WorldWideScience

Sample records for metal-iron triad metal-boron

  1. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  2. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  3. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus

    International Nuclear Information System (INIS)

    Rath, N.P.; Fehlner, T.P.

    1988-01-01

    A first-order, parameterized model for calculating 11 B chemical shifts in metal-rich ferraboranes and a correlation of chemical shift with boron Mulliken populations from Fenske-Hall calculations are presented. These correlations are qualitatively different from those reported earlier for boranes and suggest that direct iron-boron interactions lead to large deshielding due to substantial increases in multiple-bond contributions to the shielding tensor. Relaxation rates have been measured for [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 0-2) and correlated with electric field gradients at the boron nucleus estimated from Fenske-Hall calculations. These results demonstrate that formation of the boride, [Fe 4 (CO) 12 B] 3- , by deprotonation is accompanied by the development of large asymmetries in the electronic charge distribution around the boron nucleus. Finally, 7 Li NMR is used to probe the nature of the anions [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 1-3), and observed line shapes suggest close association of Li + with the trianion. 28 references, 3 figures, 4 tables

  4. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Augustyns, Valerie; De Lemos Lima, Tiago Abel; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro; Da Costa Pereira, Lino Miguel

    2016-01-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+-type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+-type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+-type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insi...

  5. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  6. Metal-metal interaction mediates the iron induction of Drosophila MtnB

    International Nuclear Information System (INIS)

    Qiang, Wenjia; Huang, Yunpeng; Wan, Zhihui; Zhou, Bing

    2017-01-01

    Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnB expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected. - Highlights: • Metallothionein B expression is regulated by iron in Drosophila melanogaster. • MtnB has limited physiological roles in iron detoxification. • Binding affinity of MtnB to iron is weak in vitro. • Induction of Drosophila MtnB by iron is mediated indirectly through metal-metal interaction.

  7. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  8. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  9. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  10. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  11. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  12. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  13. Successive determinations of metals and boron in metal borides by chelatometric and alkalimetric titrations

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Higashi, Iwami; Atoda, Tetzuzo

    1976-01-01

    Based on the investigation of chemical reactivities of metal borides and of the metal chelate effects on the alkalimetric titration of boron, a method of successive determinations of metals and boron of Mn-, Fe-, Cu- and Al-borides has been developed. The procedure is as follows: (1) Mn-, Fe- and Cu-borides: Dissolve 10 to 30 mg of a sample in a mixture of 3 ml of 3N HNO 3 , 3 ml of 3N H 2 SO 4 and 0.3 ml of 10% H 2 O 2 by heating in a quartz flask equipped with a reflux condenser. Cool the solution obtained, add 0.02M CyDTA solution in excess and neutralize to pH 3 with 2N NaOH solution. Boil the solution for several minutes to ensure the formation of the metal chelate. After cooling, adjust the pH exactly to 6.7 with 0.5 M NaHCO 3 solution, and then determine the metal concentration by back-titrating the excess CyDTA with 0.01M ZnSO 4 solution using MTB as an indicator. After the titration is over, make the solution to pH 3 with 2N H 2 SO 4 and boil for several minutes to expel CO 2 . Cool the solution, adjust the pH exactly to 7.0 with 0.1N CO 2 -free NaOH solution and add 5 g of mannite and ten drops of 0.1% phenolphthalein solution. Finally, titrate the mannite-boric acid complex with 0.05N NaOH solution until the pink tinge is observed (pH 8.2). (2) Al-boride: Fuse 10 to 30 mg of a sample with a mixture of 1.5 g of Na 2 CO 3 and 0.3 g of KNO 3 in a nickel crucible. Digest the melt with water and filter off the residue (nickel oxide). Add 0.01 M EDTA solution in excess to the filterate and make it to pH 3 with 2N H 2 SO 4 . Analytical Results obtained by the present method agree well with those by other methods. The present method takes only 40 minutes, whereas several hours are required to determine metal and boron by other methods. (auth.)

  14. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Duwez, P.; Bakos, L.; Seres, Z.; Bogancs, J.; Nazarov, V.M.

    1979-12-01

    The surface boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses was measured by neutron activation analysis on both sides of the ribbon samples. It was found that the boron concentration is always higher at the bright side of the ribbon than that at the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. Range values of alpha-particles for some characteristic compositions of metallic glasses are tabulated. A mathematical technique for the deconvolution of experimental data is described and the listing of the Fortran program is enclosed. (author)

  15. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  16. Phosphors containing boron and metals of Group IIIA and IIIB

    Science.gov (United States)

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  17. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  18. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  19. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  20. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  1. Development of a method for determination of metallic iron content within hot briquette iron (HBI for steelmaking

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2016-01-01

    Full Text Available The growing use of metallic iron in metallurgy and industrial chemical applications requires a fast, easy and cheap method for the determination of metallic iron, not merely in recyclable materials, such as iron pellets, reduced iron mill scale dust, electric arc furnace dust and pig iron, but from hot briquette iron (HBI as well. This study investigates a new method for determination of metallic iron within HBI used for steel-making materials. The effects of reaction time, temperature, and stirring rate were studied. The concentration of iron was determined via Atomic Absorption Spectroscopy (AAS. After the optimization study, high-purity metallic iron powder (Sigma-Aldrich, PubChem Substance ID 24855469 was used to compare efficiencies and identify the optimum conditions; The present study was matched with international standard methods (BS ISO 5416:2006, IS 15774:2007. Results were consistent with certified values and metallic iron content could be determined within the 95% confidence level. The purposed method is easy, straightforward, and cheap.

  2. Metal-doped graphene layers composed with boron nitride-graphene as an insulator: a nano-capacitor.

    Science.gov (United States)

    Monajjemi, Majid

    2014-11-01

    A model of a nanoscale dielectric capacitor composed of a few dopants has been investigated in this study. This capacitor includes metallic graphene layers which are separated by an insulating medium containing a few h-BN layers. It has been observed that the elements from group IIIA of the periodic table are more suitable as dopants for hetero-structures of the {metallic graphene/hBN/metallic graphene} capacitors compared to those from groups IA or IIA. In this study, we have specifically focused on the dielectric properties of different graphene/h-BN/graphene including their hetero-structure counterparts, i.e., Boron-graphene/h-BN/Boron-graphene, Al-graphene/h-BN/Al-graphene, Mg-graphene/h-BN/Mg-graphene, and Be-graphene/h-BN/Be-graphene stacks for monolayer form of dielectrics. Moreover, we studied the multi dielectric properties of different (h-BN)n/graphene hetero-structures of Boron-graphene/(h-BN)n/Boron-graphene.

  3. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  4. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  5. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  6. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    Science.gov (United States)

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  7. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  8. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Bakos, L.; Duwez, P.; Bogancs, J.; Nazarov, V.M.

    1980-01-01

    The boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses is measured by neutron activation analysis on both surfaces of the ribbon samples. It is found that the boron concentration is always higher on the bright side of the ribbon than that on the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. (author)

  9. Metallization and superconductivity in a multizone doped semiconductor: boron-doped diamond

    International Nuclear Information System (INIS)

    Loktev, V.M.; Pogorelov, Yu.G.

    2005-01-01

    Within the framework of Anderson's s - d hybride model, metallization of a semiconductor at collectivization of impurity states is discussed. Taking in mind the description of boron-doped diamond CB x , the model is generalized for the case of the multiband initial spectrum and cluster acceptor states, due to the pairs of the nearest neighbor impurities ('impurity dumbbells'). The parameters of the calculated band of collective impurity states are compared to those observed in metallized and superconducting CB x

  10. System and method for producing metallic iron

    Science.gov (United States)

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  11. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  12. The triad of Iron deficiency anemia, hepatosplenomegaly and ...

    African Journals Online (AJOL)

    A triad of iron deficiency anemia, hepatosplenomegaly and growth retardation occurring in tandem with zinc deficiency has been reported in the past as components of either Prasad's syndrome or hypopituitarism. There are no documented cases of such triad occurring in the presence of normal serum zinc levels. We report ...

  13. Determination of microdistribution of boron in metals

    Energy Technology Data Exchange (ETDEWEB)

    Illic, R; Najzer, M; Rant, J [J. Stefan Institute, Ljubljana (Yugoslavia)

    1976-07-01

    A neutron induced autoradiographic technique was used for the determination of the boron microdistribution in metals. The specimens, which were in close contact with a LR 115 SSTD, were irradiated in the exposure room of the TRIGA Mark II reactor in Ljubljana. The spatial resolution of the autoradiographic image recorded by the LR 115 detector was found to be influenced mainly by the size of the reaction product tracks. The track diameter of a normally etched detector was about 7 {mu}m. An appreciable reduction of track size was achieved by pre-etching the detector foil before neutron irradiation. By this procedure it was possible to obtain a track diameter as small as 1 {mu}m and correspondingly to improve the spatial resolution of the autoradiographs of type EC 80 steel and Al Mg 3 alloy which contain 30 and 2 ppm of boron respectively. (author)

  14. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  15. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  16. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...

  17. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  18. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    Science.gov (United States)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  19. Nuclear prehistory influence on irradiated metallic iron phase composition

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    With application of different Moessbauer spectroscopy applications the phase composition of metallic iron after irradiation by both neutrons and charged particles were studied. Irradiation conditions, method of targets examination and phase composition of samples after irradiation were presented in tabular form. It is shown, that phase composition of irradiated metal is defined by nuclear prehistory. So, in a number of cases abnormals (stabilization of high- and low-temperature structural phases of iron at room temperature after irradiation end) were revealed

  20. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  1. Determination of metallic iron in sponge-iron

    International Nuclear Information System (INIS)

    Mueller, C.S.

    1974-01-01

    The amount of metallic iron in sponge-iron is a parameter of major interest in the evaluation of the performance of the ore-reduction process and in the determination of the composition of the load of the electric furnace used to produce the steel. Moessbauer effect offers the promise of a simple and elegant analysis method, capable of competing directly with the usually time-consuming chemical procedures. The applicability of the method is considered and the possible sources of error are analyzed, resulting in the design of an instrument that is reasonably accurate and simple to use. Detailed electronic circuity required to produce a direct-reading digital instrument is shown [pt

  2. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides.

    Science.gov (United States)

    Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2015-08-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  4. The magnetohydrodynamic force experienced by spherical iron particles in liquid metal

    International Nuclear Information System (INIS)

    Ščepanskis, Mihails; Jakovičs, Andris

    2016-01-01

    The paper contains a theoretical investigation of magnetohydrodynamic force experienced by iron particles (well-conducting and ferromagnetic) in well-conducting liquid. The investigation is performed by extending the Leenov and Kolin's theory to take into account the second-order effect. Therefore, the limits of the parent model are taken over to the present results. It is found that the effective conductivity of iron particles in liquid metal, which is important for practical application of the theoretically obtained force, is approximately equal to 1.5·10"6 S/m. The last result is obtained using a quasi-empirical approach – a comparison of experimental results with the results of the numerical simulation that was performed for various conductivities of the iron particles. - Highlights: • We found the expression of an MHD force experienced by a spherical iron particle in a liquid metal taking into account the second order effect additionally to Leenov & Kolin’s theoretical solution. • We found the effective conductivity of an iron particle in a liquid metal in quasi-empirical way equal to 1.5·10"6 S/m. • It is important to use the expression of an MHD force, which takes into account the second-order effect, as well as the correction for effective conductivity of a particle, to describe behaviour of iron particles in liquid metal flows, which are under influence or induced by the Lorentz force.

  5. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  6. Electronic properties of iron impurity in hcp metals from Moessbauer studies

    International Nuclear Information System (INIS)

    Janot, C.; Delcroix, P.

    1975-01-01

    Moessbauer spectroscopy was used in quantitative investigating the electronic properties of iron impurities in hexagonal close-packed metals. Beryllium of the highest commercially obtainable purity containing about 300 ppm residual impurities was used as a host element. Experimental evidence is given for the existence of localized electronic states which have non-spherical distribution and obviously contribute especially to the electric field gradient. Iron impurity seems to retain the same electronic behaviour as long as the host hcp metal is a normal one (Mg, Cd, Zn), but the localized electronic states seem to disappear when the host is a transition hcp metal (Co, Ti, Sc, Zr, etc.). (Z.S.)

  7. The triad of Iron deficiency anemia, hepatosplenomegaly and ...

    African Journals Online (AJOL)

    2014-12-04

    Dec 4, 2014 ... In conclusion, iron deficiency anemia occurring in the triad without zinc deficiency as .... a negative zinc balance and mask existing zinc deficiency.[10] ... erythropoiesis‑stimulating agents in men with chronic kidney disease.

  8. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  9. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    Science.gov (United States)

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  10. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  11. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil...... samples, called `scrap dirt', representing the different activities on the two recycling facilities, all showed very high concentrations of lead (Pb), copper (Cu) and zinc (Zn), high concentrations of cadmium (Cd) , chromium (Cr) and nickel (Ni) and somewhat elevated concentrations of many other metals....... In particular high concentrations were found for Pb at the car-battery salvage locations (13 to 26 g Pb kg±1) and Cu at the cable burning location (22 g Cu kg±1) at one site. The migration of metals below the surface in general (except at the car-battery salvage locations) was very limited even after...

