WorldWideScience

Sample records for metal-on-metal hip prosthesis

  1. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device...

  3. 21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metallic cemented or... Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis is a device intended to be implanted...

  4. 21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metal/polymer... § 888.3390 Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis is a two-part...

  5. 21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. (a) Identification. A hip joint femoral (hemi-hip...

  6. 21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint (hemi-hip) acetabular metal cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3370 Hip joint (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular...

  7. 21 CFR 888.3380 - Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) trunnion-bearing... Devices § 888.3380 Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis is a two...

  8. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...

  9. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with an... Devices § 888.3330 Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with an uncemented acetabular...

  10. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal... hip joint. The device limits translation and rotation in one or more planes via the geometry of its...

  11. 21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer semi-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3350 Hip joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...

  12. 21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal constrained cemented or uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained...

  13. 21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint... replace a hip joint. The device prevents dislocation in more than one anatomic plane and has components...

  14. 21 CFR 888.3410 - Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...

  15. SU-E-J-230: Effect of Metal Hip Prosthesis On the Accuracy of Electromagnetic Localization and Tracking

    International Nuclear Information System (INIS)

    Butler, W; Merrick, G; Kurko, B; Bittner, N

    2014-01-01

    Purpose: To quantify the effect of metal hip prosthesis on the ability to track and localize electromagnetic transponders. Methods: Three Calypso transponders were implanted into two prostate phantoms. The geometric center of the transponders were identified on computed tomography and set as the isocenter. With the phantom stationary on the treatment table and the tracking array 14-cm above the isocenter, data was acquired by the Calypso system at 10 Hz to establish the uncertainty in measurements. Transponder positional data was acquired with unilateral hip prostheses of different metallic compositions and then with bilateral hips placed at variable separation from the phantom. Results: Regardless of hip prosthesis composition, the average vector displacement in the presence of a unilateral prosthesis was < 0.5 mm. The greatest contribution to overall vector displacement occurred in the lateral dimension. With bilateral hip prosthesis, the average vector displacement was 0.3 mm. The displacement in the lateral dimension was markedly reduced compared with a unilateral hip, suggesting that there was a countervailing effect with bilateral hip prosthesis. The greatest average vector displacement was 0.6 mm and occurred when bilateral hip prostheses were placed within 4 cm of the detector array. Conclusion: Unilateral and bilateral hip prostheses did not have any meaningful effect on the ability to accurately track electromagnetic transponders implanted in a prostate phantom. At clinically realistic distances between the hip and detection array, the average tracking error is negligible

  16. Heavy reading in heavy metal : Unraveling the mystery of hip tissue in metal on metal total hip arthroplasty

    NARCIS (Netherlands)

    Boomsma, M.F.

    2017-01-01

    In this thesis, we investigated the use of computer tomography (CT) for the screening of patients with a metal-on-metal (MoM) hip prosthesis in two patient cohorts. With a self-established CT grading scale, we have shown that CT is a reliable method for the diagnosis of postoperative pathological

  17. The effect of the metal-on-metal hip controversy on internet search activity.

    LENUS (Irish Health Repository)

    Phelan, Nigel

    2014-01-04

    The recall of the articular surface replacement (ASR) hip prosthesis in 2010 represents one of the most controversial areas in orthopaedic surgery in recent years. The aim of this study was to compare the impact of the metal-on-metal hip controversy on Internet search activity in four different regions and determine whether the number of related news reports affected Internet search activity. The Google Trends, Keywords and News applications were used to record the number of news articles and Internet search activity for the terms "hip recall", "metal-on-metal hip" and "ASR hip" from October 2009 to October 2012 in the USA, the UK, Australia and Ireland. There was a large increase in search activity following the official recall in August 2010 in all countries. There was significantly greater search activity after the recall in Ireland compared with the UK for the search term "hip recall" (P = 0.004). For the term "metal-on-metal hip", the UK had significantly more search activity (P = 0.0009). There was a positive correlation between the number of news stories in UK and Ireland with Internet search activity but not in the USA or Australia. Differences between countries affected by the same recall highlight the complex effects of the media on public awareness. The data demonstrates a window of opportunity prior to the official recall for the development of an awareness campaign to provide patients with accurate information.

  18. Fatal Cobalt Toxicity after a Non-Metal-on-Metal Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Rinne M. Peters

    2017-01-01

    Full Text Available This case illustrates the potential for systemic cobalt toxicity in non-metal-on-metal bearings and its potentially devastating consequences. We present a 71-year-old male with grinding sensations in his right hip following ceramic-on-ceramic total hip arthroplasty (THA. After diagnosing a fractured ceramic liner, the hip prosthesis was revised into a metal-on-polyethylene bearing. At one year postoperatively, X-rays and MARS-MRI showed a fixed reversed hybrid THA, with periarticular densities, flattening of the femoral head component, and a pattern of periarticular metal wear debris and pseudotumor formation. Before revision could take place, the patient was admitted with the clinical picture of systemic cobalt toxicity, supported by excessively high serum cobalt and chromium levels, and ultimately died. At autopsy dilated cardiomyopathy as cause of death was hypothesized. A third body wear reaction between ceramic remnants and the metal femoral head very likely led to excessive metal wear, which contributed systemic cobalt toxicity leading to neurotoxicity and heart failure. This case emphasizes that fractured ceramic-on-ceramic bearings should be revised to ceramic-on-ceramic or ceramic-on-polyethylene bearings, but not to metal-on-polyethylene bearings. We aim to increase awareness among orthopedic surgeons for clinical clues for systemic cobalt intoxication, even when there is no metal-on-metal bearing surface.

  19. High Re-Operation Rates Using Conserve Metal-On-Metal Total Hip Articulations

    DEFF Research Database (Denmark)

    Mogensen, S L; Jakobsen, Thomas; Christoffersen, Hardy

    2016-01-01

    INTRODUCTION: Metal-on-metal hip articulations have been intensely debated after reports of adverse reactions and high failure rates. The aim of this study was to retrospectively evaluate the implant of a metal-on.metal total hip articulation (MOM THA) from a single manufacture in a two-center st......INTRODUCTION: Metal-on-metal hip articulations have been intensely debated after reports of adverse reactions and high failure rates. The aim of this study was to retrospectively evaluate the implant of a metal-on.metal total hip articulation (MOM THA) from a single manufacture in a two...

  20. The tribology of metal-on-metal total hip replacements.

    Science.gov (United States)

    Scholes, S C; Unsworth, A

    2006-02-01

    Total hip surgery is an effective way of alleviating the pain and discomfort caused by diseased or damaged joints. However, in the majority of cases, these joints have a finite life. The main reason for failure is osteolysis (bone resorption). It is well documented that an important cause of osteolysis, and therefore the subsequent loosening and failure of conventional metal- or ceramic-on-ultra-high molecular weight polyethylene joints, is the body's immunological response to the polyethylene wear particles. To avoid this, interest has been renewed in metal-on-metal joints. The intention of this paper is to review the studies that have taken place within different laboratories to determine the tribological performance of new-generation metal-on-metal total hip replacements. These types of joint offer a potential solution to enhance the longevity of prosthetic hip systems; however, problems may arise owing to the effects of metal ion release, which are, as yet, not fully understood.

  1. Large head metal-on-metal cementless total hip arthroplasty versus 28mm metal-on-polyethylene cementless total hip arthroplasty: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van Raaij Jos JAM

    2008-10-01

    Full Text Available Abstract Background Osteoarthritis of the hip is successfully treated by total hip arthroplasty with metal-on-polyethylene articulation. Polyethylene wear debris can however lead to osteolysis, aseptic loosening and failure of the implant. Large head metal-on-metal total hip arthroplasty may overcome polyethylene wear induced prosthetic failure, but can increase systemic cobalt and chromium ion concentrations. The objective of this study is to compare two cementless total hip arthroplasties: a conventional 28 mm metal-on-polyethylene articulation and a large head metal-on-metal articulation. We hypothesize that the latter arthroplasties show less bone density loss and higher serum metal ion concentrations. We expect equal functional scores, greater range of motion, fewer dislocations, fewer periprosthetic radiolucencies and increased prosthetic survival with the metal-on-metal articulation. Methods A randomized controlled trial will be conducted. Patients to be included suffer from non-inflammatory degenerative joint disease of the hip, are aged between 18 and 80 and are admitted for primary cementless unilateral total hip arthroplasty. Patients in the metal-on-metal group will receive a cementless titanium alloy acetabular component with a cobalt-chromium liner and a cobalt-chromium femoral head varying from 38 to 60 mm. Patients in the metal-on-polyethylene group will receive a cementless titanium alloy acetabular component with a polyethylene liner and a 28 mm cobalt-chromium femoral head. We will assess acetabular bone mineral density by dual energy x-ray absorptiometry (DEXA, serum ion concentrations of cobalt, chromium and titanium, self reported functional status (Oxford hip score, physician reported functional status and range of motion (Harris hip score, number of dislocations and prosthetic survival. Measurements will take place preoperatively, perioperatively, and postoperatively (6 weeks, 1 year, 5 years and 10 years. Discussion

  2. Metal-on-metal hip joint tribology.

    Science.gov (United States)

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  3. No clinical difference between large metal-on-metal total hip arthroplasty and 28-mm-head total hip arthroplasty?

    NARCIS (Netherlands)

    Zijlstra, Wierd P; van den Akker-Scheek, Inge; Zee, Mark J M; van Raay, Jos J A M

    2011-01-01

    PURPOSE: We aimed to test the claim of greater range of motion (ROM) with large femoral head metal-on-metal total hip arthroplasty. METHODS: We compared 28-mm metal-on-polyethylene (MP) total hip arthroplasty with large femoral head metal-on-metal (MM) total hip arthroplasty in a randomised clinical

  4. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a device...

  5. The effect of a metal hip prosthesis on the radiation dose in therapeutic photon beam irradiations

    International Nuclear Information System (INIS)

    Lin, S.-Y.; Chu, T.-C.; Lin, J.-P.; Liu, M.-T.

    2002-01-01

    Prostate and cervical cancer patients are often treated with external X-ray beams of bi-lateral incidence. Such treatment may incur some dose effect that cannot be predicted precisely in commercial treatment planning systems (TPS) for patients having undergone total hip replacement. This study performs a Monte Carlo (MC) simulation and an analytical calculation (convolution superposition algorithm which is implemented in ADAC TPS) of a 6 MV, 5x5 cm 2 X-ray beam incident into water with the existence of hip prosthesis, e.g. Ti6Al4V and CoCrMo alloy. The results indicate that ADAC TPS cannot precisely account for the scatter and backscatter radiation that a metal hip prosthesis causes. For percent depth dose (PDD) curves, the maximum underdosage of ADAC TPS up to 5 mm above the interface between dense material and water is 5%, 20% and 27% for PDD Bone , PDD Ti and PDD Co , respectively. The dose re-buildup, which occurs behind the hip region, becomes more and more obvious for denser medium existed in water. Increasing inhomogeneity also enhances the underdosage of ADAC for greater depth (>10 cm), as the figures of nearly 2% in PDD Bone , PDD Ti and 4-5% in PDD Co reveal. Overestimating the attenuated power of high-density non-water material in ADAC TPS causes this underdosage. For dose profiles, no significant differences were found in Profile Bone at any depth. Profile Ti reveals that MC slightly exceeds ADAC at off-axis position 1.0-2.0 cm. Profile Co reveals this more obviously. This finding means that scatter radiation from these denser materials is significant and cannot be predicted precisely in ADAC

  6. Metallosis: A diagnosis not only in patients with metal-on-metal prostheses

    International Nuclear Information System (INIS)

    Oliveira, Catarina A.; Candelária, Isabel S.; Oliveira, Pedro B.; Figueiredo, Antonio; Caseiro-Alves, Filipe

    2014-01-01

    Although the real actual incidence of metallosis is unknown, it is described as a rare diagnosis with a 5% estimated incidence in the hip prosthetic replacements. The adoption of non-metallic articular prosthetic devices, made of polyethylene and ceramic, is the main reason to the diminishing number of reported cases. We present a case of metallosis with a clinical systemic presentation in a patient with a non-metallic hip prosthesis, which occurred due to a fracture of the acetabular liner component, leading to abnormal metal–metal contact. The metallic debris leads to a massive local and systemic release of cytokines. Revision is necessary whenever osteolysis and loosening of the prosthesis occur. Imaging evaluation, especially CT, has a central role in diagnosis and planning the surgical treatment

  7. The effect of a metal hip prosthesis on the radiation dose in therapeutic photon beam irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.-Y.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw; Lin, J.-P.; Liu, M.-T

    2002-07-01

    Prostate and cervical cancer patients are often treated with external X-ray beams of bi-lateral incidence. Such treatment may incur some dose effect that cannot be predicted precisely in commercial treatment planning systems (TPS) for patients having undergone total hip replacement. This study performs a Monte Carlo (MC) simulation and an analytical calculation (convolution superposition algorithm which is implemented in ADAC TPS) of a 6 MV, 5x5 cm{sup 2} X-ray beam incident into water with the existence of hip prosthesis, e.g. Ti6Al4V and CoCrMo alloy. The results indicate that ADAC TPS cannot precisely account for the scatter and backscatter radiation that a metal hip prosthesis causes. For percent depth dose (PDD) curves, the maximum underdosage of ADAC TPS up to 5 mm above the interface between dense material and water is 5%, 20% and 27% for PDD{sub Bone}, PDD{sub Ti} and PDD{sub Co}, respectively. The dose re-buildup, which occurs behind the hip region, becomes more and more obvious for denser medium existed in water. Increasing inhomogeneity also enhances the underdosage of ADAC for greater depth (>10 cm), as the figures of nearly 2% in PDD{sub Bone}, PDD{sub Ti} and 4-5% in PDD{sub Co} reveal. Overestimating the attenuated power of high-density non-water material in ADAC TPS causes this underdosage. For dose profiles, no significant differences were found in Profile{sub Bone} at any depth. Profile{sub Ti} reveals that MC slightly exceeds ADAC at off-axis position 1.0-2.0 cm. Profile{sub Co} reveals this more obviously. This finding means that scatter radiation from these denser materials is significant and cannot be predicted precisely in ADAC.

  8. Revision rates for metal-on-metal hip resurfacing and metal-on-metal total hip arthroplasty – a systematic review

    DEFF Research Database (Denmark)

    Ras Sørensen, Sofie-amalie L.; Jørgensen, Henrik L.; Sporing, Sune L.

    2016-01-01

    Purpose To compare revision rates of metal-on-metal (MoM) hip resurfacing (HRS) and MoM total hip arthroplasty (THA), as well as the primary causes for revisions. Methods The PubMed database was queried for potentially relevant articles addressing MoMTHA and MoMHRS, a total of 51 articles were....... The odds ratio was 1.25 (1.03:1.53) 95% CI (p = 0.03) (MoMHRS vs. MoMTHA). The studies of hip prostheses were separated into 2 categories of short- and long-term (more or less than 5 years). Short-term revision rate for MoMTHA was 4.5% after 4.8 years, and for MoMHRS 4.0% after 4.2 years. The odds ratio...

  9. Metal-on-Metal Total Hip Resurfacing Arthroplasty

    Science.gov (United States)

    2006-01-01

    Executive Summary Objective The objective of this review was to assess the safety and effectiveness of metal on metal (MOM) hip resurfacing arthroplasty for young patients compared with that of total hip replacement (THR) in the same population. Clinical Need Total hip replacement has proved to be very effective for late middle-aged and elderly patients with severe degenerative diseases of the hips. As indications for THR began to include younger patients and those with a more active life style, the longevity of the implant became a concern. Evidence suggests that these patients experience relatively higher rates of early implant failure and the need for revision. The Swedish hip registry, for example, has demonstrated a survival rate in excess of 80% at 20 years for those aged over 65 years, whereas this figure was 33% by 16 years in those aged under 55 years. Hip resurfacing arthroplasty is a bone-conserving alternative to THR that restores normal joint biomechanics and load transfer. The technique has been used around the world for more than 10 years, specifically in the United Kingdom and other European countries. The Technology Metal-on-metal hip resurfacing arthroplasty is an alternative procedure to conventional THR in younger patients. Hip resurfacing arthroplasty is less invasive than THR and addresses the problem of preserving femoral bone stock at the initial operation. This means that future hip revisions are possible with THR if the initial MOM arthroplasty becomes less effective with time in these younger patients. The procedure involves the removal and replacement of the surface of the femoral head with a hollow metal hemisphere, which fits into a metal acetabular cup. Hip resurfacing arthroplasty is a technically more demanding procedure than is conventional THR. In hip resurfacing, the femoral head is retained, which makes it much more difficult to access the acetabular cup. However, hip resurfacing arthroplasty has several advantages over a

  10. Inflammatory pseudotumor causing deep vein thrombosis after metal-on-metal hip resurfacing arthroplasty.

    LENUS (Irish Health Repository)

    Memon, Adeel Rasool

    2013-01-01

    Metal-on-metal hip resurfacings have recently been associated with a variety of complications resulting from adverse reaction to metal debris. We report a case of extensive soft tissue necrosis associated with a huge pelvic mass causing extensive deep vein thrombosis of the lower limb secondary to mechanical compression of the iliac vein. This is a rare and unusual cause of deep vein thrombosis after metal-on-metal hip resurfacing arthroplasty.

  11. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Gunilla M.; Mueller, Markus F.; Ekberg, Olle [Lund University, Skaane University Hospital, Department of Radiology, Malmoe (Sweden); Maansson, Sven [Lund University, Skaane University Hospital, Department of Medical Radiation Physics, Malmoe (Sweden); Schewelov, Thord von [Lund University, Skaane University Hospital, Department of Orthopedic Surgery, Malmoe (Sweden); Nittka, Mathias [Siemens AG, Healthcare Sector, Erlangen (Germany); Lundin, Bjoern [Lund University, Skaane University Hospital, Department of Radiology, Lund (Sweden)

    2014-08-15

    To apply and compare magnetic resonance imaging (MRI) metal artifact reducing sequences (MARS) including subtraction imaging after contrast application in patients with metal-on-metal (MoM) hip prostheses, investigate the prevalence and characteristics of periprosthetic abnormalities, as well as their relation with pain and risk factors. Fifty-two MoM prostheses (35 cases with pain and or risk factors, and 17 controls) in 47 patients were examined in a 1.5-T MR scanner using MARS: turbo spin echo (TSE) with high readout bandwidth with and without view angle tilting (VAT), TSE with VAT and slice encoding for metal artifact correction (SEMAC), short tau inversion recovery (STIR) with matched RF pulses, and post-contrast imaging. The relations of MRI findings to pain and risk factors were analyzed and in five revised hips findings from operation, histology, and MRI were compared. TSE VAT detected the highest number of osteolyses. Soft tissue mass, effusion, and capsular thickening were common, whereas osteolysis in acetabulum and femur were less frequent. Contrast enhancement occurred in bone, synovia, joint capsule, and the periphery of soft tissue mass. There was no significant relation between MRI findings and pain or risk factors. MARS and gadolinium subtraction imaging are useful for evaluation of complications to MoM prosthesis. TSE VAT had the highest sensitivity for osteolysis. Contrast enhancement might indicate activation of aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL). Pain, small head, or steep prosthesis inclination angle are not useful predictors of periprosthetic abnormalities, and wide indications for MR follow-up are warranted. (orig.)

  12. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants. A phantom study

    International Nuclear Information System (INIS)

    Harnish, R.; Lang, T.F.; Prevrhal, S.; Alavi, A.; Zaidi, H.

    2014-01-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of 18 F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml 18 F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external 137 Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with 137 Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40% overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the 18 F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. (author)

  13. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Alister J [Department of Orthopaedic Surgery, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Sandison, Ann [Department of Histopathology, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Quinn, Paul; Mosselmans, J Frederick W [Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (United Kingdom); Sampson, Barry [Department of Clinical Biochemistry, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Atkinson, Kirk D [8 Nuclear Department Defence Academy College of Management and Technology HMS Sultan Military Road Gosport PO12 3BY (United Kingdom); Skinner, John A [Department of Orthopaedics, Royal National Orthopaedic Hospital, HA7 4LP (United Kingdom); Goode, Angela [Dept of Materials, Imperial College London, SW7 2AZ (United Kingdom); Powell, Jonathan J, E-mail: Paul.Quinn@diamond.ac.u [Medical Research Council Human Nutrition Research Centre, Cambridge CB1 9NL (United Kingdom)

    2009-11-15

    Unexplained tissue inflammation in metal-on-metal hip replacements is suspected to be caused by implant-derived nanoparticles. The aim of this study was to investigate the nature of the metal particles in tissue surrounding metal-on-metal (MOM) hips that has been extracted during revision. Mapping of tissue surrounding the failed MOM hips was performed using microfocus X-ray Fluorescence (XRF). This revealed mainly Cr which was localized to the cellular regions. There was co-localisation of Co, were present, to areas of high Cr abundance. XANES of the tissue and appropriate standards revealed that the most common species were Cr(III) and Co(II). EXAFS analysis of the tissue and various metal standards revealed that the most abundant implant-related species was Cr(III) phosphate. Different tissue preparation methods, including frozen sectioning, were examined but were found not to affect the distribution or speciation of the metals in the tissue.

  14. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants

    International Nuclear Information System (INIS)

    Hart, Alister J; Sandison, Ann; Quinn, Paul; Mosselmans, J Frederick W; Sampson, Barry; Atkinson, Kirk D; Skinner, John A; Goode, Angela; Powell, Jonathan J

    2009-01-01

    Unexplained tissue inflammation in metal-on-metal hip replacements is suspected to be caused by implant-derived nanoparticles. The aim of this study was to investigate the nature of the metal particles in tissue surrounding metal-on-metal (MOM) hips that has been extracted during revision. Mapping of tissue surrounding the failed MOM hips was performed using microfocus X-ray Fluorescence (XRF). This revealed mainly Cr which was localized to the cellular regions. There was co-localisation of Co, were present, to areas of high Cr abundance. XANES of the tissue and appropriate standards revealed that the most common species were Cr(III) and Co(II). EXAFS analysis of the tissue and various metal standards revealed that the most abundant implant-related species was Cr(III) phosphate. Different tissue preparation methods, including frozen sectioning, were examined but were found not to affect the distribution or speciation of the metals in the tissue.

  15. Selection of contact bearing couple materials for hip prosthesis using finite element analysis under static conditions

    Science.gov (United States)

    Arirajan, K. A.; Chockalingam, K.; Vignesh, C.

    2018-04-01

    Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.

  16. Metal-on-metal hip resurfacings. A radiological perspective

    International Nuclear Information System (INIS)

    Chen, Zhongbo; Pandit, Hemant; Taylor, Adrian; Gill, Harinderjit; Murray, David; Ostlere, Simon

    2011-01-01

    It is important to be aware of the various complications related to resurfacing arthroplasty of the hip (RSA) and the spectrum of findings that may be encountered on imaging. The bone conserving metal-on-metal (MOM) hip resurfacing has become increasingly popular over the last ten years, especially in young and active patients. Initial reports have been encouraging, but long-term outcome is still unknown. Early post operative complications are rare and have been well documented in the literature. Medium and long term complications are less well understood. A rare but important problem seen at this stage is the appearance of a cystic or solid periarticular reactive mass, which occurs predominately in women and usually affects both hips when seen in patients with bilateral RSAs. The following imaging findings are illustrated and their significance discussed; Uncomplicated hip resurfacing arthroplasty, radiolucency around the femoral peg, femoral neck fracture, loosening and infection, suboptimal component position, femoral notching, dislocation, heterotopic ossification, femoral neck thinning and reactive masses. The radiologist should be aware of the normal radiographic appearances and the variety of complications that may occur following RSA and should recommend ultrasound or MRI in patients with an unexplained symptomatic hip and normal radiographs. (orig.)

  17. Magnetic resonance imaging of metal artifact reduction sequences in the assessment of metal-on-metal hip prostheses

    Directory of Open Access Journals (Sweden)

    Aboelmagd SM

    2014-05-01

    Full Text Available Sharief M Aboelmagd, Paul N Malcolm, Andoni P Toms Department of Radiology, Norfolk and Norwich University Hospital National Health Service Trust, Norwich, UK Abstract: Recent developments in metal artifact reduction techniques in magnetic resonance (MR have, in large part, been stimulated by the advent of soft tissue complications associated with modern metal-on-metal total hip replacements. Metallic orthopedic implants can result in severe degradation of MR images because ferromagnetic susceptibility causes signal loss, signal pile-up, geometric distortion, and failure of fat suppression. There are several approaches to controlling these susceptibility artifacts. Standard fast spin echo sequences can be adapted by modifying echo times, matrix, receiver bandwidth, slice thickness, and echo trains to minimize frequency encoding misregistration. Short tau inversion recovery and 2-point Dixon techniques are both more resistant to susceptibility artifacts than spectral fat suppression. A number of dedicated metal artifact reduction sequences are now available commercially. The common approach of these multispectral techniques is to generate three dimensional datasets from which the final images are reconstructed. Frequency encoding misregistration is controlled using a variety of techniques, including specific resonant frequency acquisition, view-angle tilting, and phase encoding. Metal artifact reduction MR imaging has been the key to understanding the prevalence, severity, and prognosis of adverse reactions to metal debris in metal-on-metal hip replacements. Conventional radiographs are typically normal or demonstrate minimal change and are unable to demonstrate the often extensive soft tissue abnormalities, which include necrosis, soft tissue masses and fluid collections, myositis, muscle atrophy, tendon avulsions, and osteonecrosis. These MR findings correlate poorly with clinical and serological measures of disease, and therefore MR imaging is

  18. A study of TiN-coated metal-on-polymer bearing materials for hip prosthesis

    Science.gov (United States)

    Lee, Sung Bai; Choi, Jin Young; Park, Won Woong; Jeon, Jun Hong; Won, Sung Ok; Byun, Ji Young; Lim, Sang Ho; Han, Seung Hee

    2010-08-01

    The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.

  19. Metal release and metal allergy after total hip replacement with resurfacing versus conventional hybrid prosthesis 5-year follow-up of 52 patients

    DEFF Research Database (Denmark)

    Gustafson, Klas; Jakobsen, Stig S; Lorenzen, Nina D

    2014-01-01

    to an increased incidence of metal allergy. METHODS: 52 hips in 52 patients (median age 60 (51-64) years, 30 women) were randomized to either a MOM hip resurfacing system (ReCap) or a standard MOP total hip arthoplasty (Mallory Head/Exeter). Spot urine samples were collected preoperatively, postoperatively, after....... RESULTS: A statistically significant 10- to 20-fold increase in urinary levels of cobalt and chromium was observed throughout the entire follow-up in the MOM group. The prevalence of metal allergy was similar between groups. INTERPRETATION: While we observed significantly increased levels of metal ions...

  20. The acting wear mechanisms on metal-on-metal hip joint bearings: in-vitro results

    NARCIS (Netherlands)

    Wimmer, M.A.; Loos, J.; Nassutt, R.; Heitkemper, M.; Fischer, A.

    2001-01-01

    Metal-on-metal (MOM) hip joint bearings are currently under discussion as alternatives to metal-on-polymer (MOP) bearings. Some criteria under scrutiny are the wear resistance, the influence of wear particles on the surrounding tissue, as well as the frictional torque. In order to understand and

  1. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  2. Metal-on-Metal Total Hip Resurfacing Arthroplasty: An Evidence-Based Analysis.

    Science.gov (United States)

    2006-01-01

    The objective of this review was to assess the safety and effectiveness of metal on metal (MOM) hip resurfacing arthroplasty for young patients compared with that of total hip replacement (THR) in the same population. Total hip replacement has proved to be very effective for late middle-aged and elderly patients with severe degenerative diseases of the hips. As indications for THR began to include younger patients and those with a more active life style, the longevity of the implant became a concern. Evidence suggests that these patients experience relatively higher rates of early implant failure and the need for revision. The Swedish hip registry, for example, has demonstrated a survival rate in excess of 80% at 20 years for those aged over 65 years, whereas this figure was 33% by 16 years in those aged under 55 years. Hip resurfacing arthroplasty is a bone-conserving alternative to THR that restores normal joint biomechanics and load transfer. The technique has been used around the world for more than 10 years, specifically in the United Kingdom and other European countries. Metal-on-metal hip resurfacing arthroplasty is an alternative procedure to conventional THR in younger patients. Hip resurfacing arthroplasty is less invasive than THR and addresses the problem of preserving femoral bone stock at the initial operation. This means that future hip revisions are possible with THR if the initial MOM arthroplasty becomes less effective with time in these younger patients. The procedure involves the removal and replacement of the surface of the femoral head with a hollow metal hemisphere, which fits into a metal acetabular cup. Hip resurfacing arthroplasty is a technically more demanding procedure than is conventional THR. In hip resurfacing, the femoral head is retained, which makes it much more difficult to access the acetabular cup. However, hip resurfacing arthroplasty has several advantages over a conventional THR with a small (28 mm) ball. First, the large

  3. The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing.

    Science.gov (United States)

    Mellon, S J; Kwon, Y-M; Glyn-Jones, S; Murray, D W; Gill, H S

    2011-12-01

    The occurrence of pseudotumours (soft tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) has been associated with high serum metal ion levels and consequently higher than normal bearing wear. We investigated the relationship between serum metal ion levels and contact stress on the acetabular component of MoMHRA patients for two functional activities; gait and stair descent. Four subjects with MoMHRA, who had their serum metal ion levels measured, underwent motion analysis followed by CT scanning. Their motion capture data was combined with published hip contact forces and finite element models representing 14% (peak force) and 60% (end of stance) of the gait cycle and 52% (peak force) of stair descent activity were created. The inclination angle of the acetabular component was increased by 10° in 1° intervals and the contact stresses were determined at each interval for each subject. When the inclination angle was altered in such a way as to cause the hip contact force to pass through the edge of the acetabular component edge-loading occurred. Edge-loading increased the contact stress by at least 50%; the maximum increase was 108%. Patients with low serum metal ion levels showed no increase in contact stress at peak force during gait or stair descent. Patients with high serum metal ion levels exhibited edge-loading with an increase to the inclination angle of their acetabular components. The increase in inclination angle that induced edge-loading for these subjects was less than the inter-subject variability in the angle of published hip contact forces. The results of this study suggest that high serum metal ion levels are the result of inclination angle influenced edge-loading but that edge-loading cannot be attributed to inclination angle alone and that an individual's activity patterns can reduce or even override the influence of a steep acetabular component and prevent edge-loading. Copyright © 2011 IPEM

  4. Dosimetric influence of hip prosthesis during radiotherapeutic treatment

    International Nuclear Information System (INIS)

    Gschwind, R.; Buffard, E.; Masset, H.; Makovicka, L.; David, C.; David, C.; Buffard, E.

    2008-01-01

    As the population become aged, many patients with hip prosthesis are treated for a pelvic cancer. The recommended ballistic must avoid to pass in the prosthesis, but sometimes it is inevitable. So it is essential to quantify with accuracy the dose modifications linked to the presence of metallic implant. The aim of this study is to analyze by Monte Carlo method these modifications in simple and complex models (anthropomorphic phantom) which take into account the geometry and the composition of the prosthesis and its coatings. Then, this methodology was used to study the behaviour of a treatment planning system in theses extreme conditions. (authors)

  5. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses

    NARCIS (Netherlands)

    Wellenberg, R. H. H.; Boomsma, M. F.; van Osch, J. A. C.; Vlassenbroek, A.; Milles, J.; Edens, M. A.; Streekstra, G. J.; Slump, C. H.; Maas, M.

    2017-01-01

    To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer

  6. Total hip arthroplasty survival in femoral head avascular necrosis versus primary hip osteoarthritis: Case-control study with a mean 10-year follow-up after anatomical cementless metal-on-metal 28-mm replacement.

    Science.gov (United States)

    Ancelin, D; Reina, N; Cavaignac, E; Delclaux, S; Chiron, P

    2016-12-01

    Total hip arthroplasty is the most widely used procedure to treat avascular necrosis (AVN) of the femoral head. Few studies have compared the outcomes of THA in femoral head AVN and primary hip osteoarthritis. Therefore we performed a case-control study to compare THA for femoral head AVN vs. primary hip osteoarthritis in terms of: (1) prosthesis survival, (2) complication rates, (3) functional outcomes and radiographic outcomes, (4) and to determine whether specific risk factors for THA failure exist in femoral head AVN. THA survival is similar in femoral head AVN and primary hip osteoarthritis. We compared two prospective cohorts of patients who underwent THA before 65 years of age, one composed of cases with femoral head AVN and the other of controls with primary hip osteoarthritis. In both cohorts, a cementless metal-on-metal prosthesis with a 28-mm cup and an anatomical stem was used. Exclusion criteria were THA with other types of prosthesis, posttraumatic AVN, and secondary osteoarthritis. With α set at 5%, to obtain 80% power, 246 patients were required in all. Prosthesis survival was assessed based on time to major revision (defined as replacement of at least one implant fixed to bone) and time to aseptic loosening. The other evaluation criteria were complications, Postel-Merle d'Aubigné (PMA) score, and the Engh and Agora Radiographic Assessment (ARA) scores for implant osseointegration. The study included 282 patients, 149 with AVN and 133 with osteoarthritis. Mean age was 47.8±10.2 years (range, 18.5-65) and mean follow-up was 11.4±2.8 years (range, 4.5-18.3 years). The 10-year survival rates were similar in the two groups: for major revision, AVN group, 92.5% (95% confidence interval [95% CI], 90.2-94.8) and osteoarthritis group, 95.3% (95% CI, 92.9-97.7); for aseptic loosening, AVN group, 98.6% (95% CI, 97.6-98.6) and osteoarthritis, 99.2% (95% CI, 98.4-100). The AVN group had higher numbers of revision for any reason (19 vs. 6, P=0.018) and

  7. [Tripolar arthroplasty for recurrent total hip prosthesis dislocation].

    Science.gov (United States)

    Beaulé, P-E; Roussignol, X; Schmalzried, T-P; Udomkiat, P; Amstutz, H-C; Dujardin, F-H

    2003-05-01

    The purpose of this study was to assess the results of revision surgery for recurrent total hip prosthesis dislocation using a tripolar prosthesis composed of a conventional stem with a mobile head of an intermediary prosthesis measuring more than 40 mm and a modified cup. This technique was used in two centers in Rouen France and Los Angeles USA. Twenty-one hips in 21 patients were operated on. The mobile heads measured 40 to 47 mm. Mean patient age was 70 years (range 29-92). The indication for the tripolar prosthesis was reserved for extremely unstable hips in patients with major risk factors for recurrent dislocation. These 21 patients had experienced 95 dislocations. The acetabular cup was custom-made for the large-diameter heads. A cemented polyethylene cup was used in 14 cases and a press-fit metal-backed around a polyethylene insert in 7. The polyethylene thickness varied from 6.5 to 16 mm for the cemented cups and 4 to 5 mm for the press-fit cups. Fourteen femoral stems were left in place as were two press-fit cups where only the inserts were changed. Mean follow-up was 5.4 years (range 3-11.8). There has been no recurrent dislocation for 20 hips. One patient experienced a dislocation one week after surgery which required a second revision procedure to reposition the acetabular implant. Final outcome was good at 7.6 years for this hip. One patient who had not had any recurrent dislocation died 4 years after the revision surgery due to a cause unrelated to the prosthesis. Two patients were lost to follow-up at 3.7 and 6 years, both were pain free and had no radiological anomalies. Infection occurred in one patient undergoing chemotherapy for a myeloma; the head and neck had to be resected. For the 20 other patients, functional outcome, assessed with the UCLA score, showed improvement in pain (5.8 preoperatively, 9.2 at last follow-up), walking (4.8 and 8 respectively), function (4 and 6 respectively), and daily activities (3.3 and 5.2 respectively). A

  8. Management of metal-on-metal hip implant patients: Who, when and how to revise?

    Science.gov (United States)

    Berber, Reshid; Skinner, John A; Hart, Alister J

    2016-05-18

    The debate on how best to manage patients with metal-on-metal (MOM) hip implants continues. With over 1 million patients affected worldwide, the impact is far reaching. The majority of the aggressive failures of MOM hip implants have been dealt with by revision hip surgery, leaving patients with a much more indolent pattern of failure of devices that have been in situ for more than 10 years. The longer-term outcome for such patients remains unknown, and much debate exists on how best to manage these patients. Regulatory guidance is available but remains open to interpretation due to the lack of current evidence and long-term studies. Metal ion thresholds for concern have been suggested at 7 ppb for hip resurfacing arthroplasty and below this level for large diameter total hip arthroplasties. Soft tissue changes including pseudotumours and muscle atrophy have been shown to progress, but this is not consistent. New advanced imaging techniques are helping to diagnose complications with metal hips and the reasons for failure, however these are not widely available. This has led to some centres to tackle difficult cases through multidisciplinary collaboration, for both surgical management decisions and also follow-up decisions. We summarise current evidence and consider who is at risk, when revision should be undertaken and how patients should be managed.

  9. Quantitative analysis of orthopedic metal artefact reduction in 64-slice computed tomography scans in large head metal-on-metal total hip replacement, a phantom study

    NARCIS (Netherlands)

    Boomsma, Martijn F.; Warringa, Niek; Edens, Mireille A.; Mueller, Dirk; Ettema, Harmen B.; Verheyen, Cees C. P. M.; Maas, Mario

    2016-01-01

    Purpose: Quantification of the effect of O-MAR on decreasing metal artefacts caused by large head metal on metal total hip arthroplasty (MoM THA) in a dedicated phantom setup of the hip. Background: Pathological reactions of the hip capsule on Computed tomography (CT) can be difficult to diagnose

  10. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  11. No association between pseudotumors, high serum metal-ion levels and metal hypersensitivity in large-head metal-on-metal total hip arthroplasty at 5-7-year follow-up

    DEFF Research Database (Denmark)

    Hjorth, Mette Holm; Stilling, Maiken; Soballe, Kjeld

    2015-01-01

    -ion concentrations were measured, metal allergy and atopic dermatitis were evaluated, and the questionnaires of the Oxford Hip Score (OHS), Harris Hip Score (HHS) and the Short-Form Health Survey (SF-36) were completed. RESULTS: Pseudotumors were found in eight patients, but they were asymptomatic and their serum...... pseudotumor formation, serum metal-ion levels, metal patch test reactivity, and atopic dermatitis. However, clinicians should be aware of asymptomatic pseudotumors, and we advise further exploration into the mechanisms involved in the pathogenesis of pseudotumors.......OBJECTIVE: The relationship between metal wear debris, pseudotumor formation and metal hypersensitivity is complex and not completely understood. The purpose of this study was to assess the prevalence of pseudotumor formation in a consecutive series of metal-on-metal (MoM) total hip arthroplasty...

  12. Results of endoprosthetic hip joint replacement with the aluminum ceramic-metal composite prosthesis "Lindenhof".

    Science.gov (United States)

    Stock, D; Diezemann, E D; Gottstein, J

    1980-01-01

    The first clinical results of the Lindenhof ceramic-metal composite prosthesis implanted in our hospital in Freiburg are presented. We observed that same favorable early results as the conventional prostheses in a correct position. The implants are incorporated into the bone within 8-12 weeks. The radiographic films show the adaptation of the supporting bone around the ceramic socket. We explain the failures due to our initial lack of technical experience and/or anatomical deformation of the pelvic bone. complications caused by the post-operative treatment during the 12 weeks following surgery did not occur. The combination of a cemented metal femoral component with a ceramic head seems to be a reasonable compromise to use the favorable physical and biochemical properties of the bioceramic material as long as there is no satisfactory solution for a stable cementless fixation of the femoral stem in to the bone. The advantages of the Lindenhof prosthesis predominate the disadvantages: expensive instruments and a post-operative treatment of several months.

  13. CT-based quantification of bone stock in large head metal-on-metal unilateral total hip replacements

    NARCIS (Netherlands)

    Boomsma, Martijn F.; Slouwerhof, Inge; van Lingen, Christiaan; Pakvis, Dean F. M.; van Dalen, Jorn A.; Edens, Mireille A.; Ettema, Harmen B.; Verheyen, Cees C. P. M.; Maas, Mario

    2016-01-01

    To explore ipsilateral and contralateral acetabular roof bone stock density in unilateral large head MoM THA whether there is a significant lower acetabular bone stock in the hip with a metal-on-metal (MoM) total hip replacement compared to the contralateral side. Second part of this study is to

  14. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  15. Phantom studies of triple photon absorptiometry and bone mineral measurement at a hip prosthesis

    International Nuclear Information System (INIS)

    Farrell, T.J.; Webber, C.E.

    1992-01-01

    The feasibility of using triple photon absorptiometry (TPA) for the measurement of bone mineral mass about a hip prosthesis was examined. A theoretical expression describing the variance of TPA measurements was verified using a triple photon source and phantom materials which simulate the soft tissue-bone mineral-metal prosthesis system. The expression for the variance was used to determine an optimized set of photon energies. It was shown that a precision of 3% could be obtained for reasonable measurement times using this optimized set of energies and that TPA should be a feasible approach for measurement of bone mineral about a hip prosthesis. (orig.)

  16. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study.

    Science.gov (United States)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F

    2014-07-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. MAR combined

  17. The possibilities of magnetic resonance imaging in the diagnostics of complications after metal-on-metal hip arthroplasty

    Directory of Open Access Journals (Sweden)

    A. A. Vergay

    2013-01-01

    Full Text Available Objective: to find adverse periprosthetic local tissue reactions after metal-on-metal hip arthroplasty with ASR XL heads. Material and methods: 119 patients with 134 ASR XL head - Corail prostheses were treated in 2007-2009. The results were studied in 94 cases (105 prostheses - 84%. Average follow-up time consisted 62 ± 3 months. MRI was performed in 12 patients (13 hips who had clinical nonsatisfaction. Obtained data were compared with 21 MRI (24 hips of controlled group with good and perfect clinical results. Results. We found variations of normal periprosthetic tissue condition. Adverse reactions were identified in 10 cases. To improve the quality of pictures we developed special MRI adjustments and regimes of work. Conclusion: MRI diagnostics is indicated for the patients with metal-on-metal total hip arthroplasty in order to identify adverse local tissue reactions. The improvement of picture quality needs special adjustment of MRI equipment.

