MOF-5 with significant increase in oxidation current (41 and 38% in comparison with bare glassy carbon (GC) and MOF-5 coated GC (GC/MOF-5) electrodes, respectively) and with considerable decrease in the oxidation potential (0. 17 and 0.25 V in comparison with bare GC and GC/MOF-5 electrodes, respectively). The electrocatalytic reduction of nitrobenzene at GC/Au-MOF-5 is confirmed by an appreciable increase in the reduction current (79 and 36% in comparison with bare GC and GC/MOF-5 electrodes, respectively) and a small shift in the reduction potential (20 mV in comparison with GC/MOF-5). The detection limit is calculated as 1.0 μM with a sensitivity of 0.23 μAμM"−"1 cm"−"2 for nitrite and 15.3 μM with a sensitivity of 0.43 μAμM"−"1cm"−"2 for nitrobenzene determinations. The Au-MOF-5 based electrochemical sensing platform shows high stability and selectivity even in the presence of several interferences (including phenols, inorganic ions and biologically important molecules) with a broad calibration range. Certain kinetic parameters of nitrite oxidation and

  6. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2017-10-01

    Full Text Available Research on metal–organic framework (MOF) materials has gathered increasing interest starting from the early excitement as porous materials for gas storage down to various novel applications as catalysts, heat energy storage materials, chemical...

  7. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    Energy Technology Data Exchange (ETDEWEB)

    Read, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sillerud, Colin Halliday [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  8. Metal–organic frameworks for hydrogen storage

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-08-01

    Full Text Available Over the past decade, hydrogen storage in metal-organic frameworks (MOFs) has received increasing attention worldwide because they possess versatile structures, high surface areas, large free volumes, ultrahigh porosities, and tunable pore...

  9. Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples.

    Science.gov (United States)

    Tokalıoğlu, Şerife; Yavuz, Emre; Demir, Selçuk; Patat, Şaban

    2017-12-15

    In this study, zirconium-based highly porous metal-organic framework, MOF-545, was synthesized and characterized. The surface area of MOF-545 was found to be 2192m 2 /g. This adsorbent was used for the first time as an adsorbent for the vortex assisted-solid phase extraction of Pb(II) from cereal, beverage and water samples. Lead in solutions was determined by FAAS. The optimal experimental conditions were as follows: the amount of MOF-545, 10mg; pH of sample, 7; adsorption and elution time, 15min; and elution solvent, 2mL of 1molL -1 HCl. Under the optimal conditions of the method, the limit of detection, preconcentration factor and precision as RSD% were found to be 1.78μgL -1 , 125 and 2.6%, respectively. The adsorption capacity of the adsorbent for lead was found to be 73mgg -1 . The method was successfully verified by analyzing two certified reference materials (BCR-482 Lichen and SPS-WW1 Batch 114) and spiked chickpea, bean, wheat, lentil, cherry juice, mineral water, well water and wastewater samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity

    Science.gov (United States)

    Tao, Jifang; Wang, Xuerui; Sun, Tao; Cai, Hong; Wang, Yuxiang; Lin, Tong; Fu, Dongliang; Ting, Lennon Lee Yao; Gu, Yuandong; Zhao, Dan

    2017-01-01

    Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have fabricated a compact gas sensor with detection limitation ranging from 29 to 99 ppb for various VOCs including styrene, toluene, benzene, propylene and methanol. Compared to the photonic cavity without coating, the MOF-coated solution exhibits a sensitivity enhancement factor up to 1000. The present results have demonstrated great potential of MOF-coated photonic resonators in miniaturized gas sensing applications.

  11. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.

    Science.gov (United States)

    Nelson, Andrew P; Farha, Omar K; Mulfort, Karen L; Hupp, Joseph T

    2009-01-21

    Careful processing of four representative metal-organic framework (MOF) materials with liquid and supercritical carbon dioxide (ScD) leads to substantial, or in some cases spectacular (up to 1200%), increases in gas-accessible surface area. Maximization of surface area is key to the optimization of MOFs for many potential applications. Preliminary evidence points to inhibition of mesopore collapse, and therefore micropore accessibility, as the basis for the extraordinarily efficacious outcome of ScD-based activation.

  12. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Science.gov (United States)

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama

    2016-01-01

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  14. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  15. Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.

    Science.gov (United States)

    Cheng, Gong; Wang, Zhi-Gang; Denagamage, Sachira; Zheng, Si-Yang

    2016-04-27

    Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.

  16. Metal organic frameworks as a drug delivery system for flurbiprofen.

    Science.gov (United States)

    Al Haydar, Muder; Abid, Hussein Rasool; Sunderland, Bruce; Wang, Shaobin

    2017-01-01

    Metal organic frameworks (MOFs) have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Flurbiprofen (FBP), a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101) were synthesized and employed for FBP delivery. A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40%) in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release profiles were investigated in a phosphate buffer solution at pH 7.4. The total release of the FBP after 2 days was obtained at 72.9, 75.2, 78.3, and 90.3% for Ca-MOF, Fe-MIL-100, Fe-MIL-53, and Fe-MIL-101, respectively. The MOFs are shown to be a promising drug delivery option for FBP with a significant loading percent and relatively prolonged drug release.

  17. Toward Developing Made-to-Order Metal-Organic Frameworks: Design, Synthesis and Applications

    KAUST Repository

    Ashri, Lubna Y.

    2016-05-26

    Synthesis of materials with certain properties for targeted applications is an ongoing challenge in materials science. One of the most interesting classes of solid-state materials that have been recently introduced with the potential to address this is metal-organic frameworks (MOFs). MOFs chemistry offers a higher degree of control over materials to be synthesized utilizing various new design strategies, such as the molecular building blocks (MBBs) and the supermolecular building layers (SBLs) approaches. Depending on using predetermined building blocks, these strategies permit the synthesis of MOFs with targeted topologies and enable fine tuning of their properties. This study examines a number of aspects of the design and synthesis of MOFs while exploring their possible utilization in two diverse fields related to energy and pharmaceutical applications. Concerning MOFs design and synthesis, the work presented here explores the rational design of various MOFs with predicted topologies and tunable cavities constructed by pillaring pre-targeted 2-periodic SBLs using the ligand-to-axial and six-connected axial-to-axial pillaring strategies. The effect of expanding the confined spaces in prepared MOFs or modifying their functionalities, while preserving the underlying network topology, was investigated. Additionally, The MBBs approach was employed to discover new modular polynuclear rare earth (RE)-MBBs in the presence of different angular polytopic ligands containing carboxylate and nitrogen moieties with the aid of a modulator. The goal was to assess the diverse possible coordination modes and construct highly-connected nets for utility in the design of new MOFs and enhance the predictability of structural outcomes. The effect of adjusting ligands’ length-to-width ratio on the prepared MOFs was also evaluated. As a result, the reaction conditions amenable for reliable formation of the unprecedented octadecanuclear, octanuclear and double tetranuclear RE-MBBs were

  18. A fine-tuned Metal-Organic Framework for Autonomous Indoor Moisture Control .

    KAUST Repository

    Abdul Halim, Racha Ghassan

    2017-06-29

    Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, has yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly-connected Rare-Earth based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45% to 65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness and unique humidity-control performance as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g.g-1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces such as space shuttles, aircraft cabins and air-conditioned buildings.

  19. Surfactant media to grow new crystalline cobalt 1,3,5-benzenetricarboxylate metal-organic frameworks

    KAUST Repository

    Lu, Haisheng; Bai, Linlu; Xiong, Weiwei; Li, Peizhou; Ding, Junfeng; Zhang, Guodong; Wu, Tao; Zhao, Yanli; Lee, Jongmin; Yang, Yanhui; Geng, Baoyou; Zhang, Qichun

    2014-01-01

    In this report, three new metal-organic frameworks (MOFs), [Co 3(μ3-OH)(HBTC)(BTC)2Co(HBTC)]·(HTEA) 3·H2O (NTU-Z30), [Co(BTC)] ·HTEA·H2O (NTU-Z31), [Co3(BTC) 4]·(HTEA)4 (NTU-Z32), where H3BTC = 1,3,5-benzenetricarboxylic acid, TEA = triethylamine

  20. Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S

    KAUST Repository

    Belmabkhout, Youssef

    2017-01-06

    A cooperative experimental/modeling strategy was used to unveil the structure/gas separation performance relationship for a series of isostructural metal-organic frameworks (MOFs) with soc-topology (square-octahedral) hosting different extra-framework counter ions (NO3-, Cl- and Br-). In3+-, Fe3+-, Ga3+-and the newly isolated Al(III)-based isostructural soc-MOF were extensively studied and evaluated for the separation-based production of high-quality fuels (i.e., CH4, C3H8 and n-C4H10) and olefins. The structural/chemical fine-tuning of the soc-MOF platform promoted equilibrium-based selectivity toward C2+ (C2H6, C2H4, C3H6 C3H8 and n-C4H10) and conferred the desired chemical stability toward H2S. The noted dual chemical stability and gas/vapor selectivity, which have rarely been reported for equilibrium-based separation agents, are essential for the production of high-purity H-2, CH4 and C2+ fractions in high yields. Interestingly, the evaluated soc-MOF analogues exhibited high selectivity for C2H4, C3H6 and n-C4H10. In particular, the Fe, Ga and Al analogues presented relatively enhanced C2+/CH4 adsorption selectivities. Notably, the Ga and Al analogues were found to be technically preferable because their structural integrities and separation performances were maintained upon exposure to H2S, indicating that these materials are highly tolerant to H2S. Therefore, the Ga-soc-MOF was further examined for the selective adsorption of H2S in the presence of CO2-and CH4-containing streams, such as refinery-off gases (ROG) and natural gas (NG). Grand canonical Monte Carlo (GCMC) simulations based on a specific force field describing the interactions between the guest molecules and the Ga sites supported and confirmed the considerably higher affinity of the Ga-soc-MOF for C2+ (as exemplified by n-C4H10) than for CH4. The careful selection of an appropriate metal for the trinuclear inorganic molecular building block (MBB), i. e., a Ga metal center, imbues the soc-MOF

  1. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks

    KAUST Repository

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J.; Zhou, Hong-Cai

    2018-01-01

    strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores

  2. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    Science.gov (United States)

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  3. Magnetic MOF for AO7 Removal and Targeted Delivery

    Directory of Open Access Journals (Sweden)

    Xue-Qing Zhan

    2018-06-01

    Full Text Available Owing to their high surface area and porosity, metal-organic frameworks (MOFs have been gradually employed for a myriad of applications ranging from sensing, pollutant adsorption, and drug delivery to environmental remediation and catalysis. Magnetic nanoparticles-metal-organic frameworks (MMOFs hybrid materials can facilitate facile removal of MOFs from solutions. In this report, we report the synthesis of Fe3O4@UiO-66 by encapsulation and simulated the drug loading and release by studying the adsorption and release of AO7. Thus, we loaded these MMOFs with AO7 and found that they were able to trigger and control its release by simply applying an external magnetic field. The magnetic field heats the magnets in the MOF, which causes the load to burst from the framework.

  4. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    Science.gov (United States)

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  5. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  6. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  7. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    Science.gov (United States)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  9. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar; Ilyas, Saad; Shekhah, Osama; Eddaoudi, Mohamed; Younis, Mohammad I.

    2017-01-01

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  10. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar

    2017-08-09

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  11. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip; Tan, Hua; Polshettiwar, Vivek

    2012-01-01

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  12. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip

    2012-11-06

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  13. Adsorptive Removal of Artificial Sweeteners from Water Using Metal-Organic Frameworks Functionalized with Urea or Melamine.

    Science.gov (United States)

    Seo, Pill Won; Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2016-11-02

    A highly porous metal-organic framework (MOF), MIL-101, was modified to introduce urea or melamine via grafting on open metal sites of the MOF. Adsorptive removal of three artificial sweeteners (ASWs) was studied using the MOFs, with or without modifications (including nitration), and activated carbon (AC). The adsorbed quantities (based on the weight of the adsorbent) of saccharin (SAC) under various conditions decreased in the order urea-MIL-101 > melamine-MIL-101 > MIL-101 > AC > O 2 N-MIL-101; however, the quantities based on unit surface area are in the order melamine-MIL-101 > urea-MIL-101 > MIL-101 > O 2 N-MIL-101. Similar ASWs [acesulfame (ACE) and cyclamate (CYC)] showed the same tendency. The mechanism for very favorable adsorption of SAC, ACE, and CYC over urea- and melamine-MIL-101 could be explained by H-bonding on the basis of the contents of -NH 2 groups on the MOFs and the adsorption results under a wide range of pH values. Moreover, the direction of H-bonding could be clearly defined (H acceptor: ASWs; H donor: MOFs). Urea-MIL-101 and melamine-MIL-101 could be suggested as competitive adsorbents for organic contaminants (such as ASWs) with electronegative atoms, considering their high adsorption capacity (for example, urea-MIL-101 had 2.3 times the SAC adsorption of AC) and ready regeneration.

  14. Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications

    International Nuclear Information System (INIS)

    Yin, Duanduan; Liu, Jian; Bo, Xiangjie; Li, Mian; Guo, Liping

    2017-01-01

    Graphical abstract: Zr-PorMOF/MPC composites were prepared, which used to detect H 2 O 2 and simultaneously detect UA, XA and HX Display Omitted -- Highlights: •Preparing Zr-PorMOF/MPC composites by a simple one-step solvothermal reaction. •Enhanced electrocatalytic activity at Zr-PorMOF/MPC than Zr-PorMOF and MPC. •A low detection limit, short response time and low applied potential towards H 2 O 2 reduction. •Simultaneous determination of UA, XA and HX. -- Abstract: In this work, a novel porphyrinic metal-organic framework-based composite has been successfully synthesized by a simple one-step solvothermal method through growing Zr-PorMOF on macroporous carbon (MPC). Porphyrin-base MOFs combining the structural adjustable of MOFs and the specific catalytic activity of biomimetic catalysts play an important role in electrocatalysis. A series of characterization show that the roles of MPC as follow: (1) MPC could avoid the agglomeration of Zr-PorMOF particles and increase the specific surface area; (2) MPC could improve the electrochemical stability of Zr-PorMOF particles; (3) MPC could reduce the electron transfer resistance. Therefore, MPC plays the role of the conductive bridges to provide facile charge transport. The obtained Zr-PorMOF/MPC composites exhibit much better electrocatalytic activity for the reduction of hydrogen peroxide (H 2 O 2 ) than the pristine Zr-PorMOF due to the synergy of Zr-PorMOF and MPC. This enzyme-free H 2 O 2 sensor shows two linear relationships in the ranges 0.5–137 μM (R 2 = 0.991, sensitivity = 66 μA mM −1 ) and 137–3587 μM (R 2 = 0.993, sensitivity = 16 μA mM −1 ), with a low over-potential at −0.2 V, a fast response time within 1 s and a low limit of detection (LOD) of 0.18 μM. Moreover, Zr-PorMOF/MPC composites were used to simultaneously detect uric acid (UA), xanthine (XA) and hypoxanthine (HX). These three substances are degradation products of purine metabolism. In addition, Zr-PorMOF/MPC composites

  15. Kinetic Analysis of the Uptake and Release of Fluorescein by Metal-Organic Framework Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tobias Preiß

    2017-02-01

    Full Text Available Metal-organic framework nanoparticles (MOF NPs are promising guest-host materials with applications in separation, storage, catalysis, and drug delivery. However, on- and off-loading of guest molecules by porous MOF nanostructures are still poorly understood. Here we study uptake and release of fluorescein by two representative MOF NPs, MIL-100(Fe and MIL-101(Cr. Suspensions of these MOF NPs exhibit well-defined size distributions and crystallinity, as verified by electron microscopy, dynamic light scattering, and X-ray diffraction. Using absorbance spectroscopy the equilibrium dissociation constants and maximum numbers of adsorbed fluorescein molecules per NP were determined. Time-resolved fluorescence studies reveal that rates of release and loading are pH dependent. The kinetics observed are compared to theoretical estimates that account for bulk diffusion into NPs, and retarded internal diffusion and adsorption rates. Our study shows that, rather than being simple volumetric carriers, MOF-NPs are dominated by internal surface properties. The findings will help to optimize payload levels and develop release strategies that exploit varying pH for drug delivery.