  12. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    Science.gov (United States)

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+  ~ Al 3+  > Zn 2+  ≥ Ca 2+  ~ Mg 2+  ~ Mn 2+ (80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  13. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  14. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  15. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    Science.gov (United States)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  16. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  17. Routine soil testing to monitor heavy metals and boron

    Directory of Open Access Journals (Sweden)

    Abreu Cleide Aparecida de

    2005-01-01

    Full Text Available Microelements are an important issue in agriculture, due to their need as micronutrients for plants and also to the possibility of the build-up of toxic levels for plants and animals. Five micronutrients (B, Cu, Fe, Mn, and Zn are routinely determined in soil analysis for advisory purposes. Other four elements (Cd, Cr, Pb, and Ni are considered environmentally important heavy metals in farmland soils. Thus high contents of these metals in cropland might go eventually unnoticed. In this paper we present an approach that can be used to monitor the contents of the nine elements in farmland soils using advisory soil testing. A total of 13,416 soil samples from 21 Brazilian states, 58% of them from the state of São Paulo, sent by farmers were analyzed. Boron was determined by hot water extraction and the other metals were determined by DTPA (pH 7.3 extraction. The ranges of content, given in mg dm-3 soil, were the following: B, 0.01-10.6; Cu, 0.1-56.2; Fe, 0.5-476; Mn, 1-325; Zn, 1-453; Cd, 0.00-3.43, Cr, 0.00-42.9; Ni, 0.00-65.1; Pb, 0.00-63.9. The respective average values for São Paulo were: B-0.32; Cu-2.5; Fe-36; Mn-16; Zn-4.8; Cd-0.02; Cr-0.03; Ni-0.18; Pb-0.85. For other states the results are in the same ranges. The higher values are indicative of anthropogenic inputs, either due to excess application of fertilizers or to industrial or mining activities. The conclusion is that massive chemical analysis of farmland soil samples could serve as a database for indicating potential micronutrient deficiency and excesses or heavy metal buil-up in croplands, allowing preventive actions to be taken.

  18. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  19. Triad 'Metal – Enamel – Glass'

    International Nuclear Information System (INIS)

    Mukhina, T; Petrova, S; Toporova, V; Fedyaeva, T

    2014-01-01

    This article shows how to change the color of metal and glass. Both these materials are self–sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested

  20. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  1. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    Science.gov (United States)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  2. Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon

    NARCIS (Netherlands)

    Pereira, A.A.; van Hattum, A.G.M.; Brouwer, A.; van Bodegom, P.M.; Rezende, C.E.; Salomons, W.

    2008-01-01

    In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and

  3. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  4. Effect of temperature, solvent and nature of metal cations on the potentiometric titration S of iron oxide

    International Nuclear Information System (INIS)

    Tasleem, S.; Ishrat, B.

    2008-01-01

    A comprehensive study of the potentiometric titrations of iron oxide in the presence of CU/sub 2/ and Mg/sup 2/ were under taken under different experimental conditions of temperature and concentration of metal ions in aqueous and aqueous/organic mixed solvent. The adsorption of both the metal ions were observed to increase with the increase in pH and temperature of the system. The adsorbent iron oxide preferentially adsorbs transition metal as compared to alkaline earth metal ion. (author)

  5. Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Ding, Yingchun; Chen, Jie; Du, Youwei; Tang, Nujiang

    2017-06-07

    The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B 4 CN 3 and B 3 CN 4 ) on a h-BN monolayer from the viewpoints of lattice match and lattice mismatch models using density functional calculations. It is found that both B 4 CN 3 and B 3 CN 4 monolayers can be stably adsorbed on the h-BN monolayer due to the van der Waals interactions. Intriguingly, we demonstrate that the bipolar magnetic semiconductor (BMS) behavior of the B 4 CN 3 layer and the spin gapless semiconductor (SGS) property of the B 3 CN 4 layer can be well preserved in the B 4 CN 3 /BN and B 3 CN 4 /BN heterobilayers, respectively. The magnetic moments and spintronic properties of the two systems originate mainly from the 2p z electrons of the carbon atoms in the B 4 CN 3 and B 3 CN 4 layers. Furthermore, the BMS behavior of the B 4 CN 3 /BN bilayer is very robust while the electronic property of the B 3 CN 4 /BN bilayer is sensitive to interlayer couplings. These theoretical results are helpful both in understanding the interlayer coupling between B 4 CN 3 or B 3 CN 4 and h-BN monolayers and in providing a possibility of fabricating 2D composite B 4 CN 3 /BN and B 3 CN 4 /BN metal-free spintronic materials theoretically.

  6. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    Science.gov (United States)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  9. Synthesis of hexagonal boron nitride with the presence of representative metals

    Energy Technology Data Exchange (ETDEWEB)

    Budak, Erhan, E-mail: erhan@ibu.edu.t [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey); Bozkurt, Cetin [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey)

    2010-11-15

    Hexagonal boron nitride (h-BN) samples were prepared using the modified O'Connor method with KNO{sub 3} and Ca(NO{sub 3}){sub 2} at different temperatures (1050, 1250, and 1450 deg. C). The samples were characterized by FTIR, XRD, and SEM techniques. Usage of representative metals exhibited a positive effect on the crystallization of h-BN and they caused the formation of nano-scale products at relatively low temperature. XRD results indicated that there was an increase in interlayer spacing due to the d-{pi} interaction. The calculated lattice constants were very close to the reported value for h-BN.

  10. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    Science.gov (United States)

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effects of Boron-Incorporation in a V-Containing Zr-Based AB2 Metal Hydride Alloy

    Directory of Open Access Journals (Sweden)

    Shiuan Chang

    2017-11-01

    Full Text Available In this study, boron, a metalloid element commonly used in semiconductor applications, was added in a V-containing Zr-based AB2 metal hydride alloy. In general, as the boron content in the alloy increased, the high-rate dischargeability, surface exchange current, and double-layer capacitance first decreased and then increased whereas charge-transfer resistance and dot product of charge-transfer resistance and double-layer capacitance changed in the opposite direction. Electrochemical and gaseous phase characteristics of two boron-containing alloys, with the same boron content detected by the inductively coupled plasma optical emission spectrometer, showed significant variations in performances due to the difference in phase abundance of a newly formed tetragonal V3B2 phase. This new phase contributes to the increases in electrochemical high-rate dischargeability, surface exchange current, charge-transfer resistances at room, and low temperatures. However, the V3B2 phase does not contribute to the hydrogen storage capacities in either gaseous phase and electrochemical environment.

  12. Borides of the group 1 metals of the periodic system

    International Nuclear Information System (INIS)

    Samsonov, G.V.; Serebryakova, T.I.; Neronov, V.A.

    1975-01-01

    The borides of alkali metals (lithium, sodium, potassium) and the metals of a copper subgroup (copper, silver, gold) are described. Consideration is given to the crystalline structure and state diagrams of the metal systems within the first group of the Periodic Table with boron. Existence, formation conditions and physico-chemical properties of binary boride phases are characterized. Conclusion is made as to the absence of interaction between boron and silver. Information on the interaction between gold and boron is scanty and conflicting. Methods are described suitable for the production of the borides of the metals within the first group of the Periodic Table [ru

  13. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.

    Science.gov (United States)

    Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng

    2018-05-30

    Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  15. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  16. Synthesis and functionalisation of metal and metal oxide nanoparticles for theranostics

    OpenAIRE

    Mundell, VJ

    2013-01-01

    Metal and metal oxide nanoparticles including calcium oxide, gold, and superparamagnetic iron oxide nanoparticles (SPIOs) were synthesised using a range of techniques including reduction, co-precipitation and spinning disc technology. SPIOs were primarily synthesised via a co-precipitation method using iron (II) chloride, iron (III) chloride and ammonia; a spinning disc reactor and gaseous ammonia were trialled successfully for scale up, producing spherical particles of 10-40 nm in diameter a...

  17. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  18. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  19. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  20. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Science.gov (United States)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  1. Nonlinear optical studies of curcumin metal derivatives with cw laser

    Energy Technology Data Exchange (ETDEWEB)

    Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain (Bahrain)

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  2. Nonlinear optical studies of curcumin metal derivatives with cw laser

    International Nuclear Information System (INIS)

    Henari, F. Z.; Cassidy, S.

    2015-01-01

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10 −7 cm 2 /W and negative nonlinear absorption of the order of 10 −6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated

  3. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    Science.gov (United States)

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  4. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    Science.gov (United States)

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  5. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  6. The Impact of Metallic Impurities on Minority Carrier Lifetime in High Purity N-type Silicon

    Science.gov (United States)

    Yoon, Yohan

    Boron-doped p-type silicon is the industry standard silicon solar cell substrate. However, it has serious limitations: iron boron (Fe-B) pairs and light induced degradation (LID). To suppress LID, the replacement of boron by gallium as a p-type dopant has been proposed. Although this eliminates B-O related defects, gallium-related pairing with iron, oxygen, and carbon can reduce lifetime in this material. In addition resistivity variations are more pronounced in gallium doped ingots, however Continuous-Czochralski (c-Cz) growth technologies are being developed to overcome this problem. In this work lifetime limiting factors and resistivity variations have been investigated in this material. The radial and axial variations of electrically active defects were observed using deep level transient spectroscopy (DLTS) these have been correlated to lifetime and resistivity variations. The DLTS measurements demonstrated that iron-related pairs are responsible for the lifetime variations. Specifically, Fe-Ga pairs were found to be important recombination sites and are more detrimental to lifetime than Fei. Typically n-type silicon has a higher minority carrier lifetime than p-type silicon with similar levels of contamination. That is because n-type silicon is more tolerant to metallic impurities, especially Fe. Also, it has no serious issues in relation to lifetime degradation, such as FeB pairs and light-induced degradation (LID). However, surface passivation of the p + region in p+n solar cells is much more problematic than the n+p case where silicon nitride provides very effective passivation of the cell. SiO2 is the most effective passivation for n type surfaces, but it does not work well on B-doped surfaces, resulting in inadequate performance. Al2O3 passivation layer suggested for B-doped emitters. With this surface passivation layer a 23.2 % conversion efficiency has been achieved. After this discovery n-type silicon is now being seriously considered for

  7. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    International Nuclear Information System (INIS)

    Mautz, E.W.

    1975-11-01

    Literature on the common metals industries, scrap metal relationships, and transportation aspects has been reviewed as background information in a study to determine the feasibility of a portable melting facility for radioactively contaminated metals. This report draws substantially on government-sponsored studies. Aluminum, copper, iron and steel, and nickel metal industries are discussed from the viewpoints of the general industry characteristics, primary metal production processes, and secondary metal processing aspects. 46 references, 10 tables

  8. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  9. A comparison of tokamak operation with metallic getters (Ti, Cr, Be) and boronization

    International Nuclear Information System (INIS)

    Winter, J.

    1990-07-01

    In addition to discharge cleaning techniques, gettering of tokamaks has been used since 1975 as a powerful tool for controlling the impurity influx into fusion plasmas. High-Z metals like Ti and Cr, evaporated onto the walls of the fusion devices, have first been used. After the introduction of carbon as low Z plasma facing material for the large tokamaks new scenarios were developed, optimizing the low-Z aspect of wall materials. These are the boronization technique and the evaporation of Be in conjunction with the use of Be limiters. A review of the different getter techniques and of the observed results will be given, focussing on the comparison of the tokamak performance achieved with boronization and the use of beryllium. It is shown that in all cases of gettering the most important mechanism for the improved machine performance is the control of the oxygen impurity influx. Very similar results are found for the impurity control potential. The added benefit of boronization and Be gettering arises from the low Z of the materials. Both scenarios essentially lead to the same machine performance. Both render themselves as an option for future devices. (orig.)

  10. The effect of iron-ore particles on the metal content of the brown alga Padina gymnospora (Espirito Santo Bay, Brazil)

    International Nuclear Information System (INIS)

    Nassar, C.A.G.; Salgado, L.T.; Yoneshigue-Valentin, Y.; Amado Filho, G.M.

    2003-01-01

    Iron ore deposits mat be the source of metals found in the brown alga Padina gymnospora. - The iron-ore particles discharged by a pellet processing plant (Espirito Santo Bay, Brazil) cover the seabed of Camburi Beach and consequently, the epibenthic community. In order to determine the importance of the contribution of the iron-ore deposits to the metal concentration in macroalgae of Espirito Santo Bay, four methods of cleaning particulate material adhered to the surface of thalli were tested prior to metal tissue analysis (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of Padina gymnospora. In addition, heavy metal concentrations were determined in individuals of P. gymnospora from a site (Frade Island) not affected by the iron-ore particles. The most efficient cleaning treatment, a combination of scraping and washing with an ethanol-seawater solution (NA+SC+ET) removed a number of particles on the surface of thalli 10 times higher than that observed in the control (C). Using this treatment, the total-metal concentrations were reduced by 78% for Fe and 50% for Al respect to the control. However, Fe, Al and Cu concentrations after treatment NA+SC+ET were significantly higher than those found at Frade Island. It is suggested that the iron-ore deposit might be a source for metal availability to macroalgae exposed to the dumped material at Espirito Santo Bay

  11. System and method for making metallic iron with reduced CO.sub.2 emissions

    Science.gov (United States)

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  12. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  13. Experimental investigation in separating the heavy metal elements of refuse incineration fly ashes by using molten iron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Chongqing Univ., Chongqing (China)]|[CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China); Liu, Q.; Dong, L. [Chongqing Univ., Chongqing (China); Du, Y. [CPI-Yuanda Environmental-protection Engineering Co. Ltd., Chongqing (China)

    2008-07-01

    One of the main waste treatment methods in the world for municipal solid waste (MSW) is incineration. It is effective in toxic substance destruction, waste volume reduction, and energy recovery. Some chemical substances are accumulated during incineration, most notably lead, zinc, chromium and cadmium, as well as other heavy metals. Untreated fly ash disposed in landfills can pollute the soil, surface water and groundwater because of the high levels of hazardous heavy metals and high salt concentration that can be leached out. This paper presented an experiment that melt-separated the heavy metal elements from fly ash generated during refuse incineration. Molted iron, was used as resolvent to dissolve the heavy metal elements in it. The paper described the materials and methods as well as the results of the study. It was concluded that using molted iron to separate the heavy metal elements from MSW incineration fly ash was feasible. The removal ratio of the main heavy metal elements was above 80 per cent, and some of it was above 99 per cent. 5 refs., 7 tabs., 1 fig.

  14. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity.

    Science.gov (United States)

    Calap-Quintana, Pablo; González-Fernández, Javier; Sebastiá-Ortega, Noelia; Llorens, José Vicente; Moltó, María Dolores

    2017-07-06

    Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster . Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.