  18. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up.

    Science.gov (United States)

    Prabhu, Radhakrishnan; Prabhu, Geetha; Baskaran, Eswaran; Arumugam, Eswaran M

    2016-01-01

    In recent years, direct metal laser sintered (DMLS) metal-ceramic-based fixed partial denture prostheses have been used as an alternative to conventional metal-ceramic fixed partial denture prostheses. However, clinical studies for evaluating their long-term clinical survivability and acceptability are limited. The aim of this study was to assess the efficacy of metal-ceramic fixed dental prosthesis fabricated with DMLS technique, and its clinical acceptance on long-term clinical use. The study group consisted of 45 patients who were restored with posterior three-unit fixed partial denture prosthesis made using direct laser sintered metal-ceramic restorations. Patient recall and clinical examination of the restorations were done after 6months and every 12 months thereafter for the period of 60 months. Clinical examination for evaluation of longevity of restorations was done using modified Ryge criteria which included chipping of the veneered ceramic, connector failure occurring in the fixed partial denture prosthesis, discoloration at the marginal areas of the veneered ceramic, and marginal adaptation of the metal and ceramic of the fixed denture prosthesis. Periapical status was assessed using periodical radiographs during the study period. Survival analysis was made using the Kaplan-Meier method. None of the patients had failure of the connector of the fixed partial denture prostheses during the study period. Two exhibited biological changes which included periapical changes and proximal caries adjacent to the abutments. DMLS metal-ceramic fixed partial denture prosthesis had a survival rate of 95.5% and yielded promising results during the 5-year clinical study.

  19. A Randomized Seven-Year Study on Performance of the Stemmed Metal M2a-Magnum and Ceramic C2a-Taper, and the Resurfacing ReCap Hip Implants

    DEFF Research Database (Denmark)

    Borgwardt, Arne; Borgwardt, Lotte; Zerahn, Bo

    2018-01-01

    BACKGROUND: The large-diameter metal-on-metal hip prostheses were expected to have low wear and reduced dislocation rate compared to the traditional metal-on-polyethylene implants. We compare 2 such prostheses, the ReCap resurfacing implant and the M2a-Magnum stemmed implant, with the C2a ceramic......-on-ceramic stemmed implant as to clinical performance, serum concentrations of prosthesis metals, and the durability of the implants in a randomized, controlled clinical trial at 7 years of follow-up. METHODS: All included patients had osteoarthritis. Preoperatively, the size of the implants was estimated from...... of the soft tissue adjacent to the implant as well as MRI with metal artifact reduction sequence (MARS-MRI) when indicated. RESULTS: One hundred fifty-two hips in 146 patients were included. The serum cobalt and chromium concentrations were significantly higher for the 2 metal-on-metal prostheses than...

  20. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a device...

  1. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  2. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device intended...

  3. 21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemoral polymer/metal semi... § 888.3540 Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis is a two-part...

  4. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  5. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...

  6. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended to...

  7. 21 CFR 888.3580 - Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellar (hemi-knee) metallic... § 888.3580 Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis is a device made of...

  8. Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Toms, A.P., E-mail: andoni.toms@nnuh.nhs.u [Department of Radiology, Norfolk and Norwich University Hospital Trust, Norwich, Norfolk NR4 7UY (United Kingdom); Smith-Bateman, C.; Malcolm, P.N.; Cahir, J. [Department of Radiology, Norfolk and Norwich University Hospital Trust, Norwich, Norfolk NR4 7UY (United Kingdom); Graves, M. [University Department of Radiology, Addenbrooke' s Hospital, Cambridge (United Kingdom)

    2010-06-15

    Aim: To describe the relative contribution of matrix size and bandwidth to artefact reduction in order to define optimal sequence parameters for metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Methods and materials: A phantom was created using a Charnley total hip replacement. Mid-coronal T1-weighted (echo time 12 ms, repetition time 400 ms) images through the prosthesis were acquired with increasing bandwidths (150, 300, 454, 592, and 781 Hz/pixel) and increasing matrixes of 128, 256, 384, 512, 640, and 768 pixels square. Signal loss from the prosthesis and susceptibility artefact was segmented using an automated tool. Results: Over 90% of the achievable reduction in artefacts was obtained with matrixes of 256 x 256 or greater and a receiver bandwidth of approximately 400 Hz/pixel or greater. Thereafter increasing the receiver bandwidth or matrix had little impact on reducing susceptibility artefacts. Increasing the bandwidth produced a relative fall in the signal-to-noise ratio (SNR) of between 49 and 56% for a given matrix, but, in practice, the image quality was still satisfactory even with the highest bandwidth and largest matrix sizes. The acquisition time increased linearly with increasing matrix parameters. Conclusion: Over 90% of the achievable metal artefact reduction can be realized with mid-range matrices and receiver bandwidths on a clinical 1.5 T system. The loss of SNR from increasing receiver bandwidth, is preferable to long acquisition times, and therefore, should be the main tool for reducing metal artefact.

  9. N-Acetyl-Cysteine as Effective and Safe Chelating Agent in Metal-on-Metal Hip-Implanted Patients: Two Cases

    Directory of Open Access Journals (Sweden)

    Andrea Giampreti

    2016-01-01

    Full Text Available Systemic toxicity associated with cobalt (Co and chromium (Cr containing metal hip alloy may result in neuropathy, cardiomyopathy, and hypothyroidism. However clinical management concerning chelating therapy is still debated in literature. Here are described two metal-on-metal hip-implanted patients in which N-acetyl-cysteine decreased elevated blood metal levels. A 67-year-old male who underwent Co/Cr hip implant in September 2009 referred to our Poison Control Centre for persisting elevated Co/Cr blood levels (from March 2012 to November 2014. After receiving oral high-dose N-acetyl-cysteine, Co/Cr blood concentrations dropped by 86% and 87% of the prechelation levels, respectively, and persisted at these latter concentrations during the following 6 months of follow-up. An 81-year-old female who underwent Co/Cr hip implant in January 2007 referred to our Centre for detection of high Co and Cr blood levels in June 2012. No hip revision was indicated. After a therapy with oral high-dose N-acetyl-cysteine Co/Cr blood concentrations decreased of 45% and 24% of the prechelation levels. Chelating agents reported in hip-implanted patients (EDTA, DMPS, and BAL are described in few cases. N-acetyl-cysteine may provide chelating sites for metals and in our cases reduced Co and Cr blood levels and resulted well tolerable.

  10. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  11. Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips.

    Science.gov (United States)

    Berber, Reshid; Khoo, Michael; Cook, Erica; Guppy, Andrew; Hua, Jia; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister

    2015-06-01

    Muscle atrophy is seen in patients with metal-on-metal (MOM) hip implants, probably because of inflammatory destruction of the musculo-tendon junction. However, like pseudotumors, it is unclear when atrophy occurs and whether it progresses with time. Our objective was to determine whether muscle atrophy associated with MOM hip implants progresses with time. We retrospectively reviewed 74 hips in 56 patients (32 of them women) using serial MRI. Median age was 59 (23-83) years. The median time post-implantation was 83 (35-142) months, and the median interval between scans was 11 months. Hip muscles were scored using the Pfirrmann system. The mean scores for muscle atrophy were compared between the first and second MRI scans. Blood cobalt and chromium concentrations were determined. The median blood cobalt was 6.84 (0.24-90) ppb and median chromium level was 4.42 (0.20-45) ppb. The median Oxford hip score was 34 (5-48). The change in the gluteus minimus mean atrophy score between first and second MRI was 0.12 (p = 0.002). Mean change in the gluteus medius posterior portion (unaffected by surgical approach) was 0.08 (p = 0.01) and mean change in the inferior portion was 0.10 (p = 0.05). Mean pseudotumor grade increased by 0.18 (p = 0.02). Worsening muscle atrophy and worsening pseudotumor grade occur over a 1-year period in a substantial proportion of patients with MOM hip implants. Serial MRI helps to identify those patients who are at risk of developing worsening soft-tissue pathology. These patients should be considered for revision surgery before irreversible muscle destruction occurs.

  12. Early results of metal on metal articulation total hip arthroplasty in young patients.

    Science.gov (United States)

    Mohamad, J A; Kwan, M K; Merican, A M; Abbas, A A; Kamari, Z H; Hisa, M K; Ismail, Z; Idrus, R M

    2004-12-01

    We report our early experience of 20 cases of metal on metal articulation total hip arthroplasty in 19 young patients. Avascular necrosis of the femoral head (63%) was the commonest diagnosis for patients undergoing this procedure, followed by osteoarthritis (21%). In general, most of the patients were young and physically active with an average age of 43.1 years (range, 25 to 58 years). The average follow-up period was 18 months (range, 7 to 46 months). The mean total Harris Hip Score preoperatively and at final follow-up was 31 points and 89 points respectively. The mean total Pain Score improved from an average of 11.5 to 41.1 points at final follow-up. Sixteen (84%) of the patients had a good to excellent hip score. There was one dislocation, which stabilized after reduction and conservative management. One case of early infection underwent a two-staged revision.

  13. International metal-on-metal multidisciplinary teams: do we manage patients with metal-on-metal hip arthroplasty in the same way? An analysis from the International Specialist Centre Collaboration on MOM Hips (ISCCoMH).

    Science.gov (United States)

    Berber, R; Skinner, J; Board, T; Kendoff, D; Eskelinen, A; Kwon, Y-M; Padgett, D E; Hart, A

    2016-02-01

    There are many guidelines that help direct the management of patients with metal-on-metal (MOM) hip arthroplasties. We have undertaken a study to compare the management of patients with MOM hip arthroplasties in different countries. Six international tertiary referral orthopaedic centres were invited to participate by organising a multi-disciplinary team (MDT) meeting, consisting of two or more revision hip arthroplasty surgeons and a musculoskeletal radiologist. A full clinical dataset including history, blood tests and imaging for ten patients was sent to each unit, for discussion and treatment planning. Differences in the interpretation of findings, management decisions and rationale for decisions were compared using quantitative and qualitative methods. Overall agreement between the orthopaedic centres and the recommended treatment plans for the ten patients with MOM hip implants was moderate (kappa = 0.6). Full agreement was seen in a third of cases, however split decisions were also seen in a third of cases. Units differed in their interpretation of the significance of the investigation findings and put varying emphasis on serial changes, in the presence of symptoms. In conclusion, the management of raised or rising blood metal ions, cystic pseudotumours and peri-acetabular osteolysis led to inconsistency in the agreement between centres. Coordinated international guidance and MDT panel discussions are recommended to improve consensus in decision making. A lack of evidence and the subsequent variation in regulator guidance leads to differences in opinions, the clinical impact of which can be reduced through a multi-disciplinary team approach to managing patients with MOM hip implants. Cite this article: Bone Joint J 2016;98-B:179-86. ©2016 The British Editorial Society of Bone & Joint Surgery.

  14. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty: a diagnostic cohort study of 48 patients

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao; Yang, Dejin; Guo, Shengjie; Tang, Jing; Liu, Jian; Wang, Dacheng; Zhou, Yixin [Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Department of Orthopaedic Surgery, Beijing (China)

    2016-11-15

    For postoperative imaging assessment of cementless hip arthroplasty, radiography and computed tomography (CT) were restricted by overlapping structures and metal artifacts, respectively. A new tomosynthesis with metal artifact reduction (TMAR) is introduced by using metal extraction and ordered subset-expectation maximization (OS-EM) reconstruction. This study investigated the effectiveness of TMAR in assessing fixation stability of cementless hip arthroplasty components. We prospectively included 48 consecutive patients scheduled for revision hip arthroplasty in our hospital, with 41 femoral and 35 acetabular cementless components available for evaluation. All patients took the three examinations of radiography, CT, and TMAR preoperatively, with intraoperative mechanical tests, and absence or presence of osteointegration on retrieved prosthesis as reference standards. Three senior surgeons and four junior surgeons evaluated these images independently with uniform criteria. For TMAR, 82 % diagnoses on the femoral side and 84 % diagnoses on the acetabular side were accurate. The corresponding values were 44 and 67 % for radiography, and 39 % and 74 % for CT. Senior surgeons had significantly higher accuracy than junior surgeons by radiography (p < 0.05), but not by TMAR or CT. By minimizing metal artifacts in the bone-implant interface and clearly depicting peri-implant trabecular structures, the TMAR technique improved the diagnostic accuracy of assessing fixation stability of cementless hip arthroplasty, and shortened the learning curve of less experienced surgeons. Level II, diagnostic cohort study. (orig.)

  15. Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position.

    Science.gov (United States)

    Williams, Sophie; Leslie, Ian; Isaac, Graham; Jin, Zhongmin; Ingham, Eileen; Fisher, John

    2008-08-01

    Clinical studies have indicated that the angular position of the acetabular cup may influence wear in metal-on-metal total hip bearings. A high cup angle in comparison to the anatomical position may lead to the head being constrained by the superior lateral surface and rim of the cup, thus potentially changing the location of the contact zone between the head and the cup. The aim of this study was to test the hypothesis that both a steep cup angle and a lateralized position of the head can increase head contact on the superior rim of the cup, with the consequence of increased wear. Hip-joint simulator studies of metal-on-metal bearings were undertaken with cup angles of 45 degrees and 55 degrees . The femoral head was either aligned to the center of the cup or placed in a position of microlateralization. Wear was measured gravimetrically over 5 million cycles. A steep cup angle of 55 degrees showed significantly higher long-term steady-state wear than a standard cup angle of 45 degrees (p < 0.01). The difference was fivefold. Microlateralization of the head resulted in a fivefold increase in steady-state wear compared with a centralized head. The combination of a steep cup angle and a microlateralized head increased the steady-state wear rate by tenfold compared with a standard cup angle with a centralized head. These studies support the hypothesis that both an increased cup angle and a lateral head position increase wear in metal-on-metal hip prostheses.

  16. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  17. A case study of radiotherapy planning for a bilateral metal hip prosthesis prostate cancer patient

    International Nuclear Information System (INIS)

    Su, Andy; Reft, Chester; Rash, Carla; Price, Jennifer; Jani, Ashesh B.

    2005-01-01

    The purpose of this report is to communicate the observed advantage of intensity-modulated radiotherapy (IMRT) in a patient with bilateral metallic hip prostheses. In this patient with early-stage low-risk disease, a dose of 74 Gy was planned in two phases-an initial 50 Gy to the prostate and seminal vesicles and an additional 24 Gy to the prostate alone. Each coplanar beam avoided the prosthesis in the beam's eye view. Using the same target expansions for each phase, IMRT and 3D-conformal radiotherapy (CRT) plans were compared for target coverage and inhomogeneity as well as dose to the bladder and rectum. The results of the analysis demonstrated that IMRT provided superior target coverage with reduced dose to normal tissues for both individual phases of the treatment plan as well as for the composite treatment plan. The dose to the rectum was significantly reduced with the IMRT technique, with a composite V80 of 35% for the IMRT plan versus 70% for 3D-CRT plan. Similarly, the dose to the bladder was significantly reduced with a V80 of 9% versus 20%. Overall, various dosimetric parameters revealed the corresponding 3D-CRT plan would not have been acceptable. The results indicate significant success with IMRT in a clinical scenario where there were no curative alternatives for local treatment other than external beam radiotherapy. Therefore, definitive external beam radiation of prostate cancer patients with bilateral prosthesis is made feasible with IMRT. The work described herein may also have applicability to other groups of patients, such as those with gynecological or other pelvic malignancies

  18. Life Estimation of Hip Joint Prosthesis

    Science.gov (United States)

    Desai, C.; Hirani, H.; Chawla, A.

    2015-07-01

    Hip joint is one of the largest weight-bearing structures in the human body. In the event of a failure of the natural hip joint, it is replaced with an artificial hip joint, known as hip joint prosthesis. The design of hip joint prosthesis must be such so as to resist fatigue failure of hip joint stem as well as bone cement, and minimize wear caused by sliding present between its head and socket. In the present paper an attempt is made to consider both fatigue and wear effects simultaneously in estimating functional-life of the hip joint prosthesis. The finite element modeling of hip joint prosthesis using HyperMesh™ (version 9) has been reported. The static analysis (load due to the dead weight of the body) and dynamic analysis (load due to walking cycle) have been described. Fatigue life is estimated by using the S-N curve of individual materials. To account for progressive wear of hip joint prosthesis, Archard's wear law, modifications in socket geometry and dynamic analysis have been used in a sequential manner. Using such sequential programming reduction in peak stress has been observed with increase in wear. Finally life is estimated on the basis of socket wear.

  19. Impact of hip prosthesis on dose distribution of pelvic radiotherapy

    International Nuclear Information System (INIS)

    Ren Jiangping; Zhang Songfang; Zhu Qibao; Guo Jianxin; Zha Yuanzi

    2011-01-01

    Objective: To study the scattering effect of Co-Cr-Mo hip prosthesis which was high Z material for patients undergoing pelvic irradiation. Methods: The hip prosthesis was set in water phantom (30 cm x 30 cm x 30 cm), determining points were chosen on the entrance side of both 6 MV and 10 MV beams at the distance of 0.5 cm, 1.0 cm, 2.0 cm to the hip prosthesis, and also on the exit side of both 6 MV and 10 MV beams at the distance of 3.0 cm, 5.0 cm, 7.0 cm to the hip prostheses. Dose behind the hip prosthesis at depths of 5.0 cm and 10.0 cm for 6 MV and 10 MV beams are also measured. Results: The dose deviation on the beams' entrance side is between 0 to 5.0%, the backscatter effect was more obviously with the higher energy beam. The dose deviation on the beams' exit side was between 21.6%-30.8%. With the same field size and depth, dose deviation becomes smaller when the beam energy was higher; while with the same energy and depth, dose deviation becomes smaller when the field size was bigger. Dose profiles behind the head of the hip prosthesis indicate obvious attenuation of the beam. Conclusions: Beam arrangements that avoid the prosthesis should be considered first or we should at least reduce the weight of the beam that pass through the prosthesis. (authors)

  20. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility.

    Science.gov (United States)

    Han, Seung Chol; Chung, Yong Eun; Lee, Young Han; Park, Kwan Kyu; Kim, Myeong Jin; Kim, Ki Whang

    2014-10-01

    The objective of our study was to determine the feasibility of using Metal Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with metal hip prostheses. This retrospective study included 33 patients (male-female ratio, 19:14; mean age, 63.7 years) who received total hip replacements and 20 patients who did not have metal prostheses as the control group. All of the patients underwent dual-energy CT. The quality of the images reconstructed using the MAR algorithm and of those reconstructed using the standard reconstruction was evaluated in terms of the visibility of the bladder wall, pelvic sidewall, rectal shelf, and bone-prosthesis interface and the overall diagnostic image quality with a 4-point scale. The mean and SD attenuation values in Hounsfield units were measured in the bladder, pelvic sidewall, and rectal shelf. For validation of the MAR interpolation algorithm, pelvis phantoms with small bladder "lesions" and metal hip prostheses were made, and images of the phantoms both with and without MAR reconstruction were evaluated. Image quality was significantly better with MAR reconstruction than without at all sites except the rectal shelf, where the image quality either had not changed or had worsened after MAR reconstruction. The mean attenuation value was changed after MAR reconstruction to its original expected value at the pelvic sidewall (p software with dual-energy CT decreases metal artifacts and increases diagnostic confidence in the assessment of the pelvic cavity but also introduces new artifacts that can obscure pelvic structures.

  1. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    International Nuclear Information System (INIS)

    Fritz, Jan; Thawait, Gaurav K.; Fritz, Benjamin; Raithel, Esther; Nittka, Mathias; Gilson, Wesley D.; Mont, Michael A.

    2016-01-01

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  2. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Jan; Thawait, Gaurav K. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University of Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Raithel, Esther; Nittka, Mathias [Siemens Healthcare GmbH, Erlangen (Germany); Gilson, Wesley D. [Siemens Healthcare USA, Inc., Baltimore, MD (United States); Mont, Michael A. [Cleveland Clinic Foundation, Department of Orthopedic Surgery, Cleveland, OH (United States)

    2016-10-15

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  3. Edge loading in metal-on-metal hips: low clearance is a new risk factor.

    Science.gov (United States)

    Underwood, Richard J; Zografos, Angelos; Sayles, Ritchie S; Hart, Alister; Cann, Philippa

    2012-03-01

    The revision rate of large head metal-on-metal and resurfacing hips are significantly higher than conventional total hip replacements. The revision of these components has been linked to high wear caused by edge loading; which occurs when the head-cup contact patch extends over the cup rim. There are two current explanations for this; first, there is loss of entrainment of synovial fluid resulting in breakdown of the lubricating film and second, edge loading results in a large local increase in contact pressure and consequent film thickness reduction at the cup rim, which causes an increase in wear. This paper develops a method to calculate the distance between the joint reaction force vector and the cup rim--the contact patch centre to rim (CPCR) distance. However, the critical distance for the risk of edge loading is the distance from the contact patch edge to rim (CPER) distance. An analysis of explanted hip components, divided into edge worn and non-edge-worn components showed that there was no statistical difference in CPCR values, but the CPER value was significantly lower for edge worn hips. Low clearance hips, which have a more conformal contact, have a larger diameter contact patch and thus are more at risk of edge loading for similarly positioned hips.

  4. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings

    Energy Technology Data Exchange (ETDEWEB)

    Lazik, Andrea; Lauenstein, Thomas C.; Theysohn, Jens M. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Landgraeber, Stefan; Schulte, Patrick [University Hospital Essen, Department of Orthopedics, Essen (Germany); Kraff, Oliver [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany)

    2015-03-25

    To evaluate the usefulness of the metal artifact reduction technique ''WARP'' in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed. Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction. At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation. WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality. (orig.)

  5. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings

    International Nuclear Information System (INIS)

    Lazik, Andrea; Lauenstein, Thomas C.; Theysohn, Jens M.; Landgraeber, Stefan; Schulte, Patrick; Kraff, Oliver

    2015-01-01

    To evaluate the usefulness of the metal artifact reduction technique ''WARP'' in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed. Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction. At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation. WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality. (orig.)

  6. Adverse reaction to metal debris with concomitant incidental crystalline arthropathy in hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Edward J. Testa, BS

    2017-03-01

    Full Text Available Adverse reaction to metal debris (ARMD is a known cause of failed metal in hip arthroplasty. Diagnosis of this type of prosthesis failure may be difficult, and the hallmark is an abnormally elevated serum cobalt level. Concomitant diagnoses may also be present, such as infection, instability, and loosening, and this may confuse interpretation of abnormal laboratories. We present here, for the first time, 2 patients with ARMD and crystalline arthropathy. In each case, the patient chose surgery for ARMD, with resolution of symptoms and no recurrence of the crystalline arthropathy. We present these cases to alert the orthopaedist that crystalline arthropathy may be present at the same time as ARMD, but is likely not the primary cause of symptoms.

  7. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  8. SU-G-IeP2-03: Comparison of Dose Calculation On MAR (metal Artifact Reduction) and Non-MAR Datasets for Pelvic Patients with Hip Prosthesis and Head and Neck Patients with Dental Filling

    International Nuclear Information System (INIS)

    Huang, V; Kohli, K

    2016-01-01

    Purpose: Metal artifact reduction (MAR) software in computed tomography (CT) was previously evaluated with phantoms demonstrating the algorithm is capable of reducing metal artifacts without affecting the overall image quality. The goal of this study is to determine the dosimetric impact when calculating with CT datasets reconstructed with and without MAR software. Methods: Twelve head and neck cancer patients with dental fillings and four pelvic cancer patients with hip prosthesis were scanned with a GE Optima RT 580 CT scanner. Images were reconstructed with and without the MAR software. 6MV IMRT and VMAT plans were calculated with AAA on the MAR dataset until all constraints met our clinic’s guidelines. Contours from the MAR dataset were copied to the non-MAR dataset. Next, dose calculation on the non-MAR dataset was performed using the same field arrangements and fluence as the MAR plan. Conformality index, D99% and V100% to PTV were compared between MAR and non-MAR plans. Results: Differences between MAR and non-MAR plans were evaluated. For head and neck plans, the largest variations in conformality index, D99% and V100% were −3.8%, −0.9% and −2.1% respectively whereas for pelvic plans, the biggest discrepancies were −32.7%, −0.4% and -33.5% respectively. The dosimetric impact from hip prosthesis is greater because it produces more artifacts compared to dental fillings. Coverage to PTV can increase or decrease depending on the artifacts since dark streaks reduce the HU whereas bright streaks increase the HU. In the majority of the cases, PTV dose in the non-MAR plans is higher than MAR plans. Conclusion: With the presence of metals, MAR algorithm can allow more accurate delineation of targets and OARs. Dose difference between MAR and non-MAR plans depends on the proximity of the organ to the high density material, the streaking artifacts and the beam arrangements of the plan.

  9. SU-G-IeP2-03: Comparison of Dose Calculation On MAR (metal Artifact Reduction) and Non-MAR Datasets for Pelvic Patients with Hip Prosthesis and Head and Neck Patients with Dental Filling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, V; Kohli, K [BC Cancer Agency, Surrey, BC (United Kingdom)

    2016-06-15

    Purpose: Metal artifact reduction (MAR) software in computed tomography (CT) was previously evaluated with phantoms demonstrating the algorithm is capable of reducing metal artifacts without affecting the overall image quality. The goal of this study is to determine the dosimetric impact when calculating with CT datasets reconstructed with and without MAR software. Methods: Twelve head and neck cancer patients with dental fillings and four pelvic cancer patients with hip prosthesis were scanned with a GE Optima RT 580 CT scanner. Images were reconstructed with and without the MAR software. 6MV IMRT and VMAT plans were calculated with AAA on the MAR dataset until all constraints met our clinic’s guidelines. Contours from the MAR dataset were copied to the non-MAR dataset. Next, dose calculation on the non-MAR dataset was performed using the same field arrangements and fluence as the MAR plan. Conformality index, D99% and V100% to PTV were compared between MAR and non-MAR plans. Results: Differences between MAR and non-MAR plans were evaluated. For head and neck plans, the largest variations in conformality index, D99% and V100% were −3.8%, −0.9% and −2.1% respectively whereas for pelvic plans, the biggest discrepancies were −32.7%, −0.4% and -33.5% respectively. The dosimetric impact from hip prosthesis is greater because it produces more artifacts compared to dental fillings. Coverage to PTV can increase or decrease depending on the artifacts since dark streaks reduce the HU whereas bright streaks increase the HU. In the majority of the cases, PTV dose in the non-MAR plans is higher than MAR plans. Conclusion: With the presence of metals, MAR algorithm can allow more accurate delineation of targets and OARs. Dose difference between MAR and non-MAR plans depends on the proximity of the organ to the high density material, the streaking artifacts and the beam arrangements of the plan.

  10. Pseudotumour incidence, cobalt levels and clinical outcome after large head metal-on-metal and conventional metal-on-polyethylene total hip arthroplasty MID-TERM RESULTS OF A RANDOMISED CONTROLLED TRIAL

    NARCIS (Netherlands)

    van der Veen, H. C.; Reininga, I. H. F.; Zijlstra, W. P.; Boomsma, M. F.; Bulstra, S. K.; van Raay, J. J. A. M.

    2015-01-01

    We compared the incidence of pseudotumours after large head metal-on-metal (MoM) total hip arthroplasty (THA) with that after conventional metal-on-polyethylene (MoP) THA and assessed the predisposing factors to pseudotumour formation. From a previous randomised controlled trial which compared large

  11. Optimization of scan time in MRI for total hip prostheses. SEMAC tailoring for prosthetic implants containing different types of metals

    Energy Technology Data Exchange (ETDEWEB)

    Deligianni, X. [University of Basel Hospital, Basel (Switzerland). Div. of Radiological Physics; Merian Iselin Klinik, Basel (Switzerland). Inst. of Radiology; Bieri, O. [University of Basel Hospital, Basel (Switzerland). Div. of Radiological Physics; Elke, R. [Orthomerian, Basel (Switzerland); Wischer, T.; Egelhof, T. [Merian Iselin Klinik, Basel (Switzerland). Inst. of Radiology

    2015-12-15

    Magnetic resonance imaging (MRI) of soft tissues after total hip arthroplasty is of clinical interest for the diagnosis of various pathologies that are usually invisible with other imaging modalities. As a result, considerable effort has been put into the development of metal artifact reduction MRI strategies, such as slice encoding for metal artifact correction (SEMAC). Generally, the degree of metal artifact reduction with SEMAC directly relates to the overall time spent for acquisition, but there is no specific consensus about the most efficient sequence setup depending on the implant material. The aim of this article is to suggest material-tailored SEMAC protocol settings. Five of the most common total hip prostheses (1. Revision prosthesis (S-Rom), 2. Titanium alloy, 3. Mueller type (CoNiCRMo alloy), 4. Old Charnley prosthesis (Exeter/Stryker), 5. MS-30 stem (stainless-steel)) were scanned on a 1.5 T MRI clinical scanner with a SEMAC sequence with a range of artifact-resolving slice encoding steps (SES: 2 - 23) along the slice direction (yielding a total variable scan time ranging from 1 to 10 min). The reduction of the artifact volume in comparison with maximal artifact suppression was evaluated both quantitatively and qualitatively in order to establish a recommended number of steps for each case. The number of SES that reduced the artifact volume below approximately 300 mm{sup 3} ranged from 3 to 13, depending on the material. Our results showed that although 3 SES steps can be sufficient for artifact reduction for titanium prostheses, at least 11 SES should be used for prostheses made of materials such as certain alloys of stainless steel. Tailoring SES to the implant material and to the desired degree of metal artifact reduction represents a simple tool for workflow optimization of SEMAC imaging near total hip arthroplasty in a clinical setting.

  12. Optimization of scan time in MRI for total hip prostheses. SEMAC tailoring for prosthetic implants containing different types of metals

    International Nuclear Information System (INIS)

    Deligianni, X.; Wischer, T.; Egelhof, T.

    2015-01-01

    Magnetic resonance imaging (MRI) of soft tissues after total hip arthroplasty is of clinical interest for the diagnosis of various pathologies that are usually invisible with other imaging modalities. As a result, considerable effort has been put into the development of metal artifact reduction MRI strategies, such as slice encoding for metal artifact correction (SEMAC). Generally, the degree of metal artifact reduction with SEMAC directly relates to the overall time spent for acquisition, but there is no specific consensus about the most efficient sequence setup depending on the implant material. The aim of this article is to suggest material-tailored SEMAC protocol settings. Five of the most common total hip prostheses (1. Revision prosthesis (S-Rom), 2. Titanium alloy, 3. Mueller type (CoNiCRMo alloy), 4. Old Charnley prosthesis (Exeter/Stryker), 5. MS-30 stem (stainless-steel)) were scanned on a 1.5 T MRI clinical scanner with a SEMAC sequence with a range of artifact-resolving slice encoding steps (SES: 2 - 23) along the slice direction (yielding a total variable scan time ranging from 1 to 10 min). The reduction of the artifact volume in comparison with maximal artifact suppression was evaluated both quantitatively and qualitatively in order to establish a recommended number of steps for each case. The number of SES that reduced the artifact volume below approximately 300 mm 3 ranged from 3 to 13, depending on the material. Our results showed that although 3 SES steps can be sufficient for artifact reduction for titanium prostheses, at least 11 SES should be used for prostheses made of materials such as certain alloys of stainless steel. Tailoring SES to the implant material and to the desired degree of metal artifact reduction represents a simple tool for workflow optimization of SEMAC imaging near total hip arthroplasty in a clinical setting.

  13. Assessing for Cardiotoxicity from Metal-on-Metal Hip Implants with Advanced Multimodality Imaging Techniques.

    Science.gov (United States)

    Berber, Reshid; Abdel-Gadir, Amna; Rosmini, Stefania; Captur, Gabriella; Nordin, Sabrina; Culotta, Veronica; Palla, Luigi; Kellman, Peter; Lloyd, Guy W; Skinner, John A; Moon, James C; Manisty, Charlotte; Hart, Alister J

    2017-11-01

    High failure rates of metal-on-metal (MoM) hip implants prompted regulatory authorities to issue worldwide safety alerts. Circulating cobalt from these implants causes rare but fatal autopsy-diagnosed cardiotoxicity. There is concern that milder cardiotoxicity may be common and underrecognized. Although blood metal ion levels are easily measured and can be used to track local toxicity, there are no noninvasive tests for organ deposition. We sought to detect correlation between blood metal ions and a comprehensive panel of established markers of early cardiotoxicity. Ninety patients were recruited into this prospective single-center blinded study. Patients were divided into 3 age and sex-matched groups according to implant type and whole-blood metal ion levels. Group-A patients had a ceramic-on-ceramic [CoC] bearing; Group B, an MoM bearing and low blood metal ion levels; and Group C, an MoM bearing and high blood metal-ion levels. All patients underwent detailed cardiovascular phenotyping using cardiac magnetic resonance imaging (CMR) with T2*, T1, and extracellular volume mapping; echocardiography; and cardiac blood biomarker sampling. T2* is a novel CMR biomarker of tissue metal loading. Blood cobalt levels differed significantly among groups A, B, and C (mean and standard deviation [SD], 0.17 ± 0.08, 2.47 ± 1.81, and 30.0 ± 29.1 ppb, respectively) and between group A and groups B and C combined. No significant between-group differences were found in the left atrial or ventricle size, ejection fraction (on CMR or echocardiography), T1 or T2* values, extracellular volume, B-type natriuretic peptide level, or troponin level, and all values were within normal ranges. There was no relationship between cobalt levels and ejection fraction (R = 0.022, 95% confidence interval [CI] = -0.185 to 0.229) or T2* values (R = 0.108, 95% CI = -0.105 to 0.312). Using the best available technologies, we did not find that high (but not extreme) blood cobalt and chromium levels

  14. Current and future biocompatibility aspects of biomaterials for hip prosthesis

    Directory of Open Access Journals (Sweden)

    Amit Aherwar

    2015-12-01

    Full Text Available The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.

  15. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    Science.gov (United States)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  16. Patients with hip prosthesis: radiotherapy treatment planning considerations

    International Nuclear Information System (INIS)

    Ganesh, K.M.; Supe, Sanjay S.

    2000-01-01

    The number of patients with hip prosthesis undergoing radiotherapy for pelvic cancer worldwide is increasing. This might be of importance depending on the materials in the prosthesis and whether any of the treatment fields are involved in the prosthesis. Radiotherapy planning involving the pelvic region of patients having total hip prosthesis has been found to be difficult due to the effect of the prosthesis on the dose distribution. This review is intended to project dosimetric considerations and possible solutions to this uncommon problem

  17. [Radiographic appraisal between metal and bone interosculate backfill after total hip arthroplasty with trabecular metal cup].

    Science.gov (United States)

    Li, Wei; Zhou, Yi-Xin; Wu, Jian; Xu, Hui; Ji, Song-Jie

    2009-02-15

    To evaluate the bone refilling in the interface between the trabecular metal (TM) acetabular shell and the bone surface according to consecutive X film measuring after surgery. From July 2006 to July 2007, 35 patients (40 hips) accepted total hip replacement using trabecular metal monoblock acetabular cup system (TM). The cup was made of a ellipse shaped press fit Tantalum shell and high cross-linked PE liner (Longevity) with 28 mm inner diameter. The patients demography was: 16 male (20 hips), 19 female (20 hips), 5 bilateral hip replacements, age from 41 - 71 (mean 53), including 18 avascular necrosis hips, 16 osteoarthritis hips (including those secondary to a dysplasia hip), 4 avascular necrosis hips after femoral neck fracture, 2 Ankylosis Spondylitis. All the 40 total hip replacements used posterior approach, using hemispherical acetabular reamer and 2 mm press fit of final metal shell without screw fixation. The consecutive X film was taken at the end time of surgery and 2, 6, 12, 24 weeks, and 12 months. The clinical results was evaluate according to Harris scoring system, and the standard pelvis AP X film was measured at the interface between metal shell and the acetabular bone surface, witch was divided into five regions (A, B, C, D, E). Totally 32 patients (37 hips) were followed with average 8.7 months (7 - 12 months). The Harris before surgery was 50.5 (32 - 85), promoted to 91.0 (72 - 100), including 29 excellent, 6 good, 2 fair, and the total excellent and good rate was 94.6%. Complications include 4 patients leg length discrepancy from 1 - 2 cm, 3 patients moderate thigh pain and released after conservative therapy. No infection and dislocation was found. Twenty-one patients (23 hips) were found lucent line at the bone-metal interface from 1 - 5 mm, most common in B region and BC boundary than C, D, and CD boundary. All the patients followed was found the lucent line disappeared and refilled with bone at X film 24 weeks after surgery, however, no

  18. On the matter of synovial fluid lubrication: implications for Metal-on-Metal hip tribology.

    Science.gov (United States)

    Myant, Connor; Cann, Philippa

    2014-06-01

    Artificial articular joints present an interesting, and difficult, tribological problem. These bearing contacts undergo complex transient loading and multi axes kinematic cycles, over extremely long periods of time (>10 years). Despite extensive research, wear of the bearing surfaces, particularly metal-metal hips, remains a major problem. Comparatively little is known about the prevailing lubrication mechanism in artificial joints which is a serious gap in our knowledge as this determines film formation and hence wear. In this paper we review the accepted lubrication models for artificial hips and present a new concept to explain film formation with synovial fluid. This model, recently proposed by the authors, suggests that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins. The implications of this new mechanism for the tribological performance of new implant designs and the effect of patient synovial fluid properties are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer semi-constrained...

  20. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    Science.gov (United States)

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  1. 21 CFR 888.3570 - Knee joint femoral (hemi-knee) metallic uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femoral (hemi-knee) metallic uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3570 Knee joint femoral (hemi-knee) metallic uncemented prosthesis. (a) Identification. A knee joint femoral (hemi-knee...

  2. An evaluation of three commercially available metal artifact reduction methods for CT imaging

    International Nuclear Information System (INIS)

    Huang, Jessie Y; Kerns, James R; Balter, Peter A; Followill, David S; Mirkovic, Dragan; Howell, Rebecca M; Kry, Stephen F; Nute, Jessica L; Liu, Xinming; Stingo, Francesco C

    2015-01-01

    Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. (paper)

  3. Automated estimation of hip prosthesis migration: a feasibility study

    Science.gov (United States)

    Vandemeulebroucke, Jef; Deklerck, Rudi; Temmermans, Frederik; Van Gompel, Gert; Buls, Nico; Scheerlinck, Thierry; de Mey, Johan

    2013-09-01

    A common complication associated with hip arthoplasty is prosthesis migration, and for most cemented components a migration greater than 0.85 mm within the first six months after surgery, are an indicator for prosthesis failure. Currently, prosthesis migration is evaluated using X-ray images, which can only reliably estimate migrations larger than 5 mm. We propose an automated method for estimating prosthesis migration more accurately, using CT images and image registration techniques. We report on the results obtained using an experimental set-up, in which a metal prosthesis can be translated and rotated with respect to a cadaver femur, over distances and angles applied using a combination of positioning stages. Images are first preprocessed to reduce artefacts. Bone and prosthesis are extracted using consecutive thresholding and morphological operations. Two registrations are performed, one aligning the bones and the other aligning the prostheses. The migration is estimated as the difference between the found transformations. We use a robust, multi-resolution, stochastic optimization approach, and compare the mean squared intensity differences (MS) to mutual information (MI). 30 high-resolution helical CT scans were acquired for prosthesis translations ranging from 0.05 mm to 4 mm, and rotations ranging from 0.3° to 3° . For the translations, the mean 3D registration error was found to be 0.22 mm for MS, and 0.15 mm for MI. For the rotations, the standard deviation of the estimation error was 0.18° for MS, and 0.08° for MI. The results show that the proposed approach is feasible and that clinically acceptable accuracies can be obtained. Clinical validation studies on patient images will now be undertaken.

  4. 21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint... of a knee joint. The device limits translation or rotation in one or more planes and has components...

  5. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint... ankle joint. The device limits translation and rotation: in one or more planes via the geometry of its...

  6. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  7. Natural Remission of Major Periprosthetic Osteolysis following Total Hip Arthroplasty with Metal-on-Metal Bearings

    Directory of Open Access Journals (Sweden)

    Tatsuya Tamaki

    2017-01-01

    Full Text Available The natural course of adverse events following the use of metal-on-metal (MoM bearings in total hip arthroplasty (THA is not well known. In this article, we report the case of a patient with asymptomatic major acetabular osteolysis following MoM THA that diminished gradually without any surgical intervention. A 58-year-old male underwent one-stage bilateral MoM THA for bilateral osteoarthritis. Four years after THA, major acetabular osteolysis developed in his right hip without any local or systemic symptoms. The patient underwent a careful radiographic and clinical observation without any surgical intervention because he did not want to undergo revision surgery. The lesion gradually diminished after 7 years, and most of the osteolytic area was replaced by newly formed bone at 10 years. He continues to be followed with no evidence of cup loosening or migration. Our observation suggests that a periprosthetic osteolytic change related to the use of MoM bearings has the potential for natural remission.