  16. Mimic Carbonic Anhydrase Using Metal-Organic Frameworks for CO2 Capture and Conversion.

    Science.gov (United States)

    Jin, Chaonan; Zhang, Sainan; Zhang, Zhenjie; Chen, Yao

    2018-02-19

    Carbonic anhydrase (CA) is a zinc-containing metalloprotein, in which the Zn active center plays the key role to transform CO 2 into carbonate. Inspired by nature, herein we used metal-organic frameworks (MOFs) to mimic CA for CO 2 conversion, on the basis of the structural similarity between the Zn coordination in MOFs and CA active center. The biomimetic activity of MOFs was investigated by detecting the hydrolysis of para-nitrophenyl acetate, which is a model reaction used to evaluate CA activity. The biomimetic materials (e.g., CFA-1) showed good catalytic activity, and excellent reusability, and solvent and thermal stability, which is very important for practical applications. In addition, ZIF-100 and CFA-1 were used to mimic CA to convert CO 2 gas, and exhibited good efficiency on CO 2 conversion compared with those of other porous materials (e.g., MCM-41, active carbon). This biomimetic study revealed a novel CO 2 treatment method. Instead of simply using MOFs to absorb CO 2 , ZIF-100 and CFA-1 were used to mimic CA for in situ CO 2 conversion, which provides a new prospect in the biological and industrial applications of MOFs.

  17. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

  18. A Simple Approach to Enhance the Water Stability of a Metal-Organic Framework.

    Science.gov (United States)

    Shih, Yung-Han; Kuo, Yu-Ching; Lirio, Stephen; Wang, Kun-Yun; Lin, Chia-Her; Huang, Hsi-Ya

    2017-01-01

    A facile method to improve the feasibility of water-unstable metal-organic frameworks in an aqueous environment has been developed that involves imbedding in a polymer monolith. The effect of compartment type during polymerization plays a significant role in maintaining the crystalline structure and thermal stability of the MOFs, which was confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA), respectively. The MOF-polymer composite prepared in a narrow compartment (column, ID 0.8 mm) has better thermal and chemical stability than that prepared in a broad compartment (vial, ID 7 mm). The developed MOF-polymer composite was applied as an adsorbent in solid-phase microextraction of nine non-steroidal anti-inflammatory drugs (NSAIDs) and could be used for extraction more than 30 times, demonstrating that the proposed approach has potential for industrial applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    Science.gov (United States)

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  20. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    International Nuclear Information System (INIS)

    Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O’Keeffe, Michael

    2014-01-01

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction

  1. Metal-Organic Frameworks for Sensing Applications in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Sabine Achmann

    2009-03-01

    Full Text Available Several metal-organic framework (MOF materials were under investigated to test their applicability as sensor materials for impedimetric gas sensors. The materials were tested in a temperature range of 120 °C - 240 °C with varying concentrations of O2, CO2, C3H8, NO, H2, ethanol and methanol in the gas atmosphere and under different test gas humidity conditions. Different sensor configurations were studied in a frequency range of 1 Hz -1 MHz and time-continuous measurements were performed at 1 Hz. The materials did not show any impedance response to O2, CO2, C3H8, NO, or H2 in the gas atmospheres, although for some materials a significant impedance decrease was induced by a change of the ethanol or methanol concentration in the gas phase. Moreover, pronounced promising and reversible changes in the electric properties of a special MOF material were monitored under varying humidity, with a linear response curve at 120 °C. Further investigations were carried out with differently doped MOF materials of this class, to evaluate the influence of special dopants on the sensor effect.

  2. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  3. Study of HKUST (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental Investigation with GCMC (grand canonical Monte-carlo) simulation

    International Nuclear Information System (INIS)

    Sun, Baichuan; Kayal, Sibnath; Chakraborty, Anutosh

    2014-01-01

    We have measured the methane uptakes on HKUST (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 MOF (metal organic framework) for the temperatures ranging from 120 K to 300 K and pressures up to 10 bar. The experimentally measured HKUST-1 + CH 4 isotherms data are compared with uptakes of various adsorbents and methane systems. We have also simulated the methane uptakes and its density distribution on HKUST-1 employing GCMC (grand canonical Monte-carlo) simulation and compare with experimental data. In this article, we also present an extensive study on characterization and property evaluation of HKUST-1 MOF for CH 4 adsorption characteristics employing XRD (X-ray diffraction), SEM (scanning electron microscope) and TGA (thermo gravimetric analysis). Employing GCMC and the thermodynamic property fields of HKUST-1 + CH 4 system, the isosteric heat of adsorption (Q st ) is calculated and Q st is presented in a T-s (temperature-entropy) diagram. - Highlights: • Characterization of HKUST-1 MOFs by XRD, SEM, N 2 adsorption and TGA. • Measurement of CH 4 uptakes on HKUST-1 by volumetric methods. • GCMC simulation of methane uptakes and its density distribution on HKUST-1. • Isosteric heat of adsorption in a T-s (temperature-entropy) diagram

  4. Strategies for the design of functional MOFs: addressing energy-intensive separations

    KAUST Repository

    Eddaoudi, Mohamed

    2017-01-01

    Metal Organic Frameworks (MOFs) are a promising class of crystalline solid-state materials amenable to tailoring their porosity and functionality towards various applications. MOF reticular chemistry using the Molecular Building Block (MBB) approach

  5. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan; Zhang, Zhijuan; Li, Yi; Yao, Kexin; Zhu, Yihan; Deng, Zhiyong; Yang, Fen; Zhou, Xiaojing; Li, Guanghua; Wu, Haohan; Nijem, Nour; Chabal, Yves Jean; Lai, Zhiping; Han, Yu; Shi, Zhan; Feng, Shouhua; Li, Jing

    2011-01-01

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative

  6. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  7. The direct heat measurement of mechanical energy storage metal-organic frameworks.

    Science.gov (United States)

    Rodriguez, Julien; Beurroies, Isabelle; Loiseau, Thierry; Denoyel, Renaud; Llewellyn, Philip L

    2015-04-07

    In any process, the heat exchanged is an essential property required in its development. Whilst the work related to structural transitions of some flexible metal-organic frameworks (MOFs) has been quantified and linked with potential applications such as molecular springs or shock absorbers, the heat related to such transitions has never been directly measured. This has now been carried out with MIL-53(Al) using specifically devised calorimetry experiments. We project the importance of these heats in devices such as molecular springs or dampers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gas transport in metal organic framework-polyetherimide mixed matrix membranes: The role of the polyetherimide backbone structure

    NARCIS (Netherlands)

    Hegde, Maruti; Shahid, Salman; Norder, Ben; Dingemans, T.J.; Nijmeijer, Kitty

    2015-01-01

    We report on how the morphology of the polymer matrix, i.e. amorphous vs. semi-crystalline, affects the gas transport properties in a series of mixed matrix membranes (MMMs) using Cu3(BTC)2 as the metal organic framework (MOF) filler. The aim of our work is to demonstrate how incorporation of

  9. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework.

    Science.gov (United States)

    Zhang, Zhongyue; Yoshikawa, Hirofumi; Awaga, Kunio

    2014-11-19

    By adopting a facile synthetic strategy, we obtained a microporous redox-active metal-organic framework (MOF), namely, Cu(2,7-AQDC) (2,7-H2AQDC = 2,7-anthraquinonedicarboxylic acid) (1), and utilized it as a cathode active material in lithium batteries. With a voltage window of 4.0-1.7 V, both metal clusters and anthraquinone groups in the ligands exhibited reversible redox activity. The valence change of copper cations was clearly evidenced by in situ XANES analysis. By controlling the voltage window of operation, extremely high recyclability of batteries was achieved, suggesting the framework was robust. This MOF is the first example of a porous material showing independent redox activity on both metal cluster nodes and ligand sites.

  10. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  11. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    Science.gov (United States)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  12. Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics.

    Science.gov (United States)

    Mathis Ii, Stephan R; Golafale, Saki T; Bacsa, John; Steiner, Alexander; Ingram, Conrad W; Doty, F Patrick; Auden, Elizabeth; Hattar, Khalid

    2017-01-03

    Ultra large pore isostructural metal organic frameworks (MOFs) which exhibit both photoluminescence and scintillation properties, were synthesized from trans-4,4'-stilbenedicarboxylic acid (H 2 L) and trivalent lanthanide (Ln) metal salts under solvothermal conditions (Ln = Er 3+ (1) and Tm 3+ (2)). This new class of mesoporous materials is a non-interpenetrating network that features ultra-large diamond shaped pores of dimensions with approximate cross-sectional dimensions of 28 Å × 12 Å. The fully deprotonated ligand, L, is isolated and rigidified as it serves as the organic linker component of the MOF structure. Its low density unit cells possess asymmetric units with two crystallographically independent Ln 3+ ions in seven coordinate arrangements. A distinct feature of the structure is the bis-bidentate carboxylate groups. They serve as a ligand that coordinates two Ln(iii) ions while each L connects four Ln(iii) ions yielding an exceptionally large diamond-shaped rectangular network. The structure exhibits ligand-based photoluminescence with increased lifetime compared to free stilbene molecules on exposure to UV radiation, and also exhibits strong scintillation characteristics, comprising of both prompt and delayed radioluminescence features, on exposure to ionizing radiation.

  13. Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing

    KAUST Repository

    Masih, Dilshad

    2018-03-26

    The selectivity and sensitivity of sensors are of great interest to the materials chemistry community, and a lot of effort is now devoted to improving these characteristics. More specifically, the selective sensing of anions is one of the largest challenges impeding the sensing-research area due to their similar physical and chemical behaviors. In this work, platinum–metalated porphyrin (Pt(II)TMPyP) was successfully encapsulated in a rho-type zeolite-like metal–organic framework (rho-ZMOF) and applied for anion-selective sensing. The sensing activity and selectivity of the MOF-encaged Pt(II)TMPyP for various anions in aqueous and methanolic media were compared to that of the free (nonencapsulated) Pt(II)TMPyP. While the photoinduced triplet-state electron transfer of Pt(II)TMPyP showed a very low detection limit for anions with no selectivity, the Pt(II)TMPyP encapsulated in the rho-ZMOF framework possessed a unique chemical structure to overcome such limitations. This new approach has the potential for use in other complex sensing applications, including biosensors, which require ion selectivity.

  14. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-03-30

    Adsorptive removal of naproxen and clofibric acid, two typical PPCPs (pharmaceuticals and personal care products), has been studied using metal-organic frameworks (MOFs) for the first time. The removal efficiency decreases in the order of MIL-101>MIL-100-Fe>activated carbon both in adsorption rate and adsorption capacity. The adsorption kinetics and capacity of PPCPs generally depend on the average pore size and surface area (or pore volume), respectively, of the adsorbents. The adsorption mechanism may be explained with a simple electrostatic interaction between PPCPs and the adsorbent. Finally, it can be suggested that MOFs having high porosity and large pore size can be potential adsorbents to remove harmful PPCPs in contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing

    International Nuclear Information System (INIS)

    Wang, Li; Yang, Han; He, Juan; Zhang, Yayun; Yu, Jie; Song, Yonghai

    2016-01-01

    Graphical abstract: A simple, sensitive and effective method to detect hydrogen peroxide based on a hybrid Cu-hemin metal-organic-frameworks (MOFs)/chitosan-functionalized reduced graphene oxide (CS-rGO) nanocomposite was achieved via Cu-hemin MOFs constructing with CS-rGO in room temperature. The Cu-hemin MOFs/CS-rGO nanomaterials exhibited a unique peroxidase-like activity and good electrical conductivity as well as some novel properties. And the as-prepared electrode resulted in a perfect electrochemical performance towards reduction of hydrogen peroxide which was superior to natural enzymes and some inorganic mimic enzymes. - Highlights: • A hybrid Cu-hemin MOF/CS-rGO with a unique peroxidase-like activity was prepared. • The CS-rGO improved electrical conductivity of the nanocomposites greatly. • The 3D porous structure enhanced the catalytic activity of hemin for H 2 O 2 . • A novel sensitive electrochemical biosensing for H 2 O 2 detection was achieved. - Abstract: Herein, a Cu-hemin metal-organic-frameworks (MOFs)/chitosan (CS)-reduced graphene oxide (CS-rGO) nanocomposite with unique peroxidase-like bioactivity and good electrical conductivity was prepared for electrochemical H 2 O 2 sensing for the first time. The prepared Cu-hemin MOFs/CS-rGO nanocomposites were well characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction, UV–vis spectroscopy and electrochemical techniques. The results showed that after the Cu-hemin MOFs were formed on the CS-rGO surface, the crystalline structure of the Cu-hemin MOFs was kept while the size of Cu-hemin MOFs was decreased and the electrical conductivity of the nanocomposites was enhanced greatly as compared with that of Cu-hemin MOFs. The unique peroxidase-like bioactivity and good electrical conductivity as well as some novel properties of Cu-hemin MOFs/CS-rGO nanocomposites resulted in

  16. DOPO-Modified Two-Dimensional Co-Based Metal-Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid).

    Science.gov (United States)

    Hou, Yanbei; Liu, Longxiang; Qiu, Shuilai; Zhou, Xia; Gui, Zhou; Hu, Yuan

    2018-03-07

    Co-based metal-organic framework (Co-MOF) nanosheets were successfully synthesized by the organic ligands with Schiff base structure. The laminated structure gives Co-MOF nanosheets a great advantage in the application in the flame retardant field. Meanwhile, -C═N- from Schiff base potentially provides active sites for further modification. In this work, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was used to modify Co-MOF (DOPO@Co-MOF) to further enhance its flame retardant efficiency. It is attractive that DOPO has a synergistic effect with Co-MOF on improving fire safety of poly(lactic acid) (PLA). The obvious decrease in the values of peak heat release (27%), peak smoke production (56%), and total CO yield (20%) confirmed the enhanced fire safety of PLA composites. The possible flame retardant mechanism was proposed based on characterization results. Moreover, the addition of DOPO@Co-MOF had a positive influence on the mechanical performance, including tensile properties and impact resistance. This work designed and synthesized two-dimensional MOFs with active groups. As-prepared Co-MOF with expected structure shows a novel direction of preparing MOFs for flame retardant application.

  17. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Brä se, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Mü llen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wö ll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  18. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy

    KAUST Repository

    Liu, Jinxuan

    2012-12-04

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++) 2-carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  19. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    Science.gov (United States)

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H 2 O)] n ·2nH 2 O [defined as "Co(L) MOF"] and [Cd(L)(H 2 O)] n ·2nH 2 O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g -1 after 330 cycles at 500 mA g -1 and 1185 mA h g -1 could be obtained after 50 cycles at 100 mA g -1 for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  20. Isolated Fe sites in Metal Organic Framework catalyze the direct conversion of methane to methanol

    KAUST Repository

    Osadchii, Dmitrii; Olivos Suarez, Alma Itzel; Szé csé nyi, Á gnes; Li, Guanna; Nasalevich, Maxim A.; Dugulan, A Iulian; Serra-Crespo, Pablo; Hensen, Emiel J. M.; Veber, Sergey L.; Fedin, Matvey V.; Sankar, Gopinathan; Pidko, Evgeny A; Gascon, Jorge

    2018-01-01

    Hybrid materials bearing organic and inorganic motives have been extensively discussed as playgrounds for the implementation of atomically resolved inorganic sites within a confined environment, with an exciting similarity to enzymes. Here, we present the successful design of a site-isolated mixed-metal Metal Organic Framework that mimics the reactivity of soluble methane monooxygenase enzyme reactivity and demonstrates the potential of this strategy to overcome current challenges in selective methane oxidation. We describe the synthesis and characterisation of an Fe-containing MOF that comprises the desired antiferromagnetically cou-pled high spin species in a coordination environment closely resembling that of the enzyme. An electrochemi-cal synthesis method is used to build the microporous MOF matrix while integrating, with an exquisite con-trol, the atomically dispersed Fe active sites in the crystalline scaffold. The model mimics the catalytic C-H activation behaviour of the enzyme to produce methanol, and shows that the key to this reactivity is the for-mation of isolated oxo-bridged Fe units.