  15. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  16. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  17. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  18. Interaction between cadmium and iron. Accumulation and distribution of metals and changes in growth parameters of Phaseolus vulgaris L. seedlings

    Directory of Open Access Journals (Sweden)

    Anna Siedlecka

    2014-01-01

    Full Text Available The interaction between cadmium, one of the most toxic heavy metals, and iron, an essential plant nutritional element, was investigated in Phaseolus vulgaris L. (cv. Słowianka seedlings. The interaction was externally induced by changing the content of both metals in the nutrient medium. Under iron deficiency conditions (0 and 0.5 of normal dose of this element, the toxic effects of cadmium on plant growth parameters, like fresh and dry weight accumulation, primary leaves area, etc., were generally much more pronounced than under normal iron supply. At normal and excess iron supply (1, 2 and 4 doses cadmium diminished iron accumulation in roots and primary leaves, but on the other hand excess iron decreased cadmium level, preventing plants from extreme toxicity of very high cadmium concentrations in the growth environment. It is to be noted that iron is classified also as a heavy metal, and its excess may become toxic, e.g. decreasing root dry weight or diminishing leaf area, especially at the highest dose. The detoxication role of iron against cadmium, and possibly other toxic metals is, however, limited to concentrations of this element in the nutrient solution which themselves are not toxic for the organism.

  19. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Science.gov (United States)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  20. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  1. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  2. Chromium metal organic frameworks and synthesis of metal organic frameworks

    Science.gov (United States)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen; Zou, Lanfang; Feng, Dawei

    2018-04-24

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  3. Metal pollution around an iron smelter complex in northern Norway at different modes of operation

    International Nuclear Information System (INIS)

    Steinnes, E.; Sjoebakk, T.E.; Frontas'eva, M.V.; Varskog, P.

    2003-01-01

    The moss biomonitoring technique was employed to study the atmospheric deposition in and around the town of Mo i Rana, northern Norway, before and after closing an iron smelter and establishing alternative ferrous metal industries. Samples of Hylocomium splendens were collected from the same sites in 1989 and 1993. A combination of instrumental neutron activation analysis (INAA) and atomic absorption spectrometry was used to obtain data for 38 elements in these moss samples, and the analytical data were subjected to factor analysis. In general, the deposition was higher when the iron smelter was still in operation, in particular for Fe and for many elements normally associated with crustal matter. For Cr there was a substantially increased deposition due to the operation of a new ferrochrome smelter. Also for Ni and Au an increased deposition was observed, whereas for metals such as Mn, Co, Ag, Sb, and W there was no appreciable change. INAA proved to be a powerful tool for this kind of study. The regional distribution of pollutants was strongly dependent on the local topography. Samples of natural surface soils collected simultaneously with the first moss series showed clear signs of contamination with a number of metals from atmospheric deposition. The approach described in this work could be advantageously used to study atmospheric deposition of heavy metals around iron smelters in Russia and elsewhere

  4. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  5. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  6. Preparation of iron metal nano solution by anodic dissolution with high voltage

    International Nuclear Information System (INIS)

    Nguyen Duc Hung; Do Thanh Tuan

    2012-01-01

    Iron nano metal solution is prepared from anodic dissolution process with ultra- high Dc voltage. The size and shape of iron nanoparticles determined by Tem images and particle size distribution on the device LA-950 Laser Scattering Particle Distribution Analyzer V2. The concentration of nano-iron solution was determined by the analytical methods AAS atomic absorption spectrometry and Faraday's law. The difference in concentration of both methods demonstrated outside the anodic dissolution process has created the water electrolysis to form H 2 and O 2 gases and heating the solution. (author)

  7. Durability of metals from archaeological objects, metal meteorites, and native metals

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects

  8. Durability of metals from archaeological objects, metal meteorites, and native metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  9. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    Science.gov (United States)

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  10. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil

    International Nuclear Information System (INIS)

    Sneath, Helen E.; Hutchings, Tony R.; Leij, Frans A.A.M. de

    2013-01-01

    Sites contaminated with mixtures of metals, metalloids and organics are difficult to remediate as each contaminant type may require a different treatment. Biochar, with high metal sorption capacity, used singly and in combination with iron filings, is investigated in microcosm trials to immobilise metal(loid)s within a contaminated spoil, thereby enabling revegetation and degradation of organic pollutants. A mine spoil, contaminated with heavy metals, arsenic and spiked with phenanthrene was treated with either 1%w/w biochar, 5%w/w iron or their combination, enhancing phenanthrene degradation by 44–65%. Biochar treatment reduced Cu leaching and enabled sunflower growth, but had no significant effect on As mobility. Iron treatment reduced Cu and As leaching but negatively impacted soil structure and released high levels of Fe causing sunflower plant mortality. The combined treatment reduced both Cu and As leaching and enabled sunflower growth suggesting this could be a useful approach for treating co-contaminated sites. -- Highlights: ► 56 day microcosm trials examine biochar for remediation of co-contaminated sites. ► Biochar reduces leachable Cu concentrations but phytotoxicity remains. ► Iron filings are investigated as a co-amendment with biochar to reduce As leaching. ► Removal of metal toxicity stimulates phenanthrene degradation. ► Biochar could enable revegetation of contaminated sites. -- Biochar and iron filings incorporated into contaminated spoils reduce Cu and As leaching and stimulate phenanthrene degradation, but do not prevent phytotoxicity to sunflowers

  11. Analysis of thermal expansivity of iron (Fe) metal at ultra high ...

    Indian Academy of Sciences (India)

    structure are unlikely to be successful for predicting the high temperature properties of transition metals due to the complicated many-body nature of the interactions. Wasserman et al [3] have recently studied the thermal properties of iron at high pressures and temperatures within the framework of shell model [7,8], which is ...

  12. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  13. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  14. Leachability of heavy metals from scrap dirt sampled at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, Peter Engelund; Christensen, Thomas Højlund

    2000-01-01

    Column and batch leaching experiments were performed to quantify leaching of heavy metals (Pb, Cu, Cd and Zn) from scrap dirt representing different activities at two iron scrap and metal recycling facilities. The scrap dirt is often found directly upon the bare unprotected soil at recycling...... battery salvage locations was different, showing lower pH and signi®cant leaching of lead (up to 8000 mg Pb l±1), cadmium (up to 40 mg Cd l±1), and zinc (up to 2000 mg Zn l±1). The column and batch leaching experiments gave comparable results at the order of magnitude level, and both approaches are......, at that level, useful for evaluation of leaching potentials from scrap dirt. The experiments showed that scrap dirt at recycling facilities constitutes only a modest leaching problem, but a long-term soil pollution problem from a land-use perspective. Leaching experiments with compost solution indicated...

  15. Subsurface flow wetlands for the removal of arsenic and metals from contaminated water

    OpenAIRE

    Lizama Allende, Katherine

    2017-01-01

    The presence of arsenic (As) in aquatic environments is a worldwide concern due to its toxicity and chronic effects. In many cases, the choice of treatment technologies is limited due to the isolated location of the water source and the high cost of conventional treatment technologies. In addition, other pollutants are often found alongside As, such as iron (Fe) and boron (B). Constructed wetlands have shown capability to remove As and metals. However, few experimental studies have been under...

  16. The removal of heavy metals by iron mine drainage sludge and Phragmites australis

    Science.gov (United States)

    Hoang Ha, Nguyen Thi; Anh, Bui Thi Kim

    2017-06-01

    This study was conducted to assess the removal of heavy metals from solutions by the combination of modified iron mine drainage sludge (sorbent column) and surface and subsurface flow constructed wetlands using the common reed (Phragmites australis) during 30 days of experiment. The results of this study demonstrated that the average removal rates of Zn, Pb, Mn, and As by sorbent column were 59.0, 55.1, 38.7, and 42.4%, respectively. The decreasing trend of removal rates of metals by sorbent column was obtained during the experiment. The average removal rates of Zn, Pb, Mn, and As by sorbent column-surface constructed wetland were 78.9, 73.5, 91.2, and 80.5%, respectively; those by sorbent column-subsurface flow constructed wetland were 81.7, 81.1, 94.1, and 83.1% which reflected that subsurface flow constructed wetland showed higher removal rate than the surface system. Concentrations of heavy metals in the outlet water were lower than the Vietnamese standard limits regulated for industrial wastewater. The results indicate the feasibility of integration of iron mine drainage sludge and constructed wetlands for wastewater treatment.

  17. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  18. CHARACTERIZATION OF METAL GRADES IN A STOCKPILE OF AN IRON MINE (CASE STUDY- CHOGHART IRON MINE, IRAN

    Directory of Open Access Journals (Sweden)

    Francesco Tinti

    2018-01-01

    Full Text Available In any mining operation due to the cut-off grade (economic criteria, materials classify into the ore and waste. The material with grade equal to or higher than the cut-off grade is considered as ore and the material with grade less than the cut-off grade is transported as wastes to the waste dumps. However, because of increasing metal demand, depleting of in situ ore reserves and so the reduction of cut-off grades for many metals, the mentioned waste dumps were considered as valuable ore reserves named stockpiles. In this paper, multivariate geostatistics was used to estimate the iron grades of two stockpiles following the sequential of piling procedures from the main source - the ore deposit - to the piling field. One stockpile is characterized by phosphorous concentration ((P % > 0.6 %, while the other by iron concentration ((Fe %< 50%. Since economic and physical constraints made sampling physically and economically problematic, the grade distribution and variability were estimated on the basis of primary blast-hole data from the main ore body and the mine’s long-term planning policy. A geostatistical model was applied to the excavated part of the iron deposit and the stockpile, by reconstructing ore selection, haulage and piling method. Results were validated through spatial variability of iron and phosphorous concentrations by comparing grade variability (Fe and P with mining and pilling units. This methodology allows characterizing the iron grades within stockpiles without any extra sampling.

  19. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Edith eJoseph

    2012-01-01

    Full Text Available Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archaeological and modern metal artefacts. The production of copper-oxalates was confirmed directly using metallic pieces (both archaeological and modern. The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates and probably goethite. However, the formation of a homogeneous layer on the object is not yet optimal. Silver nitrate was extracellularly reduced into nanoparticles of elemental silver by an unknown mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artefacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  20. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  1. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  2. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, J. A., E-mail: jjaen@ancon.up.ac.p [Universidad de Panama, Departamento de Quimica Fisica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama); Gonzalez, L.; Vargas, A.; Olave, G. [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2003-06-15

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Moessbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  3. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    International Nuclear Information System (INIS)

    Jaen, J. A.; Gonzalez, L.; Vargas, A.; Olave, G.

    2003-01-01

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Moessbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  4. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  5. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    International Nuclear Information System (INIS)

    Nazir, Rabia; Ahmed, Sohail; Mazhar, Muhammad; Akhtar, Muhammad Javed; Siddique, Muhammad; Khan, Nawazish Ali; Shah, Muhammad Raza; Nadeem, Muhammad

    2013-01-01

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy) 3 ]Cl 2 and [Mo(bipy)Cl 4 ] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, 57 Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy) 3 ]Cl 2 , and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl 4 ], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, 57 Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals

  6. Ultra-fast boriding of metal surfaces for improved properties

    Science.gov (United States)

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  7. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  8. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  9. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  10. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  11. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  12. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander

    2016-01-01

    Full Text Available Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, Al\\Mg alloy, Fe, Ti and Zr in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber.

  13. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  14. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  15. Extraterrestrial Metals Processing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces iron, silicon, and light metals from Mars, Moon, or asteroid resources in support of advanced human...

  16. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  17. Determination of nitrogen in boron carbide with the Leco UO-14 Nitrogen Determinator

    International Nuclear Information System (INIS)

    Gardner, R.D.; Ashley, W.H.; Henicksman, A.L.

    1977-11-01

    Use of various metals as fluxes for releasing nitrogen from boron carbide in the Leco Nitrogen Determinator was investigated. Metals such as iron, chromium, and molybdenum that wet the graphite crucible all promoted nitrogen release. Tin, copper, aluminum, and platinum did not wet the graphite and were of no value as fluxes. A procedure for sample handling and the resulting performance of the method are described. The precision at 0.06 to 0.6 percent nitrogen averaged 4 percent relative standard deviation

  18. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  20. Study of solubility of akaline earth metals in liquid iron and in alloys on its base

    International Nuclear Information System (INIS)

    Ageev, Yu.A.; Archugov, S.A.

    1985-01-01

    Solubility of magnesium, calcium, strontium and barium in liquid iron and its alloys with aluminium, silicon, nickel, chromium and carbon at 1600 deg C has been measured. Interaction parameters taking account of the effect of added elements on alkaline earth metal solubility in liquid iron have been estimated

  1. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  2. Metal RIE 2: Unaxis SHUTTLELINE ICP

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Unaxis ICP EtcherChlorine-based system utilizing Boron Trichloride and Chlorine to etch metals and III-V group materials on planar substrates...

  3. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: A potential material for the treatment of various toxic heavy metals and its toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung-Gun [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Ryu, Jae-Chun; Song, Mi-Kyung [Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Song-Bae [Environmental Functional Materials and Biocolloids Laboratory, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Graduate School of Convergence Green Technology and Policy, Korea University, Seoul 136-701 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-02-01

    Graphical abstract: - Highlights: • Meso-iron-oxyhydroxide was found to be efficient for anion heavy metal adsorption. • The composite bead can simultaneously remove the cations and anions of heavy metals. • Powdered form had stronger cytotoxicity than did the granular form. • Adsorbent recovery is facilitated by granulation process of powder-type. - Abstract: The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1 mg g{sup −1}) and arsenic (71.9 mg g{sup −1}) compared with other adsorbents, such as DABs (158.1 and 0.0 mg g{sup −1}), SZIB (42.9 and 0.0 mg g{sup −1}) and SZMIOIB (54.0 and 5.9 mg g{sup −1}) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer–Emmett–Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for

  4. Metallic iron for water treatment: leaving the valley of confusion

    Science.gov (United States)

    Makota, Susanne; Nde-Tchoupe, Arnaud I.; Mwakabona, Hezron T.; Tepong-Tsindé, Raoul; Noubactep, Chicgoua; Nassi, Achille; Njau, Karoli N.