  8. Cardiac transplant due to metal toxicity associated with hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Sheldon Moniz, MBBS (UWA

    2017-09-01

    Full Text Available Concerns regarding metal-on-metal (MoM bearing couples in total hip arthroplasty are well documented in the literature with cobalt (Co and chromium (Cr toxicity causing a range of both local and systemic adverse reactions. We describe the case of a patient undergoing cardiac transplantation as a direct result of Co and Cr toxicity following a MoM hip replacement. Poor implant positioning led to catastrophic wear generating abundant wear particles leading to Co and Cr toxicity, metallosis, bony destruction, elevated metal ion levels, and adverse biological responses. Systemic symptoms continued for 3 years following cardiac transplantation with resolution only after revision hip arthroplasty. There was no realization in the initial cardiac assessment and subsequent transplant workup that the hip replacement was the likely cause of the cardiac failure, and the hip replacement was not recognized as the cause until years after the heart transplant. This case highlights the need for clinicians to be aware of systemic MoM complications as well as the importance of positioning when using these prostheses.

  9. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Wellenberg, R.H.H., E-mail: r.h.wellenberg@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Boomsma, M.F., E-mail: m.f.boomsma@isala.nl [Department of Radiology, Isala, Zwolle (Netherlands); Osch, J.A.C. van, E-mail: j.a.c.van.osch@isala.nl [Department of Radiology, Isala, Zwolle (Netherlands); Vlassenbroek, A., E-mail: alain.vlassenbroek@philips.com [Philips Medical Systems, Brussels (Belgium); Milles, J., E-mail: julien.milles@philips.com [Philips Medical Systems, Eindhoven (Netherlands); Edens, M.A., E-mail: m.a.edens@isala.nl [Department of Innovation and Science, Isala, Zwolle (Netherlands); Streekstra, G.J., E-mail: g.j.streekstra@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Slump, C.H., E-mail: c.h.slump@utwente.nl [MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede (Netherlands); Maas, M., E-mail: m.maas@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands)

    2017-03-15

    Highlights: • Dual-layer detector CT reduces metal artefacts at high monochromatic energies (keV). • 130 keV images were optimal based on quantitative analysis on CNRs. • Optimal keVs varied from 74 to 150 keV for different hip prostheses configurations. • The Titanium alloy resulted in less severe artefacts compared to the Cobalt alloy. • Severe metal artefacts, caused by extensive photon-starvation, were not reduced. - Abstract: Purpose: To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. Methods: The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer detector Spectral CT scanner at 120-kVp and 140-kVp at a standard computed tomography dose index of 20.0 mGy. Several unilateral and bilateral hip prostheses consisting of different metal alloys were inserted and combined which were surrounded by 18 hydroxyapatite calcium carbonate pellets representing bone. Images were reconstructed with iterative reconstruction and analysed at monochromatic energies ranging from 40 to 200 keV. CT numbers in Hounsfield Units (HU), noise measured as the standard deviation in HU, signal-to-noise-ratios (SNRs) and contrast-to-noise-ratios (CNRs) were analysed within fixed regions-of-interests placed in and around the pellets. Results: In 70 and 74 keV virtual monochromatic images the CT numbers of the pellets were similar to 120-kVp and 140-kVp polychromatic results, therefore serving as reference. A separation into three categories of metal artefacts was made (no, mild/moderate and severe) where pellets were categorized based on HU deviations. At high keV values overall image contrast was reduced. For mild/moderate artefacts, the highest average CNRs were attained with virtual monochromatic 130 keV images, acquired at 140-kVp. Severe metal artefacts were not reduced. In 130 keV images

  10. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer porous-coated...

  11. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants : a phantom study

    NARCIS (Netherlands)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F.

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of F-18-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom

  12. Biomimetic Composite-Metal Hip Resurfacing Implant

    Directory of Open Access Journals (Sweden)

    Habiba Bougherara

    2008-01-01

    Full Text Available Hip resurfacing technique is a conservative arthroplasty used in the young patient in which the femoral head is reshaped to accept metal cap with small guide stem. In the present investigation, a hybrid composite-metal resurfacing implant is proposed. The cup is made of carbon fiber/polyamide 12 (CF/PA12 covered with a thin layer of cobalt chrome (Co-Cr. Finite element (FE method was applied to analyze and compare the biomechanical performances of the hybrid hip resurfacing (HHR and the conventional Birmingham (BHR. Results of the finite element analysis showed that the composite implant leads to an increase in stresses in the cancellous bone by more than 15% than BHR, indicating a lower potential for stress shielding and bone fracture and higher potential for bone apposition with the HHR.

  13. [COMPUTER ASSISTED DESIGN AND ELECTRON BEAMMELTING RAPID PROTOTYPING METAL THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR PREPARATION OF INDIVIDUALIZED FEMORAL PROSTHESIS].

    Science.gov (United States)

    Liu, Hongwei; Weng, Yiping; Zhang, Yunkun; Xu, Nanwei; Tong, Jing; Wang, Caimei

    2015-09-01

    To study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. One adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. According to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. Customized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.

  14. Friction of ceramic and metal hip hemi-endoprostheses against cadaveric acetabula.

    Science.gov (United States)

    Müller, L P; Degreif, J; Rudig, L; Mehler, D; Hely, H; Rommens, P M

    2004-12-01

    Studies of hip arthroplasty have dealt mainly with total endoprosthesis, while tribology measurement values of hemi-endoprosthetic implants are rare. The small amount of experimental tribological data concerning materials of hemi-endoprosthetic implants in the form of pendulum trials, animal experiments, in vivo measurements on human hip joints and pin on disc studies report friction coefficients between 0.014 and 0.57; the friction coefficients measured in fresh human cadaver hip joints were determined between 0.001 and 0.08. The HEPFlEx-hip simulator was constructed to test the friction coefficients of unipolar femur head hemi-endoprostheses made of metal or ceramic against fresh cadaveric acetabula. Its plane of movement is uniaxial with a flexion-extension movement of +30/-18 degrees . The force is produced pneumatically dynamic with amounts of 2.5 kN. Newborn calf serum serves as a lubricant. We mounted 20 fresh porcine acetabula and 10 fresh human cadaver acetabula in the HEPFlEx-hip simulator and compared the two unipolar femur head hemi-endoprostheses (metal vs. ceramic). The mean friction coefficients against porcine acetabula were micro=0.017-0.082 for ceramic and micro=0.020-0.101 for metal; against human cadaver acetabula micro=0.017-0.083 for ceramic and micro=0.019-0.118 for metal. The frictional coefficient deltas (metal-ceramic) values of all measurements were Deltamicro=0.004 for porcine acetabula and Deltamicro=0.001 for cadaver acetabula. Box-plots graphics document significantly lower frictional coefficients of the ceramics. The lower frictional coefficients of ceramic compared to metal against fresh cadaveric acetabula may have a clinical impact on the process of the protrusion of the corresponding femoral head through the acetabulum.

  15. The association between metal allergy, total hip arthroplasty, and revision

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jakobsen, Stig Storgaard; Engkilde, Kåre

    2009-01-01

    BACKGROUND AND PURPOSE: It has been speculated that the prevalence of metal allergy may be higher in patients with implant failure. We compared the prevalence and cause of revisions following total hip arthroplasty (THA) in dermatitis patients suspected to have contact allergy and in patients...... in general with THA. Furthermore, we compared the prevalence of metal allergy in dermatitis patients with and without THA. MATERIALS AND METHODS: The Danish Hip Arthroplasty Registry (DHAR) contained detailed information on 90,697 operations. The Gentofte patch-test database contained test results...... was similar in cases (12%) and in patients from the DHAR (13%). The prevalence of metal allergy was similar in cases and controls. However, the prevalence of metal allergy was lower in cases who were patch-tested after operation (6%) than in those who were patch-tested before operation (16%) (OR = 2.9; 95% CI...

  16. Infection or metal hypersensitivity? The diagnostic challenge of failure in metal-on-metal bearings.

    LENUS (Irish Health Repository)

    Galbraith, John G

    2011-04-01

    The use of second generation metal-on-metal hip articulations has gained favour in the past few years. A hypersensitivity reaction to the metal-on-metal bearing, although rare, is a reported complication and is a novel mode of failure of these implants. Differentiating failure secondary to infection from failure secondary to metal hypersensitivity represents a significant diagnostic challenge. A retrospective review of all cases of hip arthroplasty using metal-on-metal bearings over a 5-year period at a tertiary referral centre identified 3 cases of failure secondary to metal hypersensitivity. Clinical presentation, serological markers, radiological imaging and histological analysis of all cases identified were evaluated. Histological analysis of periprosthetic tissue in all 3 cases identified characteristic features such as perivascular lymphocytic aggregates and chronic inflammation consistent with aseptic lymphocytic vasculitis-associated lesions (ALVAL). This study highlights that failure secondary to metal hypersensitivity must be considered in patients presenting with the reappearance of persistent pain, marked joint effusion, and the development of early osteolysis in the absence of infection.

  17. Pseudotumor from Metal-on-Metal Total Hip Arthroplasty Causing Unilateral Leg Edema: Case Presentation and Literature Review

    Directory of Open Access Journals (Sweden)

    Caleb W. Grote

    2018-03-01

    Full Text Available Metal-on-metal (MoM total hip arthroplasty (THA can be associated with adverse metal reactions, including pseudotumors. This case report describes a 58-year-old female with an MoM THA-related pseudotumor that caused unilateral leg edema from compression of her external iliac vein. After thorough preoperative workup to rule out infection and deep vein thrombosis and consultation with a vascular surgeon, the patient underwent revision THA and excision of her pseudotumor. She had complete resolution of her swelling at 4 years after surgery. Review of all available case reports for this rare complication revealed that almost all patients were female. All patients underwent revision THA, with resolution of their symptoms. Literature review demonstrates that women are disproportionally affected by complications associated with MoM THA. We recommend close monitoring of patients with MoM THA, particularly women, for development of adverse metal reactions.

  18. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts.

    Science.gov (United States)

    Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko

    2017-08-01

    Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.

  19. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  20. Formation of a pseudotumor in total hip arthroplasty using a tribological metal-polyethylene pair

    Directory of Open Access Journals (Sweden)

    Lorenzo Fagotti

    2015-12-01

    Full Text Available ABSTRACT The aim here was to report a case of a young adult patient who evolved with tumor formation in the left thigh, 14 years after revision surgery on hip arthroplasty. Davies in 2005 made the first description of this disease in patients undergoing metal-on-metal hip arthroplasty. Over the last decade, however, pseudotumors around metal-on-polyethylene surfaces have become more prevalent. Our patient presented with increased volume of the left thigh 8 years after hip arthroplasty revision surgery. Two years before the arising of the tumor in the thigh, a nodule in the inguinal region was investigated to rule out a malignant neoplastic process, but the results were inconclusive. The main preoperative complaints were pain, functional limitation and marked reduction in the range of motion of the left hip. Plain radiographs showed loosening of acetabular and femoral, and a large mass between the muscle planes was revealed through magnetic resonance imaging of the left thigh. The surgical procedure consisted of resection of the lesion and removal of the components through lateral approach. In respect of total hip arthroplasty, pseudotumors are benign neoplasms in which the bearing surface consists of metal-on-metal, but they can also occur in different tribological pairs, as presented in this case.

  1. Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue.

    Science.gov (United States)

    Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander

    2017-10-01

    Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.

  2. Characterisation by PIXE RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Science.gov (United States)

    Guibert, G.; Irigaray, J. L.; Moretto, Ph.; Sauvage, T.; Kemeny, J. L.; Cazenave, A.; Jallot, E.

    2006-09-01

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl 6V 4 or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl 6V 4 and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl 6V 4 debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  3. High performance sinter-HIP for hard metals

    International Nuclear Information System (INIS)

    Hongxia Chen; Deming Zhang; Yang Li; Jingping Chen

    2001-01-01

    The horizontal sinter-HIP equipment with great charge capacity and high performance, developed and manufactured by Central Iron and Steel Research Institute(CISRI), is mainly used for sintering and condensation of hard metals. This equipment is characterized by large hot zone, high heating speed, good temperature uniformity and fast cooling system. The equipment can provide uniform hot zone with temperature difference less than 6 o C at 1500-1600 o C and 6-10 MPa by controlling temperature, pressure and circulation of gas precisely. Using large scale horizontal sinter-HIP equipment to produce hard matals have many advantages such as stable quality, high efficiency of production, high rate of finished products and low production cost, so this equipment is a good choice for manufacturer of hard metals. (author)

  4. Femoral hip prosthesis design for Thais using multi-objective shape optimization

    International Nuclear Information System (INIS)

    Virulsri, Chanyaphan; Tangpornprasert, Pairat; Romtrairat, Parineak

    2015-01-01

    Highlights: • A multi-objective shape optimization was proposed to design hip prosthesis for Thais. • The prosthesis design was optimized in terms of safety of both cement and prosthesis. • The objective functions used the Soderberg fatigue strength formulations. • Safety factors of the cement and prosthesis are 1.200 and 1.109 respectively. • The newly designed prosthesis also fits well with chosen small-sized Thai femurs. - Abstract: The long-term success of Total Hip Arthroplasty (THA) depends largely on how well the prosthetic components fit the bones. The majority of cemented femoral hip prosthesis failures are due to aseptic loosening, which is possibly caused by cracking of the cement mantle. The strength of cement components is a function of cement mantles having adequate thickness. Since the size and shape of cemented femoral hip prostheses used in Thailand are based on designs for a Caucasian population, they do not properly conform to most Thai patients’ physical requirements. For these reasons, prostheses designed specifically for Thai patients must consider the longevity and functionality of both cement and prosthesis. The objective of this study was to discover a new design for femoral hip prostheses which is not only optimal and safe in terms of both cement and prosthesis, but also fits the selected Thai femur. This study used a small-sized Thai femoral model as a reference model for a new design. Biocompatible stainless steel 316L (SS316L) and polymethylmethacrylate (PMMA) were selected as raw materials for the prosthesis and bone cement respectively. A multi-objective shape optimization program, which is an interface between optimization C program named NSGA-II and a finite element program named ANSYS, was used to optimize longevity of femoral hip prostheses by varying shape parameters at assigned cross-sections of the selected geometry. Maximum walking loads of sixty-kilograms were applied to a finite element model for stress and

  5. Hip arthroplasty. Part 1: prosthesis terminology and classification

    International Nuclear Information System (INIS)

    Pluot, E.; Davis, E.T.; Revell, M.; Davies, A.M.; James, S.L.J.

    2009-01-01

    Hip arthroplasty is an extremely common orthopaedic procedure and there is a wide array of implants that are in current use in the UK. The follow-up of patients who have undergone insertion of a hip prosthesis is shifting from a consultant-lead hospital service towards primary care. As this change in patient care continues it becomes increasingly important that an accurate description of the radiographic features is communicated to the primary-care practitioner so appropriate specialist input can be triggered. This review focuses on the terminology and classification of hip prostheses. This acts as a precursor for Part 2 of this series, which describes the normal and abnormal radiographic findings following hip prosthesis insertion.

  6. Characterisation by PIXE-RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, G. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, IN2P3/CNRS UMR 6533, Universite Blaise Pascal, 63177 Aubiere Cedex (France)]. E-mail: geoffroy.guibert@he-arc.ch; Irigaray, J.L. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, IN2P3/CNRS UMR 6533, Universite Blaise Pascal, 63177 Aubiere Cedex (France); Moretto, Ph. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS UMR 5797, Le Haut Vigneau, BP 120, 33175 Gradignan Cedex (France); Sauvage, T. [Centre d' Etudes et de Recherches par Irradiation, CNRS Orleans France, 3A rue de la ferollerie, 45071 Orleans Cedex 2 (France); Kemeny, J.L. [CHU, Service d' Anatomie et de Cytologie Pathologiques, Universite d' Auvergne, 63100 Clermont-Ferrand (France); Cazenave, A. [Institut Calot, 62608 Berck sur Mer Cedex (France); Jallot, E. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, IN2P3/CNRS UMR 6533, Universite Blaise Pascal, 63177 Aubiere Cedex (France)

    2006-09-15

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl{sub 6}V{sub 4} or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl{sub 6}V{sub 4} and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl{sub 6}V{sub 4} debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  7. Clinical and radiological evolution of Intervened patients of total arthroplasty of hip with prostheses of resuperficialization metal-metal - Preliminary report

    International Nuclear Information System (INIS)

    Galvan Villamarin, Fernando; Bernal Torres, Fabio A; Paez, Jose Mauricio and others

    2006-01-01

    The articular degeneration of the hip in young patients requires including therapeutical alternatives for the management of this population. The resurfacing prostheses with metal-metal surfaces is an alternative for this type of patients. Reports with short and medium follow up are very promising, besides the different studies of laboratory that bear, the theoretical bases for their success. In this descriptive study, observational cases series type is described the radiological and clinical evolution of patients intervened of total arthroplasty of hip with resurfacing prostheses metal-metal in the hospital el Tunal of Bogota. The results of 31 hips are presented (27 patients) with an age average of 50 years old and a medium follow up of 16 months, with a good post surgical functional result with a median of 96 in the Harris Scores. The complications presented in the patient series are described and their relation with the different factors analyzed

  8. Wear mechanisms in ceramic hip implants.

    Science.gov (United States)

    Slonaker, Matthew; Goswami, Tarun

    2004-01-01

    The wear in hip implants is one of the main causes for premature hip replacements. The wear affects the potential life of the prosthesis and subsequent removals of in vivo implants. Therefore, the objective of this article is to review various joints that show lower wear rates and consequently higher life. Ceramics are used in hip implants and have been found to produce lower wear rates. This article discusses the advantages and disadvantages of ceramics compared to other implant materials. Different types of ceramics that are being used are reviewed in terms of the wear characteristics, debris released, and their size together with other biological factors. In general, the wear rates in ceramics were lower than that of metal-on-metal and metal-on-polyethylene combinations.

  9. Unusual presentation of failed metal-on-metal total hip arthroplasty with features of neoplastic process

    Directory of Open Access Journals (Sweden)

    Robert P. Runner, MD

    2017-06-01

    Full Text Available Metal-on-metal (MoM total hip arthroplasty (THA is associated with increased incidence of failure from metallosis, adverse tissue reactions, and the formation of pseudotumors. This case highlights a 53-year-old female with an enlarging painful thigh mass 12 years status post MoM THA. Radiographs and advanced imaging revealed an atypical mass with cortical bone destruction and spiculation, concerning for periprosthetic malignancy. Open frozen section biopsy was performed before undergoing revision THA in a single episode of care. This case illustrates that massive pseudotumors can be locally aggressive causing significant femoral bone destruction and may mimic malignancy. It is important that orthopaedic surgeons, radiologists and pathologists understand the relative infrequency of periprosthetic malignancy in MoM THA to mitigate patient concerns, misdiagnosis, and allow for an evidence based discussion when treating massive pseudotumors.

  10. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators.

    Science.gov (United States)

    Yan, Yu; Dowson, Duncan; Neville, Anne

    2013-02-01

    The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Surgical Approach May Influence Survival of Large-Diameter Head Metal-on-Metal Total Hip Arthroplasty: A 6- to 10-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Chih-Chien Hu

    2017-01-01

    Full Text Available Large-diameter head (LDH metal-on-metal (MoM total hip arthroplasty (THA has lost popularity because of metal allergy or ALTRs (adverse local tissue reactions in the past decade. Whether the surgical approach may influence the survival of LDH-MoM-THA has not been reported. From 2006 to 2009, we performed 96 LDH-MoM-THAs on 80 patients using an in situ head-neck assembly technique through a modified Watson-Jones approach. With a mean follow-up of 8.4 years (range, 6.3–10.1 years, the implant survival rate was 100%. All patients were satisfied with the results and the Harris Hip Score improved from 52 points to 98 points. No ALTRs were found, but 17.7% of the 96 hips (17 adverse events experienced adverse events related to the cup, including 5 cases of outlier cup malposition, 11 cases of inadequate cup seating, and 1 acetabular fracture. The tissue tension that was improved by a muscle-sparing approach might lessen the chance of microseparation or edge-loading that is taken as the major risk for early implant failure. Further investigation of whether these LDH-MoM-THAs would fail or not would require a longer follow-up or even retrieval analysis in the future.

  12. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis.

    Science.gov (United States)

    Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M

    2017-09-01

    An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.

  13. Edge loading has a paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties.

    Science.gov (United States)

    Harris, William H

    2012-11-01

    Edge wear is an adverse factor that can negatively impact certain THAs. In some metal-on-metal THAs, it can lead to adverse tissue reactions including aseptic lymphocytic vasculitis-associated lesions and even to pseudotumor formation. In some ceramic-on-ceramic THAs, it can lead to squeaking and/or stripe wear. Edge wear in metal-on-metal and ceramic-on-ceramic THAs can also be associated with accelerated wear across the articulation of these joints. I asked: Does edge wear occur in metal-on-polyethylene (MOP) articulations? And if so, does it increase joint wear? I examined the evidence in the literature for edge wear occurring in MOP THA and then assessed the evidence in the literature for data supporting the concept that edge wear in MOP hips could accelerate wear across the articulation over time. Extensive data in the literature confirm edge wear is common in MOP THA. Surprisingly, the evidence does not support that it accelerates wear across the articulation. In fact, substantial data support the concept that it does not. These observations suggest, in terms of edge wear accelerating overall wear, MOP articulation may have a privileged position compared to hard-on-hard THA articulations.

  14. [Revision hip arthroplasty by Waldemar Link custom-made total hip prosthesis].

    Science.gov (United States)

    Medenica, Ivica; Luković, Milan; Radoicić, Dragan

    2010-02-01

    The number of patients undergoing hip arthroplasty revision is constantly growing. Especially, complex problem is extensive loss of bone stock and pelvic discontinuity that requires reconstruction. The paper presented a 50-year old patient, who ten years ago underwent a total cement artrhroplasty of the left hip. A year after the primary operation the patient had difficulties in walking without crutches. Problems intensified in the last five years, the patient had severe pain, totally limited movement in the left hip and could not walk at all. Radiographically, we found loose femoral component, massive loss of bone stock of proximal femur, acetabular protrusion and a consequent pelvic discontinuity. Clinically, a completely disfunctional left hip joint was registered (Harris hip score--7.1). We performed total rearthroplasty by a custom-made Waldemar Link total hip prosthesis with acetabular antiprotrusio cage and compensation of bone defects with a graft from the bone bank. A year after the operation, we found clinically an extreme improvement in Harris hip score--87.8. Radiographically, we found stability of implanted components, a complete graft integration and bone bridging across the site of pelvic discontinuity. Pelvic discontinuity and massive loss of proximal femoral bone stock is a challenging and complex entity. Conventional prostheses cannot provide an adequate fixation and stability of the hip. Application of custom-made prosthesis (measured specificaly for a patient) and additional alografting bone defects is a good method in revision surgery after unsuccessful hip arthroplasty with extensive bone defects.

  15. Indications for MARS-MRI in Patients Treated With Metal-on-Metal Hip Resurfacing Arthroplasty.

    Science.gov (United States)

    Connelly, James W; Galea, Vincent P; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik

    2018-06-01

    Currently, there are no universally accepted guidelines on when to obtain metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) patients. Our primary aims were to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and create an algorithm for indicating MARS-MRI in patients with Articular Surface Replacement (ASR) HRA. The secondary aim was to compare our algorithm to existing guidelines on when to perform MARS-MRI in MoM HRA patients. The study cohort consisted of 182 patients with unilateral ASR HRA from a prospective, multicenter study. Subjects received MARS-MRI at a mean of 7.8 years from surgery, regardless of symptoms. We determined which variables were predictive of ALTR and generated cutoffs for each variable. Finally, we created an algorithm to predict ALTR and indicate MARS-MRI in ASR HRA patients using these cutoffs and compared it to existing guidelines. We found high blood cobalt (Co) (odds ratio = 1.070; P = .011) and high blood chromium (Cr) (odds ratio = 1.162; P = .002) to be significant predictors of ALTR presence. Our algorithm using a blood Co cutoff of 1.15 ppb and a Cr cutoff of 1.09 ppb achieved 96.6% sensitivity and 35.3% specificity in predicting ALTR, which outperformed the existing guidelines. Blood Co and Cr levels are predictive of ALTR in ASR HRA patients. Our algorithm considering blood Co and Cr levels predicts ALTR in ASR HRA patients with higher sensitivity than previously established guidelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Total hip arthroplasty using a short-stem prosthesis: restoration of hip anatomy.

    Science.gov (United States)

    Amenabar, Tomas; Marimuthu, Kanniraj; Hawdon, Gabrielle; Gildone, Alessandro; McMahon, Stephen

    2015-04-01

    To evaluate hip parameters such as vertical centre of rotation (VCR), horizontal centre of rotation (HCR), femoral offset, and leg length after total hip arthroplasty (THA) using the Nanos short-stem prosthesis. Medical records of 73 men and 74 women aged 25 to 92 (mean, 63) years who underwent THA using the Nanos short-stem prosthesis by a single surgeon were reviewed. Prior to the surgery, the optimal cup and stem size, head length, and level of the neck osteotomy were determined using radiographs. Intra-operatively, the leg length and femoral offset were checked, and the level of neck resection and head length were adjusted. VCR, HCR, femoral offset, and leg length of the operated and contralateral sides were compared. Functional outcomes were assessed using the Harris Hip Score (HHS). Compared with the normal contralateral hips, the operated hips had a mean increase of 0.4 mm in VCR (p=0.032), a mean decrease of 1.4 mm in HCR (p=0.027), a mean increase of 0.6 mm in femoral offset (p=0.043), and a mean increase of 0.36 mm in leg length (p=0.035). For these respective parameters, the difference between the normal contralateral side and the operated side was within 5 mm in 89%, 80%, 71%, and 96% of patients. The HHS improved from a mean of 53 to 91 at one year (pNanos short-stem prosthesis enabled restoration of hip anatomy (VCR, HCR, femoral offset, and leg length).

  17. Evaluation of possible hip prosthesis infection with In-111 leukocyte scintigraphy

    International Nuclear Information System (INIS)

    Noto, R.B.; Alavi, A.; Star, A.M.; Cuckler, J.M.; Eisenberg, B.

    1987-01-01

    To evaluate the utility of In-111 leukocyte scintigraphy in patients with possible hip prosthesis infection, the authors retrospectively reviewed 44 such scans without clinical history. The results of In-111 leukocyte scans were compared with intraoperative cultures obtained at the time of prosthesis revision in 34 patients, with hip aspirates and/or clinical follow-up obtained in the remaining ten patients. This comparison yielded a 71% sensitivity, 78% specificity, and 77% overall accuracy. They conclude that In-111 leukocyte scans can be helpful in the evaluation of suspected hip prosthesis infection, but they are not as accurate as has been previously reported elsewhere

  18. Revision hip arthroplasty by Waldemar Link custom-made total hip prosthesis

    Directory of Open Access Journals (Sweden)

    Medenica Ivica

    2010-01-01

    Full Text Available Background. The number of patients undergoing hip arthroplasty revision is constantly growing. Especially, complex problem is extensive loss of bone stock and pelvic discontinuity that requires reconstruction. Case report. The paper presented a 50-year old patient, who ten years ago underwent a total cement artrhroplasty of the left hip. A year after the primary operation the patient had difficulties in walking without crutches. Problems intensified in the last five years, the patient had severe pain, totally limited movement in the left hip and could not walk at all. Radiographically, we found loose femoral component, massive loss of bone stock of proximal femur, acetabular protrusion and a consequent pelvic discontinuity. Clinically, a completely disfunctional left hip joint was registered (Harris hip score - 7.1. We performed total rearthroplasty by a custom- made Waldemar Link total hip prosthesis with acetabular antiprotrusio cage and compensation of bone defects with a graft from the bone bank. A year after the operation, we found clinically an extreme improvement in Harris hip score - 87.8. Radiographically, we found stability of implanted components, a complete graft integration and bone bridging across the site of pelvic discontinuity. Conclusion. Pelvic discontinuity and massive loss of proximal femoral bone stock is a challenging and complex entity. Conventional prostheses cannot provide an adequate fixation and stability of the hip. Application of custom-made prosthesis (measured specifically for a patient and additional alografting bone defects is a good method in revision surgery after unsuccessful hip arthroplasty with extensive bone defects.

  19. Wear-testing of a temporomandibular joint prosthesis : UHMWPE and PTFE against a metal ball, in water and in serum

    NARCIS (Netherlands)

    Van Loon, JP; Verkerke, GJ; de Bont, LGM; Liem, RSB

    For a temporomandibular joint prosthesis, an estimation of the wear rate was needed, prior to patient application. Therefore, we determined the in vitro wear rate of the ball-socket articulation of this prosthesis, consisting of a metal head and an ultra-high molecular weight polyethylene (UHMWPE)

  20. Morphological experimental study of bone stress at the interface acetabular bone/prosthetic cup in the bipolar hip prosthesis.

    Science.gov (United States)

    Anuşca, D; Pleşea, I E; Iliescu, N; Tomescu, P; Poenaru, F; Dascălu, V; Pop, O T

    2006-01-01

    By calculating the tension and distortion of the elements composing the bipolar prosthesis under extreme conditions encountered in real life using a special post-processing program, we established the variation curves of the contact pressure at the hip bone-cup, armor-cup and cup-femoral head interface. By comparing the data obtained from all the examined cases, important conclusions were drawn regarding the influence of tension and pressure distribution on the structural integrity and biomechanics of the prosthesis, as well as the acetabular wear and tear, in order to assess its reliability. The experimentally determined tension and distortion status at the acetabular bone-metal armour interface, lead to the wear and tear phenomenon, which can be explained by three mechanisms and theories incompletely reflecting the overall process. The histopathologic study of the acetabular bone tissue using FEM (finite elements method) on surgically removed specimens will probably lead to the identification of a series of factors that could reduce the rate of the wear and tear process.

  1. Reduction of metallosis in hip implant using thin film coating

    Science.gov (United States)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  2. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software

    International Nuclear Information System (INIS)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck; Park, Kwan Kyu

    2012-01-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. circle Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). circle Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution circle GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. circle However image quality is influenced by the prosthesis composition and other parameters. circle We should be aware about potential overcorrection when using GSI-MARs. (orig.)

  3. Particulate metallic debris in cemented total hip arthroplasty.

    Science.gov (United States)

    Salvati, E A; Betts, F; Doty, S B

    1993-08-01

    Several studies conducted by the authors in the last six years demonstrate that the generation of metallic debris is more severe with titanium alloy than with cobalt-chrome alloy femoral components in cemented total hip arthroplasty (THA). The debris is generated from the articulating surface, particularly if entrapped acrylic debris produces three-body wear, and from the stem surface when the component loosens and abrades against fragmented cement. In selected cases in which the titanium metallic debris is copious, premature failure and severe progressive bone loss occurs. Electron microscopy demonstrates that the particles of metallic debris can be extremely small (a few hundredths of 1 micron). They are phagocytized by the macrophages and transported to the phagolysosomes. In this highly corrosive environment, the very high surface area of the particles may release toxic concentrations of the constituents of the alloy intracellularly, probably leading to progressive cell degeneration and death, with subsequent release of intracellular enzymes and ingested metallic debris. This cycle most likely repeats itself, leading to tissue necrosis. The results presented do not support the use of titanium alloy femoral components for cemented THA, particularly for the articulating surface.

  4. Lymphoid Aggregates That Resemble Tertiary Lymphoid Organs Define a Specific Pathological Subset in Metal-on-Metal Hip Replacements

    Science.gov (United States)

    Barone, Francesca; Hardie, Debbie L.; Matharu, Gulraj S.; Davenport, Alison J.; Martin, Richard A.; Grant, Melissa; Mosselmans, Frederick; Pynsent, Paul; Sumathi, Vaiyapuri P.; Addison, Owen; Revell, Peter A.; Buckley, Christopher D.

    2013-01-01

    Aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) has been used to describe the histological lesion associated with metal-on-metal (M-M) bearings. We tested the hypothesis that the lymphoid aggregates, associated with ALVAL lesions resemble tertiary lymphoid organs (TLOs). Histopathological changes were examined in the periprosthetic tissue of 62 M-M hip replacements requiring revision surgery, with particular emphasis on the characteristics and pattern of the lymphocytic infiltrate. Immunofluorescence and immunohistochemistry were used to study the classical features of TLOs in cases where large organized lymphoid follicles were present. Synchrotron X-ray fluorescence (XRF) measurements were undertaken to detect localisation of implant derived ions/particles within the samples. Based on type of lymphocytic infiltrates, three different categories were recognised; diffuse aggregates (51%), T cell aggregates (20%), and organised lymphoid aggregates (29%). Further investigation of tissues with organised lymphoid aggregates showed that these tissues recapitulate many of the features of TLOs with T cells and B cells organised into discrete areas, the presence of follicular dendritic cells, acquisition of high endothelial venule like phenotype by blood vessels, expression of lymphoid chemokines and the presence of plasma cells. Co-localisation of implant-derived metals with lymphoid aggregates was observed. These findings suggest that in addition to the well described general foreign body reaction mediated by macrophages and a T cell mediated type IV hypersensitivity response, an under-recognized immunological reaction to metal wear debris involving B cells and the formation of tertiary lymphoid organs occurs in a distinct subset of patients with M-M implants. PMID:23723985

  5. What Are Normal Metal Ion Levels After Total Hip Arthroplasty? A Serologic Analysis of Four Bearing Surfaces.

    Science.gov (United States)

    Barlow, Brian T; Ortiz, Philippe A; Boles, John W; Lee, Yuo-Yu; Padgett, Douglas E; Westrich, Geoffrey H

    2017-05-01

    The recent experiences with adverse local tissue reactions have highlighted the need to establish what are normal serum levels of cobalt (Co), chromium (Cr), and titanium (Ti) after hip arthroplasty. Serum Co, Cr, and Ti levels were measured in 80 nonconsecutive patients with well-functioning unilateral total hip arthroplasty and compared among 4 bearing surfaces: ceramic-on-ceramic (CoC); ceramic-on-polyethylene (CoP); metal-on-polyethylene (MoP), and dual mobility (DM). The preoperative and most recent University of California, Los Angeles (UCLA) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared among the different bearing surfaces. No significant difference was found among serum Co and Cr levels between the 4 bearing surface groups (P = .0609 and P = .1577). Secondary analysis comparing metal and ceramic femoral heads demonstrated that the metal group (MoP, modular dual mobility (Stryker Orthopedics, Mahwah, NJ) [metal]) had significant higher serum Co levels compared with the ceramic group (CoC, CoP, MDM [ceramic]) (1.05 mg/L ± 1.25 vs 0.59 mg/L ± 0.24; P = .0411). Spearman coefficient identified no correlation between metal ion levels and patient-reported outcome scores. No serum metal ion level differences were found among well-functioning total hip arthroplasty with modern bearing couples. Significantly higher serum Co levels were seen when comparing metal vs ceramic femoral heads in this study and warrants further investigation. Metal ion levels did not correlate with patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  7. Grading the severity of soft tissue changes associated with metal-on-metal hip replacements: reliability of an MR grading system

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Helen; Cahir, John G.; Goodwin, Richard W. [Norfolk and Norwich University Hospital, Department of Radiology, Norwich, Norfolk (United Kingdom); Toms, Andoni Paul [Norfolk and Norwich University Hospital, Department of Radiology, Norwich, Norfolk (United Kingdom); Norwich Radiology Academy, Norwich (United Kingdom); Wimhurst, James; Nolan, John F. [Norfolk and Norwich University Hospital, Department of Orthopaedics, Norwich, Norfolk (United Kingdom)

    2011-03-15

    Metal-on-metal (MoM) soft tissue reactions or aseptic lymphocytic vasculitis-associated lesions (ALVAL) are being recognised using metal artefact reduction (MAR) MR with increasing frequency following the advent of second generation metal-on-metal bearings, but there is no standardised technique for reporting of MR appearances in this disease. The aim of this study was to measure the reliability of a grading system designed for scoring the severity of MoM disease on MRI. MRI examinations of 73 hips in 59 patients were retrospectively selected and then anonymised, randomised and reviewed by three independent observers (musculoskeletal radiologists). Each MR examination was scored as either A: normal, B: infection, C1: mild MoM disease, C2: moderate MoM disease or C3: severe MoM disease according to pre-defined criteria. Kappa correlation statistics were used to compare the observations. There was substantial agreement among all three observers; the correlation coefficient between the two most experienced observers was {kappa} = 0.78 [95% confidence intervals (CI): 0.68-0.88] and when compared with the least experienced observer coefficients were {kappa} = 0.69 (95% CI: 0.57-0.80) and {kappa} = 0.66 (95% CI: 0.54-0.78). The strongest correlation occurred for grades A, C2 and C3. The weakest correlations occurred for grades B and C1. The grading system described in this study is reliable for evaluating ALVAL in MoM prostheses using MR but is limited in differentiating mild disease from infection. (orig.)

  8. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    Science.gov (United States)

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (edge-loading conditions generated particles that ranged from Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  9. Does Choice of Head Size and Neck Geometry Affect Stem Migration in Modular Large-Diameter Metal-on-Metal Total Hip Arthroplasty? A Preliminary Analysis.

    Science.gov (United States)

    Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd

    2012-01-01

    Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.

  10. Supracondylar correction osteotomy to prevent repetitive posterior dislocation of a hip prosthesis

    NARCIS (Netherlands)

    Haverkamp, D.; Marti, R. K.

    2008-01-01

    Recurrent dislocation of a total hip prosthesis can be a challenging and often disappointing problem. This case report describes a 78-year-old woman who had recurrent posterior dislocations of a revision total hip replacement (THR) that occurred on flexion and internal rotation of the hip. The

  11. Abductor dysfunction and related sciatic nerve palsy, a new complication of metal-on-metal arthroplasty.

    Science.gov (United States)

    Beaver, Walter B; Fehring, Thomas K

    2012-08-01

    The optimal bearing for use in young patients with hip arthritis remains elusive. Current options include metal-on-cross-linked polyethylene, ceramic-on-cross-linked polyethylene, ceramic on ceramic, and metal on metal. Each of these bearing couples has advantages and disadvantages. Metal-on-metal designs allow the use of large heads that decrease impingement and improve stability. This fact has made this bearing an attractive option for surgeons and patients alike. This case report will illustrate a severe adverse reaction to metal debris with necrosis of soft tissues and subsequent damage to the sciatic nerve. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Adverse reaction to metal debris in a consecutive series of DUROM™ hip resurfacing: pseudotumour incidence and metal ion concentration.

    Science.gov (United States)

    Hartmann, Albrecht; Kieback, Jan-Dirk; Lützner, Jörg; Günther, Klaus-Peter; Goronzy, Jens

    2017-07-25

    The aim of this study was to evaluate the incidence of adverse reactions to metal debris (ARMD) in a consecutive series of DUROM™ Hip Resurfacing Arthroplasty (HRA) at mid-term follow-up. Between October 2003 and March 2007 a total of 134 consecutive DUROM™ HRA in 121 patients were performed at our institution. Follow-up could be obtained in 101 unrevised patients (83%) at a mean time of 8.51 ± 0.97 years postoperatively and included patient-related outcome measurement, plain radiographs, MARS-MRI as well as whole blood metal ion assessment. 17 (16.5%) out of 103 hips revealed pseudotumour occurrence in MRI investigation, 1 (10.6%) with a diameter of ≥2 cm. Higher incidence of pseudotumours was found patients with femoral component size 7 μg/l. In contrast to cobalt determination, only elevated chromium values showed a positive association with pseudotumour occurrence and size. A significant proportion of patients developed pseudotumours and metal ion elevation in a consecutive cohort of DUROM™ HRA after mid-term follow-up. The incidence, however, seems not to differ from results of other well performing resurfacing brands; clinical relevance of our findings is unclear. Regarding potential local as well as systemic effects of metal particle release, close follow-up of patients is essential, even with clinically well-performing implants.

  13. Bicentric bipolar hip prosthesis: A radiological study of movement at the interprosthetic joint

    Directory of Open Access Journals (Sweden)

    Anil Kumar Rai

    2011-01-01

    Full Text Available Background: The bipolar hip prostheses after some time functions as a unipolar device. There is a need to change the design of bipolar hip prostheses to make it function as a bipolar device over a prolonged period of time. A bicentric bipolar hip prosthesis was used as an implant for various conditions of the hip. We evaluated the movement of this newly developed prosthesis at the interprosthetic joint radiologically at periodic intervals. Materials and Methods: Fifty two cases were operarted with the Bicentric bipolar prosthesis for indications like fracture neck of femur and various other diseases of the hip and were followed up with serial radiographs at periodic intervals to evaluate, what fraction of the total abduction at the hip was occurring at the interprosthetic joint. Results: In cases of intracapsular fracture neck of femur, the percentage of total abduction occurring at the interprosthetic joint at 3 months follow-up was 33.74% (mean value of all the patients, which fell to 25.66% at 1.5 years. In indications for bipolar hemireplacement other than fracture neck of femur, the percentage of total abduction occurring at the interprosthetic joint at 3 months follow-up was 71.71% (mean value and at 1.5 years it was 67.52%. Conclusion: This study shows the relative preservation of inner bearing movement in the bipolar hip prosthesis with time probably due its refined design. Further refinements are needed to make the prosthesis work better in patients of intracapsular fracture neck femur.