  1. Isolated Fe sites in Metal Organic Framework catalyze the direct conversion of methane to methanol

    KAUST Repository

    Osadchii, Dmitrii

    2018-05-10

    Hybrid materials bearing organic and inorganic motives have been extensively discussed as playgrounds for the implementation of atomically resolved inorganic sites within a confined environment, with an exciting similarity to enzymes. Here, we present the successful design of a site-isolated mixed-metal Metal Organic Framework that mimics the reactivity of soluble methane monooxygenase enzyme reactivity and demonstrates the potential of this strategy to overcome current challenges in selective methane oxidation. We describe the synthesis and characterisation of an Fe-containing MOF that comprises the desired antiferromagnetically cou-pled high spin species in a coordination environment closely resembling that of the enzyme. An electrochemi-cal synthesis method is used to build the microporous MOF matrix while integrating, with an exquisite con-trol, the atomically dispersed Fe active sites in the crystalline scaffold. The model mimics the catalytic C-H activation behaviour of the enzyme to produce methanol, and shows that the key to this reactivity is the for-mation of isolated oxo-bridged Fe units.

  2. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  3. Metal-organic framework templated synthesis of Fe{sub 2}O{sub 3}/TiO{sub 2} nanocomposite for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, Kathryn E. de; Wang, Cheng; Lin, Wenbin [University of North Carolina, Chapel Hill, NC (United States). Department of Chemistry

    2012-04-17

    A new metal-organic framework (MOF)-templated method has been developed for the synthesis of a metal oxide nanocomposite with interesting photophysical properties. Fe-containing nanoscale MOFs are coated with amorphous titania, then calcined to produce crystalline Fe{sub 2}O{sub 3}/TiO{sub 2} composite nanoparticles. This material enables photocatalytic hydrogen production from water using visible light, which cannot be achieved by either Fe{sub 2}O{sub 3} or TiO{sub 2} alone or a mixture of the two. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations.

    Science.gov (United States)

    Altintas, Cigdem; Erucar, Ilknur; Keskin, Seda

    2018-01-31

    Metal organic frameworks (MOFs) have been considered as one of the most exciting porous materials discovered in the last decade. Large surface areas, high pore volumes, and tailorable pore sizes make MOFs highly promising in a variety of applications, mainly in gas separations. The number of MOFs has been increasing very rapidly, and experimental identification of materials exhibiting high gas separation potential is simply impractical. High-throughput computational screening studies in which thousands of MOFs are evaluated to identify the best candidates for target gas separation is crucial in directing experimental efforts to the most useful materials. In this work, we used molecular simulations to screen the most complete and recent collection of MOFs from the Cambridge Structural Database to unlock their CH 4 /H 2 separation performances. This is the first study in the literature, which examines the potential of all existing MOFs for adsorption-based CH 4 /H 2 separation. MOFs (4350) were ranked based on several adsorbent evaluation metrics including selectivity, working capacity, adsorbent performance score, sorbent selection parameter, and regenerability. A large number of MOFs were identified to have extraordinarily large CH 4 /H 2 selectivities compared to traditional adsorbents such as zeolites and activated carbons. We examined the relations between structural properties of MOFs such as pore sizes, porosities, and surface areas and their selectivities. Correlations between the heat of adsorption, adsorbility, metal type of MOFs, and selectivities were also studied. On the basis of these relations, a simple mathematical model that can predict the CH 4 /H 2 selectivity of MOFs was suggested, which will be very useful in guiding the design and development of new MOFs with extraordinarily high CH 4 /H 2 separation performances.

  5. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

    Science.gov (United States)

    Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong

    2017-06-01

    A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

  6. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  7. Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure

    International Nuclear Information System (INIS)

    Kapustin, Eugene A.; Lee, Seungkyu

    2017-01-01

    Despite numerous studies on chemical and thermal stability of metal-organic frameworks (MOFs), mechanical stability remains largely undeveloped. No strategy exists to control the mechanical deformation of MOFs under ultrahigh pressure, to date. We show that the mechanically unstable MOF-520 can be retrofitted by precise placement of a rigid 4,4'-biphenyldicarboxylate (BPDC) linker as a "girder" to afford a mechanically robust framework: MOF-520-BPDC. This retrofitting alters how the structure deforms under ultrahigh pressure and thus leads to a drastic enhancement of its mechanical robustness. While in the parent MOF-520 the pressure transmitting medium molecules diffuse into the pore and expand the structure from the inside upon compression, the girder in the new retrofitted MOF-520-BPDC prevents the framework from expansion by linking two adjacent secondary building units together. As a result, the modified MOF is stable under hydrostatic compression in a diamond-anvil cell up to 5.5 gigapascal. The increased mechanical stability of MOF-520-BPDC prohibits the typical amorphization observed for MOFs in this pressure range. Direct correlation between the orientation of these girders within the framework and its linear strain was estimated, providing new insights for the design of MOFs with optimized mechanical properties.

  8. Thermodynamic screening of metal-substituted MOFs for carbon capture.

    Science.gov (United States)

    Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung; Siegel, Donald J

    2013-04-07

    Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.

  9. The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels.

    Science.gov (United States)

    Park, Sarah S; Hendon, Christopher H; Fielding, Alistair J; Walsh, Aron; O'Keeffe, Michael; Dincă, Mircea

    2017-03-15

    The structure-directing role of the inorganic secondary building unit (SBU) is key for determining the topology of metal-organic frameworks (MOFs). Here we show that organic building units relying on strong π interactions that are energetically competitive with the formation of common inorganic SBUs can also play a role in defining the topology. We demonstrate the importance of the organic SBU in the formation of Mg 2 H 6 (H 3 O)(TTFTB) 3 (MIT-25), a mesoporous MOF with the new ssp topology. A delocalized electronic hole is critical in the stabilization of the TTF triad organic SBUs and exemplifies a design principle for future MOF synthesis.

  10. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A

    2010-06-30

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs

  11. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  12. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Thomas P. Vaid

    2017-07-01

    Full Text Available Traditional synthesis of metal–organic frameworks (MOFs involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs, rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  13. MOFzyme: Intrinsic protease-like activity of Cu-MOF

    Science.gov (United States)

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-10-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.

  14. A Cd(II)-based metal-organic framework as a luminance sensor to nitrobenzene and Tb(III) ion.

    Science.gov (United States)

    Qu, Xiang-Long; Gui, Di; Zheng, Xiao-Li; Li, Rui; Han, Hong-Liang; Li, Xia; Li, Pei-Zhou

    2016-04-28

    A Cd(II)-based metal-organic framework, [Cd2(DPDC)2(BTB)]∞ (Cd-MOF, DPDC = 2,2'-diphenyldicarboxylate and BTB = 1,4-bis(1,2,4-triazol-1-yl)butane) was successfully constructed via a hydrothermal reaction. Structural analysis shows that the synthesized Cd-MOF is a three-dimensional (3D) architecture crystallized in the hexagonal system with a chiral space group P61. Powder X-ray diffraction experiments and thermogravimetric analysis reveal that the constructed Cd-MOF has a high chemical and thermal stability. A study of additional mechanical properties indicates that it exhibits a moderate stiffness with the average values of Young's modulus (E) and H as 11.3(2) and 0.9(7) GPa, respectively. The luminescence properties of the Cd-MOF were further studied. The result shows that it could be an effective sensor to the organic nitrobenzene molecule via a strong quenching effect, and also to the inorganic Tb(III) ion by a strong green emission effect. Moreover, when loading bimetal ions (Eu(III) and Tb(III) into the Cd-MOF/methanol suspension, tunable visible luminescence can also be achieved by carefully adjusting the excitation wavelengths.

  15. A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives

    Science.gov (United States)

    Hu, Xiao-Li; Wang, Xin-Long; Su, Zhong-Min

    2018-02-01

    A novel Zn-MOF (metal organic framework) [Zn3(NTB)2(DMA)2]·12DMA (NTB = 4,4‧,4″-nitrilotrisbenzoic acid; DMA = N,N-dimethylacetamide) (1) was obtained under solvothermal condition. The resulted MOF which is based on {Zn3} SBU displays an interesting (3,6)-connected three-dimensional net with nanosized, hexagonal channels. Additionally, 1 can be a useful fluorescent indicator for the detection of nitroaromatic explosives qualitatively and quantitatively via a strong quenching effect, especially for picric acid (PA). With increasing - NO2 groups, energy transfer from the electron-donating framework to high electron deficiency becomes more, making the effect of fluorescence quenching more obvious. The result demonstrates that the photo-induced electron transfer (PET) is responsible for the emission quenching.

  16. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water

    International Nuclear Information System (INIS)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-01-01

    Highlights: ► A novel type of functionalized MOF for heavy metal removal. ► Functionalization of MOF by a facile coordination-based postsynthetic strategy. ► Thiol-functionalization of MOF has been realized for the first time. ► Enhanced removal of Hg 2+ by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu 3 (BTC) 2 (H 2 O) 3 ] n (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu 3 (BTC) 2 ] n samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with –SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N 2 sorption–desorption isothermal. Significantly, the thiol-functionalized [Cu 3 (BTC) 2 ] n exhibited remarkably high adsorption affinity (K d = 4.73 × 10 5 mL g −1 ) and high adsorption capacity (714.29 mg g −1 ) for Hg 2+ adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg 2+ under the same condition.

  17. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    Science.gov (United States)

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  18. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.

    Science.gov (United States)

    Sim, Jaeung; Yim, Haneul; Ko, Nakeun; Choi, Sang Beom; Oh, Youjin; Park, Hye Jeong; Park, SangYoun; Kim, Jaheon

    2014-12-28

    Three functionalized metal-organic frameworks (MOFs), MOF-205-NH2, MOF-205-NO2, and MOF-205-OBn, formulated as Zn4O(BTB)4/3(L), where BTB is benzene-1,3,5-tribenzoate and L is 1-aminonaphthalene-3,7-dicarboxylate (NDC-NH2), 1-nitronaphthalene-3,7-dicarboxylate (NDC-NO2) or 1,5-dibenzyloxy-2,6-naphthalenedicarboxylate (NDC-(OBn)2), were synthesized and their gas (H2, CO2, or CH4) adsorption properties were compared to those of the un-functionalized, parent MOF-205. Ordered structural models for MOF-205 and its derivatives were built based on the crystal structures and were subsequently used for predicting porosity properties. Although the Brunauer-Emmett-Teller (BET) surface areas of the three MOF-205 derivatives were reduced (MOF-205, 4460; MOF-205-NH2, 4330; MOF-205-NO2, 3980; MOF-205-OBn, 3470 m(2) g(-1)), all three derivatives were shown to have enhanced H2 adsorption capacities at 77 K and CO2 uptakes at 253, 273, and 298 K respectively at 1 bar in comparison with MOF-205. The results indicate the following trend in H2 adsorption: MOF-205 < MOF-205-NO2 < MOF-205-NH2 < MOF-205-OBn. MOF-205-OBn showed good ideal adsorbed solution theory (IAST) selectivity values of 6.5 for CO2/N2 (15/85 in v/v) and 2.7 for CO2/CH4 (50/50 in v/v) at 298 K. Despite the large reduction (-22%) in the surface area, MOF-205-OBn displayed comparable total volumetric CO2 (at 48 bar) and CH4 (at 35 bar) storage capacities with those of MOF-205 at 298 K: MOF-205-OBn, 305 (CO2) and 112 (CH4) cm(3) cm(-3), and for MOF-205, 307 (CO2) and 120 (CH4) cm(3) cm(-3), respectively.

  19. Application and Limitations of Nanocasting in Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Malonzo, Camille D. [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Wang, Zhao [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Duan, Jiaxin [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Zhao, Wenyang [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Webber, Thomas E. [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Li, Zhanyong [Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Kim, In Soo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kumar, Anurag [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States; Bhan, Aditya [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States; Platero-Prats, Ana E. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Farha, Omar K. [Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Hupp, Joseph T. [Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Martinson, Alex B. F. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Penn, R. Lee [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Stein, Andreas [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States

    2018-02-12

    Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

  20. Capturing the H 2 –Metal Interaction in Mg-MOF-74 Using Classical Polarization

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; McLaughlin, Keith; Eckert, Juergen; Space, Brian

    2014-01-01

    © 2014 American Chemical Society. Grand canonical Monte Carlo (GCMC) simulations of H2 sorption were performed in Mg-MOF-74, a metal-organic framework (MOF) that displays very high H2 sorption affinity. Experimental H2 sorption isotherms and isosteric heats of adsorption (Qst) values were reproduced using a general purpose materials sorption potential that includes many-body polarization interactions. In contrast, using two models that include only charge-quadrupole interactions failed to reproduce such experimental measurements even though they are the type normally employed in such classical force field calculations. Utilizing the present explicit polarizable model in GCMC simulation resulted in a Mg2+-H2 distance of 2.60 Å, which is close to a previously reported value that was obtained using electronic structure methods and comparable to similar experimental measurements. The induced dipole distribution obtained from simulation assisted in the characterization of two previously identified sorption sites in the MOF: the Mg2+ ions and the oxido group of the linkers. The calculated two-dimensional quantum rotational levels for a H2 molecule sorbed onto the Mg2+ ion were in good agreement with experimental inelastic neutron scattering (INS) data. Although the H2-metal interaction in MOFs may be thought of as a quantum mechanical effect, this study demonstrates how the interaction between the sorbate molecules and the open-metal sites in a particular highly sorbing MOF can be captured using classical simulation techniques that involve a polarizable potential.

  1. Capturing the H 2 –Metal Interaction in Mg-MOF-74 Using Classical Polarization

    KAUST Repository

    Pham, Tony

    2014-10-02

    © 2014 American Chemical Society. Grand canonical Monte Carlo (GCMC) simulations of H2 sorption were performed in Mg-MOF-74, a metal-organic framework (MOF) that displays very high H2 sorption affinity. Experimental H2 sorption isotherms and isosteric heats of adsorption (Qst) values were reproduced using a general purpose materials sorption potential that includes many-body polarization interactions. In contrast, using two models that include only charge-quadrupole interactions failed to reproduce such experimental measurements even though they are the type normally employed in such classical force field calculations. Utilizing the present explicit polarizable model in GCMC simulation resulted in a Mg2+-H2 distance of 2.60 Å, which is close to a previously reported value that was obtained using electronic structure methods and comparable to similar experimental measurements. The induced dipole distribution obtained from simulation assisted in the characterization of two previously identified sorption sites in the MOF: the Mg2+ ions and the oxido group of the linkers. The calculated two-dimensional quantum rotational levels for a H2 molecule sorbed onto the Mg2+ ion were in good agreement with experimental inelastic neutron scattering (INS) data. Although the H2-metal interaction in MOFs may be thought of as a quantum mechanical effect, this study demonstrates how the interaction between the sorbate molecules and the open-metal sites in a particular highly sorbing MOF can be captured using classical simulation techniques that involve a polarizable potential.

  2. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  3. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption.

    Science.gov (United States)

    Zhang, Congyang; Wang, Bo; Li, Wanbin; Huang, Shouqiang; Kong, Long; Li, Zhichun; Li, Liang

    2017-10-31

    Traditional smart fluorescent materials, which have been attracting increasing interest for security protection, are usually visible under either ambient or UV light, making them adverse to the potential application of confidential information protection. Herein, we report an approach to realize confidential information protection and storage based on the conversion of lead-based metal-organic frameworks (MOFs) to luminescent perovskite nanocrystals (NCs). Owing to the invisible and controlled printable characteristics of lead-based MOFs, confidential information can be recorded and encrypted by MOF patterns, which cannot be read through common decryption methods. Through our conversion strategy, highly luminescent perovskite NCs can be formed quickly and simply by using a halide salt trigger that reacts with the MOF, thus promoting effective information decryption. Finally, through polar solvents impregnation and halide salt conversion, the luminescence of the perovskite NCs can be quenched and recovered, leading to reversible on/off switching of the luminescence signal for multiple information encryption and decryption processes.

  4. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Fernandez, Michael; Boyd, Peter G; Daff, Thomas D; Aghaji, Mohammad Zein; Woo, Tom K

    2014-09-04

    In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.