    2017-12-01

    Researchers on metallic iron (Fe0) for environmental remediation and water treatment are walking in a valley of confusion for 25 years. This valley is characterized by the propagation of different beliefs that have resulted from a partial analysis of the Fe0/H2O system as (1) a reductive chemical reaction was considered an electrochemical one and (2) the mass balance of iron has not been really addressed. The partial analysis in turn has been undermining the scientific method while discouraging any real critical argumentation. This communication re-establishes the complex nature of the Fe0/H2O system while recalling that, finally, proper system analysis and chemical thermodynamics are the most confident ways to solve any conflicting situation in Fe0 environmental remediation.

  5. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  6. Effect of other metals on iron bioavailability in presence of a selective chelator

    International Nuclear Information System (INIS)

    Rehman, F.S.

    1995-01-01

    Iron (III) is generally very easily chelated by a number of chelators in the biological environment, either supplied by food or already present there. One of the these chelator is gallic acid. The stability constants of the complexes formed between gallic acid and other trace metals have been determined by a potentiometric method. The data obtained was computed with the help of computer program B est . The resulted Beta values were compared with already known values of iron gallic acid complexes. (author)

  7. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  8. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  9. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  10. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  11. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    International Nuclear Information System (INIS)

    Peng Yuncheng; Jin Huijin; Liu Jinhai; Li Guolu

    2011-01-01

    Highlights: → Boron are applied to carbidic austempered ductile iron (CADI). → Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. → Addition of boron to CADI significantly improves hardenability. → Effect of boron on the CADI grinding ball were investigated. → Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  12. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  13. PERSPECTIVE SOURCES OF METALS RESOURCES (CU, NI FOR CAST IRON ALLOYING, ARISING ON THE TERRITORY OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. L. Tribushevski

    2005-01-01

    Full Text Available The article is dedicated to the practical foundation of combined resources-economy technologies of the alloyed cast iron melting using wastes of galvanic productions, containing sulfates and hydroxides of these metals, instead of metallic nickel and copper.

  14. Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

    KAUST Repository

    Matsuoka, Hirofumi; Kanahashi, Kaito; Tanaka, Naoki; Shoji, Yoshiaki; Li, Lain-Jong; Pu, Jiang; Ito, Hiroshi; Ohta, Hiromichi; Fukushima, Takanori; Takenobu, Taishi

    2018-01-01

    Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.

  15. Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

    KAUST Repository

    Matsuoka, Hirofumi

    2018-01-18

    Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.

  16. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    Science.gov (United States)

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  17. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Root, Robert A.; Hayes, Sarah M.; Hammond, Corin M.; Maier, Raina M.; Chorover, Jon

    2015-01-01

    Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe

  18. Biologically active compounds of semi-metals

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sigler, Karel

    2008-01-01

    Roč. 69, č. 3 (2008), s. 585-606 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50200510 Keywords : semi-metals * boron * silicon Subject RIV: CE - Biochemistry Impact factor: 2.946, year: 2008

  19. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: a potential material for the treatment of various toxic heavy metals and its toxicity.

    Science.gov (United States)

    Chung, Seung-Gun; Ryu, Jae-Chun; Song, Mi-Kyung; An, Byungryul; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2014-02-28

    The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1mgg(-1)) and arsenic (71.9mgg(-1)) compared with other adsorbents, such as DABs (158.1 and 0.0mgg(-1)), SZIB (42.9 and 0.0mgg(-1)) and SZMIOIB (54.0 and 5.9mgg(-1)) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer-Emmett-Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for heavy metal treatment than the powdered form. This research provides promising results for the application of MIOIBs as an adsorbent for various heavy metals from wastewater and sewage. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Determination of Carrier Polarity in Fowler-Nordheim Tunneling and Evidence of Fermi Level Pinning at the Hexagonal Boron Nitride/Metal Interface.

    Science.gov (United States)

    Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    2018-04-11

    Hexagonal boron nitride (h-BN) is an important insulating substrate for two-dimensional (2D) heterostructure devices and possesses high dielectric strength comparable to SiO 2 . Here, we report two clear differences in their physical properties. The first one is the occurrence of Fermi level pinning at the metal/h-BN interface, unlike that at the metal/SiO 2 interface. The second one is that the carrier of Fowler-Nordheim (F-N) tunneling through h-BN is a hole, which is opposite to an electron in the case of SiO 2 . These unique characteristics are verified by I- V measurements in the graphene/h-BN/metal heterostructure device with the aid of a numerical simulation, where the barrier height of graphene can be modulated by a back gate voltage owing to its low density of states. Furthermore, from a systematic investigation using a variety of metals, it is confirmed that the hole F-N tunneling current is a general characteristic because the Fermi levels of metals are pinned in the small energy range around ∼3.5 eV from the top of the conduction band of h-BN, with a pinning factor of 0.30. The accurate energy band alignment at the h-BN/metal interface provides practical knowledge for 2D heterostructure devices.

  1. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge

    Science.gov (United States)

    Fabisch, Maria; Freyer, Gina; Johnson, Carol A.; Buchel, Georg; Akob, Denise M.; Neu, Thomas R.; Kusel, Kirsten

    2016-01-01

    Heavy metal-contaminated, pH 6 mine water discharge created new streams and iron-rich terraces at a creek bank in a former uranium-mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron-oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high-metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella-like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6-month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% ofBacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and ‘Ferrovum myxofaciens’. Classical 16S rRNA gene cloning showed that 96% of the Gallionella-related sequences had ≥97% identity to the putatively metal-tolerant ‘Gallionella capsiferriformans ES-2’, in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R-1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM-energy-dispersive X-ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52–61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of

  2. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  3. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    International Nuclear Information System (INIS)

    Hollingsworth, W.E.

    1982-11-01

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation

  4. Cell complexes of transition metals in biochemistry and medicine

    International Nuclear Information System (INIS)

    Voloshin, Ya.Z.; Varzatskij, O.A.; Bubnov, Yu.N.

    2007-01-01

    Basic directions and prospects of use of cell complexes of transition metals in medicine and biochemistry are considered: incapsulation of radioactive metal ions for radiotherapy and diagnostics; preparation of contrast compounds for magnetic resonance tomography, antidotes and pharmaceutical preparation of prolonged effect, preparations for boron-neutron-capture therapy of neoplasms, antioxidants; membrane transport of metal ions; study of interaction of cell metal complexes with nucleic acids; possibility of use of self-assembly of cell complexes for imitation of ligases and use of clathrochelates as linkers; design of inhibitors of viruses for AIDS therapy [ru

  5. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  6. Ab Initio Studies of Metal Hexaboride Materials

    Science.gov (United States)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron

  7. In situ Tournemire argillite / iron metal interactions: results after 10 years

    International Nuclear Information System (INIS)

    Maillet, A.

    2012-01-01

    Within the framework of a long lived radioactive waste storage concept in deep geological layer developed by Andra, IRSN leads an in situ study on the Experimental Station of Tournemire, in association with EDF to determine the interactions steel/argillite in a natural context. After 10 years of interaction, two drillings overcoring performed to characterize the processing of the Tournemire argillite in contact with carbon and stainless steels and to compare reactive phenomena highlighted and those induced by simulations tools combining chemistry and transport. Argillite/carbon steel samples show a significant corrosion of steel disk. Iron released, in the form of rings and cracks in the rock, disrupts the argillite in contact resulting in mineralogical and structural changes. Iron oxides precipitation and a calcite and smectitic leaf of mixed-layers I/S dissolution are identified. A succession of areas: metal/metal corroded/argillite disturbed/argillite is highlighted and porosity variations are observed on the interfaces between two areas. Geochemical simulations show that major changes are initiated speedily during establishment of the system and the oxygen trapped in the closed system is consumed by the corrosion of steel but mostly it diffuses into the surrounding material through concentration gradient. Argillite/stainless steel samples have a very low pitting corrosion of steel disk. This does not seem to affect the mineralogy of the argillite in contact. (author)

  8. Characterization of a New Family of Metal Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Mary Lou Geurinot; David Eide

    2002-04-29

    Metal ions are critical nutrients, yet overaccumulation of these same metals can also be toxic. To maintain appropriate intracellular levels, cells require specific metal uptake systems that are subject to precise homeostatic regulation. The long-range goal of our research is to define the molecular mechanism(s) and regulation of metal ion uptake in eukaryotic cells. Integrating genetic, molecular biological and biochemical approaches, we have examined these processes in the yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana. Both are proven model systems for studying fundamental cellular processes. Our work has focused on the ZIP family of metal transporters which we identified; this family has representatives in bacteria, fungi, plants and animals. IRT, one of the founding members of the ZIP family, is an essential cation transporter that is expressed in the epidermal cells of iron deficient plant roots and is responsible for uptake of iron from the soil. We now know that there are 15 ZIP genes in the Arabidopsis and the similarities among their encoded gene products. The ZIP family members display different substrate specificities for metals and different tissue distributions in Arabidopsis. Moreover, the family members respond differentially to metal deficiencies. For example, IRT1, ZIP6 and ZIP9 mRNA are expressed mainly in the roots of iron deficient plants whereas ZIP4 responds to both iron and zinc deficiency. Work in both yeast and Arabidopsis has addressed substrate specificity as well as how these transporters are regulated in response to metal availability

  9. 77 FR 55806 - Floor-Standing, Metal-Top Ironing Tables and Certain Parts Thereof From the People's Republic of...

    Science.gov (United States)

    2012-09-11

    ... Ironing Tables and Certain Parts Thereof From the People's Republic of China: Final Results of Antidumping...-standing, metal-top ironing tables and certain parts thereof from the People's Republic of China (PRC).\\1\\ This review covers one exporter, Foshan Shunde Yongjian Housewares & Hardwares Co., Ltd. (Foshan Shunde...

  10. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  11. A search for superconductivity below 1 K in transition metal borides

    International Nuclear Information System (INIS)

    Leyarovska, L.; Leyarovski, E.

    1979-01-01

    Some AlB 2 -type (C32 structure) boron compounds were examined for superconductivity down to 0.42 K; the compounds have the formula MeB 2 (Me equivalent to Ti, Zr, Hf, V, Nb, Ta, Cr, Mo) (the atomic ratio of metal to boron was 0.5). Only NbB 2 was found to be superconducting with Tsub(c) = 0.62 K and a surprisingly high value of Hsub(c)(0), about 1600 Oe. Other transition metal as well as non-transition metal boron phases were also tested for superconductivity down to 0.42 K; these compounds were MeB 2 (Me equivalent to Ca, Sr, Ba), W 2 B 5 , CrB, Cr 5 B 3 , UB 2 , UB 4 and UB 12 . None of these compounds proved to be superconducting above 0.42 K; nor was any trace of superconductivity down to 0.42 K observed in MoB and NbB. (Auth.)

  12. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  13. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  14. Metallic iron for safe drinking water provision: Considering a lost knowledge.

    Science.gov (United States)

    Mwakabona, Hezron T; Ndé-Tchoupé, Arnaud Igor; Njau, Karoli N; Noubactep, Chicgoua; Wydra, Kerstin D

    2017-06-15

    Around year 1890, the technology of using metallic iron (Fe 0 ) for safe drinking water provision was already established in Europe. The science and technology to manufacture suitable Fe 0 materials were known and further developed in this period. Scientists had then developed skills to (i) explore the suitability of individual Fe 0 materials (e.g. iron filling, sponge iron) for selected applications, and (ii) establish treatment processes for households and water treatment plants. The recent (1990) discovery of Fe 0 as reactive agent for environmental remediation and water treatment has not yet considered this ancient knowledge. In the present work, some key aspects of the ancient knowledge are presented together with some contemporised interpretations, in an attempt to demonstrate the scientific truth contained therein. It appears that the ancient knowledge is an independent validation of the scientific concept that in water treatment (Fe 0 /H 2 O system) Fe 0 materials are generators of contaminant collectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-01-01

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  16. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.

    Science.gov (United States)

    Rajkumar, Mani; Ae, Noriharu; Prasad, Majeti Narasimha Vara; Freitas, Helena

    2010-03-01

    Phytoremediation holds promise for in situ treatment of heavy metal contaminated soils. Recently, the benefits of combining siderophore-producing bacteria (SPB) with plants for metal removal from contaminated soils have been demonstrated. Metal-resistant SPB play an important role in the successful survival and growth of plants in contaminated soils by alleviating the metal toxicity and supplying the plant with nutrients, particularly iron. Furthermore, bacterial siderophores are able to bind metals other than iron and thus enhance their bioavailability in the rhizosphere of plants. Overall, an increase in plant growth and metal uptake will further enhance the effectiveness of phytoremediation processes. Here, we highlight the diversity and ecology of metal resistant SPB and discuss their potential role in phytoremediation of heavy metals.

  17. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  18. Thermographic measurements of the spin Peltier effect in metal/yttrium-iron-garnet junction systems

    Science.gov (United States)

    Daimon, Shunsuke; Uchida, Ken-ichi; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji

    2017-07-01

    The spin Peltier effect (SPE), heat-current generation due to spin-current injection, in various metal (Pt, W, and Au single layers and Pt/Cu bilayer)/ferrimagnetic insulator [yttrium-iron-garnet (YIG)] junction systems has been investigated by means of a lock-in thermography (LIT) method. The SPE is excited by a spin current across the metal/YIG interface, which is generated by applying a charge current to the metallic layer via the spin Hall effect. The LIT method enables the thermal imaging of the SPE free from the Joule-heating contribution. Importantly, we observed spin-current-induced temperature modulation not only in the Pt/YIG and W/YIG systems, but also in the Au/YIG and Pt/Cu/YIG systems, excluding the possible contamination by anomalous Ettingshausen effects due to proximity-induced ferromagnetism near the metal/YIG interface. As demonstrated in our previous study, the SPE signals are confined only in the vicinity of the metal/YIG interface; we buttress this conclusion by reducing a spatial blur due to thermal diffusion in an infrared-emission layer on the sample surface used for the LIT measurements. We also found that the YIG-thickness dependence of the SPE is similar to that of the spin Seebeck effect measured in the same Pt/YIG sample, implying the reciprocal relation between them.