  14. A preliminary biomechanical study of a novel carbon-fibre hip implant versus standard metallic hip implants.

    Science.gov (United States)

    Bougherara, Habiba; Zdero, Rad; Dubov, Anton; Shah, Suraj; Khurshid, Shaheen; Schemitsch, Emil H

    2011-01-01

    Total hip arthroplasty is a widespread surgical approach for treating severe osteoarthritis of the human hip. Aseptic loosening of standard metallic hip implants due to stress shielding and bone loss has motivated the development of new materials for hip prostheses. Numerically, a three-dimensional finite element (FE) model that mimicked hip implants was used to compare a new hip stem to two commercially available implants. The hip implants simulated were a novel CF/PA12 carbon-fibre polyamide-based composite hip stem, the Exeter hip stem (Stryker, Mahwah, NJ, USA), and the Omnifit Eon (Stryker, Mahwah, NJ, USA). A virtual axial load of 3 kN was applied to the FE model. Strain and stress distributions were computed. Experimentally, the three hip stems had their distal portions rigidly mounted and had strain gauges placed along the surface at 3 medial and 3 lateral locations. Axial loads of 3 kN were applied. Measurements of axial stiffness and strain were taken and compared to FE analysis. The overall linear correlation between FE model versus experimental strains showed reasonable results for the lines-of-best-fit for the Composite (Pearson R(2)=0.69, slope=0.82), Exeter (Pearson R(2)=0.78, slope=0.59), and Omnifit (Pearson R(2)=0.66, slope=0.45), with some divergence for the most distal strain locations. From FE analysis, the von Mises stress range for the Composite stem was much lower than that in the Omnifit and Exeter implants by 200% and 45%, respectively. The preliminary experiments showed that the Composite stem stiffness (1982 N/mm) was lower than the metallic hip stem stiffnesses (Exeter, 2460 N/mm; Omnifit, 2543 N/mm). This is the first assessment of stress, strain, and stiffness of the CF/PA12 carbon-fibre hip stem compared to standard commercially-available devices. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul

    2010-01-01

    Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.

  16. A new approach to managing patients with problematic metal hip implants: the use of an Internet-enhanced multidisciplinary team meeting: AAOS exhibit selection.

    Science.gov (United States)

    Berber, Reshid; Pappas, Yannis; Khoo, Michael; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister

    2015-02-18

    Over one million patients worldwide are estimated to have a metal-on-metal hip arthroplasty. To improve the management of these patients and reduce surgeon uncertainty regarding decision-making, we designed an Internet-enhanced multidisciplinary team (iMDT) working approach. From August 2012 to April 2014, the iMDT discussed 215 patients with 266 metal-on-metal hip arthroplasties. Of these, 236 primary arthroplasties (132 hip resurfacing and 104 total hip) were analyzed. The remaining thirty cases involved problematic revised hips and were therefore excluded. The possible recommendations of the iMDT were monitoring, further investigation, or surgery. The concordance between the recommendation and the actual management was used to assess the usefulness of this approach in reducing uncertainty in surgeon-level decision-making. The median Oxford Hip Score was 35 (range, 4 to 48), and median cobalt and chromium levels in whole blood were 3.54 ppb (range, 0.18 to 161.46 ppb) and 3.17 ppb (range, 0.20 to 100.67 ppb), respectively. Magnetic resonance imaging revealed abductor muscle atrophy in ninety-two (39%) of the hips and a pseudotumor in eighty (34%). The iMDT recommended monitoring of 146 (61.9%) of the hips, further investigation of thirty (12.7%), and surgery in sixty (25.4%). The actual outcome was concordant with the recommendation in 211 (91.7%) of the hips. Our iMDT approach to the metal-on-metal hip burden combines the tacit knowledge of an expert panel, regulatory guidance, and up-to-date evidence to improve decision-making among surgeons. The high level of concordance between the recommendation and the actual outcome, combined with the feasibility of the methods used, suggest that this method effectively reduces uncertainty among surgeons and may lead to improved patient outcomes. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  17. [Mid-term effectiveness of total hip arthroplasty with collum femoris preserving prosthesis].

    Science.gov (United States)

    Li, Mingqing; Hu, Yihe; Li, Kanghua; Liao, Qiande; Wen, Ting; Zhong, Da

    2012-08-01

    To discuss the clinical application of total hip arthroplasty (THA) with collum femoris preserving (CFP) prosthesis and to analyze the mid-term effectiveness. Between January 2004 and February 2007, 45 patients (48 hips) underwent THA with CFP prosthesis. There were 29 males (31 hips) and 16 females (17 hips) with an average age of 48.8 years (range, 38-60 years), including 20 left hips, 22 right hips, and 3 bilateral hips. The causes of hip replacement were osteoarthritis (20 cases), avascular necrosis of femoral head (13 cases), dysplasia (4 cases), rheumatoid arthritis (3 cases), posttraumatic osteoarthritis (2 cases), ankylosing spondylitis (2 cases), and Perths disease (1 case). The average disease duration was 6.1 years (range, 2-13 years). Harris scores, visual analogue scale (VAS) score, and the hip range of motion (ROM) were recorded at pre- and post-operation. The X-ray films were taken at pre- and post-operation to observe the position, loosening of the prosthesis, and ectopic ossification. The gait of patients were also evaluated during follow-up. Short-form 36 health survey scale (SF-36) was used to evaluate the life quality of patients. All 45 patients were followed up 5-8 years with an average of 6.4 years. All the incisions healed by first intention. No infection, hip dislocation, nerve injury, or deep vein thrombosis occurred. Six cleavage fractures (13.3%) of the lateral femoral diaphysis at the distal prosthesis occurred during operation, which healed at 8 months postoperatively without any treatment. Mild ectopic ossification occurred in 4 patients (8.9%) who had no discomfort. Five patients (11.1%) had bone mineral density loss in the region of the proximal femur. The survival rates of the cups and stems were all 100% at last follow-up. The results of Harris score, VAS score, and ROM of the hip joint at 1 year postoperatively and last follow-up were significantly better than preoperative ones (P 0.05) except the Harris score (P fair in 6 hips

  18. Bearing Change to Metal-On-Polyethylene for Ceramic Bearing Fracture in Total Hip Arthroplasty; Does It Work?

    Science.gov (United States)

    Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong

    2016-01-01

    We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads.

    Science.gov (United States)

    Choudhury, Dipankar; Ay Ching, Hee; Mamat, Azuddin Bin; Cizek, Jan; Abu Osman, Noor Azuan; Vrbka, Martin; Hartl, Martin; Krupka, Ivan

    2015-07-01

    Diamond like carbon (DLC) is applied as a thin film onto substrates to obtain desired surface properties such as increased hardness and corrosion resistance, and decreased friction and wear rate. Microdimple is an advanced surface modification technique enhancing the tribological performance. In this study, DLC coated microdimples were fabricated on hip prosthesis heads and their mechanical, material and surface properties were characterized. An Electro discharge machining (EDM) oriented microdrilling was utilized to fabricate a defined microdimple array (diameter of 300 µm, depth of 70 µm, and pitch of 900 µm) on stainless steel (SS) hip prosthesis heads. The dimpled surfaces were then coated by hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) layers by using a magnetron sputtering technology. A preliminary tribology test was conducted on these fabricated surfaces against a ceramic ball in simulated hip joint conditions. It was found that the fabricated dimples were perpendicular to the spherical surfaces and no cutting-tools wear debris was detected inside the individual dimples. The a-C:H and Ta-C coatings increased the hardness at both the dimple edges and the nondimpled region. The tribology test showed a significant reduction in friction coefficient for coated surfaces regardless of microdimple arrays: the lowest friction coefficient was found for the a-C:H samples (µ = 0.084), followed by Ta-C (µ = 0.119), as compared to the SS surface (µ = 0.248). © 2014 Wiley Periodicals, Inc.

  20. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies

    International Nuclear Information System (INIS)

    Wei Jikun; Sandison, George A; Hsi, W-C; Ringor, Michael; Lu Xiaoyi

    2006-01-01

    Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity

  1. Tribology of total hip arthroplasty prostheses

    Science.gov (United States)

    Rieker, Claude B.

    2016-01-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis. A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient. Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations. All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient’s objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004. PMID:28461928

  2. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions.

    Science.gov (United States)

    Morsbach, Fabian; Bickelhaupt, Sebastian; Wanner, Guido A; Krauss, Andreas; Schmidt, Bernhard; Alkadhi, Hatem

    2013-07-01

    To assess the value of iterative frequency split-normalized (IFS) metal artifact reduction (MAR) for computed tomography (CT) of hip prostheses. This study had institutional review board and local ethics committee approval. First, a hip phantom with steel and titanium prostheses that had inlays of water, fat, and contrast media in the pelvis was used to optimize the IFS algorithm. Second, 41 consecutive patients with hip prostheses who were undergoing CT were included. Data sets were reconstructed with filtered back projection, the IFS algorithm, and a linear interpolation MAR algorithm. Two blinded, independent readers evaluated axial, coronal, and sagittal CT reformations for overall image quality, image quality of pelvic organs, and assessment of pelvic abnormalities. CT attenuation and image noise were measured. Statistical analysis included the Friedman test, Wilcoxon signed-rank test, and Levene test. Ex vivo experiments demonstrated an optimized IFS algorithm by using a threshold of 2200 HU with four iterations for both steel and titanium prostheses. Measurements of CT attenuation of the inlays were significantly (P algorithm for CT image reconstruction significantly reduces metal artifacts from hip prostheses, improves the reliability of CT number measurements, and improves the confidence for depicting pelvic abnormalities.

  3. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) an....../ppb. INTERPRETATION: Circulating T-lymphocyte levels may decline after surgery, regardless of implant type. Metal ions-particularly cobalt-may have a general depressive effect on T- and B-lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762.......BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA....... RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect...

  4. EFFECTS OF DEXAMETHASONE AND PHENIRAMINE MALEATE ON HEMODYNAMIC AND RESPIRATORY PARAMETERS AFTER CEMENTATION IN CEMENTED PARTIAL HIP PROSTHESIS.

    Science.gov (United States)

    Yektaş, Abdulkadir; Gümüş, Funda; Totoz, Tolga; Gül, Nurten; Erkalp, Kerem; Alagöl, Ayşin

    2015-02-01

    To prevent hemodynamic and respiratory changes that are likely to occur during cementation in partial hip prosthesis by prophylactic use of pheniramine maleate and dexamethasone. The study included 40 patients aged between 60 and 85 years with an American Society ofAnesthesiologists (ASA) grade of II-III who underwent partial hip prosthesis. Just after spinal anesthesia, 4 mL normal saline was pushed in patients in Group S, whereas 45.5 mg pheniramine maleate and 8 mg dexamethasone mixture was pushed intravenously in a total volume of 4 mL in patients in Group PD. Amounts of atropine and adrenaline administered after cementation were significantly higher in Group S than in Group PD (P pheniramine maleate and dexamethasone in partial hip prosthesis led to an increase in SpO2 value and a decrease in the utilization of adrenaline and atropine after cementation.

  5. A Medical Wireless Measurement System for Hip Prosthesis Loosening Detection Based on Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Sebastian Sauer

    2013-01-01

    Full Text Available Vibration analysis is a promising approach in order to detect early hip prosthesis loosening, with the potential to extend the range of diagnostic tools currently available in clinical routine. Ongoing research efforts and developments in the area of multi-functional implants, which integrate sensors, wireless power supply, communication and signal processing, provide means to obtain valuable in vivo information otherwise not available. In the current work a medical wireless measurement system is presented, which is integrated in the femoral head of a hip prosthesis. The passive miniaturized system includes a 3-axis acceleration sensor and signal pre-processing based on a lock-in amplifier circuit. Bidirectional data communication and power supply is reached through inductive coupling with an operating frequency of 125 kHz in accordance with the ISO 18000-2 protocol standard. The system allows the acquisition of the acceleration frequency response of the femur-prosthesis system between 500 to 2500 Hz. Applied laboratory measurements with system prototypes on artificial bones and integrated prostheses demonstrate the feasibility of the measurement system approach, clearly showing differences in the vibration behavior due to an implant loosening. In addition a possibility to evaluate the non-linear mechanic system behavior is presented.

  6. False-positive indium-111 labeled leukocyte scintigram in a patient with a painful hip prosthesis

    International Nuclear Information System (INIS)

    Feldman, N.; Makler, P.T. Jr.; Alavi, A.

    1986-01-01

    A Tronzo hip prosthesis is designed to elicit an inflammatory reaction in order to promote prosthesis stability. A three-phased bone scan and Ga-67 imaging in conjunction with physical examination and laboratory findings failed to demonstrate evidence for osteomyelitis in a patient with a painful hip prosthesis, in whom images obtained with In-111-labeled leukocytes were positive. This observation demonstrated that the interpretation of the latter technique in demonstrating inflammation can cause a false impression of an infectious process

  7. Carbon-carbon composites for orthopedic prosthesis and implants. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T D; Klett, J W; Strizak, J P [Oak Ridge National Lab., TN (United States); Baker, C [FMI, Biddeford, ME (United States)

    1998-01-21

    The prosthetic implant market is extensive. For example, because of arthritic degeneration of hip and knee cartilage and osteoporotic fractures of the hip, over 200,000 total joint replacements (TJRs) are performed in the United States each year. Current TJR devices are typically metallic (stainless steel, cobalt, or titanium alloy) and are fixed in the bone with polymethylacrylate (PMMA) cement. Carbon-carbon composite materials offer several distinct advantages over metals for TJR prosthesis. Their mechanical properties can be tailored to match more closely the mechanical properties of human bone, and the composite may have up to 25% porosity, the size and distribution of which may be controlled through processing. The porous nature of carbon-carbon composites will allow for the ingrowth of bone, achieving biological fixation, and eliminating the need for PMMA cement fixation.

  8. SU-F-T-196: Hypo-Fractionation with Intensity Modulated Proton Therapy for Unilateral Metallic Prosthesis Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Zhang, Y [University of Cincinnati Medical Center, Liberty Township, OH (United States); Pokharel [21st Century Oncology, Estero, FL (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The purpose of this study is to investigate the dosimetric feasibility of hypo-fractionated intensity modulated proton therapy (IMPT) for unilateral metallic prosthesis prostate cancer patients based on proton collaborative group (PCG)-GU002-10 (NCT01230866) protocol criteria. Methods: A total of five unilateral metallic prosthesis prostate cancer cases were included in this retrospective study. For each case, IMPT plans were generated for treatment to be delivered with 7.6 Gy[RBE] per fraction in 5 fractions per week for a total dose of 38 Gy(RBE). Each plan was generated using two anterior-oblique beams and one lateral beam. Treatment plans were optimized with an objective meeting PCG-GU002-10 (NCT01230866) protocol criteria: (i) planning target volume (PTV): D99.5% > 36.1 Gy[RBE], (ii) rectum: V24 < 35%, V33.6 < 10%, (iii) bladder: V39 < 8 cc, and (iv) femoral head: V23 < 1cc. Results: All five cases satisfied PTV D99.5% (average=36.82 Gy[RBE]; range, 36.36–37.13 Gy[RBE]). PTV D95% ranged from 36.66 Gy[RBE] to 38.65 Gy[RBE] and PTV V100 ranged from 95.47% to 97.95%. For the rectum, V24 was less than 35% (average=14.07 Gy[RBE]; range, 6.22–18.42%, whereas V33.6 Gy[RBE] was less than 10% (average=6.83; range, 3.06 – 9.15%). Rectal mean dose ranged from 4.22 Gy[RBE] to 9.97 Gy[RBE]. For the bladder, V39 was found to be less than 8 cc (average=3.69 cc; range, 0.19–7.68 cc). Bladder mean dose ranged from 4.22 Gy[RBE] to 18.83 Gy[RBE]. For the femoral head, V23 was 0 in all five cases. Conclusion: All five unilateral metallic prosthesis prostate cancer IMPT plans generated with one lateral and two anterior-oblique beams satisfied the dosimetric criteria of PCG-GU002-10 (NCT01230866) protocol.

  9. EVALUATION AND RANKING OF ARTIFICIAL HIP PROSTHESIS SUPPLIERS BY USING A FUZZY TOPSIS METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Marija Zahar Djordjevic

    2014-06-01

    Full Text Available The aim of this study is to propose a fuzzy multi-criteria decision-making approach (MCDM to evaluate the artificial hip prosthesis suppliers with respect to numerous criteria, simultaneously, taking into account the type of each criteria and its relative importance. The fuzzy of the Technique for Order Preference by Similarity to Ideal Solution (FTOSISis applied in order to rank the artificial hip prosthesis suppliers. The rank is obtained using the process of fuzzy number comparison. Software solution based on suggested method is also presented. A real-life example with real data is presented to clarify the proposed method.

  10. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  11. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    Science.gov (United States)

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  12. Trabecular metal acetabular components in primary total hip arthroplasty

    DEFF Research Database (Denmark)

    Laaksonen, Inari; Lorimer, Michelle; Gromov, Kirill

    2018-01-01

    Background and purpose - Trabecular metal (TM) cups have demonstrated favorable results in acetabular revision and their use in primary total hip arthroplasty (THA) is increasing. Some evidence show that TM cups might decrease periprosthetic infection (PPI) incidence. We compared the survivorship...... of TM cups with that of other uncemented cups in primary THA, and evaluated whether the use of TM cups is associated with a lower risk of PPI. Patients and methods - 10,113 primary THAs with TM cup and 85,596 THAs with other uncemented cups from 2 high-quality national arthroplasty registries were...

  13. Comparative study of fat-suppression techniques for hip arthroplasty MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moliere, Sebastien [University Hospital of Strasbourg, Imaging Department, Strasbourg (France); Dillenseger, Jean-Philippe; Kremer, Stephane; Bierry, Guillaume [University Hospital of Strasbourg, Imaging Department, Strasbourg (France); ICube UMR 7357, University of Strasbourg, Strasbourg (France); Ehlinger, Matthieu [ICube UMR 7357, University of Strasbourg, Strasbourg (France); University Hospital of Strasbourg, Orthopaedic Department, Strasbourg (France)

    2017-09-15

    The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants. An experimental study using an MRI fat-water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence. Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality. STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression. (orig.)

  14. Comparative study of fat-suppression techniques for hip arthroplasty MR imaging.

    Science.gov (United States)

    Molière, Sébastien; Dillenseger, Jean-Philippe; Ehlinger, Matthieu; Kremer, Stéphane; Bierry, Guillaume

    2017-09-01

    The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants. An experimental study using an MRI fat-water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence. Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality. STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression.

  15. Comparative study of fat-suppression techniques for hip arthroplasty MR imaging

    International Nuclear Information System (INIS)

    Moliere, Sebastien; Dillenseger, Jean-Philippe; Kremer, Stephane; Bierry, Guillaume; Ehlinger, Matthieu

    2017-01-01

    The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants. An experimental study using an MRI fat-water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence. Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality. STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression. (orig.)

  16. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    Science.gov (United States)

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.

  17. Impact of UHMWPE texture on friction and wear resistance of hip prosthesis

    Directory of Open Access Journals (Sweden)

    Eddoumy Fatima

    2013-11-01

    Full Text Available Ultra High Molecular Weight PolyEthylene (UHMWPE is a polymer widely used in hip implants (prostheses as a bearing surface against metal, because of its good mechanical properties and biocompatibility [1]. Nevertheless, the durability of such implants is limited because of failure resulting from osteolysis and aseptic loosening. These two phenomenons are due to the immune response of human body consecutive to the apparition of wear particles of UHMWPE with time.

  18. Adventure sports and sexual freedom hip replacement: the tripolar hip.

    Science.gov (United States)

    Pritchett, James W

    2018-01-01

    Certain athletic activities and lifestyles require a completely stable and very mobile hip. Total hip replacement with a natural femoral head size and two mobile-bearing surfaces (i.e., a "tripolar" prosthesis) is the most stable prosthesis. Elegant design and wear-resistant bearing surfaces are the keys to long-term implant survivorship. The hypothesis is that a ceramic-coated tripolar prosthesis using highly cross-linked polyethylene can provide full function and complete stability with low wear. This study sought to determine: (1) patient-reported outcomes, (2) functional outcomes, (3) implant survivorship and complications, and (4) postoperative sexual limitations. Between 1998 and 2011, the author performed 160 primary total hip replacements using tripolar prostheses in patients participating in adventure sports and other physically demanding activities. The institutional review board approved this study. The inclusion criteria were patients who needed unrestricted activity and who were not candidates for or did not choose hip resurfacing. Patients were followed every second year and assessed with radiographs, Harris Hip Score, WOMAC, SF-12, and UCLA functional outcome scores. Patients were asked about symptoms of instability and satisfaction with their hip replacement. Patients were asked both preoperatively and 2 years postoperatively four questions about their sexual activity. Mean follow-up was 11 years. At 2 years' postoperatively, 98% of patients reported their satisfaction as excellent or good and 99% were not limited for sexual activity following surgery. Seventy-four percent of patients reported they were recovered within 6 weeks of surgery. There were no dislocations. There were three revision procedures for implant loosening, infection, and periprosthetic fracture, but there were no failures of the tripolar articulation. The mean postoperative UCLA score was the highly athletic score of 8. There were no signs of osteolysis, wear, or metal

  19. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints

    Directory of Open Access Journals (Sweden)

    Koseki H

    2017-05-01

    Full Text Available Hironobu Koseki,1 Masato Tomita,2 Akihiko Yonekura,2 Takashi Higuchi,1 Sinya Sunagawa,2 Koumei Baba,3,4 Makoto Osaki2 1Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, 2Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan; 3Industrial Technology Center of Nagasaki, Ikeda, Omura, Nagasaki, Japan; 4Affiliated Division, Nagasaki University School of Engineering, Bunkyo, Nagasaki, Japan Abstract: Metal-on-metal (MoM bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa, a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and

  20. Metabolic Pattern of Asymptomatic Hip-Prosthesis by 18F-FDG-Positron-Emission-Tomography

    International Nuclear Information System (INIS)

    Beslic, Nermina; Heber, Daniel; Walter Lipp, Rainer; Sonneck-Koenne, Charlotte; Knoll, Peter; Mirzaei, Siroos

    2015-01-01

    Joint replacement is a procedure with a major impact on the quality of life of patients with joint degenerative disease or traumatic injuries. However, some patients develop symptoms after the intervention caused by mechanical loosening or infection. Metabolic imaging by 18F-FDG-PET investigated in these patients isoften hampered by low specificity for diagnosis of possible septic vs. mechanical loosening. The reason for this shortcoming is to our opinion the unawareness of physiological remodeling processes that could be seen in asymptomatic patients. In order to overcome this drawback, we aimed to find out the physiological metabolic functional pattern in asymptomatic patients with implanted hip prosthesis Twelve patients (6 males, 6 females); mean age 73 ± 7 (range 58 - 91) years were prospectively enrolled in the study. The patients were admitted to our department for oncological referral with implanted hip prostheses. All patients explained no symptoms with regard to their implanted prosthesis. The attenuation corrected images were used for analysis. Fourteen hip prostheses in 12 patients were visually analyzed. Seven out of 14 prostheses among 12 patients showed focal periprosthetic enhanced metabolism, two of which showed two sites of enhanced uptake; whereas, the remaining five prostheses showed singular hypermetabolic areas within the periprosthetic site. The remaining seven prostheses in the other five patients showed no periprosthetic-enhanced uptake. Of the asymptomatic patients investigated, 58% showed focal enhanced periprosthetic glucose metabolism. This finding should be taken into consideration as a more probable unspecific metabolic pattern for correct interpretation of 18F-FDG-PET studies in patients with suspected septic loosening of the hip prosthesis

  1. Strain-stress analysis of surface prosthesis of hip joint

    Czech Academy of Sciences Publication Activity Database

    Návrat, Tomáš; Fuis, Vladimír; Florian, Z.; Hlavoň, Pavel

    2007-01-01

    Roč. 40, č. 2 (2007), S559-S559 ISSN 0021-9290. [ISB 2007. Taipei, 01.07.2007-05.07.2007] R&D Projects: GA ČR GA101/05/0136 Institutional research plan: CEZ:AV0Z20760514 Keywords : surface prosthesis * hip joint * FEM Subject RIV: BO - Biophysics Impact factor: 2.897, year: 2007

  2. Tribology of total hip arthroplasty prostheses: What an orthopaedic surgeon should know.

    Science.gov (United States)

    Rieker, Claude B

    2016-02-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis.A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient.Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations.All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient's objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004.

  3. Metallic Modular Taper Junctions in Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Timothy McTighe

    2015-08-01

    Full Text Available The emergence of modularity in total hip arthroplasty (THA in the 1980s and 1990s was based on the fact that the benefit of these design features outweighed the risk. The use of metallic modular junctions presents a unique set of advantages and problems for use in THA. The advantages include improvement in fit and fill of the implant to bone, restoration of joint mechanics, reduced complications in revision surgery and reduction of costly inventory. However, the risks or concerns are a little harder to identify and deal with. Certainly corrosion, and fatigue failure are the two most prevalent concerns but now the specifics of fretting wear and corrosive wear increasing particulate debris and the potential biological response is having an impact on the design and potential longevity of the reconstructed hip. Material and designs are facing a shorter life expectancy than what was previously thought, mostly due to an increasing level of physical activity by the patient. Because there are no accurate laboratory test whereby the service life and performance of these implants can be predicted, early controlled clinical evaluations are necessary. Early publication of testing and clinical impressions should be encouraged in an attempt to reduce exposure to potential at risk patients, implants and material. The reduction and possible elimination of risks will require a balancing of all the variables requiring a multidisciplinary endeavor. This paper is designed to review the risk factors, and benefits of modular junctions in total hip arthroplasty (THA. Also some basic engineering principals that can reduce risk factors and improve functionality of modular junctions.

  4. A simulator study of adverse wear with metal and cement debris contamination in metal-on-metal hip bearings.

    Science.gov (United States)

    Halim, T; Clarke, I C; Burgett-Moreno, M D; Donaldson, T K; Savisaar, C; Bowsher, J G

    2014-03-01

    Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt-chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm(3)/Mc, 4.1 mm(3)/Mc and 6.4 mm(3)/Mc, respectively. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29-37. ©2015 The British Editorial Society of Bone & Joint Surgery.

  5. Finite element analysis of 2-Station hip himulator

    Science.gov (United States)

    Fazli, M. I. M.; Yahya, A.; Shahrom, A.; Nawawi, S. W.; Zainudin, M. R.; Nazarudin, M. S.

    2017-10-01

    This paper presented the analysis of materials and design architecture of 2-station hip simulator. Hip simulator is a machine used to conduct the joint and wear test of hip prosthetic. In earlier work, the hip simulator was modified and some improvement were made by using SolidWorks software. The simulator consists of 3DOF which controlled by separate stepper motor and a static load that set up by manual method in each station. In this work, finite element analysis (FEA) of hip simulator was implemented to analyse the structure of the design and selected materials used for simulator component. The analysis is completed based on two categories which are safety factor and stress tests. Both design drawing and FEA was done using SolidWorks software. The study of the two categories is performed by applying the peak load up to 4000N on the main frame that is embedded with metal-on-metal hip prosthesis. From FEA, the value of safety factor and degree of stress formation are successfully obtained. All the components exceed the value of 2 for safety factor analysis while the degree of stress formation shows higher value compare to the yield strength of the material. With this results, it provides information regarding part of simulator which are susceptible to destruct. Besides, the results could be used for design improvement and certify the stability of the hip simulator in real application.

  6. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  7. Tribo-biological deposits on the articulating surfaces of metal-on-polyethylene total hip implants retrieved from patients

    Science.gov (United States)

    Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang

    2016-06-01

    Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints.

  8. Assessment of Patients with a DePuy ASR Metal-on-Metal Hip Replacement: Results of Applying the Guidelines of the Spanish Society of Hip Surgery in a Tertiary Referral Hospital

    Directory of Open Access Journals (Sweden)

    Jenaro Fernández-Valencia

    2014-01-01

    Full Text Available The prognosis associated with the DePuy ASR hip cup is poor and varies according to the series. This implant was withdrawn from use in 2010 and all patients needed to be assessed. We present the results of the assessment of our patients treated with this device, according to the Spanish Society of Hip Surgery (SECCA algorithm published in 2011. This retrospective study evaluates 83 consecutive ASR cups, followed up at a mean of 2.9 years. Serum levels of chromium and cobalt, as well as the acetabular abduction angle, were determined in order to assess their possible correlation with failure, defined as the need for revision surgery. The mean Harris Hip Score was 83.2 (range 42–97. Eight arthroplasties (13.3% required revision due to persistent pain and/or elevated serum levels of chromium/cobalt. All the cups had a correct abduction angle, and there was no correlation between elevated serum levels of metal ions and implant failure. Since two previous ASR implants were exchanged previously to the recall, the revision rate for ASR cups in our centre is 18.2% at 2.9 years.

  9. Gene therapy and cement injection for the treatment of hip prosthesis loosening in elderly patients

    NARCIS (Netherlands)

    Poorter, Jolanda de

    2010-01-01

    Approximately one million total hip replacement operations are performed worldwide annually, mostly for osteoarthritis and rheumatoid arthritis. A major complication in total hip arthroplasties is loosening of the prosthesis leading to pain and walking difficulties and a higher risk for dislocations

  10. Comparison of radiographic and radionuclide hip arthrography in determination of femoral component loosening of hip arthroplasties

    International Nuclear Information System (INIS)

    Capello, W.N.; Uri, B.G.; Wellman, H.N.; Robb, J.A.; Stiver, P.L.

    1985-01-01

    Radiographic examination of a patient experiencing pain following total hip arthroplasty is an important step in the systematic approach to evaluating component loosening, even though the information yielded is often equivocal and nondiagnostic in assessing component loosening. The radiographic criteria for loosening are especially difficult to assess following revision surgery, for radiolucent lines frequently exist at the bone-cement interface immediately following implantation. The advent of noncemented hip prostheses poses another problem: the routinely noted disruption of bone-cement of prosthesis-cement interfaces is not present with uncemented prostheses. As the criteria for loosening of the noncemented prostheses are still evolving, plain radiographic examination is frequently nondiagnostic. Femoral component loosening is difficult to detect with standard contrast arthrography because the bone, metal, surrounding radiopaque cement and contrast agents have similar or identical radiographic appearances. In contrast arthrography, if the prosthesis is loose the injected agent opacifies the radiolucent zone encircling the prosthesis or cement mangle. Because of the similarity in the appearances of these agents and the surrounding structures on x-ray films, interpretation is difficult. The inclusion of subtraction techniques in routine contrast arthrography has improved its accuracy; however, these techniques require special equipment and demand precise patient positioning. The purpose of this study is to introduce a new form of hip arthrography using a radionuclide agent in place of the contrast agent. A comparison of the results using these two techniques is presented

  11. MR imaging of 22 Charnley-Mueller total hip prostheses

    International Nuclear Information System (INIS)

    Lemmens, J.A.M.; Ruijs, J.H.J.

    1986-01-01

    To find out whether MR imaging is contraindicated in patients with metallic implants or can be a routine diagnostic procedure, MR investigations in 18 patients with 22 Charnley-Mueller total hip prostheses were performed on a 0.5 T Gyroscan S 5, Philips. No adverse reactions during or post MR investigation were encountered. The imaging of the soft tissue was superior to CT and showed less distortion. The diagnosis of loosening, by detection of demarcation lines at the interfaces was at its best in the distal part of the femoral stem prosthesis and was poor in the acetabular component and in the upper part of the stem prosthesis due to artifacts. (orig.) [de

  12. Accuracy of dose planning for prostate radiotherapy in the presence of metallic implants evaluated by electron spin resonance dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alves, G.G. [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Kinoshita, A. [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Universidade Sagrado Coração, Bauru, SP (Brazil); Oliveira, H.F. de; Guimarães, F.S.; Amaral, L.L. [Serviço de Radioterapia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Baffa, O. [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2015-05-26

    Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses.

  13. Accuracy of dose planning for prostate radiotherapy in the presence of metallic implants evaluated by electron spin resonance dosimetry.

    Science.gov (United States)

    Alves, G G; Kinoshita, A; Oliveira, H F de; Guimarães, F S; Amaral, L L; Baffa, O

    2015-07-01

    Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses.

  14. Accuracy of dose planning for prostate radiotherapy in the presence of metallic implants evaluated by electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Alves, G.G.; Kinoshita, A.; Oliveira, H.F. de; Guimarães, F.S.; Amaral, L.L.; Baffa, O.

    2015-01-01

    Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses

  15. Clinical Evaluation of Normalized Metal Artifact Reduction in kVCT Using MVCT Prior Images (MVCT-NMAR) for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, Moti Raj, E-mail: mpaudel@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Mackenzie, Marc [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Fallone, B. Gino [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Physics, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada); Rathee, Satyapal [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2014-07-01

    Purpose: To evaluate the metal artifacts in diagnostic kilovoltage computed tomography (kVCT) images of patients that are corrected by use of a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images: MVCT-NMAR. Methods and Materials: MVCT-NMAR was applied to images from 5 patients: 3 with dual hip prostheses, 1 with a single hip prosthesis, and 1 with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces and for radiation therapy dose calculations. They were compared against the corresponding images corrected by the commercial orthopedic metal artifact reduction algorithm in a Phillips CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiation therapy. These improvements are significant, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in orthopedic metal artifact reduction corrected images are removed in the MVCT-NMAR corrected images. A large dose reduction was possible outside the planning target volume (eg, 59.2 Gy to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images were used in TomoTherapy treatment plans without directional blocks for a prostate cancer patient. Conclusions: The use of MVCT-NMAR corrected images in radiation therapy treatment planning could improve the treatment plan quality for patients with metallic implants.

  16. Youth subcultures and problem behaviours in Slovakia : Hip-Hop, Techno-scene, Metal, Punk, Skinheads and Roma

    NARCIS (Netherlands)

    Bobakova, Daniela

    2013-01-01

    Jongeren die deel uitmaken van jeugdsubculturen als hip-hop, techno-scene, metal, punk en skinheads, gebruiken vaker drugs, zijn vaker dronken, spijbelen vaker en beginnen eerder aan seks. Roma-jongeren zijn minder vaak dronken. Dat concludeert Daniela Bobáková op basis van een onderzoek onder deze

  17. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  18. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress

    International Nuclear Information System (INIS)

    Liu, Patrick T.; Pavlicek, William P.; Peter, Mary B.; Roberts, Catherine C.; Paden, Robert G.; Spangehl, Mark J.

    2009-01-01

    Despite recent advances in CT technology, metal orthopedic implants continue to cause significant artifacts on many CT exams, often obscuring diagnostic information. We performed this prospective study to evaluate the effectiveness of an experimental metal artifact reduction (MAR) image reconstruction program for CT. We examined image quality on CT exams performed in patients with hip arthroplasties as well as other types of implanted metal orthopedic devices. The exam raw data were reconstructed using two different methods, the standard filtered backprojection (FBP) program and the MAR program. Images were evaluated for quality of the metal-cement-bone interfaces, trabeculae ≤1 cm from the metal, trabeculae 5 cm apart from the metal, streak artifact, and overall soft tissue detail. The Wilcoxon Rank Sum test was used to compare the image scores from the large and small prostheses. Interobserver agreement was calculated. When all patients were grouped together, the MAR images showed mild to moderate improvement over the FBP images. However, when the cases were divided by implant size, the MAR images consistently received higher image quality scores than the FBP images for large metal implants (total hip prostheses). For small metal implants (screws, plates, staples), conversely, the MAR images received lower image quality scores than the FBP images due to blurring artifact. The difference of image scores for the large and small implants was significant (p=0.002). Interobserver agreement was found to be high for all measures of image quality (k>0.9). The experimental MAR reconstruction algorithm significantly improved CT image quality for patients with large metal implants. However, the MAR algorithm introduced blurring artifact that reduced image quality with small metal implants. (orig.)

  19. The Infection Rate of Metal-on-Metal Total Hip Replacement Is Higher When Compared to Other Bearing Surfaces as Documented by the Australian Orthopaedic Association National Joint Replacement Registry.

    Science.gov (United States)

    Huang, Phil; Lyons, Matt; O'Sullivan, Michael

    2018-02-01

    Despite the well-documented decline in the use of metal-on-metal (MoM) implants over the last decade, there are still controversies regarding whether all MoM implants are created equally. Complications such as elevated serum metal ion levels, aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) and pseudotumours have all been well documented, but recent studies suggest increased risk of infection with MoM bearing surfaces. Most of these studies however have small patient numbers. The purpose of this study was to examine the cumulative incidence of revision for infection of MoM bearing surfaces in primary hip arthroplasty at a national and single-surgeon level. Data was collected from the Australian Orthopaedic Association National Joint Replacement Registry, which contains over 98% of all arthroplasties performed in Australia since 2001. The cumulative incidence of revision for infection was extracted at a national level and single-surgeon level. Two hundred seventy-six thousand eight hundred seventy-eight subjects were documented in the Australian registry. The 10-year cumulative percent revision for infection of MoM bearing surfaces in primary total hip replacement (THR) was 2.5% at a national level, compared to 0.8% for other bearing surfaces. The senior author contributed 1755 subjects with 7-year follow-up and a cumulative percent revision for infection of MoM bearing surfaces in primary THR of 36.9%, compared to 2.0% for other bearing surfaces. The cumulative percent of revision of MoM bearing surfaces is higher compared to other bearing surfaces; this is especially pronounced in cumulative percent of revision for infection. There was a higher cumulative percent of revision for infection in MoM bearings surfaces (in particular, large-head MoM) compared to other bearing surfaces at both the national and individual-surgeon level.

  20. Metal artefact reduction for accurate tumour delineation in radiotherapy

    DEFF Research Database (Denmark)

    Kovacs, David Gergely; Rechner, Laura A.; Appelt, Ane L.

    2018-01-01

    Background and purpose: Two techniques for metal artefact reduction for computed tomography were studied in order to identify their impact on tumour delineation in radiotherapy. Materials and methods: Using specially designed phantoms containing metal implants (dental, spine and hip) as well...... delineation significantly (pmetal implant....... as patient images, we investigated the impact of two methods for metal artefact reduction on (A) the size and severity of metal artefacts and the accuracy of Hounsfield Unit (HU) representation, (B) the visual impact of metal artefacts on image quality and (C) delineation accuracy. A metal artefact reduction...

  1. Digitally Milled Metal Framework for Fixed Complete Denture with Metal Occlusal Surfaces: A Design Concept.

    Science.gov (United States)

    AlBader, Bader; AlHelal, Abdulaziz; Proussaefs, Periklis; Garbacea, Antonela; Kattadiyil, Mathew T; Lozada, Jaime

    Implant-supported fixed complete dentures, often referred to as hybrid prostheses, have been associated with high implant survival rates but also with a high incidence of mechanical prosthetic complications. The most frequent of these complications have been fracture and wear of the veneering material. The proposed design concept incorporates the occlusal surfaces of the posterior teeth as part of a digital milled metal framework by designing the posterior first molars in full contour as part of the framework. The framework can be designed, scanned, and milled from a titanium blank using a milling machine. Acrylic resin teeth can then be placed on the framework by conventional protocol. The metal occlusal surfaces of the titanium-countered molars will be at centric occlusion. It is hypothesized that metal occlusal surfaces in the posterior region may reduce occlusal wear in these types of prostheses. When the proposed design protocol is followed, the connection between the metal frame and the cantilever part of the prosthesis is reinforced, which may lead to fewer fractures of the metal framework.

  2. Joining of metals to structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sistiaga, J M; Salvador, J M

    1988-01-01

    A wide review is made on metal-ceramics joining by brazing, mainly by active metal containing brazing filler alloys and solid state welding that is diffusion welding and hot isostatic pressure (HIP). Both the basic aspects of the processes and the mechanisms involved are considsered. At last, different joint testing ands evaluation procedures are presented. (Author)

  3. Joining of metals to structural ceramics

    International Nuclear Information System (INIS)

    Sistiaga, J.M.; Salvador, J.M.

    1988-01-01

    A wide review is made on metal-ceramics joining by brazing, mainly by active metal containing brazing filler alloys and solid state welding that is diffusion welding and hot isostatic pressure (HIP). Both the basic aspects of the processes and the mechanisms involved are considered. At last, different joint testing and evaluation procedures are presented. (Author)

  4. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    Cutaneous reactions to metal implants, orthopedic or otherwise, are well documented in the literature. The first case of a dermatitis reaction over a stainless steel fracture plate was described in 1966. Most skin reactions are eczematous and allergic in nature, although urticarial, bullous....... However, other metal ions as well as bone cement components can cause such hypersensitivity reactions. To complicate things, patients may also develop delayed-type hypersensitivity reactions to metals (ie, in-stent restenosis, prosthesis loosening, inflammation, pain, or allergic contact dermatitis...

  5. 21 CFR 888.3353 - Hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... linkage across-the-joint. The two-part femoral component consists of a femoral stem made of alloys to be... ceramic (aluminium oxide, A1203) head of the femoral component. The acetabular component is made of ultra... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...

  6. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.

    Science.gov (United States)

    Rezaei, Farshid; Hassani, Kamran; Solhjoei, Nosratollah; Karimi, Alireza

    2015-12-01

    Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient's bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement.

  7. A Stereophotogrammetric System For The Detection Of Prosthesis Loosening In Total Hip Arthroplasty

    Science.gov (United States)

    Baumrind, Sheldon; Genant, Harry K.; Hunter, John; Miller, David; Moffitt, Francis; Murray, William R.; Ross, Steven E.