  5. Metal-Organic Frameworks Triggered High-Efficiency Li storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Shen, Lisha; Song, Huawei; Wang, Chengxin

    2017-01-01

    Recently, metal organic framework (MOF) nanostructures have been frequently reported in the field of energy storage, specifically for Li-ion or Na-ion storage. By inter-separating the active sites of metal cluster and organic ligands, MOF nanostructures are exceptionally promising for realizing fast ion exchange and high-efficiency transportation and addressing the intricate issues that the energy-intensive Li-ion batteries have faced over many years. The related ion-storage mechanism remains to be explored. Is the traditional redox reaction mechanism operative for these nanostructure, as it is for transitional metal oxide? Herein, taking [Fe_3O(BDC)_3(H_2O)_2(NO_3)]n (Fe-MIL-88B) as an example, an Fe-based metal organic polyhedral nanorods of MIL–88 B structure was designed as an anode for Li-ion storage. When tested at 60 mA g"−"1, the nanoporous Fe-MIL–88 B polyhedral nanorods retained a reversible capacity of 744.5 mAh g"−"1 for more than 400 cycles. Ex situ characterizations of the post-cycled electrodes revealed that both the transition metal ions and the organic ligands contributed to the high reversible specific capacity. The polyhedral nanorods electrodes held the metal-organic skeleton together throughout the battery operation, although in a somewhat different manner than the pristine ones. This further substantiated that some MOF nanostructures are more appropriate than others for stable lithiation/delithiation processes. State-of-the-art CR2032 full cells showed that a high capacity of 86.8 mAh g"−"1 that was retained after 100 cycles (herein, the capacity for the full cell was calculated based on both the weight of the anode and the cathode, and the charge-discharge rate was 0.25C), when commercial LiFePO_4 powders were used as the cathode.

  6. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Gang [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); Heinke, Lars, E-mail: Lars.Heinke@KIT.edu; Wöll, Christof [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin [Institute of Nanotechnology (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gordan, Ovidiu D.; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  7. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Science.gov (United States)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.

  8. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    International Nuclear Information System (INIS)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-01-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered

  9. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    Science.gov (United States)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the

  10. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui; Zhang, Daliang; Xue, Ming; Li, Huan; Qiu, Shilun

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure

  11. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    Science.gov (United States)

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  12. Minimal Edge-Transitive Nets for the Design and Construction of Metal-Organic Frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-05

    Highly-connected and minimal edge-transitive nets (with one or two kinds of edge) can be regarded as ideal blueprints for the rational design and construction of metal-organic frameworks (MOFs). Here we report and affirm the prominence of highly-connected nets as suitable targets in reticular chemistry for the design and synthesis of MOFs. Of special interest are augmented highly-connected binodal edge-transitive nets embedding a unique and precise positioning and connectivity of the net vertex figures, regarded as net-coded building units (net-cBUs). Explicitly, a definite net-cBU encompasses precise geometrical information that codes uniquely and matchlessly a selected net, a compelling perquisite for the rational design of MOFs. Interestingly, the double six-membered ring (d6R) building unit offers great prospective to be deployed as a net-cBU for the deliberate reticulation of the sole two edge-transitive nets with a vertex figure as a d6R, namely the (4,12)-coordinated shp net (square and hexagonal prism) and the (6,12)-coordinated alb net (aluminium diboride, hexagonal prism and trigonal prism). Conceivably, we envisioned and proposed various MOF structures based on the derived shp and alb nets. Gaining access to the requisite net-cBUs is essential for the successful practice of reticular chemistry; correspondingly organic and organic chemistries were deployed to afford concomitant molecular building blocks (MBBs) with the looked-for shape and connectivity. Practically, the combination of the 12-connected (12-c) rare-earth (RE) polynuclear, points of extension matching the 12 vertices of the hexagonal prism (d6R) with a 4-connected tetracarboxylate ligand or a 6-connected hexacarboxylate ligand afforded the targeted shp-MOF or alb-MOF, respectively. Intuitively, a dodecacarboxylate ligand can be conceived and purported as a compatible 12-c MBB, plausibly affording the positioning of the carbon centers of the twelve carboxylate groups on the vertices of the

  13. Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework.

    Science.gov (United States)

    Tominaka, Satoshi; Coudert, François-Xavier; Dao, Thang D; Nagao, Tadaaki; Cheetham, Anthony K

    2015-05-27

    Metal-organic frameworks (MOFs) are prone to exhibit phase transitions under stimuli such as changes in pressure, temperature, or gas sorption because of their flexible and responsive structures. Here we report that a dense MOF, ((CH3)2NH2)2[Li2Zr(C2O4)4], exhibits an abrupt increase in proton conductivity from topotactic hydration (H2O/Zr = 0.5), wherein one-fourth of the Li ions are irreversibly rearranged and coordinated by water molecules. This structure further transforms into a third crystalline structure by water uptake (H2O/Zr = 4.0). The abrupt increase in conductivity is reversible and is associated with the latter reversible structure transformation. The H2O molecules coordinated to Li ions, which are formed in the first step of the transformation, are considered to be the proton source, and the absorbed water molecules, which are formed in the second step, are considered to be proton carriers.

  14. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    Science.gov (United States)

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core-Shell Hybrid Materials.

    Science.gov (United States)

    Peng, Yongwu; Zhao, Meiting; Chen, Bo; Zhang, Zhicheng; Huang, Ying; Dai, Fangna; Lai, Zhuangchai; Cui, Xiaoya; Tan, Chaoliang; Zhang, Hua

    2018-01-01

    The exploration of new porous hybrid materials is of great importance because of their unique properties and promising applications in separation of materials, catalysis, etc. Herein, for the first time, by integration of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), a new type of MOF@COF core-shell hybrid material, i.e., NH 2 -MIL-68@TPA-COF, with high crystallinity and hierarchical pore structure, is synthesized. As a proof-of-concept application, the obtained NH 2 -MIL-68@TPA-COF hybrid material is used as an effective visible-light-driven photocatalyst for the degradation of rhodamine B. The synthetic strategy in this study opens up a new avenue for the construction of other MOF-COF hybrid materials, which could have various promising applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels

    KAUST Repository

    Forrest, Katherine A.

    2014-01-01

    Simulations of H2 and CO2 sorption were performed in the metal-organic framework (MOF), [Cu(Me-4py-trz-ia)]. This MOF was recently shown experimentally to exhibit high uptake for H2 and CO2 sorption and this was reproduced and elucidated through the simulations performed herein. Consistent with experiment, the theoretical isosteric heat of adsorption, Qst, values were nearly constant across all loadings for both sorbates. The simulations revealed that sorption directly onto the open-metal sites was not observed in this MOF, ostensibly a consequence of the low partial positive charges of the Cu2+ ions as determined through electronic structure calculations. Sorption was primarily observed between adjacent carboxylate oxygen atoms (site 1) and between nearby methyl groups (site 2) of the organic linkers. In addition, saturation of the most energetically favorable sites (site 1) is possible only after filling a nearby site (site 2) first due to the MOF topology. This suggests that the lack of dependence on loading for the Qst is due to the concurrent filling of sites 1 and 2, leading to an observed average Qst value. © 2014 the Partner Organisations.

  17. One-step synthesis for FeBTC-MOF/iron oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, R.F.F. do; Gentil, G.; Junior, S.A.; Azevedo, W.M. de; Rodrigues, A.R.; Campello, S.L. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: In this work we present the assisted ultrasonic radiation synthesis for f Fe(BTC) (BTC = 1,3,5-benzenetricarboxilic acid) metal organic framework preparation. By definition Metal-organic frameworks (MOFs) belongs to a class of material prepared by the combination of metal ions and organic linkers to form a tridimensional framework which presents defined characteristics like crystallinity, high porosity and the presence of strong metal-ligand interaction. In the last decades the MOFs materials have received considerable attention not only due to scientific interest, but also because of their high potential for applications in several technological areas such as in gas storage, catalysis and drug delivery [1]. Among several Metal-organic frameworks (MOFs) the Fe-BTC structure seems to be one of promising materials, mainly due to their chemical and thermal stability, presents biocompatibility, can be used as drug delivery and as a contrast agent for magnetic resonance. Its functionalization has been reported in the literature by several works where the methods consist to mix the iron oxide Fe3O4 nanoparticles, in the solution contained the MOF'S precursor and the synthesis is prepared by solvothermal method. Typically, it has core-shell Fe3O4@MOF structures and exhibit magnetic properties. Our experimental technique proposed for the synthesis of the composite consists to use iron powder (?-Fe) as a target material dispersed in a solution of DMF/H2O (1:1) containing benzene 1,3,5 tricarboxilic acid and NaNO3. The synthesis was performed using a Ultrasound equipment model GEX500 500 W operating at 80 kHz, pulse 1s intervals for 60 min. The x-ray diffraction patterns and SEM measurements shown that the obtained materials are similar to those found in the literature and presents a rods likes morphology. The BET analysis indicate that the surface area is 1257 m²g-1 and pore volume 1.4 cm³g-1. Also the magnetic measurements indicates a paramagnetic

  18. Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study

    Science.gov (United States)

    Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh

    2017-11-01

    We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.

  19. Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal-Organic Frameworks.

    Science.gov (United States)

    Rogge, Sven M J; Waroquier, Michel; Van Speybroeck, Veronique

    2018-01-16

    Over the past two decades, metal-organic frameworks (MOFs) have matured from interesting academic peculiarities toward a continuously expanding class of hybrid, nanoporous materials tuned for targeted technological applications such as gas storage and heterogeneous catalysis. These oft-times crystalline materials, composed of inorganic moieties interconnected by organic ligands, can be endowed with desired structural and chemical features by judiciously functionalizing or substituting these building blocks. As a result of this reticular synthesis, MOF research is situated at the intriguing intersection between chemistry and physics, and the building block approach could pave the way toward the construction of an almost infinite number of possible crystalline structures, provided that they exhibit stability under the desired operational conditions. However, this enormous potential is largely untapped to date, as MOFs have not yet found a major breakthrough in technological applications. One of the remaining challenges for this scale-up is the densification of MOF powders, which is generally achieved by subjecting the material to a pressurization step. However, application of an external pressure may substantially alter the chemical and physical properties of the material. A reliable theoretical guidance that can presynthetically identify the most stable materials could help overcome this technological challenge. In this Account, we describe the recent research the progress on computational characterization of the mechanical stability of MOFs. So far, three complementary approaches have been proposed, focusing on different aspects of mechanical stability: (i) the Born stability criteria, (ii) the anisotropy in mechanical moduli such as the Young and shear moduli, and (iii) the pressure-versus-volume equations of state. As these three methods are grounded in distinct computational approaches, it is expected that their accuracy and efficiency will vary. To date

  20. Flexible metal-organic framework compounds: In situ studies for selective CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A.J., E-mail: andrew.allen@nist.gov [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Espinal, L.; Wong-Ng, W. [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Queen, W.L. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); The Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 (United States); Brown, C.M. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Kline, S.R. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Kauffman, K.L. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); Culp, J.T. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); URS Corporation, South Park, PA 15219 (United States); Matranga, C. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States)

    2015-10-25

    Results are presented that explore the dynamic structural changes occurring in two highly flexible nanocrystalline metal-organic framework (MOF) compounds during the adsorption and desorption of pure gases and binary mixtures. The Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN){sub 4}] and catena-bis(dibenzoylmethanato)-(4,4′-bipyridyl)nickel(II) chosen for this study are 3-D and 1-D porous coordination polymers (PCP) with a similar gate opening pressure response for CO{sub 2} isotherms at 303 K, but with differing degrees of flexibility for structural change to accommodate guest molecules. As such, they serve as a potential model system for evaluating the complex kinetics associated with dynamic structure changes occurring in response to gas adsorption in flexible MOF systems. Insights into the crystallographic changes occurring as the MOF pore structure expands and contracts in response to interactions with CO{sub 2}, N{sub 2}, and CO{sub 2}/N{sub 2} mixtures have been obtained from in situ small-angle neutron scattering and neutron diffraction, combined with ex situ X-ray diffraction structure measurements. The role of structure in carbon capture functionality is discussed with reference to the ongoing characterization challenges and a possible materials-by-design approach. - Graphical abstract: We present in situ small-angle neutron scattering results for two flexible metal-organic frameworks (MOFs). The figure shows that for one (NiBpene, high CO{sub 2} adsorption) the intensity of the Bragg peak for the expandable d-spacing most associated with CO{sub 2} adsorption varies approximately with the isotherm, while for the other (NiDBM-Bpy, high CO{sub 2} selectivity) the d-spacing, itself, varies with the isotherm. The cartoons show the proposed modes of structural change. - Highlights: • Dynamic structures of two flexible MOF CO{sub 2} sorbent compounds are compared in situ. • These porous solid sorbents serve as models for pure & dual gas adsorption. • Different

  1. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    Science.gov (United States)

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  2. Investigating H₂ Sorption in a Fluorinated Metal-Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering.

    Science.gov (United States)

    Forrest, Katherine A; Pham, Tony; Georgiev, Peter A; Pinzan, Florian; Cioce, Christian R; Unruh, Tobias; Eckert, Juergen; Space, Brian

    2015-07-07

    Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn(2+) ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The experimental H2 isosteric heat of adsorption (Qst) values for this MOF are approximately 8.0 kJ mol(-1) for the considered loading range, which is in the proximity of those determined from simulation. The experimental inelastic neutron scattering (INS) spectra for H2 in [Zn(trz)(tftph)] reveal at least two peaks that occur at low energies, which corresponds to high barriers to rotation for the respective sites. The most favorable sorption site in the MOF was identified from the simulations as sorption in the vicinity of a metal-coordinated H2O molecule, an exposed fluorine atom, and a carboxylate oxygen atom in a confined region in the framework. Secondary sorption was observed between the fluorine atoms of adjacent tetrafluoroterephthalate ligands. The H2 molecule at the primary sorption site in [Zn(trz)(tftph)] exhibits a rotational barrier that exceeds that for most neutral MOFs with open-metal sites according to an empirical phenomenological model, and this was further validated by calculating the rotational potential energy surface for H2 at this site.

  3. A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology

    International Nuclear Information System (INIS)

    Taghizadeh, Mohsen; Asgharinezhad, Ali Akbar; Pooladi, Mohsen; Barzin, Mahnaz; Abbaszadeh, Abolfazl; Tadjarodi, Azadeh

    2013-01-01

    We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe 3 O 4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL −1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were −1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g −1 ) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe 3 O 4 /dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples. (author)

  4. Method for analyzing structural changes of flexible metal-organic frameworks induced by adsorbates

    NARCIS (Netherlands)

    Dubbeldam, D.; Krishna, R.; Snurr, R.Q.

    2009-01-01

    Metal−organic frameworks (MOFs) have crystal structures that exhibit unusual flexibility. An extreme example is that of the "breathing MOF" MIL-53 that expands or shrinks to admit guest molecules like CO2 and water. We present a powerful simulation tool to quickly calculate unit cell shape and size

  5. Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping.

    Science.gov (United States)

    Castells-Gil, Javier; Padial, Natalia M; Almora-Barrios, Neyvis; Albero, Josep; Ruiz-Salvador, A Rabdel; González-Platas, Javier; García, Hermenegildo; Martí-Gastaldo, Carlos

    2018-06-06

    We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H 2 production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Symbiosis of zeolite-like metal-organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release

    KAUST Repository

    Ananthoji, Ramakanth

    2011-01-01

    The design and synthesis of new finely tunable porous materials has spurred interest in developing novel uses in a variety of systems. Zeolites, inorganic materials with high thermal and mechanical stability, in particular, have been widely examined for use in applications such as catalysis, ion exchange and separation. A relatively new class of inorganic-organic hybrid materials known as metal-organic frameworks (MOFs) have recently surfaced, and many have exhibited their efficiency in potential applications such as ion exchange and drug delivery. A more recent development is the design and synthesis of a subclass of MOFs based on zeolite topologies (i.e. ZMOFs), which often exhibit traits of both zeolites and MOFs. Bio-compatible hydrogels already play an important role in drug delivery systems, but are often limited by stability issues. Thus, the addition of ZMOFs to hydrogel formulations is expected to enhance the hydrogel mechanical properties, and the ZMOF-hydrogel composites should present improved, symbiotic drug storage and release for delivery applications. Herein we present the novel composites of a hydrogel with a zeolite-like metal-organic framework, rho-ZMOF, using 2-hydroxyethyl methacrylate (HEMA), 2,3-dihydroxypropyl methacrylate (DHPMA), N-vinyl-2-pyrolidinone (VP) and ethylene glycol dimethacrylate (EGDMA), and the corresponding drug release. An ultraviolet (UV) polymerization method is employed to synthesize the hydrogels, VP 0, VP 15, VP 30, VP 45 and the ZMOF-VP 30 composite, by varying the VP content (mol%). The rho-ZMOF, VP 30, and ZMOF-VP 30 composite are all tested for the controlled release of procainamide (protonated, PH), an anti-arrhythmic drug, in phosphate buffer solution (PBS) using UV spectroscopy. © 2011 The Royal Society of Chemistry.