  19. 77 FR 14499 - Floor-Standing, Metal-Top Ironing Tables and Certain Parts Thereof From the People's Republic of...

    Science.gov (United States)

    2012-03-12

    ... Ironing Tables and Certain Parts Thereof From the People's Republic of China: Final Results of Antidumping... floor-standing, metal-top ironing tables from the People's Republic of China (PRC).\\1\\ On January 10, 2012, we extended the final results of this administrative review by 60 days.\\2\\ This review covers one...

  20. [Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia].

    Science.gov (United States)

    Guo, Wei; Zhao, Ren-Xin; Zhang, Jun; Bao, Yu-Ying; Wang, Hong; Yang, Ming; Sun, Xiao-Li; Jin, Fan

    2011-10-01

    The pollution status and total concentration of soil heavy metals were analyzed around tailing reservoir of Baotou and iron mining of Bayan Obo located in Inner Mongolia grassland ecosystem. Aim of the study is to control soil heavy metal pollution of grassland mining area and provide the basic information. The results indicated that the soils from different directions of the tailing reservoir were contaminated by Pb, Cu, Zn and Mn. According to the single factor pollution index, the pollution degree was Mn > Zn > Pb > Cu. According to Nemerow integrated pollution index, the indexes of the northeast, southeast, southwest, and northwest of the tailing reservoir, were 2.43, 10.2, 1.88, 1.64. Soils from the southeast had the most serious heavy metal contamination because of the dominant wind of northwest. Within 50 m from the edge of tailing reservoir, heavy metal contamination was most serious except Cu. With regard to Bayan Obo iron mining, the single factor pollution index indicated that the soils from the six surveyed regions were contaminated by Pb, Cu, Zn and Mn. The integrated pollution index indicated that the indexes of the six regions, such as the mining area, the dump, outside the dump, outside the urban area, east region of the railway, and west region of the railway, were 14.3, 4.30, 2.69, 3.41, 2.88, and 2.20, respectively. The soil pollution degree of the mining area was the highest. Additionally, the transport of ore resulted in soil heavy metal pollution along railway. In general, soils of the two studied areas had the similar pollution characteristic, and the elements of heavy metal contamination were corresponding with the concentrations of tailings. The health and stabilization of grassland ecosystem are being threatened by soil heavy metals.

  1. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    International Nuclear Information System (INIS)

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-01-01

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu) 2 ] 2 precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities

  2. Metal Pollution Around an Iron Smelter Complex in Northern Norway at Different Modes of Operation

    CERN Document Server

    Steinnes, E; Eidhammer-Sjobakk, T; Varskog, P

    2003-01-01

    The moss biomonitoring technique was employed to study the atmospheric deposition in and around the town of Mo i Rana, northern Norway, before and after closing an iron smelter and establishing alternative ferrous metal industries. Samples of Hylocomium splendens were collected from the same sites in 1989 and 1993. A combination of instrumental neutron activation analysis (INAA) and atomic absorption spectrometry was used to obtain data for 38 elements in these moss samples, and the analytical data were subjected to factor analysis. In general, the deposition was higher when the iron smelter was still in operation, in particular for Fe and for many elements normally associated with crustal matter. For Cr there was a substantially increased deposition due to the operation of a new ferrochrome smelter. Also for Ni and Au an increased deposition was observed, whereas for metals such as Mn, Co, Ag, Sb, and W there was no appreciable change. INAA proved to be a powerful tool for this kind of study. The regional di...

  3. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  4. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    Science.gov (United States)

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  5. Decontamination of aqueous effluents containing metallic cations or anions by iron oxides under the action of a magnetic field

    International Nuclear Information System (INIS)

    Goncalves, M. A.; Camilo, R. L.; Cohen, V. H.; Yamaura, M.

    1999-01-01

    This work deals with a review of decontamination processes of aqueous effluents containing metallic cations and anions by using iron oxides as adsorber. Conditions to obtain the different iron oxides and adsorption capacities for cations and anions are presented and precipitation and/or adsorption mechanisms studies under the point of view of oxide-interface phenomena are described. Emphasis will be applied to the magnetite combined with inorganic exchanger or liquid extractants which magnetic properties has been used to enhance metals removal. Experimental results of a synthetic magnetite production and its adsorption capacity as a function of a magnetic field intensity are also showed. (authors)

  6. Characterising the reactivity of metallic iron in Fe 0 /As-rock/H 2 O ...

    African Journals Online (AJOL)

    The intrinsic reactivity of 4 metallic iron materials (Fe0) was investigated in batch and column experiments. The Fe0 reactivity was characterised by the extent of aqueous fixation of in-situ leached arsenic (As). Air-homogenised batch experiments were conducted for 1 month with 10.0 g/. of an As-bearing rock (ore material) ...

  7. Characterization of a New Family of Metal Transporters; FINAL

    International Nuclear Information System (INIS)

    Mary Lou Geurinot; David Eide

    2002-01-01

    Metal ions are critical nutrients, yet overaccumulation of these same metals can also be toxic. To maintain appropriate intracellular levels, cells require specific metal uptake systems that are subject to precise homeostatic regulation. The long-range goal of our research is to define the molecular mechanism(s) and regulation of metal ion uptake in eukaryotic cells. Integrating genetic, molecular biological and biochemical approaches, we have examined these processes in the yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana. Both are proven model systems for studying fundamental cellular processes. Our work has focused on the ZIP family of metal transporters which we identified; this family has representatives in bacteria, fungi, plants and animals. IRT, one of the founding members of the ZIP family, is an essential cation transporter that is expressed in the epidermal cells of iron deficient plant roots and is responsible for uptake of iron from the soil. We now know that there are 15 ZIP genes in the Arabidopsis and the similarities among their encoded gene products. The ZIP family members display different substrate specificities for metals and different tissue distributions in Arabidopsis. Moreover, the family members respond differentially to metal deficiencies. For example, IRT1, ZIP6 and ZIP9 mRNA are expressed mainly in the roots of iron deficient plants whereas ZIP4 responds to both iron and zinc deficiency. Work in both yeast and Arabidopsis has addressed substrate specificity as well as how these transporters are regulated in response to metal availability

  8. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  9. Trace elements and heavy metals in hair of stage III breast cancer patients.

    Science.gov (United States)

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.

  10. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  11. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  12. Liquid metal degassing in electromagnetic mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomov, A I; EHL' -FAVAKHRI, KAMAL' -ABD-RABU MOKHAMED [LENINGRADSKIJ POLITEKHNICHESKIJ INST. (USSR)

    1977-01-01

    Experimental results for laboratory and industrial conditions are presented showing the favourable effect of electromagnetic mixing on hot metal degassing process. It has been found that the intensity and duration of the mixing process increase with the degree of iron and steel degassing. Initiation of cavitation phenomena during hot metal electromagnetic mixing is intensified because of the presence of alien inclusions in the metal reducing the tensile strength of the liquid metal. This is the most substantial factor contributing to the gas content in the process of electromagnetic mixing.

  13. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La “Sapienza,” 00185 Roma (Italy); Montoro, Silvia [IFIS Litoral, CONICET-UNL, Laboratorio de Fisica de Superficies e Interfaces, Güemes 3450, Santa Fe (Argentina); Mariani, Carlo, E-mail: carlo.mariani@uniroma1.it [Dipartimento di Fisica, CNISM, Università di Roma La “Sapienza,” 00185 Roma (Italy)

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  14. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  15. Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco

    Directory of Open Access Journals (Sweden)

    Nouri Mohamed

    2016-03-01

    Full Text Available The present study is an attempt to assess the pollution intensity and corresponding ecological risk of phosphorus and metals including Cd, Cr, Cu, Zn, Pb and Fe using various indices like geo-accumulation index, enrichment factor, pollution and ecological risk index. In all, 20 surface soil samples were collected from the Ait Ammar iron mine of Oued Zem city, province of Khouribga, in central Morocco. The concentrations of heavy metals in soil samples were used to assess their potential ecological risks. According to the results of potential ecological risk index (RI, pollution index (PI, geo-accumulation index (Igeo, enrichment factor (EF, potential contamination index (Cp, contaminant factor (Cf and degree of contamination (Cd, based on the averages, considerable pollution of metals in soils of study area was observed. The consequence of the correlation matrix and principal component analysis (PCA indicated that Fe, Cu, Zn, Cr and P mainly originated from natural sources and Cd and Pb are mostly derived from anthropogenic sources. The results showed that these metals in soil were ranked by severity of ecological risk as Pb > Cd > Cu > Cr > Zn, based on their single-element indexes. In view of the potential ecological risk (RI, soils from all soil samples showed a potential ecological risk. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention in Ait Ammar.

  16. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  17. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  18. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  19. Standard practice for qualification and acceptance of boron based metallic neutron absorbers for nuclear criticality control for dry cask storage systems and transportation packaging

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice provides procedures for qualification and acceptance of neutron absorber materials used to provide criticality control by absorbing thermal neutrons in systems designed for nuclear fuel storage, transportation, or both. 1.2 This practice is limited to neutron absorber materials consisting of metal alloys, metal matrix composites (MMCs), and cermets, clad or unclad, containing the neutron absorber boron-10 (10B). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Silicate Inclusions in IAB Irons: Correlations Between Metal Composition and Inclusion Properties, and Inferences for Their Origin

    Science.gov (United States)

    Benedix, G. K.; McCoy, T. J.; Keil, K.

    1995-09-01

    IAB irons are the largest group of iron meteorites, exhibit a large range of siderophile element concentrations in their metal, and commonly contain silicate inclusions with roughly chondritic composition. They are closely related to IIICD irons [1,2] and their inclusions resemble winonaites [3]. It has been suggested that IAB's and IIICD's formed in individual impact melt pools [4,2] on a common parent body. However, it has also been suggested that fractional crystallization [5,6] of a S-saturated core could produce the observed siderophile element trends. Metal composition is correlated with silicate inclusion mineralogy in IIICD's [1], indicating reactions between solid silicates and the metallic magma in a core. These trends observed in IIICD's differ from those in IAB's, suggesting different parent bodies. A bi-modal grouping, based primarily on mineralogy and mineral abundances, was suggested for IAB inclusions [7]. However, recent recoveries of several new silicate-bearing IAB's, along with the emergence of new ideas on their origins, prompted a comprehensive study to document more fully the range of inclusions within IAB irons, to examine possible correlations between the compositions of the metallic host and the silicate inclusions, and to elucidate the origin of IAB irons. We are studying troilite-graphite-silicate inclusions in 24 IAB irons with Ni concentrations ranging from 6.6-25.0%. These include Odessa and Copiapo types [7], newly recovered meteorites (e.g., Lueders [8]) and meteorites with extreme Ni contents (e.g., Jenny's Creek, 6.8%; San Cristobal, 25.0% [9]). The inclusions exhibit a range of textures from recrystallized to partial melts (e.g., Caddo County [10]). Rigorous classification [7] is hampered by heterogeneities between group meteorites, between different samples of distinct meteorites, and within individual inclusions. While intergroup heterogeneities make comparisons between the suite of IAB's somewhat difficult, some general trends

  1. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  2. Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil.

    Science.gov (United States)

    Varejão, Eduardo V V; Bellato, Carlos R; Fontes, Maurício P F; Mello, Jaime W V

    2011-01-01

    The Iron Quadrangle has been one of the most important gold production regions in Brazil since the end of the seventeenth century. There, arsenic occurs in close association with sulfide-rich auriferous rocks. The most abundant sulfide minerals are pyrite and arsenopyrite, yet trace metal sulfides occur in subordinate phases as well. Historical mining activities have been responsible for the release of As and trace metals to both aquatic and terrestrial environments close to mining sites in the region. Therefore, this study was aimed to evaluate the distribution and mobility of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn in streams in the southeast portion of the Iron Quadrangle between the municipalities of Ouro Preto and Mariana, the oldest Brazilian Au mining province. Total concentrations of some trace metals and arsenic in water were determined. The four-stage sequential extraction procedure proposed by the commission of the European Communities Bureau of Reference (BCR) was used to investigate the distribution of these elements in stream sediments. Arsenic concentration in water was > 10 μg L⁻¹ (maximum limit permitted by Brazilian environmental regulations for water destined for human consumption) at all sampling sites, varying between 36.7 and 68.3 μg L⁻¹. Sequential extraction in sediments showed high concentrations of As and trace metals associated with easily mobilized fractions.

  3. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    Directory of Open Access Journals (Sweden)

    Maria eFabisch

    2013-12-01

    Full Text Available We identified and quantified abundant iron-oxidizing bacteria (FeOB at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7, to moderately acidic (R2, pH 4.4, to slightly acidic (R3, pH 6.3 in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic ‘Ferrovum myxofaciens’ was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and ‘Ferrovum myxofaciens’ revealed that approximately 72% (R2 sediment and 37% (R3 sediment of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  4. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    Science.gov (United States)

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  5. Environmental Effects on the Metallicities of Early-Type Galaxies

    Science.gov (United States)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)

    2004-01-01

    We completed and published two papers in the Astrophysical Journal based on research from grant. In the first paper we analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type II supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia. In the second paper We analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type I1 supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia.