    1980-07-01

    Loosening of the prosthetic device occurs in about 5% of cases following placement of total hip prostheses (THP). Early detection of loosening is much desired but is difficult to achieve using conventional methods. Due to errors of projection, it is quite possible to fail to detect mobility of even as much as 5 mm on single x-ray films. We are attempting to develop a simplified photogrammetric system suitable for general hospital use which could detect loosening of 0.8 mm at the 95 % level of confidence without use of complex stereoplotting equipment. Metal reference markers are placed in the shaft of the femur and in the acetabular region of the pelvis at the time of surgery. The distances between these reference markers and certain unambiguous points on the prostheses are computed analytically using an X-Y acoustical digitizer (accuracy ± 0.1 mm) and software developed previously for craniofacial measurement. Separate stereopairs of the joint region are taken under weight-bearing and nonweight-bearing conditions. Differences in the measured distances between the bo-ne markers and the prosthetic components on the two stereopairs are taken as indicators of prosthesis loosening. Measurements on a phantom using ten different x-ray stereopairs taken from as many different perspectives have established that true linear distances between reference points and prostheses can be measured at the desired reliability with the present low precision system. Preliminary in vivo measurements indicate that the main unresolved problem is the movement of the subject between the two exposures of each single stereopair. Two possible solutions to this problem are discussed.

  8. SU-F-T-374: Dosimetric Effects of Irradiation Through a Bilateral Hip Prosthesis in a MRI Linac

    International Nuclear Information System (INIS)

    Wronski, M; Sarfehnia, A; Sahgal, A; Keller, B; Ahmad, S

    2016-01-01

    Purpose: To evaluate the interface effects when irradiating through a hip prosthesis in the presence of an orthogonal 1.5 T magnetic field using Monte Carlo simulations. Methods: A 20×20×38 cm virtual phantom with two 5×5×5 cm sections of bilateral titanium hip prosthesis was created in GPU-based Monte Carlo (MC) algorithm (GPUMCD, Elekta AB, Stockholm Sweden). The lateral prosthesis spacing was based on a representative patient CT scan. A treatment SAD of 143.5 cm was chosen, corresponding to the Elekta AB MRI Linac and the beam energy distribution was sampled from a histogram representing the true MRI Linac spectrum. A magnetic field of 1.5 T was applied perpendicular to the plane of irradiation. Dose was calculated, in voxels of side 1 mm, for 2×2, 5×5, and 10×10 cm treatment field sizes with normal beam incidence (gantry at 90° or 270°) and at 5° and 10° from normal, representing the range of incidence through the bilateral prosthesis. Results: With magnetic field ON (B-On) and normal beam incidence the backscatter dose at the interfaces of proximal and distal implants is reduced for all the field sizes compared to the magnetic field OFF (B-Off) case. The absolute reduction in doses at the interface was in the range of 12.93% to 13.16% for the proximal implant and 13.57% to 16.12% for the distal implant. Similarly for the oblique incidences of 5o and 10o the dose in the plane adjacent to the prosthetic implants is lower when the magnetic field is ON. Conclusion: The dosimetric effects of irradiating through a hip prosthesis in the presence of a transverse magnetic field have been determined using MC simulation. The backscatter dose reduction translates into significantly lower hot spots at the prosthetic interfaces, which are otherwise substantially high in the absence of the magnetic field. This project was supported through funding provided by ElektaTM.

  9. SU-F-T-374: Dosimetric Effects of Irradiation Through a Bilateral Hip Prosthesis in a MRI Linac

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, M; Sarfehnia, A; Sahgal, A; Keller, B [Sunnybrook Odette Cancer Center, Toronto (Canada); University of Toronto, Department of Radiation Oncology, Toronto (Canada); Ahmad, S [Sunnybrook Odette Cancer Center, Toronto (Canada)

    2016-06-15

    Purpose: To evaluate the interface effects when irradiating through a hip prosthesis in the presence of an orthogonal 1.5 T magnetic field using Monte Carlo simulations. Methods: A 20×20×38 cm virtual phantom with two 5×5×5 cm sections of bilateral titanium hip prosthesis was created in GPU-based Monte Carlo (MC) algorithm (GPUMCD, Elekta AB, Stockholm Sweden). The lateral prosthesis spacing was based on a representative patient CT scan. A treatment SAD of 143.5 cm was chosen, corresponding to the Elekta AB MRI Linac and the beam energy distribution was sampled from a histogram representing the true MRI Linac spectrum. A magnetic field of 1.5 T was applied perpendicular to the plane of irradiation. Dose was calculated, in voxels of side 1 mm, for 2×2, 5×5, and 10×10 cm treatment field sizes with normal beam incidence (gantry at 90° or 270°) and at 5° and 10° from normal, representing the range of incidence through the bilateral prosthesis. Results: With magnetic field ON (B-On) and normal beam incidence the backscatter dose at the interfaces of proximal and distal implants is reduced for all the field sizes compared to the magnetic field OFF (B-Off) case. The absolute reduction in doses at the interface was in the range of 12.93% to 13.16% for the proximal implant and 13.57% to 16.12% for the distal implant. Similarly for the oblique incidences of 5o and 10o the dose in the plane adjacent to the prosthetic implants is lower when the magnetic field is ON. Conclusion: The dosimetric effects of irradiating through a hip prosthesis in the presence of a transverse magnetic field have been determined using MC simulation. The backscatter dose reduction translates into significantly lower hot spots at the prosthetic interfaces, which are otherwise substantially high in the absence of the magnetic field. This project was supported through funding provided by ElektaTM.

  10. Collarless metal ceramic restorations to obscure the umbrella effect

    Directory of Open Access Journals (Sweden)

    Afroz Shaista

    2010-01-01

    Full Text Available Esthetics with porcelain fused to metal restoration in the anterior region can be adversely affected due to the inadequate teeth preparations and design of the prosthesis. We presented here a case report where esthetics was compromised due to darkening of the interdental papilla and marginal gingival and overcontoured restorations in relation to porcelain fused to metal restorations. Good esthetic results were obtained by using basic principles of tooth preparation and using collarless metal ceramic restorations.

  11. A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface.

    Science.gov (United States)

    Choudhury, Dipankar; Urban, Filip; Vrbka, Martin; Hartl, Martin; Krupka, Ivan

    2015-05-01

    This study investigates a tribological performance of diamond like carbon (DLC) coated micro dimpled prosthesis heads against ceramic cups in a novel pendulum hip joint simulator. The simulator enables determining friction coefficient and viscous effects of a concave shaped specimen interface (conformal contact). Two types of DLC such as hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) and one set of micro dimple (diameter of 300µm, depth of 70µm, and pitch of 900µm) were fabricated on metallic prosthesis heads. The experiment results reveal a significant friction coefficient reduction to the 'dimpled a-C:H/ceramic' prosthesis compared to a 'Metal (CoCr)/ceramic' prosthesis because of their improved material and surface properties and viscous effect. The post-experiment surface analysis displays that the dimpled a-C:H yielded a minor change in the surface roughness, and generated a larger sizes of wear debris (40-200nm sized, equivalent diameter), a size which could be certainly stored in the dimple, thus likely to reducing their possible third body abrasive wear rate. Thus, dimpled a:C-H can be used as a 'metal on ceramic hip joint interface', whereas the simulator can be utilized as an advanced bio-tribometer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fit accuracy of metal partial removable dental prosthesis frameworks fabricated by traditional or light curing modeling material technique: An in vitro study

    Science.gov (United States)

    Anan, Mohammad Tarek M.; Al-Saadi, Mohannad H.

    2015-01-01

    Objective The aim of this study was to compare the fit accuracies of metal partial removable dental prosthesis (PRDP) frameworks fabricated by the traditional technique (TT) or the light-curing modeling material technique (LCMT). Materials and methods A metal model of a Kennedy class III modification 1 mandibular dental arch with two edentulous spaces of different spans, short and long, was used for the study. Thirty identical working casts were used to produce 15 PRDP frameworks each by TT and by LCMT. Every framework was transferred to a metal master cast to measure the gap between the metal base of the framework and the crest of the alveolar ridge of the cast. Gaps were measured at three points on each side by a USB digital intraoral camera at ×16.5 magnification. Images were transferred to a graphics editing program. A single examiner performed all measurements. The two-tailed t-test was performed at the 5% significance level. Results The mean gap value was significantly smaller in the LCMT group compared to the TT group. The mean value of the short edentulous span was significantly smaller than that of the long edentulous span in the LCMT group, whereas the opposite result was obtained in the TT group. Conclusion Within the limitations of this study, it can be concluded that the fit of the LCMT-fabricated frameworks was better than the fit of the TT-fabricated frameworks. The framework fit can differ according to the span of the edentate ridge and the fabrication technique for the metal framework. PMID:26236129

  13. Metal artefact suppression at 3 T MRI: comparison of MAVRIC-SL with conventional fast spin echo sequences in patients with Hip joint arthroplasty

    International Nuclear Information System (INIS)

    Kretzschmar, Martin; Nardo, Lorenzo; Han, Misung M.; Heilmeier, Ursula; Sam, Craig; Joseph, Gabby B.; Krug, Roland; Link, Thomas M.; Koch, Kevin M.

    2015-01-01

    The aim of our study was to evaluate the clinical feasibility and diagnostic value of a new MRI metal artefact reduction pulse sequence called MAVRIC-SL in a 3 T MRI environment. Two MAVRIC-SL sequences obtained in 61 patients with symptomatic total hip replacement were compared with standard FSE-STIR sequences optimized for imaging around metal. Artefact size was measured on the slice of greatest extent. Image quality, fat saturation, image distortion, visibility of anatomical structures, and detectability of joint abnormalities were visually assessed and graded on qualitative scales. Differences between MAVRIC-SL and FSE sequences were tested with the Wilcoxon signed-rank test. MAVRIC-SL sequences at 3 T showed significantly smaller metal artefacts compared to FSE-STIR sequences (p < 0.0001). The general image quality of MAVRIC-SL sequences was reduced with regard to spatial resolution, noise and contrast (p = 0.001), and fat saturation (p < 0.0001). The reduction of artefact size and image distortion significantly improved visualization of joint anatomy (p < 0.0001) and diagnostic confidence regarding implant-associated abnormalities (p = 0.0075 to <0.0001). Although the image quality of MAVRIC-SL sequences is limited at 3 T, its clinical application is feasible and provides important additional diagnostic information for the workup of patients with symptomatic hip replacement through substantially reduced metal artefacts. (orig.)

  14. Metal artefact suppression at 3 T MRI: comparison of MAVRIC-SL with conventional fast spin echo sequences in patients with Hip joint arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Martin; Nardo, Lorenzo; Han, Misung M.; Heilmeier, Ursula; Sam, Craig; Joseph, Gabby B.; Krug, Roland; Link, Thomas M. [University of California San Francisco, Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Koch, Kevin M. [Medical Collage of Wisconsin, Departments of Biophysics and Radiology, Milwaukee, WI (United States)

    2015-08-15

    The aim of our study was to evaluate the clinical feasibility and diagnostic value of a new MRI metal artefact reduction pulse sequence called MAVRIC-SL in a 3 T MRI environment. Two MAVRIC-SL sequences obtained in 61 patients with symptomatic total hip replacement were compared with standard FSE-STIR sequences optimized for imaging around metal. Artefact size was measured on the slice of greatest extent. Image quality, fat saturation, image distortion, visibility of anatomical structures, and detectability of joint abnormalities were visually assessed and graded on qualitative scales. Differences between MAVRIC-SL and FSE sequences were tested with the Wilcoxon signed-rank test. MAVRIC-SL sequences at 3 T showed significantly smaller metal artefacts compared to FSE-STIR sequences (p < 0.0001). The general image quality of MAVRIC-SL sequences was reduced with regard to spatial resolution, noise and contrast (p = 0.001), and fat saturation (p < 0.0001). The reduction of artefact size and image distortion significantly improved visualization of joint anatomy (p < 0.0001) and diagnostic confidence regarding implant-associated abnormalities (p = 0.0075 to <0.0001). Although the image quality of MAVRIC-SL sequences is limited at 3 T, its clinical application is feasible and provides important additional diagnostic information for the workup of patients with symptomatic hip replacement through substantially reduced metal artefacts. (orig.)

  15. A phantom study of dose compensation behind hip prosthesis using portal dosimetry and dynamic MLC

    International Nuclear Information System (INIS)

    Nielsen, Martin Skovmos; Carl, Jesper; Nielsen, Jane

    2008-01-01

    Background and purpose: A dose compensation method is presented for patients with hip prosthesis based on Dynamic Multi Leaves Collimator (DMLC) planning. Calculations are done from an exit Portal Dose Image (PDI) from 6 MV Photon beam using an Electronic Portal Imaging Device (EPID) from Varian. Four different hip prostheses are used for this work. Methods: From an exit PDI the fluence needed to yield a uniform dose distribution behind the prosthesis is calculated. To back-project the dose distribution through the phantom, the lateral scatter is removed by deconvolution with a point spread function (PSF) determined for depths from 10 to 40 cm. The dose maximum, D max , is determined from the primary plan which delivers the PDI. A further deconvolution to remove the dose glare effect in the EPID is performed as well. Additionally, this calculated fluence distribution is imported into the Treatment Planning System (TPS) for the final calculation of a DMLC plan. The fluence file contains information such as the relative central axis (CAX) position, grid size and fluence size needed for correct delivery of the DMLC plan. GafChromic EBT films positioned at 10 cm depth are used as verification of uniform dose distributions behind the prostheses. As the prosthesis is positioned at the phantom surface the dose verifications are done 10 cm from the prosthesis. Conclusion: The film measurement with 6 MV photon beam shows uniform doses within 5% for most points, but with hot/cold spots of 10% near the femoral head prostheses

  16. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints.

    Science.gov (United States)

    Koseki, Hironobu; Tomita, Masato; Yonekura, Akihiko; Higuchi, Takashi; Sunagawa, Sinya; Baba, Koumei; Osaki, Makoto

    2017-01-01

    Metal-on-metal (MoM) bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII) may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo) alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa), a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and prevented the adhesion of wear debris. The results of this study suggest that the CII surface stabilizes the wear status due to the low friction coefficient and low infiltration of partner materials, and these properties also prevent the adhesion of wear debris and inhibit excessive wear. Carbon is considered to be biologically inert; therefore, CII is anticipated to be applicable to the bearing surfaces of MoM prostheses.

  17. Large Metal Heads and Vitamin E Polyethylene Increase Frictional Torque in Total Hip Arthroplasty.

    Science.gov (United States)

    Meneghini, R Michael; Lovro, Luke R; Wallace, Joseph M; Ziemba-Davis, Mary

    2016-03-01

    Trunnionosis has reemerged in modern total hip arthroplasty for reasons that remain unclear. Bearing frictional torque transmits forces to the modular head-neck interface, which may contribute to taper corrosion. The purpose of this study is to compare frictional torque of modern bearing couples in total hip arthroplasty. Mechanical testing based on in vivo loading conditions was used to measure frictional torque. All bearing couples were lubricated and tested at 1 Hz for more than 2000 cycles. The bearing couples tested included conventional, highly crosslinked (XLPE) and vitamin E polyethylene, CoCr, and ceramic femoral heads and dual-mobility bearings. Statistical analysis was performed using Student t test for single-variable and analysis of variance for multivariant analysis. P ≤ .05 was considered statistically significant. Large CoCr metal heads (≥36 mm) substantially increased frictional torque against XLPE liners (P = .01), a finding not observed in ceramic heads. Vitamin E polyethylene substantially increased frictional torque compared with XLPE in CoCr and ceramic heads (P = .001), whereas a difference between conventional and XLPE was not observed (P = .69) with the numbers available. Dual-mobility bearing with ceramic inner head demonstrated the lowest mean frictional torque of all bearing couples. In this simulated in vivo model, large-diameter CoCr femoral heads and vitamin E polyethylene liners are associated with increased frictional torque compared with smaller metal heads and XLPE, respectively. The increased frictional torque of vitamin E polyethylene and larger-diameter femoral heads should be considered and further studied, along with reported benefits of these modern bearing couples. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Intensity-Modulated Radiation Therapy with Noncoplanar Beams for Treatment of Prostate Cancer in Patients with Bilateral Hip Prosthesis-A Case Study

    International Nuclear Information System (INIS)

    Brooks, Chris; Cheung, Rex Min; Kudchadker, Rajat J.

    2010-01-01

    Megavoltage photon intensity-modulated radiation therapy (IMRT) is typically used in the treatment of prostate cancer at our institution. Approximately 1% to 2% of patients with prostate cancer have hip prostheses. The presence of the prosthesis usually complicates the planning process because of dose perturbation around the prosthesis, radiation attenuation through the prosthesis, and the introduction of computed tomography artifacts in the planning volume. In addition, hip prostheses are typically made of materials of high atomic number, which add uncertainty to the dosimetry of the prostate and critical organs in the planning volume. When the prosthesis is bilateral, treatment planning is further complicated because only a limited number of beam angles can be used to avoid the prostheses. In this case study, we will report the observed advantages of using noncoplanar beams in the delivery of IMRT to a prostate cancer patient with bilateral hip prostheses. The treatment was planned for 75.6 Gy using a 7-field coplanar approach and a noncoplanar arrangement, with all fields avoiding entrance though the prostheses. Our results indicate that, compared with the coplanar plan, the noncoplanar plan delivers the prescribed dose to the target with a slightly better conformality and sparing of rectal tissue versus the coplanar plan.

  19. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.

    Science.gov (United States)

    Levadnyi, Ievgen; Awrejcewicz, Jan; Gubaua, José Eduardo; Pereira, Jucélio Tomás

    2017-12-01

    The change in mechanical properties of femoral cortical bone tissue surrounding the stem of the hip endoprosthesis is one of the causes of implant instability. We present an analysis used to determine the best conditions for long-term functioning of the bone-implant system, which will lead to improvement of treatment results. In the present paper, a finite element method coupled with a bone remodelling model is used to evaluate how different three-dimensional prosthesis models influence distribution of the density of bone tissue. The remodelling process begins after the density field is obtained from a computed tomography scan. Then, an isotropic Stanford model is employed to solve the bone remodelling process and verify bone tissue adaptation in relation to different prosthesis models. The study results show that the long-stem models tend not to transmit loads to proximal regions of bone, which causes the stress-shielding effect. Short stems or application in the calcar region provide a favourable environment for transfer of loads to the proximal region, which allows for maintenance of bone density and, in some cases, for a positive variation, which causes absence of the aseptic loosening of an implant. In the case of hip resurfacing, bone mineral density changes slightly and is closest to an intact femur. Installation of an implant modifies density distribution and stress field in the bone. Thus, bone tissue is stimulated in a different way than before total hip replacement, which evidences Wolff's law, according to which bone tissue adapts itself to the loads imposed on it. The results suggest that potential stress shielding in the proximal femur and cortical hypertrophy in the distal femur may, in part, be reduced through the use of shorter stems, instead of long ones, provided stem fixation is adequate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The impact of surface and geometry on coefficient of friction of artificial hip joints.

    Science.gov (United States)

    Choudhury, Dipankar; Vrbka, Martin; Mamat, Azuddin Bin; Stavness, Ian; Roy, Chanchal K; Mootanah, Rajshree; Krupka, Ivan

    2017-08-01

    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: comparison between alumina and cobalt-chrome heads.

    Science.gov (United States)

    Chang, Chong Bum; Yoo, Jeong Joon; Song, Won Seok; Kim, Deug Joong; Koo, Kyung-Hoi; Kim, Hee Joong

    2008-04-01

    We aimed to investigate the transfer of metal to both ceramic (alumina) and metal (cobalt-chrome) heads that were scraped by a titanium alloy surface under different load conditions. The ceramic and metal heads for total hip arthroplasties were scraped by an acetabular metal shell under various loads using a creep tester. Microstructural changes in the scraped area were visualized with a scanning electron microscope, and chemical element changes were assessed using an energy dispersive X-ray spectrometry. Changes in the roughness of the scraped surface were evaluated by a three-dimensional surface profiling system. Metal transfer to the ceramic and metal heads began to be detectable at a 10 kg load, which could be exerted by one-handed force. The surface roughness values significantly increased with increasing test loads in both heads. When the contact force increased, scratching of the head surface occurred in addition to the transfer of metal. The results documented that metallic debris was transferred from the titanium alloy acetabular shell to both ceramic and metal heads by minor scraping. This study suggests that the greatest possible effort should be made to protect femoral heads, regardless of material, from contact with metallic surfaces during total hip arthroplasty.

  2. Ultrasound-Guided Femoral Nerve Block to Facilitate the Closed Reduction of a Dislocated Hip Prosthesis

    Directory of Open Access Journals (Sweden)

    Edward Carlin

    2017-10-01

    Full Text Available Prosthetic hip dislocation is a common but unfortunate complication in patients who have undergone total hip arthroplasty. Successful closed reduction in the emergency department leads to a reduced length of stay and rate of hospitalization. 1, 2 The use of regional anesthesia by femoral nerve block represents a novel approach for controlling pain in patients with hip pathologies. 3 Ultrasound-guided approaches have been used with great success for controlling pain in patients with hip fractures. 4, 5 Here we report the case of a 90-year-old male who presented with a dislocated hip prosthesis, which was subsequently corrected with closed reduction following delivery of regional anesthesia to the femoral nerve under ultrasound guidance. To our knowledge, this represents the first reported use of an ultrasound-guided femoral nerve block to facilitate closed reduction of a dislocated prosthetic hip, and highlights a novel approach that avoids the use of procedural sedation in an elderly patient.

  3. 21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminum 4-Vandium Alloy,” (ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-Chromium-Molybdenum Casting Alloy...

  4. 21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...),” (iii) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone... 5832-3:1996 “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-aluminum 4-vandium Alloy,” (ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-chromium-molybdenum...

  5. Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil

    2010-01-01

    The prevalence of metal allergy is high in the general population, and it is estimated that up to 17% of women and 3% of men are allergic to nickel and that 1-3% are allergic to cobalt and chromium. Among dermatitis patients, the prevalence of metal allergy is even higher. Metal allergy is mainly......) dermatitis. Furthermore, metal allergy has been associated with device failure following insertion of intracoronary stents, hip and knee prostheses, as well as other implants. This area is in need of more research.......The prevalence of metal allergy is high in the general population, and it is estimated that up to 17% of women and 3% of men are allergic to nickel and that 1-3% are allergic to cobalt and chromium. Among dermatitis patients, the prevalence of metal allergy is even higher. Metal allergy is mainly...... an environmental disorder although null mutations in the filaggrin gene complex were recently found to be associated with nickel allergy and dermatitis. Environmental metal exposures include jewelry, buttons, clothing fasteners, dental restorations, mobile phones, and leather. Although consumer exposure...

  6. Debridement, antibiotics, irrigation, and retention (DAIR) of the prosthesis after hip hemiarthroplasty infections. Does it work?

    Science.gov (United States)

    Kazimoglu, Cemal; Yalcin, Nadir; Onvural, Burak; Akcay, Serkan; Agus, Haluk

    2015-08-01

    Debridement, antibiotic, and implant retention (DAIR) is an attractive treatment modality after hip hemiarthroplasty (HA) infections. Data about the success of the procedure after acute onset infections is lacking. The aim of this study was to analyze the clinical outcome and associated risk factors. A multicenter, retrospective cohort study was designed, including 39 patients with acute onset prosthetic infection who had undergone debridement and irrigation with prosthesis retention. The primary outcome measure was infection eradication without prosthesis removal. We also analyzed how the success rate was influenced by the length of the interval between implantation of the prosthesis and the beginning of the treatment. The overall success rate was 41%. Sedimentation rate over 60 mm/h and the longer duration (2 weeks) after prosthesis implantation were found as factors negatively influencing the success rate. Our results indicated limited success to DAIR- treated patients with infected HA. The high failure rate of DAIR treatment after 2 weeks from the implantation should be taken into consideration.

  7. Comportamiento a fatiga del vástago de una prótesis para cadera al caminar//Fatigue behavior stem hip prosthesis for walking

    Directory of Open Access Journals (Sweden)

    Ángel Martínez-Delfín

    2014-01-01

    Full Text Available La prótesis de cadera consiste en sustituir la parte superior fracturada del fémur por una pieza de material biocompatible. Debido a las cargas aleatorias que sobre esta prótesis actúan al caminar la persona injertada, surge la fatiga sobre la prótesis. En este trabajo se realiza el cálculo a fatiga del vástago de una prótesis de caderas fabricada con acero inoxidable austenítico AISI 316L GrQ y de uso actual. Para ellose emplea el método de los elementos finitos, considerando la compleja geometría del vástago, el material y las cargas variables resultantes del caminar de la persona con la prótesis artificial colocada. Se calcula el daño a fatiga que estas cargas provocan en la misma así como el número de pasos que pueden darse, garantizándose una larga vida útil de la prótesis por este concepto de resistencia.Palabras claves: fatiga, prótesis de cadera, ciclo, daño, elementos finitos.______________________________________________________________________________AbstractThe hip prosthesis consists in substituting the fractured femur part by a piece of biocompatible material. Because the random character of loads acting over this prosthesis while person walk, crop up the fatigue on the prosthesis. The fatigue behavior of austenitic stainless steel hips prosthesis is studied in this article. The method of finite elements is used, considering the complex geometry of the part, the material and the variable acting loads, as results of steps of walking person. The fatigue damages are calculated as well as the number of steps that can be given, guarantying a long life of the prosthesis for fatigue resistance concept.Key words: fatigue, hip prosthesis, cycle, damage, finite elements.

  8. Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil

    2010-01-01

    an environmental disorder although null mutations in the filaggrin gene complex were recently found to be associated with nickel allergy and dermatitis. Environmental metal exposures include jewelry, buttons, clothing fasteners, dental restorations, mobile phones, and leather. Although consumer exposure......) dermatitis. Furthermore, metal allergy has been associated with device failure following insertion of intracoronary stents, hip and knee prostheses, as well as other implants. This area is in need of more research....

  9. Tribology of total hip arthroplasty prostheses

    OpenAIRE

    Rieker, Claude B.

    2016-01-01

    Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis. A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient. Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations. All combinations of bearing surface have t...

  10. Bone mineral density after implantation of a femoral neck hip prosthesis--a prospective 5 year follow-up.

    Science.gov (United States)

    Steens, Wolfram; Boettner, Friedrich; Bader, Rainer; Skripitz, Ralf; Schneeberger, Alberto

    2015-08-12

    Bone resorption in the proximal femur due to stress shielding has been observed in a number of conventional cementless implants used in total hip arthroplasty. Short femoral-neck implants are claiming less interference with the biomechanics of the proximal femur. The goal of this study was to prospectively investigate the in vivo changes of bone-mineral density as a parameter of bone remodeling around a short, femoral neck prosthesis over the first 5 years following implantation. The secondary goal was to report on its clinical outcome. We are reporting on the changes of bone mineral density of the proximal femur and the clinical outcome up to five years after implantation of a short femoral neck prosthesis. Bone mineral density was determined using dual energy x-ray absorptiometry, performed 10 days, three, 12 and 60 months after surgery. 20 patients with a mean age of 47 years (range 17 to 65) were clinically assessed using the Harris Hip Score. The WOMAC was used as a patient-relevant outcome-measure. In contrast to conventional implants DEXA-scans overall revealed a slight increase of bone mineral density in the proximal femur in the 12 months following the implantation. The Harris Hip Score improved from an average preoperative score of 46 to a postoperative score at 12 months of 91 points and 95 points at 60 months, the global WOMAC index from 5.3 preoperatively to 0.8 at 12 months and 0.6 at 60 months postoperatively. At 60 months after implantation of a short femoral neck prosthesis, all regions except one (region of interest #5) showed no significant changes in BMD compared to baseline measurements at 10 days which is less to the changes in bone mineral density seen in conventional implants.

  11. Novel Bioactive Titanate Layers Formed on Ti Metal and Its Alloys by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Tadashi Kokubo

    2009-12-01

    Full Text Available Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.

  12. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  13. Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: a cadaveric study.

    Science.gov (United States)

    Crouzier, D; Selek, L; Martz, B-A; Dabouis, V; Arnaud, R; Debouzy, J-C

    2012-02-01

    Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Pseudotumor of the Hip due to Fungal Prosthetic Joint Infection

    Directory of Open Access Journals (Sweden)

    Stefano Artiaco

    2013-01-01

    Full Text Available Pseudotumors associated with total hip arthroplasty have been associated with metal-on-metal and metal-on-polyethylene total hip arthroplasties due to a granulomatous foreign-body reaction to methyl methacrylate, polyethylene, or metal ion release, but they have not been related to prosthetic joint infections. In this paper, we report an unusual case of Candida albicans total hip arthroplasty infection, causing a large inflammatory pseudotumor of the hip joint. Fungal periprosthetic joint infections are a rare clinical entity and difficult to diagnose, and a pseudotumor may be part of their clinical presentation. They should be suspected in immunodeficient host patients when clinical symptoms of prosthetic joint infections are observed.

  15. [Total knee and hip prosthesis: variables associated with costs].

    Science.gov (United States)

    Herrera-Espiñeira, Carmen; Escobar, Antonio; Navarro-Espigares, José Luis; Castillo, Juan de Dios Lunadel; García-Pérez, Lidia; Godoy-Montijano, Amparo

    2013-01-01

    The elevated prevalence of osteoarthritis in Western countries, the high costs of hip and knee arthroplasty, and the wide variations in the clinical practice have generated considerable interest in comparing the associated costs before and after surgery. To determine the influence of a number of variables on the costs of total knee and hip arthroplasty surgery during the hospital stay and during the one-year post-discharge. A prospective multi-center study was performed in 15 hospitals from three Spanish regions. Relationships between the independent variables and the costs of hospital stay and postdischarge follow-up were analyzed by using multilevel models in which the "hospital" variable was used to group cases. Independent variables were: age, sex, body mass index, preoperative quality of life (SF-12, EQ-5 and Womac questionnaires), surgery (hip/knee), Charlson Index, general and local complications, number of beds and economic-institutional dependency of the hospital, the autonomous region to which it belongs, and the presence of a caregiver. The cost of hospital stay, excluding the cost of the prosthesis, was 4,734 Euros, and the post-discharge cost was 554 Euros. With regard to hospital stay costs, the variance among hospitals explained 44-46% of the total variance among the patients. With regard to the post-discharge costs, the variability among hospitals explained 7-9% of the variance among the patients. There is considerable potential for reducing the hospital stay costs of these patients, given that more than 44% of the observed variability was not determined by the clinical conditions of the patients but rather by the behavior of the hospitals.

  16. Dose uncertainties associated with a set density override of unknown hip prosthetic composition.

    Science.gov (United States)

    Rijken, James D; Colyer, Christopher J

    2017-09-01

    The dosimetric uncertainties associated with radiotherapy through hip prostheses while overriding the implant to a set density within the TPS has not yet been reported. In this study, the uncertainty in dose within a PTV resulting from this planning choice was investigated. A set of metallic hip prosthetics (stainless steel, titanium, and two different Co-Cr-Mo alloys) were CT scanned in a water bath. Within the TPS, the prosthetic pieces were overridden to densities between 3 and 10 g/cm 3 and irradiated on a linear accelerator. Measured dose maps were compared to the TPS to determine which density was most appropriate to override each metal. This was shown to be in disagreement with the reported literature values of density which was attributed to the TPS dose calculation algorithm and total mass attenuation coefficient differences in water and metal. The dose difference was then calculated for a set density override of 6 g/cm 3 in the TPS and used to estimate the dose uncertainty beyond the prosthesis. For beams passing through an implant, the dosimetric uncertainty in regions of the PTV may be as high as 10% if the implant composition remains unknown and a set density override is used. These results highlight limitations of such assumptions and the need for careful consideration by radiation oncologist, therapist, and physics staff. © 2017 Adelaide Radiotherapy Centre. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty

    Science.gov (United States)

    Klemt, Christian; Modat, Marc; Pichat, Jonas; Cardoso, M. J.; Henckel, Joahnn; Hart, Alister; Ourselin, Sebastien

    2015-03-01

    Metal-on-metal (MoM) hip arthroplasties have been utilised over the last 15 years to restore hip function for 1.5 million patients worldwide. Althoug widely used, this hip arthroplasty releases metal wear debris which lead to muscle atrophy. The degree of muscle wastage differs across patients ranging from mild to severe. The longterm outcomes for patients with MoM hip arthroplasty are reduced for increasing degrees of muscle atrophy, highlighting the need to automatically segment pathological muscles. The automated segmentation of pathological soft tissues is challenging as these lack distinct boundaries and morphologically differ across subjects. As a result, there is no method reported in the literature which has been successfully applied to automatically segment pathological muscles. We propose the first automated framework to delineate severely atrophied muscles by applying a novel automated segmentation propagation framework to patients with MoM hip arthroplasty. The proposed algorithm was used to automatically quantify muscle wastage in these patients.

  18. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    Science.gov (United States)

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  19. Metal-containing lymph nodes following prosthetic replacement of osseous malignancy: potential role of MR imaging in characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M.; Cooper, S.A. [Dept. of Radiology, Royal Orthopaedic Hospital, Birmingham (United Kingdom); Mangham, D.C. [Dept. of Pathology, Royal Orthopaedic Hospital, Birmingham (United Kingdom); Grimer, R.J. [Dept. of Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham (United Kingdom)

    2001-05-01

    The identification of regional lympadenopathy in patients with bone malignancy treated by excision and insertion of a prosthesis usually indicates metastatic disease. We present two cases in which the lymphadenopathy was due to an uncommon but well-recognized foreign body reaction. This is secondary to the lymphatic uptake of metal debris shed by the prosthesis. In one case the metal within the excised lymph node could be demonstrated on in vitro MR imaging and in retrospect on the original in vivo scans. This condition should be considered when undertaking an MR examination in patients with bone malignancy treated by prosthetic replacement in whom there is a clinical suspicion of metastatic spread to the regional lymph nodes. (orig.)

  20. Infrared plasmonic nano-lasers based on Metal Insulator Metal waveguides

    NARCIS (Netherlands)

    Hill, M.T.

    2010-01-01

    We will present our latest results on metal-insulator-metal waveguide devices, in particular reducing the dimensions of devices and distributed feedback lasers. Also we will examine potential useful applications for metal nano-lasers.

  1. Shielding of the Hip Prosthesis During Radiation Therapy for Heterotopic Ossification is Associated with Increased Failure of Prophylaxis

    International Nuclear Information System (INIS)

    Balboni, Tracy A.; Gaccione, Peter; Gobezie, Reuben; Mamon, Harvey J.

    2007-01-01

    Purpose: Radiation therapy (RT) is frequently administered to prevent heterotopic ossification (HO) after total hip arthroplasty (THA). The purpose of this study was to determine if there is an increased risk of HO after RT prophylaxis with shielding of the THA components. Methods and Materials: This is a retrospective analysis of THA patients undergoing RT prophylaxis of HO at Brigham and Women's Hospital between June 1994 and February 2004. Univariate and multivariate logistic regressions were used to assess the relationships of all variables to failure of RT prophylaxis. Results: A total of 137 patients were identified and 84 were eligible for analysis (61%). The median RT dose was 750 cGy in one fraction, and the median follow-up was 24 months. Eight of 40 unshielded patients (20%) developed any progression of HO compared with 21 of 44 shielded patients (48%) (p = 0.009). Brooker Grade III-IV HO developed in 5% of unshielded and 18% of shielded patients (p 0.08). Multivariate analysis revealed shielding (p = 0.02) and THA for prosthesis infection (p = 0.03) to be significant predictors of RT failure, with a trend toward an increasing risk of HO progression with age (p = 0.07). There was no significant difference in the prosthesis failure rates between shielded and unshielded patients. Conclusions: A significantly increased risk of failure of RT prophylaxis for HO was noted in those receiving shielding of the hip prosthesis. Shielding did not appear to reduce the risk of prosthesis failure

  2. Failure of total hip implants: metals and metal release in 52 cases

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Lidén, Carola; Søballe, Kjeld

    2014-01-01

    Background . The pathogenesis of total joint replacement failure is multifactorial. One hypothesis suggests that corrosion and wear of alloys result in metal ion release, which may then cause sensitization and even implant failure, owing to the acquired immune reactivity. Objectives . To assess c...

  3. Hard chrome-coated and fullerene-doped metal surfaces in orthopedic bearings

    OpenAIRE

    Sonntag, Robert; Feige, Katja; Santos, Claudia Beatriz dos; Kretzer, Jan Philippe

    2017-01-01

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an ...

  4. Benefits of Hot Isostatic Pressure/Powdered Metal (HIP/PM) and Additive Manufacturing (AM) To Fabricate Advanced Energy System Components

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Nancy [Energy Industries of Ohio, Cleveland, OH (United States); Sheppard, Roy [Energy Industries of Ohio, Cleveland, OH (United States)

    2016-12-31

    Advanced Energy systems require large, complex components produced from materials capable of withstanding severe operating environments (high temperature, pressure, corrosivity). Such parts can be difficult to source, as conventional material processing technologies must be tailored to ensure a safe and cost effective approach to large-scale manufacture of quality structural advanced alloy components that meet the performance specifications of AE systems. (HIP/PM) has shown advantages over other manufacturing methods when working with these materials. For example, using HIP’ing in lieu of casting means significant savings in raw material costs, which for expensive, high-nickel alloys can be considerable for large-scale production. Use of HIP/PM also eliminates the difficulties resulting from reactivity of these materials in the molten state and facilitates manufacture of the large size requirements of the AE industry, producing a part that is defect and porosity free, thus further reducing or eliminating time and expense of post processing machining and weld repair. New advances in Additive Manufacturing (AM) techniques make it possible to further expand the benefits of HIP/PM in producing AE system components to create an even more robust manufacturing approach. Traditional techniques of welding and forming sheet metal to produce the HIP canisters can be time consuming and costly, with limitations on the complexity of part which can be achieved. A key benefit of AM is the freedom of design that it offers, so use of AM could overcome such challenges, ultimately enabling redesign of complete energy systems. A critical step toward this goal is material characterization of the required advanced alloys, for use in AM. Using Haynes 282, a high nickel alloy of interest to the Fossil Energy community, particularly for Advanced-UltraSuperCritical (AUSC) operating environments, as well as the crosscutting interests of the aerospace, defense and medical markets, this

  5. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  6. Functional outcome, revision rates and mortality after primary total hip replacement--a national comparison of nine prosthesis brands in England.

    Directory of Open Access Journals (Sweden)

    Mark Pennington

    Full Text Available The number of prosthesis brands used for hip replacement has increased rapidly, but there is little evidence on their effectiveness. We compared patient-reported outcomes, revision rates, and mortality for the three most frequently used brands within each prosthesis type: cemented (Exeter V40 Contemporary, Exeter V40 Duration and Exeter V40 Elite Plus Ogee, cementless (Corail Pinnacle, Accolade Trident, and Taperloc Exceed, and hybrid (Exeter V40 Trilogy, Exeter V40 Trilogy, and CPT Trilogy.We used three national databases of patients who had hip replacements between 2008 and 2011 in the English NHS to compare functional outcome (Oxford Hip Score (OHS ranging from 0 (worst to 48 (best in 43,524 patients at six months. We analysed revisions and mortality in 187,201 patients. We used multiple regression to adjust for pre-operative differences. Prosthesis type had an impact on post-operative OHS and revision rates (both p<0.001. Patients with hybrid prostheses had the best functional outcome (mean OHS 39.4, 95%CI 39.1 to 39.7 and those with cemented prostheses the worst (37.7, 37.3 to 38.1. Patients with cemented prostheses had the lowest reported 5-year revision rates (1.3%, 1.2% to 1.4% and those with cementless prostheses the highest (2.2%, 2.1% to 2.4%. Differences in mortality according to prosthesis type were small and not significant (p = 0.06. Functional outcome varied according to brand among cemented (p = 0.05, with Exeter V40 Duration having the best and cementless prostheses (p = 0.01, with Corail Pinnacle having the best. Revision rates varied according to brand among hybrids (p = 0.05, with Exeter V40 Trident having the lowest.Functional outcomes were better with cementless cups and revision rates were lower with cemented stems, which underlies the good overall performance of hybrids. The hybrid Exeter V40 Trident seemed to produce the best overall results. This brand should be considered as a benchmark in randomised trials.

  7. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal-ceramic and metal crowns by finite element analysis

    Directory of Open Access Journals (Sweden)

    Hema Agnihotri

    2010-01-01

    Full Text Available Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal-ceramic and metal crown and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C. It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown.

  8. Detection of total hip arthroplasties at airport security checkpoints - how do updated security measures affect patients?

    Science.gov (United States)

    Issa, Kimona; Pierce, Todd P; Gwam, Chukwuweieke; Festa, Anthony; Scillia, Anthony J; Mont, Michael A

    2018-03-01

    There have been historical reports on the experiences of patients with total hip arthroplasty (THA) passing through standard metal detectors at airports. The purpose of this study was to analyse those who had recently passed through airport security and the incidence of: (i) triggering of the alarm; (ii) extra security searches; and (iii) perceived inconvenience. A questionnaire was given to 125 patients with a THA during a follow-up appointment. Those who had passed through airport security after January 2014 met inclusion criteria. A survey was administered that addressed the number of encounters with airport security, frequency of metal detector activation, additional screening procedures utilised, whether security officials required prosthesis documentation, and perceived inconvenience. 51 patients met inclusion criteria. 10 patients (20%) reported triggered security scanners. 4 of the 10 patients stated they had surgical hardware elsewhere in the body. 13 of the 51 patients (25%) believed that having their THA increased the inconvenience of traveling. This is different from the historical cohort with standard metal detectors which patients reported a greater incidence of alarm triggering (n = 120 of 143; p = 0.0001) and perceived inconvenience (n = 99 of 143; p = 0.0001). The percentage of patients who have THA triggering security alarms has decreased. Furthermore, the number of patients who feel that their prosthesis caused traveling inconvenience has decreased. We feel that this decrease in alarms triggered and improved perceptions about inconvenience are related to the increased usage of new technology.