  7. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  8. Ultrafast rotation in an amphidynamic crystalline metal organic framework.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Uribe-Romo, Fernando J; Lipton, Andrew S; Yang, Song; Houk, K N; Brown, Stuart; Garcia-Garibay, Miguel A

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4 O cubic lattice. Using spin-lattice relaxation 1 H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3-80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1 These results were confirmed with 2 H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  9. Metal organic frameworks as a drug delivery system for flurbiprofen

    Directory of Open Access Journals (Sweden)

    AL Haydar M

    2017-09-01

    Full Text Available Muder AL Haydar,1,2 Hussein Rasool Abid,3,4 Bruce Sunderland,2 Shaobin Wang5,6 1Pharmaceutics Department, College of the Pharmacy, University of Kerbala, Kerbala, Iraq; 2Pharmaceutics Department, School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 3Department of Chemical Engineering, Curtin University, Perth, WA, Australia; 4College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq; 5School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 6Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia Background: Metal organic frameworks (MOFs have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Purpose: Flurbiprofen (FBP, a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101 were synthesized and employed for FBP delivery. Patients and methods: A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40% in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. Results: The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release

  10. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    Science.gov (United States)

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    Science.gov (United States)

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The preparation of metal–organic frameworks and their biomedical application

    Directory of Open Access Journals (Sweden)

    Liu R

    2016-03-01

    Full Text Available Rong Liu,1,2 Tian Yu,1 Zheng Shi,1 Zhiyong Wang3 1School of Medicine and Nursing, Chengdu University, Chengdu, 2Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 3Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China Abstract: The development of a safe and targetable drug carrier is a major challenge. An efficient delivery system should protect cargo from degradation and cleanup, and control of drug release in the target site. Metal–organic frameworks (MOFs, consisting of metal ions and a variety of organic ligands, have been applied for drug delivery due to their distinct structure. In this review, we summarized the synthesis strategies of MOFs, especially emphasizing the methods of pore creation in frameworks, which were based on recent literatures. Subsequently, the controlled size, biocompatibility, drug releasing performances, and imaging of MOFs were discussed, which would pave the road for the application in drug-delivery systems. Keywords: metal-organic frameworks, pore creation, the controlled size, biocompatibility, drug releasing performances, imaging

  13. A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1).

    Science.gov (United States)

    Zhang, Suoying; Liu, Hong; Liu, Pengfei; Yang, Zhuhong; Feng, Xin; Huo, Fengwei; Lu, Xiaohua

    2015-06-07

    Uniform CuO hollow microspheres were successfully achieved from a non-uniform metal organic framework by using a template-free method. The process mechanism has been revealed to be spherical aggregation and Ostwald ripening. When tested in CO oxidation and heat treatment, these assembled microspheres exhibited an excellent catalytic performance and show a much better stability than the inherited hollow structure from MOFs.

  14. Metal-organic framework based on copper(I) sulfate and 4,4'-bipyridine catalyzes the cyclopropanation of styrene

    International Nuclear Information System (INIS)

    Shi Fanian; Silva, Ana Rosa; Rocha, Joao

    2011-01-01

    The hydrothermal synthesis of a new metal-organic framework (MOF) formulated as Cu 2 (4,4'-bpy) 2 SO 4 .6(H 2 O), [abbreviation: (1); bpy or 4,4'-bpy=4,4'-bipyridine; SO 4 2- =sulfate group] has been reported. The structure of this MOF consists of Cu + nodes connected via 4,4'-bpy to form infinite chains, with two neighboring chains further bridged on the nodes by SO 4 2- , resulting in a 1-D double chain network. Guest water molecules reside in between the chains and are hydrogen-bonded to the O and S atoms from the nearest sulfate groups, leading to the formation of a 3-D supramolecular framework. This MOF is good heterogeneous catalyst for the cyclopropanation of styrene, with high trans cyclopropane diastereoselectivity and was recycled and reused for three consecutive cycles without a significant loss of catalytic activity. - Graphical Abstract: A new MOF structure built up of 4,4 ' -bipyridine, sulphate and Cu(I), is an active heterogeneous catalyst for cyclopropanation of styrene with ethyldiazoacetate. Highlights: → The synthesis is different from solvothermal synthesis for other Cu(I) compounds. → The compound and the structure are new. → H bonds form infinite planes among water molecules and sulphate species. → H bonding interaction makes the structure into a 3D supramolecular framework. → Active catalytic property as heterogeneous catalyst for cyclopropanation of styrene.

  15. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Science.gov (United States)

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  16. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  17. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  18. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fei [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Qiu, Ling-Guang, E-mail: lgqiu@ahu.edu.cn [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhu, Jun-Fa [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer A novel type of functionalized MOF for heavy metal removal. Black-Right-Pointing-Pointer Functionalization of MOF by a facile coordination-based postsynthetic strategy. Black-Right-Pointing-Pointer Thiol-functionalization of MOF has been realized for the first time. Black-Right-Pointing-Pointer Enhanced removal of Hg{sup 2+} by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu{sub 3}(BTC){sub 2}(H{sub 2}O){sub 3}]{sub n} (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu{sub 3}(BTC){sub 2}]{sub n} samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N{sub 2} sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu{sub 3}(BTC){sub 2}]{sub n} exhibited remarkably high adsorption affinity (K{sub d} = 4.73 Multiplication-Sign 10{sup 5} mL g{sup -1}) and high adsorption capacity (714.29 mg g{sup -1}) for Hg{sup 2+} adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg{sup 2+} under the same condition.

  19. A hard X-ray study of a manganese-terpyridine catalyst in a chromium-based Metal Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Alexandra V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    Hydrogen produced from water splitting is a promising source of clean energy. However, a robust catalyst is necessary to carry out the water oxidation step of water splitting. In this study, the catalyst studied was [(terpy)Mn(μ-O)2Mn(terpy)]3+ (MnTD) synthesized in the Metal Organic Framework (MOF) MIL-101(Cr), and the method used for analysis was hard X-ray powder diffraction. The diffraction data was used to detect the presence of MOF in different catalytic stages, and lattice parameters were assigned to the samples containing MOF. Fourier maps were constructed with GSAS II to determine the contents of the MOF as preliminary studies suggested that MnTD may not be present. Results showed that MOF is present before catalysis occurs but disappears by the time 45 minutes of catalysis has ensued. Changes in the MOF’s lattice parameters and location of electron density in the Fourier maps suggest attractions between the MOF and catalyst that may lead to MOF degradation. Fourier maps also revealed limited, if any, amounts of MnTD, even before catalysis occurred. Molecular manganese oxide may be the source of the high rate of water oxidation catalysis in the studied system.

  20. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  1. Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks

    KAUST Repository

    Assi, Hala

    2017-05-24

    Owing to their promise in photocatalysis and optoelectronics, titanium based metal–organic frameworks (MOFs) are one of the most appealing classes of MOFs reported to date. Nevertheless, Ti-MOFs are still very scarce because of their challenging synthesis associated with a poor degree of control of their chemistry and crystallization. This review aims at giving an overview of the recent progress in this field focusing on the most relevant existing titanium coordination compounds as well as their promising photoredox properties. Not only Ti-MOFs but also Ti-oxo-clusters will be discussed and particular interest will be dedicated to highlight the different successful synthetic strategies allowing to overcome the still “unpredictable” reactivity of titanium ions, particularly to afford crystalline porous coordination polymers.

  2. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage.

    Science.gov (United States)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-12-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  3. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage

    Science.gov (United States)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-03-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  4. Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating

    KAUST Repository

    Jaber, Nizar; Ilyas, Saad; Shekhah, Osama; Eddaoudi, Mohamed; Younis, Mohammad I.

    2017-01-01

    We report a resonant gas sensor, uniformly coated with a metal-organic framework (MOF), and excited it near the higher order modes for a higher attained sensitivity. Also, switching upon exceeding a threshold value is demonstrated by operating the resonator near the bifurcation point and the dynamic pull-in instabilities. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOF functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  5. Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating

    KAUST Repository

    Jaber, Nizar

    2017-11-03

    We report a resonant gas sensor, uniformly coated with a metal-organic framework (MOF), and excited it near the higher order modes for a higher attained sensitivity. Also, switching upon exceeding a threshold value is demonstrated by operating the resonator near the bifurcation point and the dynamic pull-in instabilities. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOF functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  6. A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications: A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian [Pacific Northwest National Laboratory, 99352 Richland WA USA; Zheng, Jian [Pacific Northwest National Laboratory, 99352 Richland WA USA; Barpaga, Dushyant [Pacific Northwest National Laboratory, 99352 Richland WA USA; Sabale, Sandip [Pacific Northwest National Laboratory, 99352 Richland WA USA; P.G. Department of Chemistry, Jaysingpur College, 416101 Jaysingpur Maharashtra India; Arey, Bruce [Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, 99352 Richland WA USA; Derewinski, Miroslaw A. [Pacific Northwest National Laboratory, 99352 Richland WA USA; McGrail, B. Peter [Pacific Northwest National Laboratory, 99352 Richland WA USA; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 99352 Richland WA USA

    2018-02-12

    A mixed metal strategy, in which two different metal nodes coexist in one MOF framework, was examined using MOF-74. The Ni salt precursor for the MOF-74(Ni) analogue was partially replaced during synthesis with relatively inexpensive Zn salt. These bimetallic MOFs were developed and examined for water sorption for potential use in adsorption cooling/chiller applications. Varying concentration ratios of Ni:Zn in MOF-74 achieved using this mixed metal strategy were shown to provide unique impacts on H2O uptake while significantly mitigating the costs of synthesis

  7. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    Science.gov (United States)

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.

    Science.gov (United States)

    Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva; Tyagi, Madhusudan; Chen, Ping; Yildirim, Taner; Zhou, Wei

    2013-07-17

    UiO-66 is a highly important prototypical zirconium metal-organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missing-linker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm(3)/g and Brunauer-Emmett-Teller surface areas ranging from 1000 to 1600 m(2)/g, the largest values of which are ∼150% and ∼60% higher than the theoretical values of defect-free UiO-66 crystal, respectively. The linker vacancies also have profound effects on the gas adsorption behaviors of UiO-66, in particular CO2. Finally, comparing the gas adsorption of hydroxylated and dehydroxylated UiO-66, we found that the former performs systematically better than the latter (particularly for CO2) suggesting the beneficial effect of the -OH groups. This finding is of great importance because hydroxylated UiO-66 is the practically more relevant, non-air-sensitive form of this MOF. The preferred gas adsorption on the metal center was confirmed by neutron diffraction measurements, and the gas binding strength enhancement by the -OH group was further supported by our first-principles calculations.

  9. Flexible MOFs under stress: pressure and temperature.

    Science.gov (United States)

    Clearfield, Abraham

    2016-03-14

    In the recent past an enormous number of Metal-Organic Framework type compounds (MOFs) have been synthesized. The novelty resides in their extremely high surface area and the ability to include additional features to their structure either during synthesis or as additives to the MOF. This versatility allows for MOFs to be designed for specific applications. However, the question arises as to whether a particular MOF can withstand the stress that may be encountered in fulfillment of the designated application. In this study we describe the behavior of two flexible MOFs under pressure and several others under temperature increase. The pressure study includes both experimental and theoretical calculations. In the thermal processes evidence for colossal negative thermal expansion were encountered.

  10. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    Science.gov (United States)

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Manganese(II), iron(II), and mixed-metal metal-organic frameworks based on chains with mixed carboxylate and azide bridges: magnetic coupling and slow relaxation.

    Science.gov (United States)

    Wang, Yan-Qin; Yue, Qi; Qi, Yan; Wang, Kun; Sun, Qian; Gao, En-Qing

    2013-04-15

    Mn(II) and Fe(II) compounds derived from azide and the zwitterionic 1-carboxylatomethylpyridinium-4-carboxylate ligand are isomorphous three-dimensional metal-organic frameworks (MOFs) with the sra net, in which the metal ions are connected into anionic chains by mixed (μ-1,1-azide)bis(μ-carboxylate) triple bridges and the chains are cross-linked by the cationic backbones of the zwitterionic ligands. The Mn(II) MOFs display typical one-dimensional antiferromagnetic behavior. In contrast, with one more d electron per metal center, the Fe(II) counterpart shows intrachain ferromagnetic interactions and slow relaxation of magnetization attributable to the single-chain components. The activation energies for magnetization reversal in the infinite- and finite-chain regimes are Δτ1 = 154 K and Δτ2 = 124 K, respectively. Taking advantage of the isomorphism between the Mn(II) and Fe(II) MOFs, we have prepared a series of mixed-metal Mn(II)(1-x)Fe(II)(x) MOFs with x = 0.41, 0.63, and 0.76, which intrinsically feature random isotropic/anisotropic sites and competing antiferromagnetic-ferromagnetic interactions. The materials show a gradual antiferromagnetic-to-ferromagnetic evolution in overall behaviors as the Fe(II) content increases, and the Fe-rich materials show complex relaxation processes that may arise for mixed SCM and spin-glass mechanisms. A general trend is that the activation energy and the blocking temperature increase with the Fe(II) content, emphasizing the importance of anisotropy for slow relaxation of magnetization.

  12. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water.

    Science.gov (United States)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-11-30

    The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu(3)(BTC)(2)(H(2)O)(3)](n) (HKUST-1, BTC=benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu(3)(BTC)(2)](n) samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N(2) sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu(3)(BTC)(2)](n) exhibited remarkably high adsorption affinity (K(d)=4.73 × 10(5)mL g(-1)) and high adsorption capacity (714.29 mg g(-1)) for Hg(2+) adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg(2+) under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework

    Science.gov (United States)

    Musho, Terence D.; Yasin, Alhassan S.

    2018-03-01

    This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH_2 ) and a nitro group (BDC + NO_2 ). The design space of this study is bound by UiO-66(M)-R, [M=Zr , Ti, Hf; R=BDC , BDC+NO_2 , BDC+NH_2 ]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron-phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(Hf_5Zr_1 ) achieving a value of approximately 1.4× 10^{-3} cm^2 /V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.

  14. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  15. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks.

    Science.gov (United States)

    Chambers, Matthew B; Wang, Xia; Elgrishi, Noémie; Hendon, Christopher H; Walsh, Aron; Bonnefoy, Jonathan; Canivet, Jérôme; Quadrelli, Elsje Alessandra; Farrusseng, David; Mellot-Draznieks, Caroline; Fontecave, Marc

    2015-02-01

    The first photosensitization of a rhodium-based catalytic system for CO2 reduction is reported, with formate as the sole carbon-containing product. Formate has wide industrial applications and is seen as valuable within fuel cell technologies as well as an interesting H2 -storage compound. Heterogenization of molecular rhodium catalysts is accomplished via the synthesis, post-synthetic linker exchange, and characterization of a new metal-organic framework (MOF) Cp*Rh@UiO-67. While the catalytic activities of the homogeneous and heterogeneous systems are found to be comparable, the MOF-based system is more stable and selective. Furthermore it can be recycled without loss of activity. For formate production, an optimal catalyst loading of ∼10 % molar Rh incorporation is determined. Increased incorporation of rhodium catalyst favors thermal decomposition of formate into H2 . There is no precedent for a MOF catalyzing the latter reaction so far. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; Yang, Song; Houk, K. N.; Brown, Stuart; Garcia-Garibay, Miguel A.

    2017-12-11

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol-1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  17. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Science.gov (United States)

    Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof

    2015-09-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  18. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission.

    Science.gov (United States)

    Wen, Yuehong; Sheng, Tianlu; Zhu, Xiaoquan; Zhuo, Chao; Su, Shaodong; Li, Haoran; Hu, Shengmin; Zhu, Qi-Long; Wu, Xintao

    2017-10-01

    The unique features of the metal-organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue-, green-, and red-phosphors, respectively. Furthermore, this study introduces the red-, green-, and blue-emitting dyes into a MOF together for the first time, producing white-light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color-rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue-emitting guests in the methodology makes the available MOF host more extensive, and the final white-light output more tunable and high-quality. Such strategy can be widely adopted to design and prepare white-light-emitting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks

    DEFF Research Database (Denmark)

    Hawxwell, Samuel M; Espallargas, Guillermo Mínguez; Bradshaw, Darren

    2007-01-01

    Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.......Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs....