  6. Leading research on supermetal. Part 1. Large-scale materials (iron system); Super metal no sendo kenkyu. 1. Ogata sozai (tetsukei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Supermetal with critical characteristics is under advanced investigation for further improvement of metal materials. Although iron is most frequently used as structural material among various metals, it should be used more carefully and effectively because of resource limitation and global environmental problem. It is essential to draw various excellent properties much more from iron and to improve recyclability. In particular, the best way to meet these requirements is achievement of more fine structure and higher purity. Since the lowest crystalline grain size is now limited to nearly 10{mu}m, metallic structure composed of grains below 1{mu}m is expected by mesoscopic control. Various methods have been studied to achieve ultra-fine crystalline structure, and study of precise heat treatment control and ultra-strength metallurgy is required. Heat treatment in magnetic field and layered structure by mechanical alloying are also promising. Drastic enhancement of characteristics is expected for heat resistant steel by combining of high purity with fine structure. 299 refs., 166 figs., 18 tabs.

  7. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  8. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  9. Psyche: Journey to a Metal World

    Science.gov (United States)

    Elkins-Tanton, L. T.; Psyche Team

    2015-01-01

    We propose to visit the exposed iron core of a protoplanet by sending a mission to (16) Psyche, by far the largest iron metal body in the asteroid belt. At Psyche we will explore, for the first time, a world made not of rock or ice, but of iron.

  10. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa

    OpenAIRE

    Vetrimurugan Elumalai; K. Brindha; Elango Lakshmanan

    2017-01-01

    Heavy metals in surface and groundwater were analysed and their sources were identified using multivariate statistical tools for two towns in South Africa. Human exposure risk through the drinking water pathway was also assessed. Electrical conductivity values showed that groundwater is desirable to permissible for drinking except for six locations. Concentration of aluminium, lead and nickel were above the permissible limit for drinking at all locations. Boron, cadmium, iron and manganese ex...

  11. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites.

    Science.gov (United States)

    Xiao, Dianne J; Bloch, Eric D; Mason, Jarad A; Queen, Wendy L; Hudson, Matthew R; Planas, Nora; Borycz, Joshua; Dzubak, Allison L; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G; Gagliardi, Laura; Brown, Craig M; Long, Jeffrey R

    2014-07-01

    Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.

  12. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  13. A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater

    Science.gov (United States)

    Balko, Barbara A.; Tratnyek, Paul G.

    2001-12-01

    In this article, we describe an experiment for undergraduate general chemistry in which students investigate the chemistry behind iron-permeable reactive barriers (iron PRBs), a new technology that is widely used to remediate contaminated groundwater. Contaminant remediation involving iron PRBs is a redox process: the iron metal undergoes oxidative dissolution while the contaminant is reduced. The reaction is complicated, however, by the fact that it involves a surface that changes owing to the development of a layer of rust (iron oxide) on the iron. In this experiment, students examine the iron PRB-contaminant reaction by characterizing the kinetics of the degradation of a dye (the model contaminant) in the presence of granular iron under various experimental conditions. Students can be asked to design their own experiments to investigate aspects of the degradation reaction that are of particular interest to them. The material covered in the lab includes oxidation-reduction reactions, pseudo first-order kinetics, spectrophotometry, and the application of chemistry to solving environmental problems. The experiment can also be used as a vehicle to introduce more advanced topics in chemistry such as heterogeneous reactions, corrosion, passive film growth, and mass transport.

  14. ASTM Committee G-4 metals flammability test program - Data and discussion

    Science.gov (United States)

    Stoltzfus, Joel M.; Homa, John M.; Williams, Ralph E.; Benz, Frank J.

    1988-01-01

    Results of metals flammability tests performed on twenty-six metals in the NASA/White Sands Test Facility are discussed together with the test systems. The promoted combustion and ignition characteristics of these metals are described, and the metals are ranked according to their suitability for use in oxygen systems. In general, alloys with high copper and nickel contents and low iron content were found to rank higher than those that had high iron content, while alloys that had high aluminum content were ranked the lowest.

  15. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  16. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Melville, Felicity [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)], E-mail: f.melville@cqu.edu.au; Pulkownik, Alex [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2007-11-15

    This study examined the potential use of macroalgae epiphytic on mangrove aerial roots as biomonitors of estuarine contamination. The metal concentrations of macroalgae were investigated in four estuaries in the vicinity of Sydney, Australia, and compared to water and sediment metal concentrations over three seasonal surveys. Macroalgal metal concentrations (copper, zinc, cadmium, chromium, lead, nickel, manganese and iron) appeared to be more associated with sediment metal concentrations than water concentrations, suggesting they may be useful biomonitors of estuarine sediment contamination. Algae in the more contaminated estuaries generally contained higher metal concentrations. However, concentrations of iron, nickel and manganese appeared to be similar in the algae despite the varying sediment concentrations, while accumulation of copper, zinc, lead and chromium appeared to be associated with ambient environmental concentrations. The uptake of metals also varied among the different species, suggesting that algal parameters, such as morphology, may also influence metal uptake and accumulation.

  17. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    Document available in extended abstract form only. French concept of deep disposal of nuclear waste is based on a multi-barrier system with a metal container and a clayey host rock as last natural barrier for radionuclides confinement and to avoid their migration in the environment. One of the most important criteria for the safety assessment concerns the life time of metal containers. In this deep environment (elevated pressure and temperature, low water content) many factors may induce an alteration and modification of metal containers properties through corrosion processes. Two types of reactions are currently studied First, the anaerobic aqueous corrosion (a) which is depending on the amount of water available and the second is clayey corrosion (b) by an oxidation of structural Iron(III) or clay's H + on Fe(0) of metal containers. - Fe 0 + 2H 2 O → Fe 2+ + 2OH - + H 2 (a) - Fe 0 + 2H + argile → Fe 2+ solution + H 2 (b) - Fe 0 + Fe 3+ argile → Fe 2+ solution + Fe 2+ argile (b) These processes will entail different reaction products: first, we observe formation of corrosion products like aqueous Fe(II) and magnetite, hematite like mineral. These new minerals inhibit aqueous corrosion by the formation of a passivation process. For the second process, we observe a transformation of smectites into iron-rich serpentine-type minerals. These phenomenons will be responsible for a potential loss of confinement properties such as release of radionuclides, swelling and capacity to cations exchange. Moreover, since the discovery of microorganisms in deep clayey environment or in bentonite used as swelling clay. A new corrosion parameter 'biological one inducing bio-corrosion process' must be taken into account and has to be investigated to improve geochemical prediction on the sustainability of containers in geological disposal. - Impact of microorganisms has to be focused in term of bio-corrosion and more precisely on an indirect corrosion through the

  18. Effect of mining on heavy metal concentration in soils from the vicinity of Itakpe iron ore mine in kogi state, nigeria

    International Nuclear Information System (INIS)

    Amune, C.O.M.; Kakulu, S.

    2013-01-01

    The effects of mining oil from 1takpe iron ore mining area in Kogi State, Nigeria were studied through the determination of the heavy metals (Cd, Cu, Mg, Ni. Ph and Zn) using flame atomic absorption spectroscopy. Soil samples were collected during the dry and rainy seasons. Significant levels of heavy metals were found. Median topsoil concentrations (0-15 cm) for Ed, Cu, Mg, Ni, Pb and Zn were 0.16+0.02, 0.151-0.03, 0.041+0.03, 0.110.02, 0.07+0.(0 1, 0.04+0.04, micro/g, respectively. The heavy metal concentrations of control soil were relatively lower than those in the 1takpe mining environment soil and within levels of total metal contamination nation in the normal soil content intervals and maximum allowable limits of heavy metals in soils. Correlations analysis shows that heavy metals were closely correlated with each other except for Pb, indicating the studied metals are from the same pollutant resource. This shows, mining as contributing to the metallic levels in the 1takpe mining site. (author)

  19. Metallic iron for water treatment and environmental remediation: A handout to young researchers

    OpenAIRE

    Nkundimana, Emmanuel; Noubactep, Chicgoua; Uwamariya, Valentine

    2015-01-01

    The premise of this research note is that current research on metallic iron (Fe0) for environmental remediation and water treatment has started on a biased basis. Before expecting experienced researchers to correct flawed approaches compromising the future of the technology, the attention of new researchers should be drawn on the prevailing flawed conceptual models. There are guides on how to select good research topics, to perform good literature review, to select good mentors, and to write ...

  20. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  2. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  3. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  4. Heavy Metal Uptake by Nepenthes sp. in Ex-Iron and Tin Mine Soil, Pelepah Kanan, Kota Tinggi, Johor

    International Nuclear Information System (INIS)

    Sahibin Abd. Rahim; Tukimat Lihan; Zulfahmi Ali Rahman; Wan Mohd Razi Idris; Muhd Barzani Gasim; Azman Hashim; Sharilnizam Mohd. Yusof; Liow Hai Yin; Baba Musta; Adon Laming

    2008-01-01

    Heavy metals which are Pb, Co, Ni, Zn and Cd content in four Nephentes sp. plant component (roots, stem, leaf and pots) and in soil substrates from former iron and tin mining land at Pelepah Kanan, Kota Tinggi, Johor were determined. The composition of heavy metals in soil were extracted using a mixture of concentrated nitric acid and perchloric acid. Meanwhile, heavy metals in plants samples were extracted using wet digestion method. Heavy metals content in solution extract of soil and plant were determined by Flame Atomic Absorption Spectrophotometer (FAAS - model Perkin Elmer 3300). BAC (Biological Absorption Coefficient) which is a ratio of heavy metal content in plant to that of heavy metal in soil was obtained by calculation. The result of analyses showed that the former mining area has low organic matter contents and low values of soil electrical conductivity, whereas the soil pH showed an acidic value. Concentration of heavy metal in soil substrates in decreasing sequence start with Zn at 698.5 mg/ kg followed by Co (182.9 mg/ kg), Pb (58.2 mg/ kg), Ni (12.2 mg/ kg) and Cd (2.09 mg/ kg). Heavy metal concentration in plant in decreasing sequence was Ni>Co>Cd>Pb>Zn. Concentration in different part of the plant did not show any significant difference for all of the metals. Nepenthes sp. was found to accumulate high concentration of Ni as indicated by its high BAC value. This plant may be useful as bio-indicator for high concentration of Ni in soil. (author)

  5. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  6. The metal binding potential of a dairy isolate

    Directory of Open Access Journals (Sweden)

    K. Ramyakrishna

    2017-12-01

    Full Text Available Excess iron in water resources can lead to health hazards and problems. The ability of lactic acid bacteria to bind iron has not yet been widely studied. In the present study, sorption of iron ions from aqueous solutions onto lactic acid bacterium was determined. Elemental analyses were carried out by inductively coupled plasma optical emission spectrometry. The kinetics of Fe(III biosorption was investigated at different initial concentrations of metal ion. The highest uptake capacity was found to be 16 mg of Fe(III per gram of adsorbent with a contact time of 24 hr and at initial metal ion concentration of 34 mg/L. The uptake capacity of Fe(III ion varied from 83.2 to 46.7% across the range of initial metal ion concentrations. The equilibrium data were evaluated by Langmuir and Freundlich isotherms, and were found to fit better with the latter (R2 = 0.9999. The surface morphology of the biomass and percentage of metal was characterized by using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The functional groups on the cell wall surface of biomass involved in biosorption of heavy metals were studied by Fourier transform infrared spectroscopy spectrum.

  7. Spectral and physical properties of metal in meteorite assemblages - implications of asteroid surface materials

    International Nuclear Information System (INIS)

    Gaffey, M.J.

    1986-01-01

    One of the objectives of the present paper is related to a definition of the spectral contribution of the nickel-iron metal component in meteoritic assemblages. Another objective is the elucidation of the chemical, physical, and petrographic properties of the metal grains which affect the spectral signature in asteroid surface materials. It is pointed out that an improved understanding of the spectral and physical properties of metal in asteroid regoliths should permit an improved characterization of these objects, and, in particular, a better evaluation of the differentiated or undifferentiated nature of the S-type and M-type asteroids. Attention is given to the spectra of iron and nickel-iron metals, the spectral effects of metal in chondritic assemblages, the spectral reflectance of metal grains in ordinary chondrites, the nature of the surfaces of chondritic metal grains, the origin of coats on chondritic metal grains, and the fragmentation of metal on asteroid surfaces. 57 references

  8. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  9. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa

    Directory of Open Access Journals (Sweden)

    Vetrimurugan Elumalai

    2017-04-01

    Full Text Available Heavy metals in surface and groundwater were analysed and their sources were identified using multivariate statistical tools for two towns in South Africa. Human exposure risk through the drinking water pathway was also assessed. Electrical conductivity values showed that groundwater is desirable to permissible for drinking except for six locations. Concentration of aluminium, lead and nickel were above the permissible limit for drinking at all locations. Boron, cadmium, iron and manganese exceeded the limit at few locations. Heavy metal pollution index based on ten heavy metals indicated that 85% of the area had good quality water, but 15% was unsuitable. Human exposure dose through the drinking water pathway indicated no risk due to boron, nickel and zinc, moderate risk due to cadmium and lithium and high risk due to silver, copper, manganese and lead. Hazard quotients were high in all sampling locations for humans of all age groups, indicating that groundwater is unsuitable for drinking purposes. Highly polluted areas were located near the coast, close to industrial operations and at a landfill site representing human-induced pollution. Factor analysis identified the four major pollution sources as: (1 industries; (2 mining and related activities; (3 mixed sources- geogenic and anthropogenic and (4 fertilizer application.

  10. Direct analysis of plutonium metal for gallium, iron, and nickel by energy dispersive x-ray spectrometry

    International Nuclear Information System (INIS)

    Bramlet, H.L.; Doyle, J.H.

    1981-01-01

    An x-ray secondary target method for routine determination of gallium, iron, and nickel in plutonium metal is described that has significant advantages over wet chemical analysis. Coupons requiring minimal preparation for analysis are produced as a breakaway tab on the plutonium ingot. All three elements are determined on the same coupon. Gallium is determined using an arsenic secondary target followed by iron and nickel using a zinc target. The analysis times are 5 minutes for gallium and 15 minutes for the combined iron and nickel. The method of analysis was evaluated in the range of from 0.5 to 1.5% gallium. Iron was investigated over the range of 67 to 3000 ppM and nickel from 64 to 110 ppM

  11. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  12. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  13. A diffraction study of Cosub(81.5)Bsub(18.5) binary metallic glass

    International Nuclear Information System (INIS)

    Chadha, G.S.; Sakata, M.; Cowlam, N.