  9. Apparent Skin Discoloration about the Knee Joint: A Rare Sequela of Metallosis after Total Knee Replacement

    Directory of Open Access Journals (Sweden)

    Narlaka Jayasekera

    2015-01-01

    Full Text Available Introduction. Metallosis is a phenomenon most commonly associated with hip replacement. However it can occur in any metallic implant subject to wear. Wear creates metal debris, which is deposited in the surrounding soft tissue. This leads to many local adverse reactions including, but not limited to, implant loosening/osteolysis, pain, and effusion. In the deeper joints, for example, the hip, metal deposits are mostly only seen intraoperatively. Case Study. A 74-year-old lady represented to orthopaedic outpatient clinic. Her principle complaint was skin discolouration, associated with pain and swelling over the left knee, on the background of a previous total knee replacement with a metal backed patella resurfacing six years. A plain radiograph revealed loosening of the patellar prosthesis. A diagnosis of metallosis was made; the patient underwent debridement of the stained soft tissue and primary revision of the prosthesis. She remained symptom-free five years after revision. Discussion. Metallosis results in metallic debris which causes tissue staining, often hidden within the soft tissue envelope of the hip, but more apparent in the knee. Metallosis may cause pain, effusion, and systemic symptoms because of raised levels of serum-metal ions. Surgical intervention with revision and debridement can have good functional results.

  10. Data on the histological and immune cell response in the popliteal lymph node in mice following exposure to metal particles and ions

    Directory of Open Access Journals (Sweden)

    Bethany Winans

    2016-12-01

    Full Text Available Hip implants containing cobalt–chromium (CoCr have been used for over 80 years. In patients with metal-on-metal (MoM hip implants, it has been suggested that wear debris particles may contribute to metal sensitization in some individuals, leading to adverse reactions. This article presents data from a study in which the popliteal lymph node assay (PLNA was used to assess immune responses in mice treated with chromium-oxide (Cr2O3 particles, metal salts (CoCl2, CrCl3, and NiCl2 or Cr2O3 particles with metal salts (“A preliminary evaluation of immune stimulation following exposure to metal particles and ions using the mouse popliteal lymph node assay” (B.E. Tvermoes, K.M. Unice, B. Winans, M. Kovochich, E.S. Fung, W.V. Christian, E. Donovan, B.L. Finley, B.L. Kimber, I. Kimber, D.J. Paustenbach, 2016 [1]. Data are presented on (1 the chemical characterization of TiO2 particles (used as a particle control, (2 clinical observations in mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (3 PLN weight and weight index (WI in mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (4 histological changes in PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, (5 percentages of immune cells in the PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts, and (6 percentages of proliferating cells in the PLNs of mice treated with Cr2O3 particles, metal salts or Cr2O3 particles with metal salts.

  11. Biomimetic calcium phosphate coatings: : Physicochemistry and biological activity

    NARCIS (Netherlands)

    Barrère, F.

    2002-01-01

    Plasma-sprayed hydroxylapatite coatings on metallic prosthesis significantly increased the success rate of hip arthroplasty, namely from about 90% after 10 years for cemented hip stems to 98% for HA coated ones. Nowadays, the biomimetic approach has received increased interest because of the

  12. Cutaneous and systemic hypersensitivity reactions to metallic implants.

    Science.gov (United States)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    Cutaneous reactions to metal implants, orthopedic or otherwise, are well documented in the literature. The first case of a dermatitis reaction over a stainless steel fracture plate was described in 1966. Most skin reactions are eczematous and allergic in nature, although urticarial, bullous, and vasculitic eruptions may occur. Also, more complex immune reactions may develop around the implants, resulting in pain, inflammation, and loosening. Nickel, cobalt, and chromium are the three most common metals that elicit both cutaneous and extracutaneous allergic reactions from chronic internal exposure. However, other metal ions as well as bone cement components can cause such hypersensitivity reactions. To complicate things, patients may also develop delayed-type hypersensitivity reactions to metals (ie, in-stent restenosis, prosthesis loosening, inflammation, pain, or allergic contact dermatitis) following the insertion of intravascular stents, dental implants, cardiac pacemakers, or implanted gynecologic devices. Despite repeated attempts by researchers and clinicians to further understand this difficult area of medicine, the association between metal sensitivity and cutaneous allergic reactions remains to be fully understood. This review provides an update of the current knowledge in this field and should be valuable to health care providers who manage patients with conditions related to this field.

  13. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.

    Science.gov (United States)

    Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John

    2016-06-01

    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.

  14. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  15. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    Energy Technology Data Exchange (ETDEWEB)

    Posada, Olga M., E-mail: O.M.PosadaEstefan@leeds.ac.uk [Biomedical Engineering Department, University of Strathclyde, Wolfson Centre, Glasgow G4 0NW (United Kingdom); Gilmour, Denise [Pure and Applied Chemistry Department, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL (United Kingdom); Tate, Rothwelle J., E-mail: r.j.tate@strath.ac.uk [Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE (United Kingdom); Grant, M. Helen [Biomedical Engineering Department, University of Strathclyde, Wolfson Centre, Glasgow G4 0NW (United Kingdom)

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  16. Hip implants - Paper VI - Ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Sargeant, A. [Department of Biological Sciences, Ohio Northern University, Ada, OH 45810 (United States); Goswami, T. [Department of Mechanical Engineering, Ohio Northern University, Ada, OH 45810 (United States)]. E-mail: t-goswami@onu.edu

    2007-07-01

    Total hip-joint arthroplasty is performed in increasing numbers where it translates to about 0.16-0.2% of population per year in industrial countries. In most cases, an implant is a metallic component articulating with a metal, ceramic or poly-ethylene liner as seen in the case of hip, knee and spine. The metal implants release ions in vivo. Therefore, there is a need to study metallic implants and ions released as a result. Toxic concentrations of ions can lead to many adverse physiological effects, including cytotoxicity, genotoxicity, carcinogenicity, and metal sensitivity. There is a need to map ion concentrations establishing boundaries between normal and toxic levels; which however, does not exist. Reference levels of ion concentrations in body fluids and tissues determined by many studies are compiled, reviewed, and presented in this paper. The concentrations of ions released from different alloys, including cobalt, chromium, nickel, molybdenum titanium, aluminum, and vanadium, are presented in this paper. This paper reviews the literature pertaining to clinical data on metal ion concentrations in patients with metal joint prostheses, and laboratory data on the physiological effects of the metals.

  17. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  18. Technical note: validation of a motion analysis system for measuring the relative motion of the intermediate component of a tripolar total hip arthroplasty prosthesis.

    Science.gov (United States)

    Chen, Qingshan; Lazennec, Jean Yves; Guyen, Olivier; Kinbrum, Amy; Berry, Daniel J; An, Kai-Nan

    2005-07-01

    Tripolar total hip arthroplasty (THA) prosthesis had been suggested as a method to reduce the occurrence of hip dislocation and microseparation. Precisely measuring the motion of the intermediate component in vitro would provide fundamental knowledge for understanding its mechanism. The present study validates the accuracy and repeatability of a three-dimensional motion analysis system to quantitatively measure the relative motion of the intermediate component of tripolar total hip arthroplasty prostheses. Static and dynamic validations of the system were made by comparing the measurement to that of a potentiometer. Differences between the mean system-calculated angle and the angle measured by the potentiometer were within +/-1 degrees . The mean within-trial variability was less than 1 degrees . The mean slope was 0.9-1.02 for different angular velocities. The dynamic noise was within 1 degrees . The system was then applied to measure the relative motion of an eccentric THA prosthesis. The study shows that this motion analysis system provides an accurate and practical method for measuring the relative motion of the tripolar THA prosthesis in vitro, a necessary first step towards the understanding of its in vivo kinematics.

  19. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. SU-F-T-197: Investigating Optimal Oblique-Beam Arrangement for Bilateral Metallic Prosthesis Prostate Cancer in Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Tesfamicael, B; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y; Singh, H; Twyford, T [Procure Proton Therapy Center, Oklahoma City, OK (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The main purpose of this study is to investigate the optimum oblique-beam arrangement for bilateral metallic prosthesis prostate cancer treatment in pencil beam scanning (PBS) proton therapy. Methods: A computed tomography dataset of bilateral metallic prosthesis prostate cancer case was selected for this retrospective study. A total of four beams (rightanterior- oblique [RAO], left-anterior-oblique [LAO], left-posterior-oblique [LPO], and right-posterior-oblique [RPO]) were selected for treatment planning. PBS plans were generated using multi-field-optimization technique for a total dose of 79.2 Gy[RBE] to be delivered in 44 fractions. Specifically, five different PBS plans were generated based on 2.5% ± 2 mm range uncertainty using five different beam arrangements (i)LAO+RAO+LPO+RPO, (ii)LAO+RAO, (iii)LPO+RPO, (iv)RAO+LPO, and (v)LAO+RPO. Each PBS plan was optimized by applying identical dose-volume constraints to the PTV, rectum, and bladder. Treatment plans were then compared based on the dose-volume histograms results. Results: The PTV coverage was found to be greater than 99% in all five plans. The homogeneity index (HI) was found to be almost identical (range, 0.03–0.04). The PTV mean dose was found to be comparable (range, 81.0–81.1 Gy[RBE]). For the rectum, the lowest mean dose (8.0 Gy[RBE]) and highest mean dose (31.1 Gy[RBE]) were found in RAO+LAO plan and LPO+RPO plan, respectively. LAO+RAO plan produced the most favorable dosimetric results of the rectum in the medium-dose region (V50) and high-dose region (V70). For the bladder, the lowest (5.0 Gy[RBE]) and highest mean dose (10.3 Gy[RBE]) were found in LPO+RPO plan and RAO+LAO plan, respectively. Other dosimetric results (V50 and V70) of the bladder were slightly better in LPO+RPO plan than in other plans. Conclusion: Dosimetric findings from this study suggest that two anterior-oblique proton beams arrangement (LAO+RAO) is a more favorable option with the possibility of reducing rectal

  1. Stress analysis of different prosthesis materials in implant-supported fixed dental prosthesis using 3D finite element method

    Directory of Open Access Journals (Sweden)

    Pedram Iranmanesh

    2014-01-01

    Full Text Available Introduction: In the present study, the finite element method (FEM was used to investigate the effects of prosthesis material types on stress distribution of the bone surrounding implants and to evaluate stress distribution in three-unit implant-supported fixed dental prosthesis (FDP. Materials and Methods: A three-dimensional (3D finite element FDP model of the maxillary second premolar to the second molar was designed. Three load conditions were statically applied on the functional cusps in horizontal (57.0 N, vertical (200.0 N, and oblique (400.0 N, θ = 120° directions. Four standard framework materials were evaluated: Polymethyl methacrylate (PMMA, base-metal, porcelain fused to metal, andporcelain. Results: The maximum of von Mises stress in the oblique direction was higher than the vertical and horizontal directions in all conditions. In the bone-crestal section, the maximum von Mises stress (53.78 MPa was observed in PMMA within oblique load. In FDPs, the maximum stress was generated at the connector region in all conditions. Conclusion: A noticeable difference was not observed in the bone stress distribution pattern with different prosthetic materials. Although, higher stress value could be seen in polymethyl methacrylate, all types of prosthesis yielded the same stress distribution pattern in FDP. More clinical studies are needed to evaluate the survival rate of these materials.

  2. Deposition of metal Islands, metal clusters and metal containing single molecules on self-assembled monolayers

    NARCIS (Netherlands)

    Speets, Emiel Adrianus

    2005-01-01

    The central topic of this thesis is the deposition of metals on Self-Assembled Monolayers (SAMs). Metals are deposited in the form of submicron scale islands, nanometer scale clusters, and as supramolecular, organometallic coordination cages. Several SAMs on various substrates were prepared and

  3. "Tripolar" hip arthroplasty for failed hip resurfacing: nineteen years follow-up.

    Science.gov (United States)

    Scheerlinck, T; Casteleyn, P P

    2001-10-01

    The authors describe the case of a 37-year-old patient who sustained a subcapital femoral neck fracture six months after ICLH double-cup hip resurfacing. As the polyethylene acetabular resurfacing component was undamaged and well fixed, a standard femoral stem with a bipolar head was inserted. The outer diameter of the bipolar head was chosen to fit the resurfacing socket. The "tripolar" hip arthroplasty has functioned well for 19 years and was revised for aseptic cup loosening. The cemented femoral stem was still well fixed and was not revised. Although the "tripolar" hip has functioned well in our case, we believe it is not indicated for metal on metal bearings. In this case the use of an appropriate modular head with a correct head-socket clearance is preferred.

  4. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Yan, H.H.; Li, X.J.

    2009-01-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  5. The use of polymer gel dosimetry to measure dose distribution around metallic implants

    International Nuclear Information System (INIS)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-01-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. (author)

  6. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    Science.gov (United States)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  7. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  8. Hearing loss and potential hazards of metallic middle-ear implants in NMR-magnetic fields

    International Nuclear Information System (INIS)

    Huettenbrink, K.B.

    1987-01-01

    Concurrent with the expanding clinical applications of nuclear magnetic resonance (NMR) imaging, patients with metallic middle-ear implants will certainly be exposed to this strong magnetic field in the future. To determine potential hazards, associated with movements of steel- or Platinium stapes-prostheses, several tests were performed in a 0.5 tesla NMR unit and the induced forces were calculated. Although the commonly used paramagnetic steel-wire or platinium-alloys will not dislodge in vivo, ferromagnetic prostheses may present a hazardous risk. Prior to exposure to the magnetic field, information about the implanted material should therefore be obtained. A side-effect of the induced current flow is the attenuation of the sound-vibrations of the stapes prosthesis. This, 5-10 dB impairment of transmission develops only at a certain position of the patient's head, when the prosthesis vibrates perpendicularly to the magnetic field's Z-axis. Patients with a metallic prosthesis should be informed about this purely physical, harmless phenomenon prior to entering the NMR-cylinder. (orig.) [de

  9. TWO-STAGE REVISION HIP REPLACEMENT PATIENS WITH SEVERE ACETABULUM DEFECT (CASE REPORT

    Directory of Open Access Journals (Sweden)

    V. V. Pavlov

    2017-01-01

    Full Text Available Favorable short-term results of arthroplasty are observed in 80–90% of cases, however, over the longer follow up period the percentage of positive outcomes is gradually reduced. Need for revision of the prosthesis or it’s components increases in proportion to time elapsed from the surgery. In addition, such revision is accompanied with a need to substitute the bone defect of the acetabulum. As a solution the authors propose to replace pelvic defects in two stages. During the first stage the defect was filled with bone allograft with platelet-rich fibrin (allografting with the use of PRF technology. After the allograft remodeling during the second stage the revision surgery is performed by implanting standard prostheses. The authors present a clinical case of a female patient with aseptic loosening of acetabular component of prosthesis in the right hip joint, with failed hip function of stage 2, right limb shortening of 2 cm. Treatment results confirm the efficiency and rationality of the proposed bone grafting option. The authors conclude bone allograft in combination with the PRF technology proves to be an alternative to the implantation of massive metal implants in the acetabulum while it reduces the risk of implant-associated infection, of metallosis in surrounding tissues and expands further revision options.

  10. [Total hip arthroplasty in post-dysplastic hip arthritis. Can type and position of the acetabular component influence longevity of the prosthesis?].

    Science.gov (United States)

    Fousek, J; Indráková, P

    2007-02-01

    The aim of the study was a retrospective evaluation of our patients with post-dysplastic hips treated by cemented or non-cemented total hip arthroplasty (THA) in order to ascertain which type and position of the acetabular component was most effective. In the years 1999-2002, 111 THA procedures were performed in 93 patients, 76 women and 17 men, with post-dysplastic hip arthritis. The average age of the patients at the time of implantation was 52.6 years. On the basis of pre-operative radiographic findings, the patients' conditions were evaluated using the Hartofilakidis classification into three disease categories: dysplasia, low dislocation and high dislocation, and the patients were placed in two groups. Group 1 included 78 patients, and group 2 comprised 26 patients. None of our patients was classified as having high dislocation. Thirty-nine of these patients had previously undergone surgery for dysplastic hips. A total of 104 THAs were evaluated, because radiographic data was incomplete in seven cases. In addition to X-ray findings, the prosthesis type (cemented, hybrid, non-cemented), post-operative complications and signs of loosening were included in the evaluation. Clinical outcomes were assessed by the Harris score. The follow-up terminating on 31st December 2005 was 67 months on the average. In group 1 patients, the average Harris score increased from 38.6 to 80.3 points and in group 2 patients from 35.5 to 84.9 points, mostly with excellent and good results. In 72.1 % of the hips, a press-fit acetabular component was implanted. In 55.8 % of the cases, the acetabular component was implanted off the anatomical center of rotation, into the high hip center, with the range from 9 to 20 mm and an average of 15 mm. The average limb lengthening was 2.5 cm, ranging from 1.0 to 3.5 cm. Our results show that it is more effective to use non-cemented THA for post-dysplastic hips. The implantation of a noncemented acetabular component into the high center provides

  11. Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

    2012-01-01

    to have a high melting point as well, perhaps exceeding 1500 C. The purpose of the work reported here is to find a potential commercial process with which (var e psilon)-metal plus other components of UDS can be consolidated into a solid with minimum surface area and high strength Here, we report the results from the preliminary evaluation of spark-plasma sintering (SPS), hot-isostatic pressing (HIP), and microwave sintering (MS). Since bulk (var e psilon)-metal is not available and companies could not handle radioactive materials, we prepared mixtures of the five individual metal powders (Mo, Ru, Rh, Pd, and Re) and baddeleyite (ZrO 2 ) to send the vendors of SPS, HIP, and MS. The processed samples were then evaluated at the Pacific Northwest National Laboratory (PNNL) for bulk density and phase assemblage with X-ray diffraction (XRD) and phase composition with scanning electron microscopy (SEM). Physical strength was evaluated qualitatively. Results of these scoping tests showed that fully dense cermet (ceramic-metal composite) materials with up to 35 mass% of ZrO 2 were produced with SPS and HIP. Bulk density of the SPS samples ranged from 87 to 98% of theoretical density, while HIP samples ranged from 96 to 100% of theoretical density. Microwave sintered samples containing ZrO 2 had low densities of 55 to 60% of theoretical density. Structurally, the cermet samples showed that the individual metals alloyed in to (var e psilon)-phase - hexagonal-close-packed (HCP) alloy (4-95 mass %), the α-phase - face-centered-cubic (FCC) alloy structure (3-86 mass %), while ZrO 2 remained in the monoclinic structure of baddeleyite. Elementally, the samples appeared to have nearly uniform composition, but with some areas rich in Mo and Re, the two components with the highest melting points. The homogeneity in distribution of the elements in the alloy is significantly improved in the presence of ZrO 2 . However, ZrO 2 does not appear to react with the alloy, nor was Zr found in

  12. Patient-reported outcome of hip resurfacing arthroplasty and standard total hip replacement after short-term follow-up

    DEFF Research Database (Denmark)

    Nissen, Nina; Douw, Karla; Overgaard, Søren

    2011-01-01

    The purpose of this study was to investigate patientreported outcome in terms of satisfaction in two study groups that had undergone hip resurfacing arthro-plasty (HRA) or total hip replacement (THR). The procedure consists of placing a hollow, mushroom-shaped metal cap over the femoral head whil...... a matching metal cup is placed in the acetabulum (pelvis socket)....

  13. Management of long span partially edentulous maxilla with fixed removable denture prosthesis.

    Science.gov (United States)

    Jeyavalan, Mahilan I; Narasimman, M; Venkatakrishnan, C J; Philip, Jacob M

    2012-07-01

    Restoration of a long span partially edentulous maxilla with tooth supported prosthesis is challenging because of inherent anatomic limitations and unfavourable biomechanics present after the loss of teeth. A tooth supported fixed-removable prosthesis is a treatment option for restoration of such long span partially edentulous maxillary arches. This prosthesis meets the requirements for esthetics, phonetics, comfort, and hygiene, as well as favourable biomechanical stress distribution to the remaining natural tooth abutments. This article presents a procedure for fabrication of a fixed-removable prosthesis that has cement-retained custom cast bar metal substructure and a ball attachment retained removable superstructure prosthesis.

  14. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation.

    Science.gov (United States)

    Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo

    2005-05-01

    Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of

  15. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  16. Do different types of bearings and noise from total hip arthroplasty influence hip-related pain, function, and quality of life postoperatively?

    DEFF Research Database (Denmark)

    Varnum, Claus; Pedersen, Alma B; Kjærsgaard-Andersen, Per

    2016-01-01

    with metal-on-metal (MoM) THAs to scores from patients with metal-on-polyethylene (MoP) THAs, and to determine the influence of THA-related noise on PROM scores. Patients and methods - We conducted a nationwide cross-sectional questionnaire survey in a cohort of patients identified from the Danish Hip......, and 12% with MoP THAs reported noise from their hip. For the 3 types of bearings, PROM scores from patients with a noisy THA were statistically significantly worse than those from patients with a silent MoP THA. The exception was noisy CoC and MoM THAs, which had the same mean UCLA activity score...

  17. Quantitating the effect of prosthesis design on femoral remodeling using high-resolution region-free densitometric analysis (DXA-RFA)

    DEFF Research Database (Denmark)

    Farzi, Mohsen; Morris, Richard M; Penny, Jeannette

    2017-01-01

    Dual energy X-ray absorptiometry (DXA) is the reference standard method used to study bone mineral density (BMD) after total hip arthroplasty (THA). However, the subtle, spatially complex changes in bone mass due to strain-adaptive bone remodeling relevant to different prosthesis designs are not ......Dual energy X-ray absorptiometry (DXA) is the reference standard method used to study bone mineral density (BMD) after total hip arthroplasty (THA). However, the subtle, spatially complex changes in bone mass due to strain-adaptive bone remodeling relevant to different prosthesis designs...... using scans acquired during two previous randomized clinical trials (2004 to 2009); one comparing three cemented prosthesis design geometries, and the other comparing a hip resurfacing versus a conventional cementless prosthesis. DXA RFA resolved subtle differences in magnitude and area of bone...... remodeling between prosthesis designs not previously identified in conventional DXA analyses. A mean bone loss of 10.3%, 12.1%, and 11.1% occurred for the three cemented prostheses within a bone area fraction of 14.8%, 14.4%, and 6.2%, mostly within the lesser trochanter (p 

  18. Articulating spacers used in two-stage revision of infected hip and knee prostheses abrade with time.

    Science.gov (United States)

    Fink, Bernd; Rechtenbach, Annett; Büchner, Hubert; Vogt, Sebastian; Hahn, Michael

    2011-04-01

    Articulating spacers used in two-stage revision surgery of infected prostheses have the potential to abrade and subsequently induce third-body wear of the new prosthesis. We asked whether particulate material abraded from spacers could be detected in the synovial membrane 6 weeks after implantation when the spacers were removed for the second stage of the revision. Sixteen hip spacers (cemented prosthesis stem articulating with a cement cup) and four knee spacers (customized mobile cement spacers) were explanted 6 weeks after implantation and the synovial membranes were removed at the same time. The membranes were examined by xray fluorescence spectroscopy, xray diffraction for the presence of abraded particles originating from the spacer material, and analyzed in a semiquantitative manner by inductively coupled plasma mass spectrometry. Histologic analyses also were performed. We found zirconium dioxide in substantial amounts in all samples, and in the specimens of the hip synovial lining, we detected particles that originated from the metal heads of the spacers. Histologically, zirconium oxide particles were seen in the synovial membrane of every spacer and bone cement particles in one knee and two hip spacers. The observations suggest cement spacers do abrade within 6 weeks. Given the presence of abrasion debris, we recommend total synovectomy and extensive lavage during the second-stage reimplantation surgery to minimize the number of abraded particles and any retained bacteria.

  19. Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: An in vivo study

    Directory of Open Access Journals (Sweden)

    Ramashanker Siddharth

    2015-01-01

    Conclusion: Metal-based dentures show maximum leaching immediately after wearing of the prosthesis which decreased significantly over the period of 3 days. Cr and Mn were the metal ions mainly found in saliva of cast partial denture wearer. No concentration of cobalt, molybdenum (Mo and iron (Fe was found in saliva of metal base denture wearer. There was a significant change in concentration of elutes in saliva in first 72 h/3 days making time an effective variable was observed.

  20. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  1. Durability of metals from archaeological objects, metal meteorites, and native metals

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects

  2. Durability of metals from archaeological objects, metal meteorites, and native metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  3. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  4. Gene expression influences on metal immunomodulation

    International Nuclear Information System (INIS)

    Lynes, Michael A.; Fontenot, Andrew P.; Lawrence, David A.; Rosenspire, Allen J.; Pollard, K. Michael

    2006-01-01

    Heavy metals in the environment originate from both human activities and natural processes. Exposure to these metals can result in important changes to immune activity. Depending on the metal and dose, these changes can result in enhanced immune function, diminished immune responses, or altered responses that produce autoimmune disease. One of the intriguing aspects of these various phenomena are the multiple points of interaction with cellular machinery at which metals elicit these changes. The individual sections of this review serve to underscore the variety of targets that can be altered by exposure to heavy metals, and provide some comparisons between the effects of specific heavy metals on the immune system. These observations may ultimately lead us to a comprehensive understanding of the mechanisms by which metals alter the immune system, and may enable the development of countermeasures to offset these effects

  5. Management of long span partially edentulous maxilla with fixed removable denture prosthesis

    Directory of Open Access Journals (Sweden)

    Mahilan I Jeyavalan

    2012-01-01

    Full Text Available Restoration of a long span partially edentulous maxilla with tooth supported prosthesis is challenging because of inherent anatomic limitations and unfavourable biomechanics present after the loss of teeth. A tooth supported fixed-removable prosthesis is a treatment option for restoration of such long span partially edentulous maxillary arches. This prosthesis meets the requirements for esthetics, phonetics, comfort, and hygiene, as well as favourable biomechanical stress distribution to the remaining natural tooth abutments. This article presents a procedure for fabrication of a fixed-removable prosthesis that has cement-retained custom cast bar metal substructure and a ball attachment retained removable superstructure prosthesis.

  6. 99m technetium-MDP bone scintigraphy in evaluation of painful joint prosthesis

    International Nuclear Information System (INIS)

    Milosevic, D.; Jaukovic, M.; Jaukovic, Lj.; Ajdinovic, B.

    2004-01-01

    In addition of clinical evaluation and x-ray radiography, the diagnosis of a loose joint prosthesis is often made by nuclear medicine imaging techniques. Differentiation between loosening and infected prosthesis is important for better treatment of those patients. Aim: The aim of this study was to reevaluate the scintigraphic patterns in patients with painful hip of knee arthroplasty. Material and Method: From 1996. to 2003. forty patients aged 49-78 years were referred for evaluation of possible loosening/infection joint prosthesis: 36 pts with 39 total/ partial hip prosthesis, 1 pt with knee prosthesis and 3 pts with history of previously extracted hip prosthesis due to infection. Whole body acquisition had been performed with a single head gamma camera three hours after the injection of 740 MBq 99m Tc-MDP. Scans were classified as: positive for loosening if abnormal uptake was shown at the tip of the prosthesis; positive for infection if diffuse abnormal uptake was shown around the implant; negative and indeterminate scans. Scintigraphic findings were compared to clinical follow up, histology or cultures. Results: Positive findings were found in 17 bone scans strongly suggesting loosening in 10 cases, infection of prosthesis in 4 cases and both loosening/infection in 3 cases. Bone scintigraphy was normal in 11pts. Scans of three pts with previously extracted hip prosthesis and scheduled for reimplatation, showed inhomogeneously and mildly increased uptake in femur. Most of scans classified as indeterminate (n=12) showed slightly increased tracer uptake in region of acetabular roof, greater or lesser tho chanter, suggesting bone remodeling due to the presence of implant, rather than loosening. Conclusion: 99m Tc-MDP bone scintigraphy had a significant role in assessing the painful joint prosthesis. Complementary diagnostic procedures should be considered in indeterminate scintiscans. (authors)

  7. Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.

    Science.gov (United States)

    Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei

    2012-08-25

    Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.

  8. Transport properties of metal-metal and metal-insulator heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah Elabd, Mohamed Mostafa

    2010-06-09

    In this study we present results of electronic structure and transport calculations for metallic and metal-insulator interfaces, based on density functional theory and the non-equilibrium Green's function method. Starting from the electronic structure of bulk Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient (T(E)) and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies, metallic impurities, non-metallic impurities, interlayer, and interface alloy. We find that vacancy sites have a huge effect on transmission coefficient. The transmission coefficient of non-metallic impurity systems has the same behaviour as the transmission coefficient of vacancy system, since these systems do not contribute to the electronic states at the Fermi energy. We have also studied the transport properties of Au-MgO-Au tunnel junctions. In particular, we have investigated the influence of the thickness of the MgO interlayer, the interface termination, the interface spacing, and O vacancies. Additional interface states appear in the O-terminated configuration due to the formation of Au-O bonds. An increasing interface spacing suppresses the Au-O bonding. Enhancement of T(E) depends on the position and density of the vacancies (the number of vacancies per unit cell). (orig.)

  9. Biomaterial Hypersensitivity: Is It Real? Supportive Evidence and Approach Considerations for Metal Allergic Patients following Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Andrew J. Mitchelson

    2015-01-01

    Full Text Available The prospect of biomaterial hypersensitivity developing in response to joint implant materials was first presented more than 30 years ago. Many studies have established probable causation between first-generation metal-on-metal hip implants and hypersensitivity reactions. In a limited patient population, implant failure may ultimately be related to metal hypersensitivity. The examination of hypersensitivity reactions in current-generation metal-on-metal knee implants is comparatively limited. The purpose of this study is to summarize all available literature regarding biomaterial hypersensitivity after total knee arthroplasty, elucidate overall trends about this topic in the current literature, and provide a foundation for clinical approach considerations when biomaterial hypersensitivity is suspected.

  10. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  11. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La “Sapienza,” 00185 Roma (Italy); Montoro, Silvia [IFIS Litoral, CONICET-UNL, Laboratorio de Fisica de Superficies e Interfaces, Güemes 3450, Santa Fe (Argentina); Mariani, Carlo, E-mail: carlo.mariani@uniroma1.it [Dipartimento di Fisica, CNISM, Università di Roma La “Sapienza,” 00185 Roma (Italy)

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  12. Metal Artifacts Reduction of Pedicle Screws on Spine Computed Tomography Images Using Variable Thresholding Technique

    International Nuclear Information System (INIS)

    Kaewlek, T.; Koolpiruck, D.; Thongvigitmanee, S.; Mongkolsuk, M.; Chiewvit, P.; Thammakittiphan, S.

    2012-01-01

    Metal artifacts are one of significant problems in computed tomography (CT). The streak lines and air gaps arise from metal implants of orthopedic patients, such as prosthesis, dental bucket, and pedicle screws that cause incorrect diagnosis and local treatment planning. A common technique to suppressed artifacts is by adjusting windows, but those artifacts still remain on the images. To improve the detail of spine CT images, the variable thresholding technique is proposed in this paper. Three medical cases of spine CT images categorized by the severity of artifacts (screws head, one full screw, and two full screws) were investigated. Metal regions were segmented by k-mean clustering, then transformed into a sinogram domain. The metal sinogram was identified by the variable thresholding method, and then replaced the new estimated values by linear interpolation. The modified sinogram was reconstructed by the filtered back- projection algorithm, and added the metal region back to the modified reconstructed image in order to reproduce the final image. The image quality of the proposed technique, the automatic thresholding (Kalender) technique, and window adjustment technique was compared in term of noise and signal to noise ratio (SNR). The propose method can reduce metal artifacts between pedicle screws. After processing by our proposed technique, noise in the modified images is reduced (screws head 121.15 to73.83, one full screw 160.88 to 94.04, and two full screws 199.73 to 110.05 from the initial image) and SNR is increased (screws head 0.87 to 1.88, one full screw 1.54 to 2.82, and two full screws 0.32 to 0.41 from the initial image). The variable thresholding technique can identify the suitable boundary for restoring the missing data. The efficiency of the metal artifacts reduction is indicated on the case of partial and full pedicle screws. Our technique can improve the detail of spine CT images better than automatic thresholding (Kalender) technique, and

  13. [Fine mesh metal endoprostheses for treatment of extensive cervical and intrathoracic tracheomalacia].

    Science.gov (United States)

    Wilmes, E; Berger, H; Dienemann, H; Jolk, A

    1994-01-01

    The treatment of tracheal stenoses caused by tracheomalacia is mainly carried out by means of sleeve resection, tracheopexy with ring support or other tracheoplastic operative procedures. If patients cannot be treated by surgical operative strategies, conventional stents are usually used to dilate the trachea. The use of a self-expanding elastic metal prosthesis in 5 patients with tracheal airway obstruction caused by tracheomalacia proved to be a true alternative in the therapy of tracheobronchial stenoses. We report on the long term use of 5 patients with tracheal stenoses treated by implantation of elastic metal wallstents. The implantation of the stents resulted in immediate improvement in respiratory function in all 5 patients. None of the patients experienced complications secondary to the stent placement. The stents were well tolerated (long-time follow-up 26 months). The implantation of self-expanding metal stents type "wallstent" seems to offer alternative possibilities for the treatment of tracheomalacia.

  14. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  15. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  16. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  17. Influence of metallic dental implants and metal artefacts on dose calculation accuracy.

    Science.gov (United States)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-03-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.

  18. Influence of metallic dental implants and metal artefacts on dose calculation accuracy

    International Nuclear Information System (INIS)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-01-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic trademark EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques. (orig.) [de

  19. Ranges of ions in metals for use in particle treatment planning

    International Nuclear Information System (INIS)

    Jaekel, Oliver

    2006-01-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold. (note)

  20. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  1. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  2. Literature survey on metal waste form for metallic waste from electrorefiners for the electrometallurgical treatment of spent metallic fuels

    International Nuclear Information System (INIS)

    Nishimura, Tomohiro

    2003-01-01

    This report summarizes the recent results of the metal waste form development activities at the Argonne National Laboratory in the USA for high-level radioactive metallic waste (stainless-steel (SS) cladding hulls, zirconium (Zr), noble-metal fission products (NMFPs), etc.) from electrorefiners for the electrometallurgical treatment of spent metallic fuels. Their main results are as follows: (1) SS- 15 wt.% Zr- ∼4 wt.% NMFPs alloy was selected as the metal waste form, (2) metallurgical data, properties, long-term corrosion data, etc. of the alloy have been collected, (3) 10-kg ingots have been produced in hot tests and a 60-kg production machine is under development. The following research should be made to show the feasibility of the metal waste form in Japan: (1) degradation assessment of the metal waste form in Japanese geological repository environments, and (2) clarification of the maximum allowable contents of NMFPs. (author)

  3. Detection of total hip prostheses at airport security checkpoints: how has heightened security affected patients?

    Science.gov (United States)

    Johnson, Aaron J; Naziri, Qais; Hooper, Hasan A; Mont, Michael A

    2012-04-04

    The sensitivity of airport security screening measures has increased substantially during the past decade, but few reports have examined how this affects patients who have undergone hip arthroplasty. The purpose of this study was to determine the experiences of patients who had hip prostheses and who passed through airport security screenings. A consecutive series of 250 patients who presented to the office of a high-volume surgeon were asked whether they had had a hip prosthesis for at least one year and, if so, whether they had flown on a commercial airline within the past year. Patients who responded affirmatively to both questions were asked to complete a written survey that included questions about which joint(s) had been replaced, the number of encounters with airport security, the frequency and location of metal detector activation, any additional screening procedures that were utilized, whether security officials requested documentation regarding the prosthesis, the degree of inconvenience, and other relevant information. Of the 143 patients with hip replacements who traveled by air, 120 (84%) reported triggering the alarm and required wanding with a handheld detector. Twenty-five of these patients reported subsequently having to undergo further inspection, including additional wanding, being patted down, and in two cases having to undress in a private room to show the incision. Ninety-nine (69%) of the 143 patients reported that the prosthetic joint caused an inconvenience while traveling. This study provides interesting and critical information that allows physicians to understand the real-world implications of implanted orthopaedic devices for patients who are traveling where there has been heightened security since September 11, 2001. Patients should be counseled that they should expect delays and be prepared for such inconveniences, but that these are often only momentary. This information could relieve some anxiety and concerns that patients may have

  4. Gait alterations can reduce the risk of edge loading.

    Science.gov (United States)

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    Science.gov (United States)

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  6. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  7. Magnetic susceptibility of 244Cm metal and 249Cf metal

    International Nuclear Information System (INIS)

    Fujita, D.K.; Parsons, T.C.; Edelstein, N.; Noe, M.; Peterson, J.R.

    1975-07-01

    The first magnetic susceptibility measurements made on the expanded fcc phase of 249 Cf metal are reported. Further measurements are needed on other Cf metal phases. Another measurement of the magnetic susceptibility of 244 Cm metal in a limited temperature range has been reported. The result does not agree with previously reported values. Further work is continuing on the synthesis of 244 Cm metal and 248 Cm metal and magnetic measurements on these samples. (auth)

  8. A Study on Graphene—Metal Contact

    Directory of Open Access Journals (Sweden)

    Hongyu Yu

    2013-03-01

    Full Text Available The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. In this study, we review our recent study on the graphene–metal contact characteristics from the following viewpoints: (1 metal preparation method; (2 asymmetric conductance; (3 annealing effect; (4 interfaces impact.

  9. Assessment of metal artifact reduction methods in pelvic CT

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, Mehrsima [Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands); Mehranian, Abolfazl [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Ailianou, Angeliki; Becker, Minerva [Division of Radiology, Geneva University Hospital, Geneva CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9700 RB (Netherlands)

    2016-04-15

    Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulated datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.

  10. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin

    2015-01-01

    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  11. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  12. Prosthetic Rehabilitation by Palatal Hollow Bulb Obturator with Cast Metal Denture Base: A Case Report

    Directory of Open Access Journals (Sweden)

    George Francis

    2015-01-01

    Full Text Available Background: Prosthetic reconstruction of partial maxillectomy defects is a challenging procedure that requires multidisciplinary expertise to achieve an acceptable function, speech and esthetics. This procedure improves the quality of life for the patient as a normal individual. Obturation of the defect depends on its volume and position of remaining hard and soft tissues which determine the retention, stability and support for the prosthesis. The prosthesis should be simple to handle, easy to maintain, biocompatible, light in weight and convenient for future adjustments. This case report describes a clinical case of partial maxillectomy which was successfully rehabilitated with a definitive closed hollow bulb obturator and cast metal denture base.

  13. What Is the Rerevision Rate After Revising a Hip Resurfacing Arthroplasty? Analysis From the AOANJRR.

    Science.gov (United States)

    Wong, James Min-Leong; Liu, Yen-Liang; Graves, Stephen; de Steiger, Richard

    2015-11-01

    rerevision between acetabular revision and combined femoral and acetabular revision (hazard ratio [HR], 1.06 [0.47-2], p = 0.888), femoral revision and combined femoral and acetabular revision (HR, 1.00 [0.65-2], p = 0.987), and acetabular revision and femoral revision (HR, 1.06 [0.47-2], p = 0.893). There was no difference in the rate of rerevision when comparing different bearing surfaces (metal-on-metal versus ceramic-on-ceramic HR, 0.46 [0.16-1.29], p = 0.141; metal-on-metal versus ceramic-on-crosslinked polyethylene HR, 0.51 [0.15-1.76], p = 0.285; metal-on-metal versus metal-on-crosslinked polyethylene HR, 0.62 [0.20-1.89], p = 0.399; and metal-on-metal versus oxinium-on-crosslinked polyethylene HR, 0.53 [0.14-2.05], p = 0.356). Revision of a primary hip resurfacing arthroplasty is associated with a high risk of rerevision. This study may help surgeons guide their patients about the outcomes in the longer term after the first revision of hip resurfacing arthroplasty. Level III, therapeutic study.

  14. Bone-preserving total hip arthroplasty in avascular necrosis of the hip-a matched-pairs analysis.

    Science.gov (United States)

    Merschin, David; Häne, Richard; Tohidnezhad, Mersedeh; Pufe, Thomas; Drescher, Wolf

    2018-07-01

    Short-stem hip arthroplasty has the potential advantage of femoral bone stock preservation, especially in view of the expected revisions in the often relatively young patients. Despite short-stem hip prosthesis are increasingly used for total hip arthroplasty, there are no sufficient mid- and long-term results especially for patients with avascular femoral head osteonecrosis. The present study investigates mid-term functional results as well as the revision rate following implantation of a short-stem prosthesis. In the period 06/2005 until 12/2013, a total of 351 short-stem hip prostheses were implanted. The study included 331 complete data sets. A retrospective analysis was performed using the Oxford Hip Score. All revisions were registered. In a total of 331 prostheses, the Oxford Hip Score was "excellent" in 66.2%, "good" in 12.7%, "fair" in 13.0%, and "poor" in 8.2% with a mean follow-up of 57.4 months (SD ± 29.8; range 24-115). In 26 cases, aseptic osteonecrosis of the hip was the indication (7.9%). The Oxford Hip Score was "excellent" in 66.7%, "good" in 0.0%, "fair" in 20.8%, and "poor" in 12.5%. The cumulated five year survival rate was 96.7%. In mid-term observation, the Metha® short-stem prosthesis shows no disadvantage in functional outcome and in survival time compared to a standard hip stem. Providing a correct indication, the Metha® short stem is a valuable option in total hip arthroplasty for younger patients with avascular osteonecrosis of the femoral head. Evaluation has shown no significant differences between aseptic osteonecrosis and other indications.

  15. Influence of strain and metal thickness on metal-MoS₂ contacts.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-07

    MoS2 and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS2 contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS2(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS2 heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS2 exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS2 with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  16. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  17. NOTE: Ranges of ions in metals for use in particle treatment planning

    Science.gov (United States)

    Jäkel, Oliver

    2006-05-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold.