  20. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal-Organic Framework for Fast White-Light Communication.

    Science.gov (United States)

    Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin

    2017-10-11

    A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.

  1. Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic.

    Science.gov (United States)

    Ortiz-Gómez, Inmaculada; Salinas-Castillo, Alfonso; García, Amalia García; Álvarez-Bermejo, José Antonio; de Orbe-Payá, Ignacio; Rodríguez-Diéguez, Antonio; Capitán-Vallvey, Luis Fermín

    2017-12-13

    This work presents a microfluidic paper-based analytical device (μPAD) for glucose determination using a supported metal-organic framework (MOF) acting as a peroxidase mimic. The catalytic action of glucose oxidase (GOx) on glucose causes the formation of H 2 O 2 , and the MOF causes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H 2 O 2 to form a blue-green product with an absorption peak at 650 nm in the detection zone. A digital camera and the iOS feature of a smartphone are used for the quantitation of glucose with the S coordinate of the HSV color space as the analytical parameter. Different factors such as the concentration of TMB, GOx and MOF, pH and buffer, sample volume, reaction time and reagent position in the μPAD were optimized. Under optimal conditions, the value for the S coordinate increases linearly up to 150 μmol·L -1 glucose concentrations, with a 2.5 μmol·L -1 detection limit. The μPAD remains stable for 21 days under conventional storage conditions. Such an enzyme mimetic-based assay to glucose determination using Fe-MIL-101 MOF implemented in a microfluidic paper-based device possesses advantages over enzyme-based assays in terms of costs, durability and stability compared to other existing glucose determination methods. The procedure was applied to the determination of glucose in (spiked) serum and urine. Graphical abstract Schematic representation of microfluidic paper-based analytical device using metal-organic framework as a peroxidase mimic for colorimetric glucose detection with digital camera or smartphone and iOS app readout.

  2. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    Science.gov (United States)

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  3. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation

    Science.gov (United States)

    Huang, Jie; Zhang, Xibiao; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Wen, Congcong

    2018-05-01

    Most of the reported composites of g-C3N4/metal-organic frameworks (MOFs) were obtained via exfoliation of g-C3N4 and wrapping the nanosheets on MOFs with weak interaction. In this work, chemical protonation of g-C3N4 and dip-coating was adopted as a feasible pathway to achieve the real combination of g-C3N4 derivatives with a familiar MOF material MIL-100(Fe). Structural, chemical and photophysical properties of the novel hybrid photocatalysts were characterized and compared to those of the parent materials. It was verified that the protonated g-C3N4 species of appropriate content were uniformly coated along the frameworks of MIL-100(Fe) with strong interaction. The optimal materials maintained the intact framework structure, surface property and porosity of MIL-100(Fe), as well as the inherent structural units and physicochemical properties of C3N4. In comparison to the parent materials, the protonated g-C3N4 coated MIL-100(Fe) materials exhibited enhanced photocatalytic activity in degradation of rhodamine B or methylene blue dye, as well as in oxidative denitrogenation for pyridine by molecular oxygen under visible light. Introduction of protonated g-C3N4 on MOFs improved the adsorption ability for contaminant molecules. Furthermore, coating effect provided a platform for rapid photoexcited electrons transfer and superior separation of photogenerated electron-hole pairs. Photocatalytic conversion of the three contaminants followed different mechanisms.

  4. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction

    Science.gov (United States)

    Yang, Fan; Xu, Gang; Dou, Yibo; Wang, Bin; Zhang, Heng; Wu, Hui; Zhou, Wei; Li, Jian-Rong; Chen, Banglin

    2017-11-01

    The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal-organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (-SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its -SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10-1 S cm-1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

  5. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation.

    Science.gov (United States)

    Fuoco, Alessio; Khdhayyer, Muhanned R; Attfield, Martin P; Esposito, Elisa; Jansen, Johannes C; Budd, Peter M

    2017-02-11

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H₂, O₂, N₂, CH₄, CO₂ were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

  6. Two Water Stable Copper Metal-Organic Frameworks with Performance in the Electrocatalytic Activity for Water Oxidation

    Directory of Open Access Journals (Sweden)

    Liu Xiuping

    2018-01-01

    Full Text Available Two novel water stable metal-organic frameworks, [Cu(L·(4,4′-bipy·(ClO4]n (1, [Cu(L·(phen·(ClO4·(H2O]2 (2, have been constructed by HL=[5-Mercapto-1-methyl] tetrazole acetic acid and Cu (II salt in the presence of assistant N-containing ligands. MOF 1 and MOF 2 with open CuII sites, resulting the framework 1 and 2 show electrocatalytic activity for water oxidation in alkaline solution. The electrochemical properties of complex for oxygen evolution reaction (OER were evaluated by linear sweep voltammetry (LSV and the Tafel slopes. Complex 1 has a higher LSV activity with a lower over potential of 1.54 V and a much higher increase in current density. Meanwhile, the Tafel slope of complex 1 (122.0 mV dec-1 is much lower than complex 2 (243.5 mV dec-1. This phenomenon makes complex 1 a promising porous material for electrocatalytic activity.

  7. Cu–hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fenfen; He, Juan; Zeng, Mulang; Hao, Juan; Guo, Qiaohui; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2016-05-15

    In this work, a facile strategy to synthesize Cu–hemin metal-organic frameworks (MOFs) with peroxidase-like activity was reported. The prepared Cu–hemin MOFs were characterized by various techniques such as scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, UV–visible absorbance spectra, and so on. The results showed that the prepared Cu–hemin MOFs looked like a ball-flower with an average diameter of 10 μm and provided a large specific surface area. The Cu–hemin MOFs possessing peroxidase-like activity could be used to catalyze the peroxidase substrate of 3,3,5,5-tetramethylbenzidine in the presence of H{sub 2}O{sub 2}, which was employed to detect H{sub 2}O{sub 2} quantitatively with the linear range from 1.0 μM to 1.0 mM and the detection limit was 0.42 μM. Furthermore, with the additional help of glucose oxidase, a sensitive and selective method to detect glucose was developed by using the Cu–hemin MOFs as catalyst and the linear range was from 10.0 μM to 3.0 mM and the detection limit was 6.9 μM. This work informs researchers of the advantages of MOFs for preparing biomimetic catalysts and extends the functionality of MOFs for biosensor application.Graphical Abstract.

  8. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine.

    Science.gov (United States)

    Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza

    2013-04-15

    A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Maryam Moeinian

    2016-01-01

    Full Text Available Metal-Organic Frameworks (MOFs represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc2(H2O2∙(DMF2]n (1 and [Zn2(1,4-bdc2(dabco]·4DMF·1⁄2H2O (2, (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane and DMF = N,N-dimethylformamide were synthesized and characterized. They were used for preparation of ZnO nanomaterials. With calcination of 1, agglomerated ZnO nanoparticles could be fabricated, but by the same process on 2, the tendency of ZnO nanoparticles to agglomeration was decreased. In addition, the ZnO nanoparticles prepared from compound 2 had smaller diameter than those obtained from compound 1. In fact, the role of organic dabco ligands in 2 is similar to the role of polymeric stabilizers in formation of nanoparticles. Finally, considering the various applications of ZnO nanomaterials such as light-emitting diodes, photodetectors, photodiodes, gas sensors and dye-sensitized solar cells (DSSCs, it seems that preparation of ZnO nanomaterials from their MOFs could be one of the simple and effective methods which may be applied for preparation of them.

  10. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    Science.gov (United States)

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  11. A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II)

    International Nuclear Information System (INIS)

    Ghorbani-Kalhor, Ebrahim

    2016-01-01

    The author describes the preparation of a magnetic metal organic framework of type MOF-199 containing magnetite (Fe 3 O 4 ) nanoparticles carrying covalently immobilized 4-(thiazolylazo) resorcinol (Fe 3 O 4 -TAR). This material is shown to represent a viable sorbent for separation and preconcentration of Cd(II), Pb(II), and Ni(II) ions. Box-Behnken design was applied to optimize the parameters affecting preconcentration. Following elution with 0.6 mol L −1 EDTA, the ions were quantified by FAAS. The capacity of the sorbent ranged between 185 and 210 mg g −1 . The limits of detection are 0.15, 0.40, and 0.8 ng mL −1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <8.5 %. The method was successfully applied to the rapid extraction of trace amounts of these ions from sea food and agri food. (author)

  12. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.

    Science.gov (United States)

    Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-07-01

    Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces.

    Science.gov (United States)

    Kozachuk, Olesia; Yusenko, Kirill; Noei, Heshmat; Wang, Yuemin; Walleck, Stephan; Glaser, Thorsten; Fischer, Roland A

    2011-08-14

    Phase-pure crystalline thin films of a mixed-valence Ru(2)(II,III) metal-organic framework with 1,3,5-benzenetricarboxylate (btc) as a linker were solvothermally grown on amorphous alumina and silica surfaces. Based on the Rietveld refinement, the structure of Ru-MOF was assigned to be analogous to [Cu(3)(btc)(2)] (HKUST-1). This journal is © The Royal Society of Chemistry 2011

  14. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  15. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: A molecular simulation study

    KAUST Repository

    Babarao, Ravichandar

    2010-07-06

    The storage and separation of H2 and CO2 are investigated in a highly porous ionic rht metal-organic framework (rht-MOF) using molecular simulation. The rht-MOF possesses a cationic framework and charge-balancing extraframework NO3 - ions. Three types of unique open cages exist in the framework: rhombicuboctahedral, tetrahedral, and cuboctahedral cages. The NO3 - ions exhibit small mobility and are located at the windows connecting the tetrahedral and cuboctahedral cages. At low pressures, H2 adsorption occurs near the NO 3 - ions that act as preferential sites. With increasing pressure, H2 molecules occupy the tetrahedral and cuboctahedral cages and the intersection regions. The predicted isotherm of H2 at 77 K agrees well with the experimental data. The H2 capacity is estimated to be 2.4 wt % at 1 bar and 6.2 wt % at 50 bar, among the highest in reported MOFs. In a four-component mixture (15:75:5:5 CO2/H 2/CO/CH4) representing a typical effluent gas of H 2 production, the selectivity of CO2/H2 in rht-MOF decreases slightly with increasing pressure, then increases because of cooperative interactions, and finally decreases as a consequence of entropy effect. By comparing three ionic MOFs (rht-MOF, soc-MOF, and rho-ZMOF), we find that the selectivity increases with increasing charge density or decreasing free volume. In the presence of a trace amount of H2O, the interactions between CO2 and NO3 - ions are significantly shielded by H2O; consequently, the selectivity of CO 2/H2 decreases substantially. © 2010 American Chemical Society.

  16. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents.

    Science.gov (United States)

    Henke, Sebastian; Schneemann, Andreas; Wütscher, Annika; Fischer, Roland A

    2012-06-06

    Flexible metal-organic frameworks (MOFs), also referred to as soft porous crystals (SPCs), show reversible structural transitions dependent on the nature and quantity of adsorbed guest molecules. In recent studies it has been reported that covalent functionalization of the organic linker can influence or even integrate framework flexibility ("breathing") in MOFs. However, rational fine-tuning of such responsive properties is very desirable but challenging as well. Here we present a powerful approach for the targeted manipulation of responsiveness and framework flexibility of an important family of pillared-layered MOFs based on the parent structure [Zn(2)(bdc)(2)(dabco)](n) (bdc = 1,4-benzenedicarboxylate; dabco = 1,4-diazabicyclo[2.2.2]octane). A library of functionalized bdc-type linkers (fu-bdc), which bear additional dangling side groups at different positions of the benzene core (alkoxy groups of varying chain length with diverse functionalities and polarity), was generated. Synthesis of the materials [Zn(2)(fu-bdc)(2)(dabco)](n) yields the respective collection of highly responsive MOFs. The parent MOF is only weakly flexible; however, the substituted frameworks of [Zn(2)(fu-bdc)(2)(dabco)](n) contract drastically upon guest removal and expand again upon adsorption of DMF (N,N-dimethylformamide), EtOH, or CO(2), etc., while N(2) is hardly adsorbed and does not open the narrow-pored form. These "breathing" dynamics are attributed to the dangling side chains that act as immobilized "guests", which interact with mobile guest molecules as well as with themselves and with the framework backbone. The structural details of the guest-free, contracted form and the gas sorption behavior (phase transition pressure, hysteresis loop) are highly dependent on the nature of the substituent at the linker and can therefore be adjusted using our approach. Combining our library of functionalized linkers with the concept of mixed-component MOFs (solid solutions) offers very rich

  17. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    Science.gov (United States)

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  18. High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water

    NARCIS (Netherlands)

    Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; Mittelmeijer-Hazeleger, M.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We investigate and discuss the proton conductivity properties of the cyanide-bridged metal–organic framework (MOF) [Nd(mpca)2Nd(H2O)6Mo(CN)8]·nH2O (where mpca is 5-methyl-2-pyrazinecarboxylate). This MOF is one of an exciting class of cyanide-bridged materials that can combine porosity with

  19. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    Science.gov (United States)

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  20. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal A.

    2017-06-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials amenable to a rational design with targeted properties for given applications. Several design approaches have been deployed to construct targeted functional MOFs, where desired structural and geometrical attributes are incorporated in preselected building units prior to the assembly process. This dissertation illustrates the merit of the molecular building block approach (MBB) for the rational construction and discovery of stable and highly porous MOFs, and their exploration as potential gas storage medium for sustainable and clean energy applications. Specifically, emphasis was placed on gaining insights into the structure-property relationships that impact the methane (CH4) storage in MOFs and its subsequent delivery. The foreseen gained understanding is essential for the design of new adsorbent materials or adjusting existing MOF platforms to encompass the desired features that subsequently afford meeting the challenging targets for methane storage in mobile and stationary applications.In this context, we report the successful use of the MBB approach for the design and deliberate construction of a series of novel isoreticular, highly porous and stable, aluminum based MOFs with the square-octahedral (soc) underlying net topology. From this platform, Al-soc-MOF-1, with more than 6000 m2/g apparent Langmuir specific surface area, exhibits outstanding gravimetric CH4 uptake (total and working capacities). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the U.S. Department of Energy (DOE) challenging gravimetric and volumetric targets for the CH4 working capacity for on-board CH4 storage. Furthermore, Al-soc-MOF-1 exhibits the highest total gravimetric and volumetric uptake for carbon

  1. Characterization of compositional modifications in metal-organic frameworks using carbon and alpha particle microbeams

    Science.gov (United States)

    Paneta, V.; Fluch, U.; Petersson, P.; Ott, S.; Primetzhofer, D.

    2017-08-01

    Zirconium-oxide based metal-organic frameworks (MOFs) were grown on p-type Si wafers. A modified linker molecule containing iodine was introduced by post synthetic exchange (PSE). Samples have been studied using Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) techniques, employing the 5 MV 15SDH-2 Pelletron Tandem accelerator at the Ångström laboratory. The degree of post synthetic uptake of the iodine-containing linker has been investigated with both a broad beam and a focused beam of carbon and alpha particles targeting different kind of MOF crystals which were of ∼1-10 μm in size, depending on the linker used. Iodine concentrations in MOF crystallites were also measured by Nuclear Magnetic Resonance Spectroscopy (NMR) and are compared to the RBS results. In parallel to the ion beam studies, samples were investigated by Scanning Electron Microscopy (SEM) to quantify possible crystallite clustering, develop optimum sample preparation routines and to characterize the potential ion beam induced sample damage and its dependence on different parameters. Based on these results the reliability and accuracy of ion beam data is assessed.

  2. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renjie, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Zhao, Teng [Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tian, Tian; Fairen-Jimenez, David [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Cao, Shuai; Coxon, Paul R.; Xi, Kai, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Vasant Kumar, R.; Cheetham, Anthony K. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-12-01

    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C{sub ZIF8-D}) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C{sub ZIF8-D}) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C{sub ZIF8-D} sample, Li-S batteries with the GS-S/C{sub ZIF8-D} composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  3. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Directory of Open Access Journals (Sweden)

    Renjie Chen

    2014-12-01

    Full Text Available A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D composite for use in a cathode for a lithium sulfur (Li-S battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8, a typical zinc-containing metal organic framework (MOF, which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  4. TiO2-Containing Carbon Derived from a Metal-Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization.

    Science.gov (United States)

    Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-09-13

    A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.