    1981-01-01

    Neutron and X-ray diffraction experiments are made on Cosub(81.5)Bsub(18.5) metallic glass. The neutron scattering cross section for boron is greater than that for cobalt, and the structure factor obtained with neutrons is rather different from that obtained with X-rays, which has the usual characteristic form. These structure factors, and the reduced RDF's which are derived from them can be qualitatively explained in terms of the dominant contributions from the metal-metal and metal-metalloid correlations. The local topological order in Cosub(81.5)Bsub(18.5) appears to be similar to that of other transition metal-metalloid glasses, with a metal-metalloid distance slightly shorter than the metal-metal spacing and a coordination number close to 12. (author)

  14. Production of metal and metal-ceramic coatings on D-Gun Ob

    International Nuclear Information System (INIS)

    Gavrilenko, T.P.; Nikolaev, Y.A.; Ulianitsky, V.Y.

    1995-01-01

    Optimization of the detonation spraying process has been made for the production of metal and metal-ceramics coatings with the D-Gun Ob. Owing to the ability of Ob to work with several fuels and an inert diluent simultaneously, variation of detonation regimes in a wide range is possible, and because of localized powder injection in the D-Gun barrel, high uniformity of parameters of powder particles is achieved. The best conditions for particle heating and acceleration were calculated with the help of mathematical simulation, and the corresponding regimes were realized on D-Gun Ob. High-quality aluminum, copper, nickel, and nickel-chromium-silicon-carbon-boron alloy coatings were produced by using only propane fuel. Chromium carbide with nickel and tungsten carbide with cobalt coatings were produced with addition of acetylene. Optimal efficiency and high bonding strength were achieved for all powders. Data on microhardness, bonding strength, and efficiency are presented

  15. Metals in wine--impact on wine quality and health outcomes.

    Science.gov (United States)

    Tariba, Blanka

    2011-12-01

    Metals in wine can originate from both natural and anthropogenic sources, and its concentration can be a significant parameter affecting consumption and conservation of wine. Since metallic ions have important role in oxide-reductive reactions resulting in wine browning, turbidity, cloudiness, and astringency, wine quality depends greatly on its metal composition. Moreover, metals in wine may affect human health. Consumption of wine may contribute to the daily dietary intake of essential metals (i.e., copper, iron, and zinc) but can also have potentially toxic effects if metal concentrations are not kept under allowable limits. Therefore, a strict analytical control of metal concentration is required during the whole process of wine production. This article presents a critical review of the existing literature regarding the measured metal concentration in wine, methods applied for their determination, and possible sources, as well as their impact on wine quality and human health. The main focus is set on aluminum, arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc, as these elements most often affect wine quality and human health.

  16. Metal acquisition and virulence in Brucella

    Science.gov (United States)

    Roop, R. Martin

    2013-01-01

    Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts. PMID:22632611

  17. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  18. Infrared spectral studies of various metal polyacrylates

    International Nuclear Information System (INIS)

    McCluskey, P.H.; Snyder, R.L.; Condrate, R.A. Sr.

    1989-01-01

    A new process for the production of high surface area, high reactivity ceramic oxide powders involves the bonding of metal cations to polymeric polyacrylate chains. This process results in the formation of a gelatinous metal polyacrylate precipitate which can be easily removed from the mother liquor, and then calcined to form a high density ceramic oxide. Using FTIR spectroscopy, the nature of the structural arrangements has been studied for metal complexes in the yttrium, lanthanum, aluminum, cerium, copper, and iron polyacrylates. Interpretation of the infrared spectra indicates that two types of metal complex formation occur in these precipitates, involving bidentate or bridging interactions. The type that is observed for a particular metal ion is dependent on its metal ion size

  19. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions

    International Nuclear Information System (INIS)

    Shah, Vishal; Collins, Daniel; Shah, Shreya; Walker, Virginia K

    2014-01-01

    Our understanding of how engineered nanoparticles (NPs) migrate through soil and affect microbial communities is scarce. In the current study we examined how metal NPs, including those from the iron triad (iron, cobalt and nickel), moved through pots of soil maintained under winter field conditions for 50 days, when mesophilic bacteria may not be dividing. Based on total metal analysis, cobalt and nickel were localized in the top layer of soil, even after exposure to high precipitation and freeze–thaw cycles. In contrast, a bimodal distribution of silver was observed. Due to high endogenous levels of iron, the migration pattern of these NPs could not be determined. Pyrosequence analysis of the bacterial communities revealed that there was no significant engineered NP-mediated decline in microbial richness. However, analysis of individual genera showed that Sphingomonas and Lysobacter were represented by fewer sequences in horizons containing elevated metal levels whereas there was an increase in the numbers of Flavobacterium and Niastella. Collectively, the results indicate that along with the differential migration behavior of NPs in the soil matrix, their impact on soil bacterial diversity appears to be dependent on environmental parameters. (paper)

  20. Structural and Functional Models of Non-Heme Iron Enzymes : A Study of the 2-His-1-Carboxylate Facial Triad Structural Motif

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.

    2007-01-01

    The structural and functional modeling of a specific group of non-heme iron enzymes by the synthesis of small synthetic analogues is the topic of this thesis. The group of non-heme iron enzymes with the 2-His-1-carboxylate facial triad has recently been established as a common platform for the

  1. Atmospheric corrosion of metals in tropics and subtropic. 2. Corrosion resistance of different metals and alloys

    International Nuclear Information System (INIS)

    Strekalov, P.V.

    1993-01-01

    Data from 169 sources concerning corrosion of different metals, alloys and means of protection, obtained for a 30-year period (up to 1987) in different continent including Europe (Bulgaria, Spain, Italy, France, USSR); America (USA, Panama, Cuba, Venezuela, Brasil, Argentine); Africa (Nigeria, SAR); Australia, New Zeland, Papua-Newguinea, Philippines, are systemized. Actual results of full-scal atmospheric testings of iron, zinc, copper, cadmium, aluminium, tin, lead, carbon, low-alloys. Stainless steels, cast irons, halvanic coatings, copper, aluminium, nickel, titanium, magnesium alloys are presented. Data on the fracture rate can be used for creating the data base in banks on atmospheric resistance of metal materials

  2. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    SIBOO

    Key words: Fungal leaching, sponge iron, electrostatic precipitator (ESP) dust, metal dissolution. INTRODUCTION ... ability of micro organisms to transform solid compounds ..... of metals from spent lithium ion secondary batteries using A.

  3. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    Science.gov (United States)

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  4. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  5. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  6. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  7. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... from the chrome and tin effluents of a local iron and steel industry. Key words: ... source of biomass for bioremediation of waste water. It ... microbes. Unz and Shuttleworth (1996) stated that the capacity of biomass to recover metals from waste water depends on its physical, chemical and biological pro-.

  8. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    International Nuclear Information System (INIS)

    Popescu, Bogdan F Gh; George, Martin J; McCrea, Richard P E; Devon, Richard M; George, Graham N; Hanson, Akela D; Chapman, L Dean; Nichol, Helen; Bergmann, Uwe; Garachtchenko, Alex V; Luening, Katharina; Kelly, Michael E; Harder, Sheri M; Pickering, Ingrid J

    2009-01-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  9. TDPAC studies on metal-complex ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yoshitaka [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Abe, Shizuko; Okada, Takuya [and others

    1997-03-01

    TDPAC spectra of {sup 117}In (left-arrow {sup 117}Cd) and {sup 111}Cd (left-arrow {sup 111m}Cd) in the mixed metal complex N(C{sub 4}H{sub 9}){sub 4}(M(II)Fe(III)(C{sub 2}O{sub 4}){sub 3})(M=Fe,Ni), the related substraces and LiNbO{sub 3} have been studied. In this paper, pure potassium iron (III) oxalate was prepared and mixed metal complexes were synthesized by changing amount of reagents and the order added, then observed by TDPAC. 2 mol%Cd was dispersed throughout potassium iron oxalate and potassium nickel oxalate, formulating M(II){sub 0.98}Cd(II){sub 0.02}C{sub 2}O{sub 4}{center_dot}2H{sub 2}O (M=Fe, Ni) with the same crystal structure. The formation reaction of mixed metal complex-Fe(II) was faster than that of iron oxalate. Its mixed metal complex-Ni(II) was slower than that of iron oxalate. The rate of quadrupole oscillation was obtained by {omega}{sub Q}({sup 117}In)=67.3 Mrad/s and {omega}{sub Q}({sup 111}Cd)=29.7 Mrad/s of which values were determined by TDPAC spectra of {sup 117}In and {sup 111}Cd in LiNbO{sub 3} at 4K. The value showed pure ion bond of oxygen coordinated with {sup 117}In and {sup 111}Cd. 0.08 {eta} was determined by TDPAC spectrum of {sup 111}Cd(left-arrow {sup 111m}Cd). The rate of {omega}{sub Q} of mixed metal oxalate complex was larger than 2.3, indicating 5s and 5p orbital electron took part in bond of oxygen of oxalic acid or approaching oxygen ion to In nucleus depend on the structual relaxation in decaying of {sup 117}In(left-arrow {sup 117}Cd). (S.Y.)

  10. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  11. Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits.

    Science.gov (United States)

    Özcan, Mehmet Musa; Harmankaya, Mustafa; Gezgin, Sait

    2012-01-01

    The rate of heavy metal pollution in some minor fruit samples growing at roadsides in Turkey were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The mineral contents of samples were found to be different depending on the several parts Citrus fruits. The highest minor and heavy metal levels for Citrus fruits were determined between 17.24 and 45.30 mg/kg boron, 2.08 and 15.05 mg/kg copper, 1.01 and 16.00 mg/kg iron and 2.35 and 9.87 mg/kg zinc. Boron content ranged from 16.54 mg/kg (Deveci pear inner pulp) to 89.89 mg/kg (Arjantin apple outer skin). The level of Fe ranged from 1.49 mg/kg (quince pulp) to 25.05 mg/kg (Ankara pear pulp). Cu content of fruits ranged between 2.52 mg/kg (Fuji apple skin) and 25.93 mg/kg quince skin). Zn content was found between 0.46 mg/kg (Golden apple pulp) and 14.34 mg/kg (quince skin). P contents ranged from 651 mg/kg (Golden apple pulp) to 1269 mg/kg (quince skin). Na was found between 500 mg/kg (Fuji apple skin) and 907 mg/kg (Arjantin apple skin).

  12. Thermal analysis and safety information for metal nanopowders by DSC

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, J.M.; Huang, S.T. [Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung 40601, Taiwan, ROC (China); Duh, Y.S.; Hsieh, T.Y.; Sun, Y.Y. [Department of Safety Health and Environmental Engineering, National United University, Miaoli, Taiwan, ROC (China); Lin, J.Z. [Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung 40601, Taiwan, ROC (China); Wu, H.C. [Institute of Occupational Safety and Health, Council of Labor Affairs, Taipei, Taiwan, ROC (China); Kao, C.S., E-mail: jcsk@nuu.edu.tw [Department of Safety Health and Environmental Engineering, National United University, Miaoli, Taiwan, ROC (China)

    2013-08-20

    Highlights: • Metal nanopowders are common and frequently employed in industry. • Nano iron powder experimental results of T{sub o} were 140–150 °C. • Safety information can benefit relevant metal powders industries. - Abstract: Metal nanopowders are common and frequently employed in industry. Iron is mostly applied in high-performance magnetic materials and pollutants treatment for groundwater. Zinc is widely used in brass, bronze, die casting metal, alloys, rubber, and paints, etc. Nonetheless, some disasters induced by metal powders are due to the lack of related safety information. In this study, we applied differential scanning calorimetry (DSC) and used thermal analysis software to evaluate the related thermal safety information, such as exothermic onset temperature (T{sub o}), peak of temperature (T{sub p}), and heat of reaction (ΔH). The nano iron powder experimental results of T{sub o} were 140–150 °C, 148–158 °C, and 141–149 °C for 15 nm, 35 nm, and 65 nm, respectively. The ΔH was larger than 3900 J/g, 5000 J/g, and 3900 J/g for 15 nm, 35 nm, and 65 nm, respectively. Safety information can benefit the relevant metal powders industries for preventing accidents from occurring.

  13. Transition metal borides. Synthesis, characterization and superconducting properties

    International Nuclear Information System (INIS)

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M 2 B, MB, M 3 B 2 , MB 2 , and M 2 B 4 . The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W 2 B 4 to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W 2 B 4 was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB 2 (T C = 3.5 K), β-MoB (T C = 2.4 K), β-WB (T C = 2.0 K), α-WB (T C = 4.3 K), W 2 B 4 (T C = 5.4 K), Re 7 B 3 (T C = 2.4 K). A relationship between the superconducting properties and the compositional and structural features was discussed for metal diborides. Also it was

  14. Fraction-specific controls on the trace element distribution in iron formations : Implications for trace metal stable isotope proxies

    NARCIS (Netherlands)

    Oonk, Paul B.H.; Tsikos, Harilaos; Mason, Paul R.D.; Henkel, Susann; Staubwasser, Michael; Fryer, Lindi; Poulton, Simon W.; Williams, Helen M.