  18. The Use of 3D Metal Printing (Direct Metal Laser Sintering) in Removable Prosthodontics.

    Science.gov (United States)

    Laverty, Dominic P; Thomas, Matthew B M; Clark, Paul; Addy, Liam D

    2016-11-01

    The use of 3D printing is expanding and it is envisaged that it will have an increasing presence within dentistry. Having an appreciation and understanding of such technology is therefore paramount. It is currently used to produce a variety of dental objects/prostheses. This paper briefly looks at 3D printing in dentistry and specifically describes the use of the direct metal laser sintering 3D printing technique in the production of cobalt chromium removable prosthesis frameworks. Clinical relevance: Understanding the different technologies that can and are being used within the dental field is important, particularly as it is a rapidly changing field. Having an understanding of such technologies will allow practitioners to utilize such technologies appropriately in the management of their patients.

  19. Marginal discrepancy of noble metal-ceramic fixed dental prosthesis frameworks fabricated by conventional and digital technologies.

    Science.gov (United States)

    Afify, Ahmed; Haney, Stephan; Verrett, Ronald; Mansueto, Michael; Cray, James; Johnson, Russell

    2018-02-01

    Studies evaluating the marginal adaptation of available computer-aided design and computer-aided manufacturing (CAD-CAM) noble alloys for metal-ceramic prostheses are lacking. The purpose of this in vitro study was to evaluate the vertical marginal adaptation of cast, milled, and direct metal laser sintered (DMLS) noble metal-ceramic 3-unit fixed partial denture (FDP) frameworks before and after fit adjustments. Two typodont teeth were prepared for metal-ceramic FDP abutments. An acrylic resin pattern of the prepared teeth was fabricated and cast in nickel-chromium (Ni-Cr) alloy. Each specimen group (cast, milled, DMLS) was composed of 12 casts made from 12 impressions (n=12). A single design for the FDP substructure was created on a laboratory scanner and used for designing the specimens in the 3 groups. Each specimen was fitted to its corresponding cast by using up to 5 adjustment cycles, and marginal discrepancies were measured on the master Ni-Cr model before and after laboratory fit adjustments. The milled and DMLS groups had smaller marginal discrepancy measurements than those of the cast group (PDMLS and cast groups (F=30.643, P<.001). Metal-ceramic noble alloy frameworks fabricated by using a CAD-CAM workflow had significantly smaller marginal discrepancies compared with those with a traditional cast workflow, with the milled group demonstrating the best marginal fit among the 3 test groups. Manual refining significantly enhanced the marginal fit of all groups. All 3 groups demonstrated marginal discrepancies within the range of clinical acceptability. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Modified cementless total coxofemoral prosthesis: development, implantation and clinical evaluation

    Directory of Open Access Journals (Sweden)

    S.A. Arias

    2013-12-01

    Full Text Available The aim of this study was to modify canine coxofemoral prostheses and the clinical evaluation of the implantation. Fifteen canine hips and femora of cadavers were used in order to study the surface points of modification in prostheses and develop a perforation guide. Femoral stems and acetabular components were perforated and coated with biphasic calcium phosphate layer. Twelve young adult male mongrel dogs were implanted with coxofemoral prostheses. Six were operated upon and implanted with cemented canine modular hip prostheses, establishing the control group. The remaining six were implanted with a novel design of cementless porous tricalcic phosphate-hydroxyapatite coated hip prostheses. Clinical and orthopedic performance, complications, and thigh muscular hypotrophy were assessed up to the 120th post-operatory day. After 120 days, animals with cementless prostheses had similar clinical and orthopedic performance compared to the cemented group despite the increased pain thigh hypotrophy. Animals that underwent cementless hip prosthesis evidenced more pain, compared to animals with cemented hip prosthesis that required longer recuperation time. No luxations, two fractures and two isquiatic neurapraxies were identified in the course of the study. Using both the cemented and the bioactive coated cementless model were suitable to dogs, showing clinical satisfactory results. Osseointegration and biological fixation were observed in the animals with the modified cementless hip prosthesis.

  1. Persistent non-specific FDG uptake on PET imaging following hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Hongming; Chacko, Thomas K.; Hickeson, Marc; Stevenson, Karen; Feng, Qi; Ponzo, Fabio; Alavi, Abass [Division of Nuclear Medicine, Department of Radiology, The Hospital of University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Garino, Jonathan P. [Department of Orthopedic Surgery, The Hospital of University of Pennsylvania, Philadelphia, PA 19802 (United States)

    2002-10-01

    Hip arthroplasty is a common surgical procedure, but the diagnosis of infection associated with hip arthroplasty remains challenging. Fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been shown to be a promising imaging modality in settings where infection is suspected. However, inflammatory reaction to surgery can result in increased FDG uptake at various anatomic locations, which may erroneously be interpreted as sites of infection. The purpose of this study was to assess the patterns and time course of FDG accumulation following total hip replacement over an extended period of time. Firstly, in a prospective study nine patients with total hip replacement were investigated to determine the patterns of FDG uptake over time. Three FDG-PET scans were performed in each patient at about 3, 6 and 12 months post arthroplasty. Secondly, in a retrospective analysis, the medical and surgical history and FDG-PET imaging results of 710 patients who had undergone whole-body scans for the evaluation of possible malignant disorders were reviewed. The history of arthroplasty and FDG-PET findings in the hip region were reviewed for this study. Patients with symptomatic arthroplasties or related complaints during FDG-PET scanning were excluded from the analysis. During the entire study period, all nine patients enrolled in the prospective study were demonstrated to have increased FDG uptake around the femoral head or neck portion of the prosthesis that extended to the soft tissues surrounding the femur. Among the patients reviewed in the retrospective study, 18 patients with a history of 21 hip arthroplasties who were asymptomatic at the time of FDG-PET scan met the criteria for inclusion. The time interval between the hip arthroplasty and the FDG-PET study ranged from 3 months to 288 months (mean{+-}SD: 80.4{+-}86.2 months). In 81% (17 of 21) of these prostheses, increased FDG uptake could be noted around the femoral head or neck portion of the

  2. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  3. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  4. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  5. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. The Symmetry of Adverse Local Tissue Reactions in Patients with Bilateral Simultaneous and Sequential ASR Hip Replacement.

    Science.gov (United States)

    Madanat, Rami; Hussey, Daniel K; Donahue, Gabrielle S; Potter, Hollis G; Wallace, Robert; Bragdon, Charles R; Muratoglu, Orhun K; Malchau, Henrik

    2015-10-01

    The purpose of this study was to evaluate whether patients with bilateral metal-on-metal (MoM) hip replacements have symmetric adverse local tissue reactions (ALTRs) at follow-up. An MRI of both hips was performed at a mean time of six years after surgery in 43 patients. The prevalence and severity of ALTRs were found to be similar in simultaneous hips but differences were observed in sequential hips. The order and timing of sequential hip arthroplasties did not affect the severity of ALTRs. Thus, in addition to metal ion exposure from an earlier MoM implant other factors may also play a role in the progression of ALTRs. Bilateral implants should be given special consideration in risk stratification algorithms for management of patients with MoM hip arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects.

    Science.gov (United States)

    Choudhury, Dipankar; Rebenda, David; Sasaki, Shinya; Hekrle, Pavel; Vrbka, Martin; Zou, Min

    2018-05-01

    This study evaluates the impact of dimple shapes on lubricant film formation in artificial hip joints. Micro-dimples with 20-50 µm lateral size and 1 ± 0.2 µm depths were fabricated on CrCoMo hip joint femoral heads using a picosecond laser. Tribological studies were performed using a pendulum hip joint simulator to apply continuous swing flexion-extension motions. The results revealed a significantly enhanced lubricant film thickness (≥ 500 nm) with micro-dimpled prosthesis heads at equilibrium position after the lubricant film has fully developed. The average lubricant film thickness of dimpled prostheses with square- and triangular-shaped dimple arrays over time is about 3.5 that of the non-dimpled prosthesis (204 nm). Remarkably, the prosthesis with square-shaped dimple arrays showed a very fast lubricant film formation reaching their peak values within 0.5 s of pendulum movement, followed by prosthesis with triangular-shaped dimple arrays with a transition period of 42.4 s. The fully developed lubricant film thicknesses (≥ 700 nm) are significantly higher than the surface roughness (≈ 25 nm) demonstrating a hydrodynamic lubrication. Hardly any scratches appeared on the post-experimental prosthesis with square-shaped dimple array and only a few scratches were found on the post-experimental prosthesis with triangular-shaped dimple arrays. Thus, prostheses with square-shaped dimple arrays could be a potential solution for durable artificial hip joints. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome

    Science.gov (United States)

    2016-12-01

    bodies in soft tissue causing plumbism 36-38. There are no strict guidelines as to when patients with gunshot or other metal fragment wounds should...Immunological changes in patients with primary osteoarthritis of the hip after total joint rep lacement. J Bone Joint Surg Br 2003 Jul;85(5):758-64

  9. Battlefield Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome

    Science.gov (United States)

    2014-10-01

    36-38 . There are no strict guidelines as to when patients with gunshot or other metal fragment wounds should be tested to determine serum lead...Immunological changes in patients with primary osteoarthritis of the hip after total joint replacement. J Bone Joint Surg Br 2003 Jul;85(5):758-64. (52

  10. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  11. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  12. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  13. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  14. Studies of Metal-Metal Bonded Compounds in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, John F. [Univ. of Wisconsin, Madison, WI (United States)

    2018-01-19

    The overall goals of this research are (1) to define the fundamental coordination chemistry underlying successful catalytic transformations promoted by metal-metal bonded compounds, and (2) to explore new chemical transformations that occur at metal-metal bonded sites that could lead to the discovery of new catalytic processes. Transformations of interest include metal-promoted reactions of carbene, nitrene, or nitrido species to yield products with new C–C and C–N bonds, respectively. The most promising suite of transition metal catalysts for these transformations is the set of metal-metal bonded coordination compounds of Ru and Rh of the general formula M2(ligand)4, where M = Ru or Rh and ligand = a monoanionic, bridging ligand such as acetate. Development of new catalysts and improvement of catalytic conditions have been stymied by a general lack of knowledge about the nature of highly reactive intermediates in these reactions, the knowledge that is to be supplied by this work. Our three specific objectives for this year have been (A) to trap, isolate, and characterize new reactive intermediates of general relevance to catalysis, (B) to explore the electronic structure and reactivity of these unusual species, and how these two properties are interrelated, and (C) to use our obtained mechanistic knowledge to design new catalysts with a focus on Earth-abundant first-row transition metal compounds.

  15. Treatment of femoral neck fracture by Moore Prosthesis in Cotonou ...

    African Journals Online (AJOL)

    Treatment of femoral neck fracture by Moore Prosthesis in Cotonou. AHM Akue, M Lawson, S Madougou, R Zannou, J Padonou. Abstract. Keywords: Benin; hip; Moore prosthesis; results. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  17. One step HIP canning of powder metallurgy composites

    Science.gov (United States)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  18. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  19. Short-Term Effect of Prosthesis Transforming Sensory Modalities on Walking in Stroke Patients with Hemiparesis

    Science.gov (United States)

    Sekiguchi, Yusuke; Honda, Keita; Ishiguro, Akio

    2016-01-01

    Sensory impairments caused by neurological or physical disorders hamper kinesthesia, making rehabilitation difficult. In order to overcome this problem, we proposed and developed a novel biofeedback prosthesis called Auditory Foot for transforming sensory modalities, in which the sensor prosthesis transforms plantar sensations to auditory feedback signals. This study investigated the short-term effect of the auditory feedback prosthesis on walking in stroke patients with hemiparesis. To evaluate the effect, we compared four conditions of auditory feedback from plantar sensors at the heel and fifth metatarsal. We found significant differences in the maximum hip extension angle and ankle plantar flexor moment on the affected side during the stance phase, between conditions with and without auditory feedback signals. These results indicate that our sensory prosthesis could enhance walking performance in stroke patients with hemiparesis, resulting in effective short-term rehabilitation. PMID:27547456

  20. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  1. Clinical Usefulness of SPECT-CT in Patients with an Unexplained Pain in Metal on Metal (MOM) Total Hip Arthroplasty.

    Science.gov (United States)

    Berber, Reshid; Henckel, Johann; Khoo, Michael; Wan, Simon; Hua, Jia; Skinner, John; Hart, Alister

    2015-04-01

    SPECT-CT is increasingly used to assess painful knee arthroplasties. The aim of this study was to evaluate the clinical usefulness of SPECT-CT in unexplained painful MOM hip arthroplasty. We compared the diagnosis and management plan for 19 prosthetic MOM hips in 15 subjects with unexplained pain before and after SPECT-CT. SPECT-CT changed the management decision in 13 (68%) subjects, Chi-Square=5.49, P=0.24. In 6 subjects (32%) pain remained unexplained however the result reassured the surgeon to continue with non-operative management. SPECT-CT should be reserved as a specialist test to help identify possible causes of pain where conventional investigations have failed. It can help reassure surgeons making management decisions for patients with unexplained pain following MOM hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  3. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  4. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  5. MetalS2: a tool for the structural alignment of minimal functional sites in metal-binding proteins and nucleic acids.

    Science.gov (United States)

    Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana

    2013-11-25

    We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).

  6. Effect of new soil metal immobilizing agents on metal toxicity to terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Lock, K.; Janssen, C.R

    2003-01-01

    Organisms with different exposure routes should be used to simultaneously assess risks of metals in soils. - Application of 5% (w:w) novel metal immobilizing agent reduced the water soluble, the calcium chloride extracted as well as the pore water concentration of zinc in soils from Maatheide, a metal contaminated site in the northeast of Belgium. Addition of the metal immobilizing agents also eliminated acute toxicity to the potworm Enchytraeus albidus and the earthworm Eisenia fetida and chronic toxicity to the springtail Folsomia candida. Cocoon production by E. fetida, however, was still adversely affected. These differences may be explained by the species dependent routes of metal uptake: F. candida is probably mainly exposed via pore water while in E. fetida dietary exposure is probably also important. From these results it is clear that organisms with different exposure routes should be used simultaneously to assess the environmental risk of metal contaminated soils.

  7. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  8. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  9. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as

  10. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    1980-01-01

    Finely divided powders are prepared by first reacting an aqueous solution containing dissolved metal values with excess urea. After the reaction of water in the solution with urea is complete, the resulting molten urea solution is heated to cause metal values in solution to precipitate. The resulting mixture containing precipitated metal values is heated to evaporate volatile material, leaving a dry powder containing the metal values. Detailed examples are given. (U.K.)

  12. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  13. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    International Nuclear Information System (INIS)

    Mautz, E.W.

    1975-11-01

    Literature on the common metals industries, scrap metal relationships, and transportation aspects has been reviewed as background information in a study to determine the feasibility of a portable melting facility for radioactively contaminated metals. This report draws substantially on government-sponsored studies. Aluminum, copper, iron and steel, and nickel metal industries are discussed from the viewpoints of the general industry characteristics, primary metal production processes, and secondary metal processing aspects. 46 references, 10 tables

  14. Microscale metallization on conducting polyaniline patterns

    International Nuclear Information System (INIS)

    Uh, Kyung Chan; Lee, Joosub; Kim, Tae Geun; Lee, Chan Woo; Kim, Jong Man

    2016-01-01

    Fabrication of metallic nanomaterial patterns is very important in the electronic industry. A variety of techniques for producing these metallic nanoparticle patterns have been developed, such as ink-jet printing, 2 direct writing, 3,4 electroplati ng, 5,6 screen printing, 7 and soft lithography including micro-contact printing (μCP) 8–10 and we developed a simple and facile strategy for the fabrication of silver micropatterns on the surface of PANI patterns which were prepared by employing a photo- lithographic method. The silver was metallized along the PANI pattern through the oxidation-reduction reaction without requiring any reducing agent. The straightforward approach described above could open new avenues for the fabrication of metal micropatterns

  15. Microscale metallization on conducting polyaniline patterns

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Kyung Chan; Lee, Joosub; Kim, Tae Geun; Lee, Chan Woo; Kim, Jong Man [Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    Fabrication of metallic nanomaterial patterns is very important in the electronic industry. A variety of techniques for producing these metallic nanoparticle patterns have been developed, such as ink-jet printing, 2 direct writing, 3,4 electroplati ng, 5,6 screen printing, 7 and soft lithography including micro-contact printing (μCP) 8–10 and we developed a simple and facile strategy for the fabrication of silver micropatterns on the surface of PANI patterns which were prepared by employing a photo- lithographic method. The silver was metallized along the PANI pattern through the oxidation-reduction reaction without requiring any reducing agent. The straightforward approach described above could open new avenues for the fabrication of metal micropatterns.

  16. Do large heads enhance stability and restore native anatomy in primary total hip arthroplasty?

    Science.gov (United States)

    Lombardi, Adolph V; Skeels, Michael D; Berend, Keith R; Adams, Joanne B; Franchi, Orlando J

    2011-06-01

    Dislocation remains a serious complication in hip arthroplasty. Resurfacing proponents tout anatomic femoral head restoration as an advantage over total hip arthroplasty. However, advances in bearings have expanded prosthetic head options from traditional sizes of 22, 26, 28, and 32 mm to diameters as large as 60 mm. Large heads reportedly enhance stability owing to increased range of motion before impingement and increased jump distance to subluxation. Available larger diameter material combinations include metal- or ceramic-on-highly crosslinked polyethylene and metal-on-metal, each with distinct advantages and disadvantages. We sought to determine (1) if using larger diameter heads has lowered our dislocation rate; and (2) how closely an anatomic metal-on-metal bearing with diameters to 60 mm replicates native femoral head size. We retrospectively reviewed 2020 primary arthroplasties performed with large heads (≥ 36 mm) in 1748 patients and noted dislocation incidence. In a prospective subset of 89 cases using anatomic heads, native femoral head diameter was measured intraoperatively with calipers by an independent observer and later compared with implanted size. One dislocation has occurred in 2020 hips for an incidence of 0.05%. The prosthetic head averaged 0.7 mm larger than the native head with 68 of 89 (76%) reconstructed to within ± 2 mm of native size. Larger diameter heads have contributed to lower dislocation rates and large-diameter metal-on-metal articulation can provide close anatomic restoration in primary THA.

  17. Simplified Technique for Incorporating a Metal Mesh into Record Bases for Mandibular Implant Overdentures.

    Science.gov (United States)

    Godoy, Antonio; Siegel, Sharon C

    2015-12-01

    Mandibular implant-retained overdentures have become the standard of care for patients with mandibular complete edentulism. As part of the treatment, the mandibular implant-retained overdenture may require a metal mesh framework to be incorporated to strengthen the denture and avoid fracture of the prosthesis. Integrating the metal mesh framework as part of the acrylic record base and wax occlusion rim before the jaw relation procedure will avoid the distortion of the record base and will minimize the chances of processing errors. A simplified method to incorporate the mesh into the record base and occlusion rim is presented in this technique article. © 2015 by the American College of Prosthodontists.

  18. The crescent sign: dissociation of the polyethylene liner from a modular acetabular component in total hip arthroplasty

    International Nuclear Information System (INIS)

    White, S.P.; Blom, A.W.; Lee, M.; Smith, E.J.

    2005-01-01

    To study whether there was a common pattern of clinical symptoms, signs and radiographic features for the dissociation of the polyethylene liner from an acetabular component and to postulate reasons for these features. Retrospective study of notes and radiographs of cases of revision hip arthroplasty for polyethylene liner dissociation of the cementless Harris-Galante I porous-coated acetabular component (Zimmer Inc, Warsaw, IN) at the Avon Orthopaedic Centre, Bristol, UK and St. Mary's Hospital, Bristol, UK between 1995 and 2004. Patients were contacted to confirm preoperative symptoms. Nine cases of late polyethylene liner dissociation of this prosthesis have been revised in these institutions. All patients presented with a reduction in mobility, groin pain and limp. Eight patients reported an audible noise on hip movement. In all cases, radiographs showed radiolucency medial to the femoral neck in association with an eccentrically placed femoral head showing contact with the acetabular metal shell, which we have termed the ''crescent sign.'' There is a typical clinical presentation in this study. The diagnosis can be made from a single anteroposterior pelvic radiograph without the need for previous films for comparison, or the need for arthrography. Clinicians should look specifically for the crescent sign when an eccentrically placed femoral head has been noted, in order to differentiate the more unusual diagnosis of dissociation from that of polyethylene wear. Early revision surgery can prevent damage to the femoral head and metal acetabular shell, thus reducing the complexity of revision surgery. (orig.)

  19. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  20. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  1. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  2. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  3. Determination of digitised radiograph magnification factors for pre-operative templating in hip prosthesis surgery

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, Stephane [Hopital Gabriel Montpied, CHU de Clermont Ferrand, BP 69, Service de Chirurgie Orthopedique et Traumatologique, Clermont Ferrand Cedex 01 (France); Livesey, Christine; Learmonth, Ian Douglas [Southmead Hospital, Westbury-on-Trym, Bristol Implant Research Centre, Avon Orthopaedic Centre, Bristol (United Kingdom)

    2010-03-15

    With digital radiography development, information technology (IT) companies have developed specific software for templating procedures, requiring individual magnification assessments for each patient. The aim of this study was to determine the mean magnification factor of digital radiographs and to evaluate the possibility of using the mean magnification factor or clinical information in templating. We retrospectively evaluated 100 primary total hip arthroplasty digital radiographs using the femoral head prosthesis as a calliper to determinate the mean magnification factor. Working on the assumption that altitude of the hip during radiograph is decisive in modification of magnification factors, we also looked for a correlation between weight, body mass index (BMI), altitude and magnification factor. The magnification factor was 126% (121-130%). A relationship was found between magnification factor (Mf) and weight (Mf = 7.10{sup -4} x weight (kg) + 1.21), but not BMI. In 98% of cases, if the weight-correlated formula is used, the sizing is correct or the error is {+-} 1 mm. With the mean method the sizing is correct or within 1 mm in only 78.2% of cases. Levels of accuracy for the mean magnification factor and the weight-correlated formula are not as high as individual assessments using a calliper; however, they could be used in everyday practice where individual magnification factors have not been calculated. (orig.)

  4. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  5. Plasma methods for metals recovery from metal-containing waste.

    Science.gov (United States)

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  7. Flexible high-κ/Metal gate metal/insulator/metal capacitors on silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-10-01

    Implementation of memory on bendable substrates is an important step toward a complete and fully developed notion of mechanically flexible computational systems. In this paper, we have demonstrated a simple fabrication flow to build metal-insulator-metal capacitors, key components of dynamic random access memory, on a mechanically flexible silicon (100) fabric. We rely on standard microfabrication processes to release a thin sheet of bendable silicon (area: 18 {\\ m cm}2 and thickness: 25 \\\\mu{\\ m m}) in an inexpensive and reliable way. On such platform, we fabricated and characterized the devices showing mechanical robustness (minimum bending radius of 10 mm at an applied strain of 83.33% and nominal strain of 0.125%) and consistent electrical behavior regardless of the applied mechanical stress. Furthermore, and for the first time, we performed a reliability study suggesting no significant difference in performance and showing an improvement in lifetime projections. © 1963-2012 IEEE.

  8. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  9. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  10. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  11. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Boykin, Timothy [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama (United States)

    2014-03-28

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  12. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard; Boykin, Timothy

    2014-01-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales

  13. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  14. On the determination of various metallic and nonmetallic impurities in sodium metal

    International Nuclear Information System (INIS)

    Schneider, H.; Gruenhaeuser, M.; Nagel, G.; Nold, E.; Schaefer, A.; Schumann, H.

    1976-04-01

    Methods for the determination of various metallic and nonmetallic impurities in sodium metal were developed or tested. Detection limits, reproducibilities and results of analyses are reported. (orig.) [de

  15. Microscopical analysis of synovial fluid wear debris from failing CoCr hip prostheses

    Science.gov (United States)

    Ward, M. B.; Brown, A. P.; Cox, A.; Curry, A.; Denton, J.

    2010-07-01

    Metal on metal hip joint prostheses are now commonly implanted in patients with hip problems. Although hip replacements largely go ahead problem free, some complications can arise such as infection immediately after surgery and aseptic necrosis caused by vascular complications due to surgery. A recent observation that has been made at Manchester is that some Cobalt Chromium (CoCr) implants are causing chronic pain, with the source being as yet unidentified. This form of replacement failure is independent of surgeon or hospital and so some underlying body/implant interface process is thought to be the problem. When the synovial fluid from a failed joint is examined particles of metal (wear debris) can be found. Transmission Electron Microscopy (TEM) has been used to look at fixed and sectioned samples of the synovial fluid and this has identified fine (< 100 nm) metal and metal oxide particles within the fluid. TEM EDX and Electron Energy Loss Spectroscopy (EELS) have been employed to examine the composition of the particles, showing them to be chromium rich. This gives rise to concern that the failure mechanism may be associated with the debris.

  16. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  17. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  18. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  19. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-01-01

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  20. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  1. Evaluation of Gait Performance of a Hemipelvectomy Amputation Walking with a Canadian Prosthesis

    Directory of Open Access Journals (Sweden)

    M. T. Karimi

    2014-01-01

    Full Text Available Background. Hemipelvectomy amputation is a surgical procedure in which lower limb and a portion of pelvic are removed. There are a few studies in the literature regarding the performance of subjects with hip disarticulation during walking. However, there is no study on gait analysis of hemipelvectomy subject. Therefore, the aim of this paper was to evaluate the gait and stability of subject with hemipelvectomy amputation. Case Description and Methods. A subject with hemipelvectomy amputation at right side was involved in this study. He used a Canadian prosthesis with single axis ankle joint, 3R21 knee joint, and 7E7 hip joint for more than 10 years. The kinetic and kinematic parameters were collected by a motion analysis system and a Kistler force platform. Findings and Outcomes. There was a significant difference between knee, hip, and ankle range of motions and their moments in the sound and prosthesis sides. In the other side, the stability of the subject in the anteroposterior direction seems to be better than that in the mediolateral direction. Conclusions. There was a significant asymmetry between the kinetic and kinematic performance of the sound and prosthesis sides, which may be due to lack of muscular power and alignment of prosthesis components.

  2. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  3. Imaging of hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Theodore T., E-mail: millertt@hss.edu [Department of Radiology and Imaging, Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021 (United States)

    2012-12-15

    The imaging evaluation of the prosthetic hip begins with radiography, but arthrography, aspiration, scintigraphy, sonography, CT and MR imaging all have roles in the evaluation of the painful prosthesis. This article will review the appearance of normal hip arthroplasty including hemiarthroplasty, total arthroplasty, and hip resurfacing, as well as the appearances of potential complications such as aseptic loosening and osteolysis, dislocation, infection, periprosthetic fracture, hardware failure, and soft tissue abnormalities.

  4. An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: Experimental and clinical studies

    International Nuclear Information System (INIS)

    Yazdia, Mehran; Gingras, Luc; Beaulieu, Luc

    2005-01-01

    Purpose: In this article, an approach to metal artifact reduction is proposed that is practical for clinical use in radiation therapy. It is based on a new interpolation scheme of the projections associated with metal implants in helical computed tomography (CT) scanners. Methods and Materials: A three-step approach was developed consisting of an automatic algorithm for metal implant detection, a correction algorithm for helical projections, and a new, efficient algorithm for projection interpolation. The modified raw projection data are transferred back to the CT scanner device where CT slices are regenerated using the built-in reconstruction operator. The algorithm was tested on a CT calibration phantom in which the density of inserted objects are known and on clinical prostate cases with two hip prostheses. The results are evaluated using the CT number and shape of the objects. Results: The validations on a CT calibration phantom with various inserts of known densities show that the algorithm improved the overall image quality by restoring the shape and the representative CT number of the objects in the image. For the clinical hip replacement cases, a large fraction of the bladder, rectum, and prostate that were not visible on the original CT slices were recovered using the algorithm. Precise contouring of the target volume was thus feasible. Without this enhancement, physicians would have drawn bigger margins to be sure to include the target and, at the same time, could have prescribed a lower dose to keep the same level of normal tissue toxicity. Conclusions: In both phantom experiment and patient studies, the algorithm resulted in significant artifact reduction with increases in the reliability of planning procedure for the case of metallic hip prostheses. This algorithm is now clinically used as a preprocessing before treatment planning for metal artifact reduction

  5. Dose attenuation effect of hip prostheses in a 9-MV photon beam. Commercial treatment planning system versus Monte Carlo calculations

    International Nuclear Information System (INIS)

    Mesbahi, A.; Nejad, F.S.

    2007-01-01

    The purpose of this study was to investigate the dosimetric effect of various hip prostheses on pelvis lateral fields treated by a 9-MV photon beam using Monte Carlo (MC) and effective path-length (EPL) methods. The head of the Neptun 10 pc linac was simulated using the MCNP4C MC code. The accuracy of the MC model was evaluated using measured dosimetric features including depth dose values and dose profiles in a water phantom. The Alfard treatment planning system (TPS) was used for EPL calculations. A virtual water phantom with dimensions of 30 x 30 x 30 cm 3 and a cube with dimensions of 4 x 4 x 4 cm 3 made of various metals centered in 12 cm depth was used for MC and EPL calculations. Various materials including titanium, Co-Cr-Mo, and steel alloys were used as hip prostheses. Our results showed significant attenuation in absorbed dose for points after and inside the prostheses. Attenuations of 32%, 54% and 55% were seen for titanium, Co-Cr-Mo, and steel alloys, respectively, at a distance of 5 cm from the prosthesis. Considerable dose increase (up to 18%) was found at the water-prosthesis interface due to back-scattered electrons using the MC method. The results of EPL calculations for the titanium implant were comparable to the MC calculations. This method, however, was not able to predict the interface effect or calculate accurately the absorbed dose in the presence of the Co-Cr-Mo and steel prostheses. The dose perturbation effect of hip prostheses is significant and cannot be predicted accurately by the EPL method for Co-Cr-Mo or steel prostheses. The use of MC-based TPS is recommended for treatments requiring fields passing through hip prostheses. (author)

  6. Metallic Conductive Nanowires Elaborated by PVD Metal Deposition on Suspended DNA Bundles.

    Science.gov (United States)

    Brun, Christophe; Elchinger, Pierre-Henri; Nonglaton, Guillaume; Tidiane-Diagne, Cheikh; Tiron, Raluca; Thuaire, Aurélie; Gasparutto, Didier; Baillin, Xavier

    2017-09-01

    Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  8. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  9. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  10. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  11. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  12. Metallic DFB lasers

    NARCIS (Netherlands)

    Marell, M.J.H.; Nötzel, R.; Smit, M.K.; Hill, M.T.; Pozo, J.; Mortensen, M.; Urbach, P.; Leijtens, X.; Yousefi, M.

    2010-01-01

    In this paper we present our latest results on the design, fabrication and characterization of metal coated DFB lasers. These devices are based on a specialform of the metal-insulator-metal waveguides, which support plasmon gap modes. The distributed feedback provides control over the laser ~

  13. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani; Fritz, Jan [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Stern, Steven E. [Bond University, Bond Business School, Gold Coast, QLD (Australia); Belzberg, Allan J. [Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD (United States)

    2017-07-15

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips. (orig.)

  14. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants.

    Science.gov (United States)

    Ahlawat, Shivani; Stern, Steven E; Belzberg, Allan J; Fritz, Jan

    2017-07-01

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips.

  15. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fritz, Jan; Stern, Steven E.; Belzberg, Allan J.

    2017-01-01

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips. (orig.)

  16. On effect of surfactants on formation of metal trihydroxyfluoronates

    International Nuclear Information System (INIS)

    Antonovich, V.P.; Novoselova, M.M.; Nazarenko, V.A.

    1984-01-01

    Literary data on the practical application and properties of metal complexes with different trihydroxyfluorone derivatives being formed in the presence of surfactants, on the effect of detergents on acidic-Uasic cOaracteristics of reagents, on the mechanism of formation of coloured metal complexes with 2,3,7- and 3,4,5-trihydroxyfluorons, are systematized. Characteristics (formation conditions, properties) of complexes of Mo(6), Zr(4), Nb(5), W(6), V(4), Te(4), U(6), rare earths, Ta(5), Se(3), Hf(4), In(3) and other metals, are considered. Special attention is paid to the analysis of different approaches to the mechanism of surfactant effect on metal reaction with chromophore organic analytic reagents

  17. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  18. Influence of strain and metal thickness on metal-MoS{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-07

    MoS{sub 2} and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS{sub 2} contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS{sub 2}(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS{sub 2} heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS{sub 2} exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS{sub 2} with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  19. Deformation of the Durom acetabular component and its impact on tribology in a cadaveric model--a simulator study.

    Science.gov (United States)

    Liu, Feng; Chen, Zhefeng; Gu, Yanqing; Wang, Qing; Cui, Weiding; Fan, Weimin

    2012-01-01

    Recent studies have shown that the acetabular component frequently becomes deformed during press-fit insertion. The aim of this study was to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the Durom large head metal-on-metal (MOM) total hips in simulators. Six Durom cups impacted into reamed acetabula of fresh cadavers were used as the experimental group and another 6 size-paired intact Durom cups constituted the control group. All 12 Durom MOM total hips were put through a 3 million cycle (MC) wear test in simulators. The 6 cups in the experimental group were all deformed, with a mean deformation of 41.78 ± 8.86 µm. The average volumetric wear rate in the experimental group and in the control group in the first million cycle was 6.65 ± 0.29 mm(3)/MC and 0.89 ± 0.04 mm(3)/MC (t = 48.43, p = 0.000). The ion levels of Cr and Co in the experimental group were also higher than those in the control group before 2.0 MC. However there was no difference in the ion levels between 2.0 and 3.0 MC. This finding implies that the non-modular acetabular component of Durom total hip prosthesis is likely to become deformed during press-fit insertion, and that the deformation will result in increased volumetric wear and increased ion release. This study was determined to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the prosthesis. Deformation of the cup after implantation increases the wear of MOM bearings and the resulting ion levels. The clinical use of the Durom large head prosthesis should be with great care.

  20. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  1. Effect of metal selection and porcelain firing on the marginal accuracy of titanium-based metal ceramic restorations.

    Science.gov (United States)

    Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi

    2010-01-01

    Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (Pcast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  2. Wetting of metals and glasses on Mo

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  3. Metal artifact reduction method using metal streaks image subtraction

    International Nuclear Information System (INIS)

    Pua, Rizza D.; Cho, Seung Ryong

    2014-01-01

    Many studies have been dedicated for metal artifact reduction (MAR); however, the methods are successful to varying degrees depending on situations. Sinogram in-painting, filtering, iterative method are some of the major categories of MAR. Each has its own merits and weaknesses. A combination of these methods or hybrid methods have also been developed to make use of the different benefits of two techniques and minimize the unfavorable results. Our method focuses on the in-paitning approach and a hybrid MAR described by Xia et al. Although in-painting scheme is an effective technique in reducing the primary metal artifacts, a major drawback is the reintroduction of new artifacts that can be caused by an inaccurate interpolation process. Furthermore, combining the segmented metal image to the corrected nonmetal image in the final step of a conventional inpainting approach causes an issue of incorrect metal pixel values. Our proposed method begins with a sinogram in-painting approach and ends with an image-based metal artifact reduction scheme. This work provides a simple, yet effective solution for reducing metal artifacts and acquiring the original metal pixel information. The proposed method demonstrated its effectiveness in a simulation setting. The proposed method showed image quality that is comparable to the standard MAR; however, quantitatively more accurate than the standard MAR

  4. Metal-support interactions in electrocatalysis: Hydrogen effects on electron and hole transport at metal-support contacts

    International Nuclear Information System (INIS)

    Heller, A.

    1986-01-01

    This paper discusses the effects of hydrogen on electron and hole transport at metal support contacts during electrocatalysis. When hydrogen dissolves in high work function metals such as Pt, Rh or Ru the contact forms between the semiconductor and the hydrogenated metal, which has a work function that is lower than that of the pure metal. Thus by changing the gaseous atmosphere that envelopes metal-substrate contacts, it is possible to reversibly change their diode characteristics. In some cases, such as Pt on n-TiO/sub 2/, Rh on n-TiO/sub 2/ and Ru on n-TiO/sub 2/, it is even possible to reversibly convert Schottky diodes into ohmic contacts by changing the atmosphere from air to hydrogen. In contacts between hydrogen dissolving group VIII metals and semiconducting substrates, one can test for interfacial reaction of the catalysts and the substrate by examining the electrical characteristics of the contacts in air (oxygen) and in hydrogen. In the absence of interfacial reaction, large hydrogen induced variation in the barrier heights is observed and the hydrogenated contacts, approach ideality (i.e. their non-ideality factor is close to unity). When a group VIII metal and a substrate do react, the reaction often produces a phase that blocks hydrogen transport to the interface between the substrate and the reaction product. In this case the hydrogen effect is reduced or absent. Furthermore, because such reaction often introduces defects into the surface of the semiconductor, the contacts have non-ideal diode characteristics

  5. Incorporation of metal bioavailability into regulatory frameworks-metal exposure in water and sediment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlf, Wolfgang [Inst. of Environmental Tech. and Energy Economics, TUHH, Hamburg (Germany); Drost, Wiebke [Umweltpruefung Chemikalien IV, Umweltbundesamt, Dessau (Germany); Heise, Susanne [Dept. of Life Sciences, HAW, Hamburg (Germany)

    2009-10-15

    Background, aim, and scope The cause for this position paper is the impression that risk assessors consider primarily the concentration of free metal ions dissolved in solution controlling metal bioavailability in aquatic systems. Aiming at a more realistic risk assessment of metals, bioavailability has to be discussed under the scope of main uptake routes of metals to organisms. Materials and methods On the basis of a review on the literature relating to bioavailability approaches, this work discusses the incorporation of metal bioavailability into the risk assessment of metals in the context of metal exposure. Results The biotic ligand model (BLM) and the concept of sulfide bound metals described by the ratio of simultaneously extracted metals and acid volatile sulfide concept (AVS) have been developed to consider the bioavailability of metals. Both approaches assume that the free ion concentration is the most relevant exposure pathway. However, apart from geochemical conditions, which control free metal concentration, bioavailability is additionally a result of contaminant/particle interaction and of organisms' activity. Asking for the relevant exposure pathways for inorganic metals to organisms, the compartments' water and sediment have been evaluated and also the importance of contaminated food. (orig.)

  6. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  7. Immunological Responses to Total Hip Arthroplasty.

    Science.gov (United States)

    Man, Kenny; Jiang, Lin-Hua; Foster, Richard; Yang, Xuebin B

    2017-08-01

    The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients' joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15-25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on.

  8. Predicting Metal Speciation & Bioavailability via Estimation of Metal-Organic Thermodynamic Properties

    Science.gov (United States)

    Prasad, A.; Howells, A. E.; Shock, E.

    2017-12-01

    The biological fate of any metal depends on its chemical form in the environment. Arsenic for example, is extremely toxic in the form of inorganic As+3 but completely benign in the organic form of arsenobetaine. Thus, given an exhaustive set of reactions and their equilibrium constants (logK), the bioavailability of any metal can be obtained for blood plasma, hydrothermal fluids or any system of interest. While many data exist for metal-inorganic ligands, logK data covering the temperature range of life for metal-organic complexes are sparse. Hence, we decided to estimate metal-organic logK values from correlations with the commonly available values of ligand pKa. Metal ion specific correlations were made with ligands classified according to their electron donor atoms, denticity and other chemical factors. While this approach has been employed before (Carbonaro et al. 2007, GCA 71, 3958-3968), new correlations were developed that provide estimates even when no metal-organic logK is available. In addition, we have used the same methods to make estimates of metal-organic entropy of association (ΔaS), which can provide logK for any temperature of biological relevance. Our current correlations employ logK and ΔaS data from 30 metal ions (like the biologically relevant Fe+3 & Zn+2) and 74 ligands (like formate and ethylenediamine), which can be expanded to estimate the metal-ligand reaction properties for these 30 metal ions with a possibly limitless number of ligands that may belong to our categories of ligands. With the help of such data, copper speciation was obtained for a defined growth medium for methanotrophs employed by Morton et al. (2000, AEM 66, 1730-1733) that agrees with experimental measurements showing that the free metal ion may not be the bioavailable form in all conditions. These results encourage us to keep filling the gaps in metal-organic logK data and continue finding relationships between biological responses (like metal-accumulation ratios

  9. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  11. Ipsilateral Fracture Shaft Femur with Neglected Dislocation of Prosthesis: A Case Report

    Directory of Open Access Journals (Sweden)

    Mantu Jain

    2013-10-01

    Full Text Available Introduction: Neglected hip dislocation is rare in today’s world and after prosthesis replacement even rarer finding. However such patients may not report to surgeons until they develop secondary complications. Management of such patient’s is a challenge to the treating surgeon and need to be tailored suiting to patient’s demands, expectations and constraints of financial resources. We did not find a similar case in the electronic and print media and therefore report this case which was innovatively managed. Case Report: A 60 year farmer presented with fracture shaft femur and ipsilateral dislocation prosthesis of right hip. He had a hemiarthroplasty done for fracture neck of femur in the past but used to walk with a lurch since he started to ambulate after discharge. However he was satisfied despite “some problems” which had caused shortening of his limb. The patient was informed of the various treatment options and their possible complications. He expressed his inability to afford a Total Hip Arthroplasty (THA at any stage and consented for other options discussed with him. The patient was positioned supine and adductor tenotomy done. Next he was positioned laterally and the fracture was fixed with heavy duty broad dynamic compression plate and screws. The wound was temporarily closed. Now through the previous scar via posterior approach the hip was exposed. The prosthesis was found to be firmly fixed to the proximal femur. The acetabulum was cleared with fibrous tissue. All attempts the prosthesis to relocate the prosthesis failed after several attempts and it was best decided to leave alone. Post operatively period was uneventful. At follow up he refused for any further manoeuvre in future inform of heavy traction and attempts to reduce the same. At one year when he was walking unaided and his X-rays showed that fracture had well united his SF-36 score was PCS – 49.6 and MCS – 51.9. Conclusion: Ipsilateral shaft femur fracture

  12. Nanochemistry of metals

    International Nuclear Information System (INIS)

    Sergeev, Gleb B

    2001-01-01

    The results of studies on the nanochemistry of metals published in recent years are generalised. Primary attention is centred on the methods for the synthesis of nanoparticles and their chemical reactions. The means of stabilisation of nanoparticles which involve individual metals and incorporate atoms of several metals are considered as well as their physicochemical properties. Self-assembling processes of nanoparticles are described. The prospects of using metal nanoparticles in semiconductor devices, catalysis, biology and medicine are discussed. The bibliography includes 165 references.