  5. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed

    2016-01-01

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  6. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  7. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Best, James P., E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Michler, Johann; Maeder, Xavier [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Wöll, Christof, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu [Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Röse, Silvana [Preparative Macromolecular Chemistry, Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe (Germany); Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Oberst, Vanessa [Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Walheim, Stefan [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-09-07

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  8. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    International Nuclear Information System (INIS)

    Best, James P.; Michler, Johann; Maeder, Xavier; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof; Röse, Silvana; Oberst, Vanessa; Walheim, Stefan

    2015-01-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E ITO  ≈ 96.7 GPa, E HKUST−1  ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices

  9. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    Science.gov (United States)

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  10. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    Directory of Open Access Journals (Sweden)

    Alessio Fuoco

    2017-02-01

    Full Text Available Metal-organic frameworks (MOFs were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1. Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8 and Copper benzene tricarboxylate ((HKUST-1, were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

  11. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    Science.gov (United States)

    Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.

    2017-01-01

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658

  12. Insights into chromatographic separation using core-shell metal-organic frameworks: Size exclusion and polarity effects.

    Science.gov (United States)

    Qin, Weiwei; Silvestre, Martin E; Kirschhöfer, Frank; Brenner-Weiss, Gerald; Franzreb, Matthias

    2015-09-11

    Porous metal-organic frameworks (MOFs) [Cu3(BTC)2(H2O)3]n (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) were synthesized as homogeneous shell onto carboxyl functionalized magnetic microparticles through a liquid phase epitaxy (LPE) process. The as-synthesized core-shell HKUST-1 magnetic microparticles composites were characterized by XRD and SEM, and used as stationary phase in high performance liquid chromatography (HPLC). The effects of the unique properties of MOFs onto the chromatographic performance are demonstrated by the experiments. First, remarkable separation of pyridine and bipyridine is achieved, although both molecules show a strong interaction between the Cu-ions in HKUST-1 and the nitrogen atoms in their heterocyles. The difference can be explained due to size exclusion of bipyridine from the well defined pore structure of crystalline HKUST-1. Second, the enormous variety of possible interactions of sample molecules with the metal ions and linkers within MOFs allows for specifically tailored solid phases for challenging separation tasks. For example, baseline separation of three chloroaniline (CLA) isomers tested can be achieved without the need for gradient elution modes. Along with the experimental HPLC runs, in-depth modelling with a recently developed chromatography modelling software (ChromX) was applied and proofs the software to be a powerful tool for exploring the separation potential of thin MOF films. The pore diffusivity of pyridine and CLA isomers within HKUST-1 are found to be around 2.3×10(-15)m(2)s(-1). While the affinity of HKUST-1 to the tested molecules strongly differs, the maximum capacities are in the same range, with 0.37molL(-1) for pyridine and 0.23molL(-1) for CLA isomers, corresponding to 4.0 and 2.5 molecules per MOF unit cell, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide

    Science.gov (United States)

    Li, Yanping; Zhang, Xin; Zhang, Ling; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-11-01

    Hydrogen sulfide (H2S) has been commonly viewed as a gas signaling molecule in various physiological and pathological processes. However, the highly efficient H2S detection still remains challenging. Herein, we designed a new robust nano metal-organic framework (MOF) UiO-66-CH=CH2 as a fluorescent probe for rapid, sensitive and selective detection of biological H2S. UiO-66-CH=CH2 was prepared by heating ZrCl4 and 2-vinylterephthalic acid via a simple method. UiO-66-CH=CH2 displayed fluorescence quenching to H2S and kept excellent selectivity in the presence of biological relevant analytes especially the cysteine and glutathione. This MOF-based probe also exhibited fast response (10 s) and high sensitivity with a detection limit of 6.46 μM which was within the concentration range of biological H2S in living system. Moreover, this constructed MOF featured water-stability, nanoscale (20-30 nm) and low toxicity, which made it a promising candidate for biological H2S sensing.

  14. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework.

    Science.gov (United States)

    Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A

    2017-08-02

    Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

  15. Ruthenium(ii)-polypyridyl zirconium(iv) metal-organic frameworks as a new class of sensitized solar cells.

    Science.gov (United States)

    Maza, W A; Haring, A J; Ahrenholtz, S R; Epley, C C; Lin, S Y; Morris, A J

    2016-01-01

    A series of Ru(ii)L 2 L' (L = 2,2'-bipyridyl, L' = 2,2'-bipyridine-5,5'-dicarboxylic acid), RuDCBPY, -containing zirconium(iv) coordination polymer thin films have been prepared as sensitizing materials for solar cell applications. These metal-organic framework (MOF) sensitized solar cells, MOFSCs, each are shown to generate photocurrent in response to simulated 1 sun illumination. Emission lifetime measurements indicate the excited state quenching of RuDCBPY at the MOF-TiO 2 interface is extremely efficient (>90%), presumably due to electron injection into TiO 2 . A mechanism is proposed in which RuDCBPY-centers photo-excited within the MOF-bulk undergo isotropic energy migration up to 25 nm from the point of origin. This work represents the first example in which a MOFSC is directly compared to the constituent dye adsorbed on TiO 2 (DSC). Importantly, the MOFSCs outperformed their RuDCBPY-TiO 2 DSC counterpart under the conditions used here and, thus, are solidified as promising solar cell platforms.

  16. Encapsulation of Hemin in Metal-Organic Frameworks for Catalyzing the Chemiluminescence Reaction of the H2O2-Luminol System and Detecting Glucose in the Neutral Condition.

    Science.gov (United States)

    Luo, Fenqiang; Lin, Yaolin; Zheng, Liyan; Lin, Xiaomei; Chi, Yuwu

    2015-06-03

    Novel metal-organic frameworks (MOFs) based solid catalysts have been synthesized by encapsulating Hemin into the HKUST-1 MOF materials. These have been first applied in the chemiluminescence field with outstanding performance. The functionalized MOFs not only maintain an excellent catalytic activity inheriting from Hemin but also can be cyclically utilized as solid mimic peroxidases in the neutral condition. The synthesized Hemin@HKUST-1 composites have been used to develop practical sensors for H2O2 and glucose with wide response ranges and low detection limits. It was envisioned that catalyst-functionalized MOFs for chemiluminescence sensing would have promising applications in green, selective, and sensitive detection of target analytes in the future.

  17. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    Science.gov (United States)

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Science.gov (United States)

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  19. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal-organic frameworks.

    Science.gov (United States)

    Sun, Qi; Chen, Meng; Aguila, Briana; Nguyen, Nicholas; Ma, Shengqian

    2017-09-08

    In this work, the influence of the hydrophilic/hydrophobic nature of metal-organic framework (MOF) materials on the catalytic performance of supported Pd nanoparticles for biofuel upgrade was studied. We show that the introduction of hydrophilic groups on a MOF can greatly enhance the performance of the resultant catalyst. Specifically, Pd nanoparticles supported on MIL-101-SO 3 Na with superhydrophilicity (Pd/MIL-101-SO 3 Na) far outperforms pristine MIL-101 and the benchmark catalyst Pd/C in the hydrodeoxygenation reaction of vanillin, a model component of pyrolysis oil derived from the lignin fraction. This is attributed to a favorable mode of adsorption of the highly water soluble reactants on the more hydrophilic support in the vicinity of the catalytically active Pd nanoparticles, thereby promoting their transformation.

  20. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    Science.gov (United States)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  1. Exploring Charge Transport in Guest Molecule Infiltrated Cu3(BTC)2 Metal Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Francois Leonard [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Allendorf, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The goal of this Exploratory Express project was to expand the understanding of the physical properties of our recently discovered class of materials consisting of metal-organic frameworks with electroactive ‘guest’ molecules that together form an electrically conducting charge-transfer complex (molecule@MOF). Thin films of Cu3(BTC)2 were grown on fused silica using solution step-by-step growth and were infiltrated with the molecule tetracyanoquinodimethane (TCNQ). The infiltrated MOF films were extensively characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy, electrical conductivity, and thermoelectric properties. Thermopower measurements on TCNQ@Cu3(BTC)2 revealed a positive Seebeck coefficient of ~400 μV/k, indicating that holes are the primary carriers in this material. The high value of the Seebeck coefficient and the expected low thermal conductivity suggest that molecule@MOF materials may be attractive for thermoelectric power conversion applications requiring low cost, solution-processable, and non-toxic active materials.

  2. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.

    Science.gov (United States)

    Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong

    2017-09-13

    Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.

  3. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Dolgopolova, Ekaterina A. [Department; Ejegbavwo, Otega A. [Department; Martin, Corey R. [Department; Smith, Mark D. [Department; Setyawan, Wahyu [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Karakalos, Stavros G. [College; Henager, Charles H. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; zur Loye, Hans-Conrad [Department; Shustova, Natalia B. [Department

    2017-11-07

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.

  4. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  5. Preparation and performance study of MgFe2O4/metal-organic framework composite for rapid removal of organic dyes from water

    Science.gov (United States)

    Tian, Huairu; Peng, Jun; Lv, Tingting; Sun, Chen; He, Hua

    2018-01-01

    In present study, a stable and magnetic metal-organic framework (MOF) material was synthesized by simple solvothermal method as adsorbent to rapid removal of two organic dyes, the Rhodamine B (RB) and Rhodamine 6G (Rh6G), in water samples. The prepared material showed great characteristics of large surface area (519.86 m2 g-1), excellent magnetic responsivity (35.00 emu g-1) and rapid removal (within 5 min). Maximum adsorption capacities of the magnetic material toward RB and Rh6G were up to 219.78 and 306.75 mg g-1, respectively. Adsorption kinetics suggested the adsorption process met the pseudo-second-order kinetic model. The prepared material could be reused at least 10 times by washing with acetonitrile solution, the relative standard deviation (RSD) of these ten cycles removal efficiency was 4.8%. In conclusion, good chemical inertness, a mechanical/water stability and super-hydrophilicity feature made this MOF a promising adsorbent for targets removal from environmental water sample.

  6. High-throughput Molecular Simulations of MOFs for CO2 Separation: Opportunities and Challenges

    Science.gov (United States)

    Erucar, Ilknur; Keskin, Seda

    2018-02-01

    Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure-performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  7. Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3‧-tricarboxylate blocks: Synthesis, structural features and properties

    Science.gov (United States)

    You, Ao; Li, Yu; Zhang, Ze-Min; Zou, Xun-Zhong; Gu, Jin-Zhong; Kirillov, Alexander M.; Chen, Jin-Wei; Chen, Yun-Bo

    2017-10-01

    Biphenyl-2,5,3‧-tricarboxylic acid (H3L) was selected as an unexplored tricarboxylate building block and applied for the hydrothermal synthesis of three novel coordination compounds, namely a 0D tetramer [Co4(HL)2(μ3-HL)2(phen)6(H2O)2]·3H2O (1) and two 3D metal-organic frameworks (MOFs) [Cd3(μ5-L)(μ6-L)(py)(μ-H2O)2(H2O)]n·H2O (2) and [Zn3(μ4-L)2(2,2‧-bpy)(μ-4,4‧-bpy)]n·2H2O (3). These products were easily generated in aqueous medium from the corresponding metal(II) chlorides, H3L, and various N-donor ancillary ligands, selected from 1,10-phenanthroline (phen), pyridine (py), 2,2‧-bipyridine (2,2‧-bpy), and 4,4‧-bipyridine (4,4‧-bpy). Compounds 1-3 were isolated as stable crystalline solids and were fully characterized by IR and UV-vis spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a discrete tetracobalt(II) structure, which is extended into a 3D H-bonded network with the pcu topology. In contrast, MOF 2 discloses a very complex trinodal 4,5,12-connected net with an undocumented topology, while MOF 3 features the nce/I topological framework. The magnetic (for 1) and luminescence (for 2 and 3) properties were also studied and discussed. The present study thus widens a still very limited family of metal-organic and supramolecular frameworks driven by flexible biphenyl-2,5,3‧-tricarboxylate building blocks.

  8. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2017-12-01

    Full Text Available -effective production technologies account for the slow progression towards the development of envisioned MOF products at pilot-scale level. This short review brings together the scattered literature that addresses pilot-scale production of MOF materials. An additional...

  9. CO2 Capture Using the SIFSIX-2-Cu-i Metal-Organic Framework: A Computational Approach

    KAUST Repository

    Skarmoutsos, Ioannis

    2017-10-24

    The adsorption of carbon dioxide and its separation from mixtures with methane using the recently synthetized SIFSIX-2-Cu-i metal-organic framework (Nature, 2014, 495, 80-84) has been systematically studied by employing a variety of molecular simulation techniques. Quantum density functional theory calculations have been combined with force-field based Monte Carlo and molecular dynamics simulations in order to provide a deeper insight on the molecular-scale processes controlling the thermodynamic and dynamic adsorption selectivity of carbon dioxide over methane, giving particular emphasis on the mechanisms underlying the diffusion of the confined molecules in this porous hybrid material. The diffusion process was revealed to be mainly controlled by both (i) the residence dynamics around some specific interaction sites of the fluorinated metal-organic framework and (ii) the dynamics related to the process where faster molecules overtake slower ones in the narrow one-dimensional channel of SIFSIX-2-Cu-i. We further unveil a 1-dimensional diffusion behavior of both carbon dioxide and methane confined in this small pore MOF where single file diffusion is not observed.

  10. Metal-Organic Framework Modified Glass Substrate for Analysis of Highly Volatile Chemical Warfare Agents by Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Dhummakupt, Elizabeth S; Carmany, Daniel O; Mach, Phillip M; Tovar, Trenton M; Ploskonka, Ann M; Demond, Paul S; DeCoste, Jared B; Glaros, Trevor

    2018-03-07

    Paper spray mass spectrometry has been shown to successfully analyze chemical warfare agent (CWA) simulants. However, due to the volatility differences between the simulants and real G-series (i.e., sarin, soman) CWAs, analysis from an untreated paper substrate proved difficult. To extend the analytical lifetime of these G-agents, metal-organic frameworks (MOFs) were successfully integrated onto the paper spray substrates to increase adsorption and desorption. In this study, several MOFs and nanoparticles were tested to extend the analytical lifetimes of sarin, soman, and cyclosarin on paper spray substrates. It was found that the addition of either UiO-66 or HKUST-1 to the paper substrate increased the analytical lifetime of the G-agents from less than 5 min detectability to at least 50 min.

  11. Reversible Capture and Release of Cl2 and Br2 with a Redox-Active Metal-Organic Framework.

    Science.gov (United States)

    Tulchinsky, Yuri; Hendon, Christopher H; Lomachenko, Kirill A; Borfecchia, Elisa; Melot, Brent C; Hudson, Matthew R; Tarver, Jacob D; Korzyński, Maciej D; Stubbs, Amanda W; Kagan, Jacob J; Lamberti, Carlo; Brown, Craig M; Dincă, Mircea

    2017-04-26

    Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce stable and safe-to-handle Co(III) materials featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.

  12. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    Science.gov (United States)

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  13. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    Science.gov (United States)

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption.

  14. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks

    International Nuclear Information System (INIS)

    Barkholtz, Heather M.; Liu, Di-Jia

    2016-01-01

    Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.

  15. Specific oriented metal-organic framework membranes and their facet-tuned separation performance.

    Science.gov (United States)

    Mao, Yiyin; Su, Binbin; Cao, Wei; Li, Junwei; Ying, Yulong; Ying, Wen; Hou, Yajun; Sun, Luwei; Peng, Xinsheng

    2014-09-24

    Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

  16. Lanthanum-Based Metal-Organic Frameworks for Specific Detection of Sudan Virus RNA Conservative Sequences down to Single-Base Mismatch.

    Science.gov (United States)

    Yang, Shui-Ping; Zhao, Wei; Hu, Pei-Pei; Wu, Ke-Yang; Jiang, Zhi-Hong; Bai, Li-Ping; Li, Min-Min; Chen, Jin-Xiang

    2017-12-18

    Reactions of La(NO 3 ) 3 ·6H 2 O with the polar, tritopic quaternized carboxylate ligands N-carboxymethyl-3,5-dicarboxylpyridinium bromide (H 3 CmdcpBr) and N-(4-carboxybenzyl)-3,5-dicarboxylpyridinium bromide (H 3 CbdcpBr) afford two water-stable metal-organic frameworks (MOFs) of {[La 4 (Cmdcp) 6 (H 2 O) 9 ]} n (1, 3D) and {[La 2 (Cbdcp) 3 (H 2 O) 10 ]} n (2, 2D). MOFs 1 and 2 absorb the carboxyfluorescein (FAM)-tagged probe DNA (P-DNA) and quench the fluorescence of FAM via a photoinduced electron transfer (PET) process. The nonemissive P-DNA@MOF hybrids thus formed in turn function as sensing platforms to distinguish conservative linear, single-stranded RNA sequences of Sudan virus with high selectivity and low detection limits of 112 and 67 pM, respectively (at a signal-to-noise ratio of 3). These hybrids also exhibit high specificity and discriminate down to single-base mismatch RNA sequences.