  13. The unipolar ASR : Viable option in unsalvageable femoral head conditions in the young patient

    Directory of Open Access Journals (Sweden)

    Marya SKS

    2006-01-01

    Full Text Available Background: The management of unsalvageable femoral head conditions in the young patient has remained an unresolved dilemma. Articular surface replacement of the hip has recently made some headway in terms of providing near-normal hip joint mechanics and function. However, this surgery has been limited to early stages of arthritis only with reasonable maintenance of head-neck congruity and morphology. Femoral neck fractures, osteonecrosis with large segment collapse, advanced arthritis with femoral incongruity, etc are traditional contraindications to the resurfacing technique. Methods: We present here a report on our series of 20 cases of unsalvageable femoral heads in young patients (age range, 27 to 52yrs, over a twelve month period (Aug 2004 to Jul 2005, treated with the unipolar ASR prosthesis. Fifteen patients (two had bilateral hip pathology had primary or secondary arthritis (degenerative, post-traumatic, ankylosing spondylitis and post-avascular necrosis while three had old operated femoral neck fractures. All patients underwent hip replacement surgery using the Unipolar ASR prosthesis. Results: Clinical and radiological results at 6-month follow up have been very encouraging and warrant further study. At an average of 4 months post-operatively, patients were able to squat, sit on the ground and perform light sporting activities. Conclusions: The Unipolar ASR prosthesis is an extension of the articular resurfacing technique employing similar principles (large size bearings, metal-on-metal interfaces, and has incorporated the advantages of the uncemented technique. We propose that this technique be more frequently used so as to brighten the prognosis of the young active patient with unsalvageable hip conditions, especially in the Asian scenario.

  14. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Tsang, R.W.

    1981-10-01

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  15. Nanoporous metal-carbon composite

    Science.gov (United States)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  16. Understanding how cells allocate metals using metal sensors and metallochaperones.

    Science.gov (United States)

    Tottey, Stephen; Harvie, Duncan R; Robinson, Nigel J

    2005-10-01

    Each metalloprotein must somehow acquire the correct metal. We review the insights into metal specificity in cells provided by studies of ArsR-SmtB DNA binding, metal-responsive transcriptional repressors, and a bacterial copper chaperone. Cyanobacteria are the one bacterial group that have known enzymatic demand for cytoplasmic copper import. The copper chaperone and ATPases that supply cyanobacterial plastocyanin and cytochrome oxidase are reviewed, along with related ATPases for cobalt and zinc. These studies highlight the contributions of protein-protein interactions to metal speciation. Metal sensors and metallochaperones, along with metal transporters and metal-storage proteins, act in concert not only to supply the correct metals but also to withhold the wrong ones.

  17. On solvent extraction of metals by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Ionov, V.P.

    1984-01-01

    The Ksub(γ) parameter characterizing effective ion charges in ionic associates of metal salts is suggested; these charges parallel with other factors determine the metals extraction by macrocyclic polyethers (crown-ethers). The dependence of metal extraction constant on the Ksub(γ) parameter is discussed. It is shown that the less effective cation charge of alkali metal ionic associates, the more probable its entering the crown-ether cavity. The synergetic crown-ethers extraction is bound as well with Ksub(γ) of metal salts. The differences in the cation extraction constants having the same ionic radius are explained with account of different values of Ksub(γ) parameters of these salts

  18. [Study of friction and loosening in hip endoprostheses].

    Science.gov (United States)

    Dovzak Bajs, Ivana; Cvjetko, Ivan; Car, Dolores; Kokić, Visnja

    2002-01-01

    Like any other operative procedure, the implantation of hip prosthesis is associated with certain complications, which diminishes the value and purpose of such a procedure. One of the complications in artificial hip implantation is loosening of the alloplastic material. Therefore, the aim of this study was to examine the effect of lubrication on the torsional moment and its role in the loosening of the femoral component, using an experimental mechanical model. The following hypothesis was tested: the magnitude of torsional loading in the "bone-endoprosthesis-bone cement system" is similar to any other known loading. The testing device was constructed with the possibility of simulation of positions similar to original performances in the implanted hip prosthesis. It refers primarily to the possibilities of achieving definite forces and velocities. The intention was to point quantitatively to the role of friction moment between the acetabular and femoral endoprosthesis part. Trials were conducted by combining 7 types of loading and 4 kinds of lubrication: dry, water, plasma, and light oil. The testing joint (Ring's prosthesis) was connected through tensometric measuring shaft upon the working forepart oscillating mechanism. Graded by the changeable static loading by means of the pendulum and via lever mechanism the testing joint was loaded by force from 610 to 7137 N. As the cause of friction resistance in the moving joint, torque deformaties of the measuring shaft occurred. The testing joint enabled oscillating movement using a four-part mechanism. In this way, it was possible to define not only the maximum values of the frictional moment (or the coefficient of friction) during one movement cycle but also to examine its relation to the kind of lubrication. Change in the measuring torsional moment were computer recorded. Before each trial, the gauging of the complete outfit was performed. Thereafter, cleaning of the frictional surfaces of the whole outfit was done

  19. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  20. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  1. Influence of metal dental materials on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi [Nippon Medical School, Tokyo (Japan). Main Hospital; Nakata, Minoru; Fujita, Isao

    1998-11-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  2. Influence of metal dental materials on MR imaging

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Nakata, Minoru; Fujita, Isao

    1998-01-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  3. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  4. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  5. Electrical transport through a metal-molecule-metal junction; Transport electrique a travers une jonction metal-molecule-metal

    Energy Technology Data Exchange (ETDEWEB)

    Kergueris, Ch

    1998-12-17

    We investigate the electrical transport through a very few molecules connected to metallic electrodes at room temperature. First, the state of the art in molecular electronics is outlined. We present the most convincing molecular devices reported so far in the literature and the theoretical tools available to analyze the electron transport mechanism through a molecular junction. Second, we describe the use of mechanically controllable break junctions to investigate the electron transport properties through a metal-molecule-metal junction. Two kindsof molecules were adsorbed on the two facing gold electrodes, dodecane-thiol (DT) and bis-thiol-ter-thiophene ({alpha},{omega} T3), that are basically expected to behave as an insulator and as a molecular wire, respectively. In the latter case, we study the chemical reactivity of the molecule and show that {alpha},{omega} T3 is chemically adsorbed on gold electrodes. Current-voltage characteristics of the junction were observed at room temperature. The Gold-DT-Gold junction behaves as a simple metal-insulator-metal junction. On the other hand, the electron transport through a Gold-{alpha},{omega} T3-Gold junction explicitly involves the electronic structure of the molecule which gives rise to step-like features in the current-voltage characteristics. The measured zero bias conductance is interpreted using the scattering theory. At high bias, we discuss two different models: a coherent model where the electron has no time to be completely re-localized in the molecule and a sequential model where the electron is localized in the molecule during the transfer. Finally, we show that the mechanical action of decreasing the inter-electrodes spacing can be used to induce a strong modification of the current-voltage characteristics. (author)

  6. Mechanical analysis of a ceramic head being part of a modular hip prosthesis

    International Nuclear Information System (INIS)

    Ravagli, Ermenegildo

    1998-04-01

    This report still pursues the aim of carrying out a systematic mechanical analysis of a ceramic head being part of a modular hip prosthesis, in order to characterize it exhaustively, i.e. to assess its performances and some of its main specifications. Here in particular the aim is to locate the stress of the head when it undergoes the load transferred by the stem, presuming that the stem-head mating is not perfect, but there is a conical error called of the 2. type, to which corresponds a stem summit angle smaller than the one in the head hole. This conical error changes considerably the head stress and therefore this study is considered decisive for a later correct assessment of its resistance to breaking. This study is performed in the frame of the STRIDE-CETMA Project, which is aimed at founding and developing a Centre for technologically advanced materials in Brindisi (Italy) Technology Park [it

  7. Theory of hydrogen chemisorption on metals

    International Nuclear Information System (INIS)

    Brenig, W.

    1975-01-01

    A theory of hydrogen chemisorption on metals is presented. Green's function is derived taking into account the coupling strength between metal and chemisorbed atom and the strength of the interatomic Coulomb repulsion, allowing the calculation of the local density of states at the adatom, especially for the limiting cases of strong and weak coupling

  8. On mechanism of metals modifying

    International Nuclear Information System (INIS)

    Chernov, V.S.; Busol, F.I.

    1975-01-01

    Data from the literature are cited to show that in several cases, the mechanism of modification of metals and alloys by additives soluble in the melt cannot be explained by the adsorption hypothesis based on the surface activity of these additives. It is suggested that the mechanism of modification by soluble additives can be explained by the presence of a layer of liquid enriched (or depleted) in the additives preceding the crystallization front (densification by concentration), formed under actual conditions of crystallization as a result of the different solubilities of the additive in the solid and liquid phases of the base metal, regardless of its surface activity. This densification by concentration leads to the inhibition of crystal growth in the base metal (barrier action) and to concentration overcooling. On the basis of this theory it is suggested that the modifying action of additives can be predicted from some parameters of the phase diagrams. (author)

  9. NATO Conference on Molecular Metals

    CERN Document Server

    1979-01-01

    During the past few years there has been intense research activity in the design, synthesis, and characterization of materials which are formed from molecular precursors, and which have high or metal-like electrical conductivities, i.e. dcr/dT < O. It has been widely supposed that these new materials, which are commonly called molecular metals, would be pressed into service, for example as devices. Up to now, widespread, practical applications of these sub­ stances have not developed. The NATO Advanced Research Institute on Molecular Metals at Les Arcs, France, September 10-16, 1978 was organized to discuss the scientific and technological potential of research and development in this field. The proceedings of the Institute constitute this book. Several lectures were devoted to the assessment of the present status of research on systems which serve to define major components of the field. The systems which were discussed included TTF-TCNQ, platinum chain compounds, (SN)x, polyacetylene, polydiacetylene, g...

  10. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  11. Biomolecule-coated metal nanoparticles on titanium.

    Science.gov (United States)

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  12. Radiography, radionuclide imaging, and asthrography in the evaluation of total hip and knee replacement

    International Nuclear Information System (INIS)

    Gelman, M.I.; Coleman, R.E.; Stevens, P.M.; Davey, B.W.

    1978-01-01

    Twenty patients with 21 total joint replacements including 17 hips and 4 knees were studied by plain film radiography, radionuclide imaging, and subtraction arthrography to evaluate these procedures for assessing prosthetic complications. Surgery was performed in 14 patients and confirmed loosening of 8 femoral and 7 acetabular hip prosthesis components and 1 femoral and 4 tibial knee prosthesis components. Plain films suggested loosening of only 9 hip components and no knee components. In contrast, radionuclide imaging and subtraction arthrography were considerably more effective in demonstrating loosening as well as other causes of the painful total joint prosthesis

  13. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  14. Radiological evaluation of failed total hip replacement

    International Nuclear Information System (INIS)

    Raspa, V.; Aldrovandi, S.; Pompei, G.

    1988-01-01

    The retrospective study of 50 operated cases of cemented total hip replacement and a review of the literature enabled the authors to define the radiological features of the above-mentioned condition. These features include one or more of the following signs: calcar reabsorption, lacunar erosions, modified relatioships between the prosthesis components, sepsis and loosening, periarticular calcifications dislocation and fracture of prosthesis components. Careful evaluation of these radiological features is extremely important for both an early diagnosis of failed total hip replacement and the choice of an adequate surgical treatment

  15. Do constructed wetlands remove metals or increase metal bioavailability?

    Science.gov (United States)

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C.

    2014-01-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  17. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  18. Metal-in-metal localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G B; Earp, A A, E-mail: g.smith@uts.edu.au [Department of Physics and Advanced Materials and Institute of Nanoscale Technology, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2010-01-08

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  19. Metal-in-metal localized surface plasmon resonance

    Science.gov (United States)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  20. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  1. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  2. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  3. Study on 95 alumina ceramic metallizing and glazing technique

    International Nuclear Information System (INIS)

    Zhou Qun; Wang Wei

    2007-12-01

    Electric heater is a component of pressurizer in NPP. So the connector of heater must suit for special requirement with high reliability. It need join 95% alumina ceramic and special metal together. Traditional technique is to glazing ceramic at first, then sintering metal powder on ceramic. It result in melting glaze when metallizing at high temperature. The research on high temperature glaze hasn't got ideal result. In another way, the experiments prove low temperature metallizing couldn't get enough strength. Base on present conditions, a new technique is introduced. It is first metallizing then glazing. It can not only provide high strength with high temperature metallizing , but also avoid melting glaze at high temperature. Compared with other ways, the experiments prove it is feasible. The test data can satisfy requirement. This research has been put into production. (authors)

  4. Hip arthroplasty for ochronosis

    International Nuclear Information System (INIS)

    Kerimoglu, S.; Onder, C.; Aynaci, O.; Malkoc, C. H.

    2005-01-01

    Alkaptonuria is a metabolic disorder in which homogentisic acid oxidase is absent. Therefore, homogentisic acid accumulates in cartilage and connective tissues. We can diagnose ochronotic arthropathy, a manifestation of long standing alkaptonuria, through careful radiological, physical, and laboratory examination. In this report, we describe 4 cases of ochronotic arthropathy to which we applied cementless total hip prosthesis due to severe hip involvement. (author)

  5. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  6. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  8. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    Science.gov (United States)

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  9. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    2017-12-01

    Full Text Available Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a an industrial standard chromium electrolyte; (b a custom-made hexavalent chromium (Cr6+ electrolyte with a reduced chromium trioxide (CrO3 content, both without solid additives and (c with the addition of fullerene (C60 nanoparticles; and (d a trivalent chromium (Cr3+ electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm than the hexavalent coatings (23–40 µm and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  10. Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar 143001 (India); Arora, Rajneesh; Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); Sharma, Meeta [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India); Khan, Arif Ali [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India)

    2010-05-15

    Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30-50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification. (author)

  11. Detection of incorrect manufacturer labelling of hip components

    Energy Technology Data Exchange (ETDEWEB)

    Durand-Hill, Matthieu; Henckel, Johann; Skinner, John; Hart, Alister [University College London, Institute of Orthopaedics, London (United Kingdom); Burwell, Matthew [Royal United Hospital, Bath (United Kingdom)

    2017-01-15

    We describe the case of a 53-year-old man who underwent a left metal-on-metal hip resurfacing in 2015. Component size mismatch (CSM) was suspected because of the patient's immediate post-operative mechanical symptoms and high metal ion levels. Surgical notes indicated the appropriate combinations of implants were used. However, we detected a mismatch using computed tomography. Revision was performed and subsequent measurements of explanted components confirmed the mismatch. To our knowledge, this case is the first report of a CT method being used in a patient to pre-operatively identify CSM. (orig.)

  12. The coalescence of heterogeneous liquid metal on nano substrate

    Science.gov (United States)

    Wang, Long; Li, Yifan; Zhou, Xuyan; Li, Tao; Li, Hui

    2017-06-01

    Molecular dynamics simulation has been performed to study the asymmetric coalescence of heterogeneous liquid metal on graphene. Simulation results show that the anomalies in the drop coalescence is mainly caused by the wettability of heterogeneous liquid metal. The silver atoms incline to distribute on the outer layer of the gold and copper droplets, revealing that the structure is determined by the interaction between different metal atoms. The coalescence and fusion of heterogeneous liquid metal drop can be predicted by comparing the wettability and the atomic mass of metallic liquid drops, which has important implications in the industrial application such as ink-jet printing and metallurgy.

  13. Effect of HIP temperature and cooling rate on microstructure and hardness of joints for ODS-RAFM steels and JLF-1 steel

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Kimura, Akihiko; Ukai, Shigeharu

    2016-01-01

    Dissimilar-metal joints between ODS-RAFM (oxide-dispersion-strengthened reduced activation ferritic/martensitic) steels and JLF-1 steel were fabricated by hot isostatic pressing (HIP) at 1000 - 1100degC with a cooling rate of 5degC/min. After the HIP, it was always quenched martensite for JLF-1 steel. However, coarse precipitates were found in 9Cr-ODS. Additional annealing experiments to simulate HIP conditions were conducted for 9Cr-ODS with cooling rate ranged from 0.5 to 36degC/min at 800 - 1100degC. The results showed that, to form quenched martensite for 9Cr-ODS, the HIP temperature should be above 1000degC with cooling rate no less than 25dgeC/min. When the cooling rate is increased to 36degC/min, the microstructure of 9Cr-ODS is quenched martensite with precipitate size similar as that before HIP. If the limitation of precipitate size in 9Cr-ODS is 0.2 µm, HIP temperature above 1050degC with cooling rate no less than 30degC/min is needed. In this case, post-weld heat treatment (PWHT) with only tempering is necessary to recover the microstructure of 9Cr-ODS to tempered martensite. For 12Cr-ODS, the HIP temperature and cooling rate has no effect on hardness and precipitate size. PWHT is not necessary for the single-metal joint of 12Cr-ODS from the view point of precipitation control. However, for the dissimilar-metal joints between ODS-RAFM steels and JLF-1 steel, the PWHT condition should be comprehensively determined by considering microstructural evolution of each part in the joints after HIP. (author)

  14. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  15. Aesthethic and masticatory rehabilitation on post mandibular resection with combination of hollow obturator and hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Arif Rachman

    2009-06-01

    Full Text Available Background: Replacing tooth lost caused by caries, periodontal disease, trauma and neoplasm including ameloblastoma which requires mandibular resection is important. Purpose: The aim of the study to rehabilitation of post mandibular resection with combination of hollow obturator and hybrid prosthesis. Case: A patient 25 years old, male, for having prosthesis to cover defect due to post right mandibular resection. Case Management: In this presented case, mandibular plate was applied due to spreading defect with losing almost a half body of mandible (class II modification 2 according to cantor and curtis classification. The design of therapy was mandibular obturator using hybrid prosthesis (removable partial denture metal frame and fixed splint crown with precision attachment with hollow obturator. The application was based on several advantages: good aesthetic performance, retention, stability, lighter weight and equal share of vertical load for teeth on non surgical site. The result of control I, II, III, showed that aesthetic performance, masticatory function, speech and swallowing were in good condition. Conclusion: The design of mandibular obturator using hybrid denture with hollow obturator could rehabilitate aesthetic performance, masticatory function, speech and swallowing for patient with post mandibular resection.

  16. On the structure of heavy metals

    International Nuclear Information System (INIS)

    Friedel, J.

    1958-01-01

    The properties of the last series of Mendeleef's table are compared with those of the elements of the preceding series. This comparison suggests an electronic structure of the 'transition metal' type, with narrow bands, at the beginning of this series (up to certain phases at least of plutonium); then of the rare earth metal type, with independent non-saturated internal layers, further on in the series. The 5 f orbits seem to play an important part in these two types of structure, from uranium on. A more detailed study of the very heavy elements (americium and beyond) and alloys would allow these conclusions to be confirmed. Certain general points, concerning the nature of homopolar connections and paramagnetism in the transition metals, are developed in an additional section. (author) [fr

  17. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  18. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  19. Wear of alumina on alumina total hip prosthesis - effect of lubricant on hip simulator test

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M.; Amino, H. [Kyocera Corp., Fushimi, Kyoto (Japan). Bioceram Div.; Oonishi, H. [Dept. of Orthopaedic Surgery, Artificial Joint Sect. and Biomat. Res. Lab., Osaka Minami National Hospital, Osaka (Japan); Clarke, I.C.; Good, V. [Dept. of Orthopaedic Surgery, Loma Linda Univ. Medical Center, CA (United States)

    2001-07-01

    The complex wear-friction-lubrication behavior of alumina on alumina combination in total hip prostheses (THP) was investigated using a hip joint simulator. The objectives of this study were to evaluate the effect of the ball/cup clearance and of the lubricant conditions. Alumina bearings were categorized in three diametrical clearances, 20-30, 60-70 and 90-100 micrometer, three each and wear tests were carried out with 90% bovine serum. There was no significant difference between three groups. Volumetric wear in the run-in phase for all tested nine ceramic liners averaged 0.27mm{sup 3}/million cycles and in the steady-state phase averaged 0.0042mm{sup 3}/million cycles. In addition to the 90% serum, 27% serum and saline were used as the lubricant for evaluate the effect of serum concentration on alumina on alumina wear couples. The wear test results showed that in all tested conditions the wear trends of alumina BEARING were bi-phasic and wear volume could be affected by the serum concentration. Both ''Run-in'' and ''Steady-state'' wear rates in 90% bovine serum were three times higher than those in saline. (orig.)

  20. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  1. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  2. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  3. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  4. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  5. Rare-earth metal transition metal borocarbide and nitridoborate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Niewa, Rainer; Shlyk, Larysa; Blaschkowski, Bjoern [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Few years after the discovery of superconductivity in high-T{sub c} cuprates, borocarbides and shortly after nitridoborates with reasonably high T{sub c}s up to about 23 K attracted considerable attention. Particularly for the rare-earth metal series with composition RNi{sub 2}[B{sub 2}C] it turned out, that several members exhibit superconductivity next to magnetic order with both T{sub c} above or below the magnetic ordering temperature. Therefore, these compounds have been regarded as ideal materials to study the interplay and coexistence of superconductivity and long range magnetic order, due to their comparably high ordering temperatures and similar magnetic and superconducting condensation energies. This review gathers information on the series RNi{sub 2}[B{sub 2}C] and isostructural compounds with different transition metals substituting Ni as well as related series like RM[BC], RM[BN], AM[BN] and R{sub 3}M{sub 2}[BN]{sub 2}N (all with R = rare-earth metal, A = alkaline-earth metal, M = transition metal) with special focus on synthesis, crystal structures and structural trends in correspondence to physical properties. (orig.)

  6. Immunoglobulin classes, metal binding proteins, and trace metals in ...

    African Journals Online (AJOL)

    , IgA and IgM), metal binding proteins (Transferrin, Caeruloplasmin, Alpha-2- Macroglobulin and Haptoglobin) and nutritionally essential trace metals/heavy metals (Zn, Fe, Se, Cu, Mg, Cd and Pb) in Nigerian cassava processors using single ...

  7. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  8. Fabrication of subwavelength metallic structures by using a metal direct imprinting process

    International Nuclear Information System (INIS)

    Hsieh, C W; Hsiung, H Y; Lu, Y T; Sung, C K; Wang, W H

    2007-01-01

    This work employs a metal direct imprinting process, which possesses the characteristics of simplicity, low-cost and high resolution, for the fabrication of subwavelength structures on a metallic thin film. Herein, the mould featuring periodic line structures is manufactured by using E-beam lithography and followed by a dry etching process; meanwhile, the thin film is fabricated by sputtering Al on a silicon substrate. AFM section analyses are employed to measure imprinting depths of the subwavelength metallic structures and it is found that the uniformity of the imprinting depths is affected by the designed patterns, the material property of thin film and mould deformation. The process temperature and the mould filling that influence the transferred quality are investigated. In addition, TEM is also utilized to examine defects in the subwavelength metallic structures. Finally, good quality subwavelength metallic structures are fabricated under a pressure of 300 MPa for 60 s at room temperature. In this study, we have demonstrated that subwavelength metallic structures with a minimum linewidth of less than 100 nm on the Al thin film are successfully constructed by the metal direct imprinting process

  9. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    International Nuclear Information System (INIS)

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  10. Radiological and scintigraphic evaluation of hip prostheses

    International Nuclear Information System (INIS)

    Bessler, W.; Schaub, W.

    1979-01-01

    The radiological findings following the introduction of hip prostheses are often equivocal. Additional bone scintigrams often provide important information for the evaluation of the prostheses. 1. An unstable hip prosthesis is characterised by abnormal uptake in bone, due to static and mechanical stress. 2. A positive scintigram does not necessarily indicate instability of the prosthesis. Increased uptake may also be due to inflammatory bone changes, healing, bone replacement, abnormal local stresses or soft tissue calcification. 3. In evaluating the scintigram one must take account not only of the intensity of isotope uptake, but also its distribution and exact localisation. 4. It is essential to compare the scintigram with the radiograph. Radiological features of possible instability become diagnostic if they correspond with appropriate increased radioactivity. If the latter is absent, the of instability remains doubtful. 5. In some cases early loosening of the stem of the prosthesis can be diagnosed while the radiograph is still negative. Increased radioactivity in the acetabulum is frequently seen in the presence of a stable acetabular prosthesis and must be interpreted with caution as a sign of loosening of the prosthesis. (orig.) [de

  11. Usefulness of positron emission tomography (TEP) in the assessment of osteo-articular prosthesis

    International Nuclear Information System (INIS)

    Maldonado, A.; Suarez, J.P.; Dominguez, M.L.

    2004-01-01

    Joint arthroplasty is performed with increasing frequency as the population ages. Loosening or infection of the prosthesis is a relatively common event that can limit the lifetime of a prosthesis. Accuracy differentiation between aseptic and septic loosening of the prosthesis remains a challenge because of the consequences for patient management. Moreover, an early diagnosis of infected hip prosthesis is very important for optimal and cost-effective management. Various approaches have developed to visualize infection and inflammation by nuclear medicine techniques. Recently positron emission tomography (PET) with fluorine-l8 labelled 2 fluoro-2-deoxyglucose ( 18 F-FDG) has been shown to delineate infectious and inflammatory foci with high sensitivity owing to the increased glucose metabolism in inflammatory cells. In this paper we review the role of FDG-PET in this common differential diagnosis in patients with total knee and hip prostheses. Different patterns of FDG-PET interpretation have been described as wed as methodological aspects. (author)

  12. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Mugwar, Ahmed J. [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); College of Engineering, Al-Muthanna University, Samawah (Iraq); Harbottle, Michael J., E-mail: harbottlem@cardiff.ac.uk [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom)

    2016-08-15

    Highlights: • Minimum inhibitory concentrations (MIC) are determined for S. pasteurii with a range of metals. • Zinc & cadmium bioprecipitation is strongly linked to microbial carbonate generation. • Lead & copper carbonate bioprecipitation is limited & abiotic processes may be significant. • Bioprecipitation allows survival at & remediation of higher metal concentrations than expected. - Abstract: Biological precipitation of metallic contaminants has been explored as a remedial technology for contaminated groundwater systems. However, metal toxicity and availability limit the activity and remedial potential of bacteria. We report the ability of a bacterium, Sporosarcina pasteurii, to remove metals in aerobic aqueous systems through carbonate formation. Its ability to survive and grow in increasingly concentrated aqueous solutions of zinc, cadmium, lead and copper is explored, with and without a metal precipitation mechanism. In the presence of metal ions alone, bacterial growth was inhibited at a range of concentrations depending on the metal. Microbial activity in a urea-amended medium caused carbonate ion generation and pH elevation, providing conditions suitable for calcium carbonate bioprecipitation, and consequent removal of metal ions. Elevation of pH and calcium precipitation are shown to be strongly linked to removal of zinc and cadmium, but only partially linked to removal of lead and copper. The dependence of these effects on interactions between the respective metal and precipitated calcium carbonate are discussed. Finally, it is shown that the bacterium operates at higher metal concentrations in the presence of the urea-amended medium, suggesting that the metal removal mechanism offers a defence against metal toxicity.

  13. Choice of implant combinations in total hip replacement: systematic review and network meta-analysis.

    Science.gov (United States)

    López-López, José A; Humphriss, Rachel L; Beswick, Andrew D; Thom, Howard H Z; Hunt, Linda P; Burston, Amanda; Fawsitt, Christopher G; Hollingworth, William; Higgins, Julian P T; Welton, Nicky J; Blom, Ashley W; Marques, Elsa M R

    2017-11-02

    Objective  To compare the survival of different implant combinations for primary total hip replacement (THR). Design  Systematic review and network meta-analysis. Data sources  Medline, Embase, The Cochrane Library, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, and the EU Clinical Trials Register. Review methods  Published randomised controlled trials comparing different implant combinations. Implant combinations were defined by bearing surface materials (metal-on-polyethylene, ceramic-on-polyethylene, ceramic-on-ceramic, or metal-on-metal), head size (large ≥36 mm or small meta-analysis for revision. There was no evidence that the risk of revision surgery was reduced by other implant combinations compared with the reference implant combination. Although estimates are imprecise, metal-on-metal, small head, cemented implants (hazard ratio 4.4, 95% credible interval 1.6 to 16.6) and resurfacing (12.1, 2.1 to 120.3) increase the risk of revision at 0-2 years after primary THR compared with the reference implant combination. Similar results were observed for the 2-10 years period. 31 studies (2888 patients) were included in the analysis of Harris hip score. No implant combination had a better score than the reference implant combination. Conclusions  Newer implant combinations were not found to be better than the reference implant combination (metal-on-polyethylene (not highly cross linked), small head, cemented) in terms of risk of revision surgery or Harris hip score. Metal-on-metal, small head, cemented implants and resurfacing increased the risk of revision surgery compared with the reference implant combination. The results were consistent with observational evidence and were replicated in sensitivity analysis but were limited by poor reporting across studies. Systematic review registration  PROSPERO CRD42015019435. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  14. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  15. Metal contamination in water sediments; Contaminacion por metales en sedimentos acuaticos

    Energy Technology Data Exchange (ETDEWEB)

    Usero Garcia, J.; Morillo Aguado, J.; Gracia Manarillo, I. [Universidad de Sevilla. Sevilla (Spain)

    1997-09-01

    The origin, distribution, and behaviour of metals in aquatic systems, and factors affecting the solubilization and entry into the water column of metals associated with sediments are examined. Also, the interaction of these metals with and toxic effects on living organisms are studied. Finally, the existing methods for assessing the degree of pollution of sediments and the mobility of the metals associated with the sediments are explained. In the second section of this paper, the methods used for sampling, preparing, and analysing the sediments are described. (Author) 48 refs.

  16. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  17. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.

    Science.gov (United States)

    Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu

    2018-05-31

    Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The metal borohydrides

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2004-01-01

    Publications on borohydrides of metals are systematized in the monograph. Special attention is paid to investigation in the field of synthesis and properties of borohydrides of rare-earth metals, which were carried out under author's supervision. The monograph reviews the basic types of chemical reactions, which are inherent to borohydrides of metals, and structural principles account for their molecular and crystal structures

  19. Nature of the metal-support interface in supported metal catalysts: results from x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    X-ray absorption spectra characterizing the metal-support interface in supported metal complexes and supported metal catalysts are summarized and evaluated with 29 refs. Mononuclear transition metal complexes on non-reducible metal oxide supports are bonded with metal-oxygen bonds of .apprx.2.15

  20. Failure of metals III: Fracture and fatigue of nanostructured metallic materials

    International Nuclear Information System (INIS)

    Pineau, André; Amine Benzerga, A.; Pardoen, Thomas

    2016-01-01

    Pushing the internal or external dimensions of metallic alloys down to the nanometer scale gives rise to strong materials, though most often at the expense of a low ductility and a low resistance to cracking, with negative impact on the transfer to engineering applications. These characteristics are observed, with some exceptions, in bulk ultra-fine grained and nanocrystalline metals, nano-twinned metals, thin metallic coatings on substrates and freestanding thin metallic films and nanowires. This overview encompasses all these systems to reveal commonalities in the origins of the lack of ductility and fracture resistance, in factors governing fatigue resistance, and in ways to improve properties. After surveying the various processing methods and key deformation mechanisms, we systematically address the current state of the art in terms of plastic localization, damage, static and fatigue cracking, for three classes of systems: (1) bulk ultra-fine grained and nanocrystalline metals, (2) thin metallic films on substrates, and (3) 1D and 2D freestanding micro and nanoscale systems. In doing so, we aim to favour cross-fertilization between progress made in the fields of mechanics of thin films, nanomechanics, fundamental researches in bulk nanocrystalline metals and metallurgy to impart enhanced resistance to fracture and fatigue in high-strength nanostructured systems. This involves exploiting intrinsic mechanisms, e.g. to enhance hardening and rate-sensitivity so as to delay necking, or improve grain-boundary cohesion to resist intergranular cracks or voids. Extrinsic methods can also be utilized such as by hybridizing the metal with another material to delocalize the deformation - as practiced in stretchable electronics. Fatigue crack initiation is in principle improved by a fine structure, but at the expense of larger fatigue crack growth rates. Extrinsic toughening through hybridization allows arresting or bridging cracks. The content and discussions are based on

  1. [Intra-prosthetic dislocation of the Bousquet dual mobility socket].

    Science.gov (United States)

    Lecuire, F; Benareau, I; Rubini, J; Basso, M

    2004-05-01

    The Bousquet system is a dual mobility head-polyethylene polyethylene-metal cup socket. The polyethylene insert retaining the femoral head moves in the noncemented metal cup, increasing both mobility and stability. Between 1989 and 1997, seven cases of intra-prosthetic dislocation (six patients) were observed. The femoral head escaped from the polyethylene insert due to wear. On the average, this complication occurred ten Years after implantation. Risk of dislocation was high in six of the seven hips. All patients had a large sized stem screwed into the femoral neck. There was a characteristic radiological aspect with loss of the concentric head metal cup configuration. The head was applied against the upper wall of the metal cup. Surgical replacement was undertaken early in six patients by simply changing the insert without modifying the other stable components. Outcome remained good at three to eight Years. One patient underwent late surgery. The insert and the cup were replaced with a classical implant. Functional outcome was good but recurrent dislocation occurred. At mid-term, intra-prosthetic dislocation of dual mobility sockets appears to be exceptional. Dislocation results from polyethylene wear leading to failure of the insert to retain the prosthetic head. Wear is favored by direct phenomena (direct contact between neck and insert which can occur early if there is a small difference in the head and neck diameters) or indirect phenomena (factors limiting polyethylene metal-cup mobility). Surgical treatment is necessary. If undertaken early, replacement with a modular head and insert can be sufficient if the prosthesis has not loosened but the metal cup may have to be replaced in the event of metal-metal contact between the head and the cup. Prosthesis loosening, wear of the metal cup, or an identified cause of dislocation imply replacing the failing implants. Implantation of the dual mobility system is particularly interesting for patients with a high risk

  2. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  3. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  4. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  5. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  6. Metals in wine--impact on wine quality and health outcomes.

    Science.gov (United States)

    Tariba, Blanka

    2011-12-01

    Metals in wine can originate from both natural and anthropogenic sources, and its concentration can be a significant parameter affecting consumption and conservation of wine. Since metallic ions have important role in oxide-reductive reactions resulting in wine browning, turbidity, cloudiness, and astringency, wine quality depends greatly on its metal composition. Moreover, metals in wine may affect human health. Consumption of wine may contribute to the daily dietary intake of essential metals (i.e., copper, iron, and zinc) but can also have potentially toxic effects if metal concentrations are not kept under allowable limits. Therefore, a strict analytical control of metal concentration is required during the whole process of wine production. This article presents a critical review of the existing literature regarding the measured metal concentration in wine, methods applied for their determination, and possible sources, as well as their impact on wine quality and human health. The main focus is set on aluminum, arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc, as these elements most often affect wine quality and human health.

  7. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  8. Dose distribution perturbation due to a Co-Cr-Mo prosthesis

    International Nuclear Information System (INIS)

    Castro Novais, J.; Rodriguez Rodriguez, C.; Cabello Murillo, E.; Fernandez Leton, P.; Perez Moreno, J. M.; Lopez Fernandez, A.; Ferrando Sanchez, A.; Martinez Gomez, L. C.

    2009-01-01

    Knowledge of the attenuation and interface effects when irradiating metallic prosthesis is necessary for the radiotherapy treatment of patients with this kind of implants. This report studies the dose distribution of a 6 MV photon beam in the vicinity of a 1,5 cm diameter Co-Cr-Mo prosthesis. Measurements with Gafchromic EBT radiochromic films have been made. Two blocks of cut films have been placed next to the prosthesis, one in each side. Forty two films reaching a height of 1 cm have been piled up in each block. A spatial resolution equal to the thickness of one film (0,24 mm) is achieved. The results show 28% attenuation and the production of a 42% overdose at the entrance interface, 12% and 3% at 1 mm and 2 mm away from the prosthesis respectively. A 5 mm build-up region is originated in the exit interface, where the under dose is less than 10%. The knowledge of the transmission factor and the interface effects allows us to assess the dose calculated by the treatment planning system. (Author) 11 refs.

  9. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  10. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides

  11. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  12. Fundamental study on metal plating removal using pulsed power technology

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Gnapowski, Sebastian; Akiyama, Hidenori

    2013-01-01

    A novel method for the metal removal from metal-plated substrate using pulsed power technology is proposed. A metal-plated substrate with three metal-layers structure (Cu, Ni and Au) is used as the sample substrate. Repetitive pulsed arc discharge plasma is generated between a rod electrode and the surface of substrate. Effect of the type of electrode system on metal plating removal was investigated. The removal region is produced by the moving phenomena of the pulsed arc discharge. A part of Au layer, which is the tompost metal surface of the substrate is vaporized and removed by the repetitive pulsed arc discharges. The proposed method can be used for recycle of metal-plated substrate. (author)

  13. Metal ion effects on enolase activity

    International Nuclear Information System (INIS)

    Lee, M.E.; Nowak, T.

    1986-01-01

    Most metal binding studies with yeast enolase suggest that two metals per monomer are required for catalytic activity. The functions of metal I and metal II have not been unequivocally defined. In a series of kinetic experiments where the concentration of MgII is kept constant at subsaturating levels (1mM), the addition of MnII or of ZnII gives a hyperbolic decrease in activity. The final velocity of these mixed metal systems is the same velocity obtained with either only MnII or ZnII respectively. The concentration of MnII (40 μM) or of Zn (2μM) which gives half maximal effect in the presence of (1mM) MgII is approximately the same as the Km' value for MnII (9μM) or ZnII (3μM) respectively. Direct binding of MnII to enolase in the absence and presence of MgII shows that MnII and MgII compete for the same metal site on enolase. In the presence of 2-phosphoglycerate (2-PGA) and MgII, only a single site is occupied by MnII. Results suggest MnII at site I and MgII at site II. PRR and high resolution 1 H and 31 P NMR studies of enzyme-ligand complexes containing MnII and MgII and MnII are consistent with this model. 31 P measurements allow a measure of the equilibrium constant (0.36) for enolase. Saturation transfer measurements yield net rate constants (k/sub f/ = 0.49s -1 ; k/sub r/ = 1.3s -1 ) for the overall reaction. These values are smaller than k/sub cat/ (38s -1 ) measured under analogous conditions. The cation at site I appears to determine catalytic activity

  14. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  15. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  16. Phosphorus-containing enamel type coatings on metals

    International Nuclear Information System (INIS)

    Sedmale, G.; Sedmalis, U.; Kpbjakov, V.

    1998-01-01

    Experimental data are given on development of temperature resistant glassy electroinsulating coatings for two groups of metals: niobium and its alloys and metals of the Fe-Co group. The development of the coatings is based on the system: BaO-B 2 O 3 (Al 2 O 3 )-SiO 2 -P 2 O 5 with content of P 2 O 5 up to 30 mol %. The formation process of coatings on metals proceeds via formation of intermediate layer with thickness of 4-6 m u m , which in the case of Nb-Zr coatings consists of dense crystalline aggregates, whose composition according to the x-ray phase analysis corresponds to NbP, Al 9 Nb,AlPO 4 , NbPO 3 . In the case Co-Fe alloys the intermediate layer is amorphous, the content of crystalline phases (CoFe 2 O 4 , Fe 2 O 3 ) is low (not more than 10 %). The latter does not significantly influence the magnetic properties of material and provides the electrical insulation at 550-666 deg C. In the case of protective coatings for Nb-Zr metals the formed intermediate layer and glassy surface layer (their total thickness being 40-60 m u m ) provide protection of the metals up to 1000 deg C in the period up to 1000 h. (author)

  17. Study on uranium metallization yield of spent Pressurized Water Reactor fuels and oxidation behavior of fission products in uranium metals

    International Nuclear Information System (INIS)

    Choi, Ke Chon; Lee, Chang Heon; Kim, Won Ho

    2003-01-01

    Metallization yield of uranium oxide to uranium metal from lithium reduction process of spent Pressurized Water Reactor (PWR) fuels was measured using thermogravimetric analyzer. A reduced metal produced in the process was divided into a solid and a powder part, and each metallization yield was measured. Metallization yield of the solid part was 90.7∼95.9 wt%, and the powder being 77.8∼71.5 wt% individually. Oxidation behaviour of the quarternary alloy was investigated to take data on the thermal oxidation stability necessary for the study on dry storage of the reduced metal. At 600∼700 .deg. C, weight increments of allow of No, Ru, Rh and Pd was 0.40∼0.55 wt%. Phase change on the surface of the allow was started at 750 .deg. C. In particular, Mo was rapidly oxidized and then the alloy lost 0.76∼25.22 wt% in weight

  18. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  19. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  20. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...