  17. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  18. Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS

    International Nuclear Information System (INIS)

    Sohrabi, Mahmoud Reza; Matbouie, Zahra; Asgharinezhad, Ali Akbar; Dehghani, Ali

    2013-01-01

    We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe 3 O 4 -pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg L −1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are −1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg g −1 for both ions which is higher than the conventional Fe 3 O 4 -pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples. (author)

  19. Porous ZnCo 2 O 4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors

    KAUST Repository

    Chen, Siru

    2015-01-01

    Cobalt-based oxides have been shown to be promising materials for application in high-energy-density Li-ion batteries and supercapacitors. In this paper, we report a new and simple strategy for the synthesis of a mixed-metal spinel phase (ZnCo2O4) from a zinc and cobalt mixed-metal organic framework (JUC-155). It is important to rationally design a MOF with a precise ratio (Co/Zn) and a synthetic process that is simple and time saving. After solid-state annealing of the mixed-metal MOF precursor at 400 °C for two hours, a pure ZnCo2O4 phase with a high surface area (55 cm2 g−1) was obtained. When used as electrode materials for supercapacitors, an exceptionally high specific capacitance of 451 F g−1 was obtained at the scan rate of 5 mV s−1. The capacitance loss after 1500 cycles was only 2.1% at a current density of 2 A g−1, indicating that this phase has an excellent cycling stability. These remarkable electrochemical performances suggest that this phase is potentially promising for application as an efficient electrode in electrochemical capacitors.

  20. Photoswitchable metal organic frameworks: turn on the lights and close the windows

    NARCIS (Netherlands)

    Castellanos Ortega, S.; Kapteijn, F.; Gascon Sabate, J.

    2016-01-01

    The ability of modulating the properties of metal–organic frameworks (MOF) on demand by external light-stimuli is a most appealing pathway to enhance their performance in storage and separation and to render novel advanced applications. Photoswitchable linkers of different nature have been inserted

  1. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors.

    Science.gov (United States)

    Assen, Ayalew H; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N

    2017-09-22

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH 3 ) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH 3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO 2 . Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH 3 , in contrast to other reported MOFs, and a remarkable detection selectivity toward NH 3 vs CH 4 , NO 2 , H 2 , and C 7 H 8 . The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

  2. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure was determined and further confirmed by Rietveld refinements of powder X-ray diffraction. HRTEM gave direct imaging of the channels. © 2013 The Royal Society of Chemistry.

  3. Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2.

    Science.gov (United States)

    Zhao, Changming; Dai, Xinyao; Yao, Tao; Chen, Wenxing; Wang, Xiaoqian; Wang, Jing; Yang, Jian; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2017-06-21

    Single-atom catalysts often exhibit unexpected catalytic activity for many important chemical reactions because of their unique electronic and geometric structures with respect to their bulk counterparts. Herein we adopt metal-organic frameworks (MOFs) to assist the preparation of a catalyst containing single Ni sites for efficient electroreduction of CO 2 . The synthesis is based on ionic exchange between Zn nodes and adsorbed Ni ions within the cavities of the MOF. This single-atom catalyst exhibited an excellent turnover frequency for electroreduction of CO 2 (5273 h -1 ), with a Faradaic efficiency for CO production of over 71.9% and a current density of 10.48 mA cm -2 at an overpotential of 0.89 V. Our findings present some guidelines for the rational design and accurate modulation of nanostructured catalysts at the atomic scale.

  4. Gas adsorption on metal-organic frameworks

    Science.gov (United States)

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  5. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    International Nuclear Information System (INIS)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia; Ye, Jingyun; Gallington, Leighanne C.

    2017-01-01

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO x H y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.

  6. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).

    Science.gov (United States)

    Sun, Dengrong; Liu, Wenjun; Fu, Yanghe; Fang, Zhenxing; Sun, Fangxiang; Fu, Xianzhi; Zhang, Yongfan; Li, Zhaohui

    2014-04-14

    M-doped NH2-MIL-125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analyses, N2-sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible-light irradiations showed that the noble metal-doping on NH2-MIL-125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2-MIL-125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt- and Au-loaded NH2-MIL-125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2-MIL-125(Ti), Pt/NH2-MIL-125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2-MIL-125(Ti).The photocatalytic mechanisms over M/NH2-MIL-125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2-MIL-125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2-MIL-125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal-doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of nanostructured NiO/Co3O4 through thermal decomposition of a bimetallic (Ni/Co) metal-organic framework as catalyst for cyclooctene epoxidation

    Science.gov (United States)

    Abbasi, Alireza; Soleimani, Mohammad; Najafi, Mahnaz; Geranmayeh, Shokoofeh

    2017-04-01

    Hydrothermal approach has led to the formation of a three-dimensional metal-organic framework (MOF), [NiCo(μ2-tp)(μ4-tp)(4,4‧-bpy)2]n (1) (tp = terephthalic acid and 4,4‧-bpy = 4,4‧-bipyridine) which was characterized by means of single-crystal X-ray diffraction analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy, scanning electron microscopy (SEM) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Thermal decomposition of the MOF afforded nanostructured mixed metal oxide, namely NiO/Co3O4. The XRD and SEM analysis confirm the formation of the mixed metal oxide. The nanostructured NiO/Co3O4 demonstrated good catalytic activity and selectivity in the epoxidation of cyclooctene in the presence of tert-butyl hydroperoxide (TBHP) as oxidant.

  8. Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown Cu MOF

    DEFF Research Database (Denmark)

    Zhang, Xuan; Luo, Jiangshui; Tang, Pengyi

    2017-01-01

    A non-enzymatic glucose sensor based on carbon/Cu composite materials was developed by the in-situ growth and subsequent pyrolysis of metal-organic frameworks (MOFs) on Cu foam. After pyrolysis, SEM, HRTEM and STEM-EELS were employed to clarify the hierarchical Cu@porous carbon electrode. It is f......A non-enzymatic glucose sensor based on carbon/Cu composite materials was developed by the in-situ growth and subsequent pyrolysis of metal-organic frameworks (MOFs) on Cu foam. After pyrolysis, SEM, HRTEM and STEM-EELS were employed to clarify the hierarchical Cu@porous carbon electrode...... matrix electrode displays ultrahigh sensitivity (10.1 mA cm−2 mM−1), low detection limit (sensors....

  9. Multivariate Metal-Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules.

    Science.gov (United States)

    Dong, Zhiyue; Sun, Yangzesheng; Chu, Jun; Zhang, Xianzheng; Deng, Hexiang

    2017-10-11

    We report the control of guest release profiles by dialing-in desirable interactions between guest molecules and pores in metal-organic frameworks (MOFs). The interactions can be derived by the rate constants that were quantitatively correlated with the type of functional group and its proportion in the porous structure; thus the release of guest molecules can be predicted and programmed. Specifically, three probe molecules (ibuprofen, rhodamine B, and doxorubicin) were studied in a series of robust and mesoporous MOFs with multiple functional groups [MIL-101(Fe)-(NH 2 ) x , MIL-101(Fe)-(C 4 H 4 ) x , and MIL-101(Fe)-(C 4 H 4 ) x (NH 2 ) 1-x ]. The release rate can be adjusted by 32-fold [rhodamine from MIL-101(Fe)-(NH 2 ) x ], and the time of release peak can be shifted by up to 12 days over a 40-day release period [doxorubicin from MIL-101(Fe)-(C 4 H 4 ) x (NH 2 ) 1-x ], which was not obtained in the physical mixture of the single component MOF counterparts nor in other porous materials. The corelease of two pro-drug molecules (ibuprofen and doxorubicin) was also achieved.

  10. Incorporation of Alkylamine into Metal-Organic Frameworks through a Brønsted Acid-Base Reaction for CO2 Capture.

    Science.gov (United States)

    Li, Hao; Wang, Kecheng; Feng, Dawei; Chen, Ying-Pin; Verdegaal, Wolfgang; Zhou, Hong-Cai

    2016-10-06

    The escalating atmospheric CO 2 concentration is one of the most urgent environmental concerns of our age. To effectively capture CO 2 , various materials have been studied. Among them, alkylamine-modified metal-organic frameworks (MOFs) are considered to be promising candidates. In most cases, alkylamine molecules are integrated into MOFs through the coordination bonds formed between open metal sites (OMSs) and amine groups. Thus, the alkylamine density, as well as the corresponding CO 2 uptake in MOFs, are severely restricted by the density of OMSs. To overcome this limit, other approaches to incorporating alkylamine into MOFs are highly desired. We have developed a new method based on Brønsted acid-base reaction to tether alkylamines into Cr-MIL-101-SO 3 H for CO 2 capture. A systematic optimization of the amine tethering process was also conducted to maximize the CO 2 uptake of the modified MOF. Under the optimal amine tethering condition, the obtained tris(2-aminoethyl)amine-functionalized Cr-MIL-101-SO 3 H (Cr-MIL-101-SO 3 H-TAEA) has a cyclic CO 2 uptake of 2.28 mmol g -1 at 150 mbar and 40 °C, and 1.12 mmol g -1 at 0.4 mbar and 20 °C. The low-cost starting materials and simple synthetic procedure for the preparation of Cr-MIL-101-SO 3 H-TAEA suggest that it has the potential for large-scale production and practical applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    Science.gov (United States)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  12. Application of MD Simulations to Predict Membrane Properties of MOFs

    Directory of Open Access Journals (Sweden)

    Elda Adatoz

    2015-01-01

    Full Text Available Metal organic frameworks (MOFs are a new group of nanomaterials that have been widely examined for various chemical applications. Gas separation using MOF membranes has become an increasingly important research field in the last years. Several experimental studies have shown that thin-film MOF membranes can outperform well known polymer and zeolite membranes due to their higher gas permeances and selectivities. Given the very large number of available MOF materials, it is impractical to fabricate and test the performance of every single MOF membrane using purely experimental techniques. In this study, we used molecular simulations, Monte Carlo and Molecular Dynamics, to estimate both single-gas and mixture permeances of MOF membranes. Predictions of molecular simulations were compared with the experimental gas permeance data of MOF membranes in order to validate the accuracy of our computational approach. Results show that computational methodology that we described in this work can be used to accurately estimate membrane properties of MOFs prior to extensive experimental efforts.

  13. A "ship in a bottle" strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery.

    Science.gov (United States)

    di Nunzio, Maria Rosaria; Agostoni, Valentina; Cohen, Boiko; Gref, Ruxandra; Douhal, Abderrazzak

    2014-01-23

    An essential challenge in the development of nanosized metal organic framework (nanoMOF) materials in biomedicine is to develop a strategy to stabilize their supramolecular structure in biological media while being able to control drug encapsulation and release. We have developed a method to efficiently encapsulate topotecan (TPT, 1), an important cytotoxic drug, in biodegradable nanoMOFs. Once inside the pores, 1 monomers aggregate in a "ship in a bottle" fashion, thus filling practically all of the nanoMOFs' available free volume and stabilizing their crystalline supramolecular structures. Highly efficient results have been found with the human pancreatic cell line PANC1, in contrast with free 1. We also demonstrate that one- and two-photon light irradiation emerges as a highly promising strategy to promote stimuli-dependent 1 release from the nanoMOFs, hence opening new standpoints for further developments in triggered drug delivery.

  14. Photocatalytic Performance of a Novel MOF/BiFeO3 Composite

    Directory of Open Access Journals (Sweden)

    Yunhui Si

    2017-10-01

    Full Text Available In this study, MOF/BiFeO3 composite (MOF, metal-organic framework has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO3 composite samples, pure MOF samples and BiFeO3 samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and by UV–vis spectrophotometry. The results and analysis reveal that MOF/BiFeO3 composite has better photocatalytic behavior for methylene blue (MB compared to pure MOF and pure BiFeO3. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO3 composite may bring new insight into the designing of highly efficient photocatalysts.

  15. Zeolite-like metal-organic frameworks with ana topology

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-20

    Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X(solvent)a]n wherein MIII comprises a trivalent cation of a rare earth element, X comprises an alkali metal element or alkaline earth metal element, and solvent comprises a guest molecule occupying pores. Embodiments of the present disclosure describe a method of separating paraffins comprising contacting a zeolite-like metal-organic framework with ana topology with a flow of paraffins, and separating the paraffins by size.

  16. Liquid metal–organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-10-09

    Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  17. Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications

    International Nuclear Information System (INIS)

    Burtch, Nicholas C.; Heinen, Jurn

    2017-01-01

    We report that some of the most remarkable recent developments in metal–organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic–organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studied gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure–property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.

  18. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    Science.gov (United States)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  19. Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework Composites Used for Smart White-Light-Emitting Diodes.

    Science.gov (United States)

    Chen, Wenwei; Zhuang, Yixi; Wang, Le; Lv, Ying; Liu, Jianbin; Zhou, Tian-Liang; Xie, Rong-Jun

    2018-05-25

    Luminescent metal-organic frameworks (MOFs) (typically dye-encapsulated MOFs) are considered as one kind of interesting downconversion materials for white-light-emitting diodes (LEDs), but their quantum efficiency (QE) is not sufficient and thus needs to be significantly enhanced for practical applications. In this study, we successfully synthesized a series of Rh@bio-MOF-1 (Rh = rhodamine) with an internal QE as high as ∼79% via a solvothermal reaction followed by cation exchanges. The high efficiency of the Rh@bio-MOF-1 composites was attributable to the high intrinsic luminescent efficiency of the selected Rh dyes, the confinement effect in the bio-MOF-1 host, and the uniform particle morphology. The emission maximum could be continuously tuned from 550 to 610 nm by controlling the species and concentration of encapsulated dye molecules, showing great color tunability of the dye-encapsulated MOFs. The emission lifetime of ∼7 ns was 1 or 2 magnitude orders shorter than that of Ce 3+ - or Eu 2+ -doped inorganic phosphors, allowing for visible light communication (VLC). White LEDs, fabricated by using the synthesized Rh@bio-MOF-1 composite and inorganic phosphors of green (Ba,Sr) 2 SiO 4 :Eu 2+ and red CaAlSiN 3 :Eu 2+ , exhibited a high color rendering index of 80-94, a luminous efficacy of 94-156 lm/W, and an excellent stability in color point against drive current. The Rh@bio-MOF-1 composites with tunable colors, short emission lifetime, and high QE are expected to be used for smart white LEDs with multifunctions of both lighting and VLC.

  20. Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction.

    Science.gov (United States)

    Huo, Shu-Hui; An, Hai-Yan; Yu, Jing; Mao, Xue-Feng; Zhang, Zhe; Bai, Lei; Huang, Yan-Feng; Zhou, Peng-Xin

    2017-09-29

    In this study, we report a facile, environmental friendly fabrication of a type of magnetic metal-organic framework (MOF) MIL-100 that can be used for magnetic solid-phase extraction (MSPE). The magnetic MOF composites were fabricated using in situ calcination method. The as-synthesized materials exhibited both high porosity and magnetic characteristics. They used for the MSPE of polycyclic aromatic hydrocarbons (PAHs) from water samples. Such MOF-based magnetic solid-phase extraction in combination with gas chromatography equipped with a flame ionization detector (GC-FID), exhibited wide linearity (0.02-250μgL -1 ), low detection limits (4.6-8.9ngL -1 ), and high enrichment factors (452-907) for PAHs. The relative standard deviations (RSDs) for intra- and inter-day extractions of PAHs were ranging from 1.7% to 9.8% and 3.8% to 9.2%, respectively. The recoveries for spiked PAHs (1μgL -1 ) in water samples were in the range of 88.5% to 106.6%. The results showed that the special anion-π orbital (electron donor-acceptor) interaction and π-π stacking between magnetic MIL-100 and PAHs play an important role in the adsorption of PAHs. Copyright © 2017. Published by Elsevier B.V.