    2017-01-01

    Iron formations (IFs) are important geochemical repositories that provide constraints on atmospheric and ocean chemistry, prior to and during the onset of the Great Oxidation Event. Trace metal abundances and their Mo-Cr-U isotopic ratios have been widely used for investigating ocean redox processes

  15. Technologies for Decentralized Fluoride Removal: Testing Metallic Iron-based Filters

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2015-11-01

    Full Text Available Since the realization in the 1930s that elevated fluoride concentrations in drinking water can have detrimental effects on human health, new methods have been progressively developed in order to reduce fluoride to acceptable levels. In the developing world the necessity for filtration media that are both low-cost and sourced from locally available materials has resulted in the widespread use of bone char. Since the early 1990s metallic iron (Fe0 has received widespread use as both an adsorbent and a reducing agent for the removal of a wide range of contaminant species from water. The ion-selectivity of Fe0 is dictated by the positively charged surface of iron (hydroxides at circumneutral pH. This suggests that Fe0 could potentially be applied as suitable filter media for the negatively charged fluoride ion. This communication seeks to demonstrate from a theoretical basis and using empirical data from the literature the suitability of Fe0 filters for fluoride removal. The work concludes that Fe0-bearing materials, such as steel wool, hold good promise as low-cost, readily available and highly effective decentralized fluoride treatment materials.

  16. Predicting the Hydraulic Conductivity of Metallic Iron Filters: Modeling Gone Astray

    Directory of Open Access Journals (Sweden)

    Chicgoua Noubactep

    2016-04-01

    Full Text Available Since its introduction about 25 years ago, metallic iron (Fe0 has shown its potential as the key component of reactive filtration systems for contaminant removal in polluted waters. Technical applications of such systems can be enhanced by numerical simulation of a filter design to improve, e.g., the service time or the minimum permeability of a prospected system to warrant the required output water quality. This communication discusses the relevant input quantities into such a simulation model, illustrates the possible simplifications and identifies the lack of relevant thermodynamic and kinetic data. As a result, necessary steps are outlined that may improve the numerical simulation and, consequently, the technical design of Fe0 filters. Following a general overview on the key reactions in a Fe0 system, the importance of iron corrosion kinetics is illustrated. Iron corrosion kinetics, expressed as a rate constant kiron, determines both the removal rate of contaminants and the average permeability loss of the filter system. While the relevance of a reasonable estimate of kiron is thus obvious, information is scarce. As a conclusion, systematic experiments for the determination of kiron values are suggested to improve the database of this key input parameter to Fe0 filters.

  17. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  18. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    Science.gov (United States)

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

  19. Natural microbial system for heavy metals cleanup application

    African Journals Online (AJOL)

    compq

    2012-05-24

    May 24, 2012 ... metallurgy and other chemical industries lead to the discharge of ... the direct metal-microbe interaction become less effective .... bio-essential micronutrients as zinc, manganese, iron, cobalt ... 0.9 to 1.1), variable capabilities of cadmium precipitation .... Metals, minerals and microbes: Geomicrobiology and.

  20. Metals in coastal zooplanktons - A coastal living resource hazard

    Digital Repository Service at National Institute of Oceanography (India)

    Paimpillil, J.S.; Joseph, T.; Rejomon, G.; Gerson, V.J.

    are linked to bioaccumulation. The biological concentration factor and metal contents in zooplankton is appreciably varied for all the elements except for iron and zinc. The above findings clearly indicates the importance of bioavailability of metals...

  1. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    low concentrations of nutrients and major ions but had elevated concentrations of iron, manganese, and strontium when compared to sites sampled in adjacent watersheds. The background site on Baptism Creek generally had the lowest concentrations and yields of constituents. Low concentrations of nutrients and major ions at all five sites indicate that measured concentrations can be attributed to general land use and geology and not to point sources. Streambed-sediment sampling results indicated higher concentrations of all metals except nickel at sites on French Creek compared to the background site on Baptism Creek. Concentrations of aluminum, cadmium, and nickel were highest in sediment from the sampling site upstream from Hopewell Furnace. The highest concentrations of arsenic, boron, cobalt, copper, iron, lead, manganese, mercury, and zinc were detected at the site just below Hopewell Furnace, which indicates that the source of these metals may be in Hopewell Furnace NHS. The invertebrate community at the background site on Baptism Creek was dominated by pollution sensitive taxa indicating a healthy, diverse benthic-macroinvertebrate community. Benthic-macroinvertebrate communities at sampling sites on French Creek indicated disturbed communities when compared to the background site on Baptism Creek and that the overall stream quality immediately above and below Hopewell Furnace NHS is degraded. The benthic-macroinvertebrate communities were dominated by pollution-tolerant taxa, and taxa were less diverse than at the background site. Habitat conditions at the upstream site on French Creek were good but were degraded at downstream sites on French Creek. The major habitat issues at these sites were related to a lack of stable substrate, erosion, and deposition. Water quality and streambed-sediment quality do not indicate that the degraded benthic-macroinvertebrate communities are the result of poor water quality. Habitat conditions (erosion and sedimentation) and

  2. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  3. Life cycle assessment of metals: a scientific synthesis.

    Directory of Open Access Journals (Sweden)

    Philip Nuss

    Full Text Available We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining. For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use, and report the shares for all metals to both impact categories.

  4. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  5. Researches on the electrolysis of metal oxides dissolved in boric anhydride or in melt borates. New methods of preparation of amorphous boron, borides and some metals; Recherches sur l'electrolyse des oxydes metalliques dissous dans l'anhydride borique ou dans les borates fondus. Nouvelles methodes de preparation du bore amorphe, des borures et de quelques metaux

    Energy Technology Data Exchange (ETDEWEB)

    Andrieux, Lucien

    1929-06-15

    This research thesis reports the investigation of the electrolysis of alkaline borates, alkaline earth borates and magnesium borate, and the investigation of mixtures containing a metal oxide dissolved in a bath formed by a tetraborate and a fluoride. The author more particularly studies the chemical products separated at the cathode level, i.e. boron (more or less pure), borates and other metals (zinc, tungsten, molybdenum)

  6. Lysosome-related organelles as mediators of metal homeostasis.

    Science.gov (United States)

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2014-10-10

    Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  8. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  9. Temporal comportment assessment of metals in groundwater on the campus at IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Faustino, Mainara G.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M.V.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Marques, Joyce R.; Pires, Maria A.F.; Cotrim, Marycel E.B., E-mail: mainarag@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since 2006, Nuclear and Energy Research Institute (IPEN) performs yearly the Environmental Monitoring Program of Stable Chemical Compounds (PMA-Q).Among other parameters, metals and semi metals in groundwater, collected at IPEN’s facility, are evaluated. The monitoring is conducted in nine wells, in attendance to the current Brazilian environmental legislation, which requires the monitoring of metals and semi metals in groundwater, in accordance with CETESB and CONAMA’s resolutions. CETESB is the Sao Paulo State environmental regulatory agency and CONAMA is the Environmental National Council, both agencies that regulate environmental standards in Brazil and regulate IPEN’s environmental activities. Besides these two environmental regulators, IPEN have to follow the request of the Term for the Adjustment of Conduct (TAC) from (IBAMA), in order to support programs to prevent and control pollution resulting from activities of IPEN’s facilities. In the current PMA-Q, Aluminum (Al) Antimony (Sb), Silver (Ag), Arsenic (As), Lead (Pb), Chromium (Cr), Cobalt (Co), Zinc (Zn), Boron (B), Barium (Ba), Calcium (Ca), Iron (Fe), Manganese (Mn), Mercury (Hg) and Nickel (Ni) are analyzed by using sensitive analytical techniques as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). These elements results are in this paper evaluated. Both internal and external quality controls that uses data from interlaboratory programs are discussed here. It was possible to conclude that IPEN’s groundwater attends national standards and IPEN’s monitoring system operates under controlled quality conditions. (author)

  10. Temporal comportment assessment of metals in groundwater on the campus at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Faustino, Mainara G.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M.V.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Marques, Joyce R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2015-01-01

    Since 2006, Nuclear and Energy Research Institute (IPEN) performs yearly the Environmental Monitoring Program of Stable Chemical Compounds (PMA-Q).Among other parameters, metals and semi metals in groundwater, collected at IPEN’s facility, are evaluated. The monitoring is conducted in nine wells, in attendance to the current Brazilian environmental legislation, which requires the monitoring of metals and semi metals in groundwater, in accordance with CETESB and CONAMA’s resolutions. CETESB is the Sao Paulo State environmental regulatory agency and CONAMA is the Environmental National Council, both agencies that regulate environmental standards in Brazil and regulate IPEN’s environmental activities. Besides these two environmental regulators, IPEN have to follow the request of the Term for the Adjustment of Conduct (TAC) from (IBAMA), in order to support programs to prevent and control pollution resulting from activities of IPEN’s facilities. In the current PMA-Q, Aluminum (Al) Antimony (Sb), Silver (Ag), Arsenic (As), Lead (Pb), Chromium (Cr), Cobalt (Co), Zinc (Zn), Boron (B), Barium (Ba), Calcium (Ca), Iron (Fe), Manganese (Mn), Mercury (Hg) and Nickel (Ni) are analyzed by using sensitive analytical techniques as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). These elements results are in this paper evaluated. Both internal and external quality controls that uses data from interlaboratory programs are discussed here. It was possible to conclude that IPEN’s groundwater attends national standards and IPEN’s monitoring system operates under controlled quality conditions. (author)

  11. Predatory insects as bioindicators of heavy metal pollution

    International Nuclear Information System (INIS)

    Nummelin, Matti; Lodenius, Martin; Tulisalo, Esa; Hirvonen, Heikki; Alanko, Timo

    2007-01-01

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective. - Waterstriders, dragon fly larvae, antlion larvae, and ants can be used as heavy metal indicators

  12. Closing the Loop: Key Role of Iron in Metal-Bearing Waste Recycling

    Directory of Open Access Journals (Sweden)

    Sedlakova-Kadukova J.

    2017-09-01

    Full Text Available The role of iron in metal-bearing waste bioleaching was studied. Four various types of waste (printed circuit boards (PCBs, Ni-Cd batteries, alkaline batteries and Li-ion batteries were treated by bioleaching using the acidophilic bacteria A. ferrooxidans and A. thiooxidans (separately or in mixture. Role of main leaching agents (Fe3+ ions or sulphuric acid was simulated in abiotic experiments. Results showed that oxidation abilities of Fe3+ ions were crucial for recovery of Cu and Zn from PCBs, with the efficiencies of 88% and 100%, respectively. To recover 68% of Ni from PCBs, and 55% and 100% of Ni and Cd, respectively, from Ni-Cd batteries both oxidation action and hydrolysis of Fe3+ were required. The importance of Fe2+ ions as a reducing agent was showed in bioleaching of Co from Li-ion batteries and Mn from alkaline batteries. The efficiency of the processes has increased by 70% and 40% in Co and Mn bioleaching, respectively, in the presence of Fe2+ ions. Based on the results we suggest the integrated biometallurgical model of metal-bearing waste recycling in the effort to develop zero-waste and less energy-dependent technologies.

  13. Facile conversion of bulk metal surface to metal oxide single-crystalline nanostructures by microwave irradiation: Formation of pure or Cr-doped hematite nanostructure arrays

    International Nuclear Information System (INIS)

    Cho, Seungho; Jeong, Haeyoon; Lee, Kun-Hong

    2010-01-01

    We report a method for converting the surfaces of bulk metal substrates (pure iron or stainless steel) to metal oxide (hematite or Cr-doped hematite) nanostructures using microwave irradiation. When microwave radiation (2.45 GHz, single-mode) was applied to a metal substrate under the flow of a gas mixture containing O 2 and Ar, metal oxide nanostructures formed and entirely covered the substrate. The nanostructures were single crystalline, and the atomic ratios of the substrate metals were preserved in the nanostructures. When a pure iron sheet was used as a substrate, hematite nanowires (1000 W microwave radiation) or nanosheets (1800 W microwave radiation) formed on the surface of the substrate. When a SUS410 sheet was used as a substrate, slightly curved rod-like nanostructures were synthesized. The oxidation states of Fe and Cr in these nanorods were Fe 3+ and Cr 3+ . Quantitative analyses revealed an average Fe/Cr atomic ratio of 9.2, nearly identical to the ratio of the metals in the SUS410 substrate.

  14. Metal recovery from spent refinery catalysts by means of biotechnological strategies

    International Nuclear Information System (INIS)

    Beolchini, F.; Fonti, V.; Ferella, F.; Veglio, F.

    2010-01-01

    A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.

  15. Metal recovery from spent refinery catalysts by means of biotechnological strategies

    Energy Technology Data Exchange (ETDEWEB)

    Beolchini, F., E-mail: f.beolchini@univpm.it [Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Fonti, V. [Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ferella, F.; Veglio, F. [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio, 67040 L' Aquila (Italy)

    2010-06-15

    A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.

  16. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  17. Nano-metal Oxides: Exposure and Engineering Control Assessment

    OpenAIRE

    Garcia, Alberto; Sparks, Christopher; Martinez, Kenneth; Topmiller, Jennifer L.; Eastlake, Adrienne; Geraci, Charles L.

    2017-01-01

    This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials c...

  18. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaolin, E-mail: lishaolin@tongji.edu.cn; Wang, Wei; Liang, Feipeng; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • nZVI is able to perform fast and simultaneous removal of different heavy metal ions. • Fast separation and seeding effect of nZVI facilities its application in wastewater. • A novel process of E{sub h}-controlled reactor, nZVI separator and reuse is proposed. • E{sub h}-controlled system and nZVI recirculation increase material efficiency of nZVI. • The process produces stable effluent and is effective in wastewater treatment. - Abstract: Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E{sub h}, enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E{sub h}-controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E{sub h}-controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245 mg As + 226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment.

  19. Chromate reduction and heavy metal fixation in soil

    International Nuclear Information System (INIS)

    Schwitzgebel, K.

    1992-06-01

    In situ reduction of chromates and the fixation of the metals Cr, Pb, Zn, Cu, Cd and Ni in soil was investigated using Fe II and soluble silica. Fe II fulfills two functions. It reduces chromates (CrVI) at soil pH to CrIII and the reaction products, Fe(OH) 3 and Cr(OH) 3 , coprecipitate/adsorb heavy metals. In the absence of CrVI iron is added as FeIII. Destabilized silica also fulfills two functions. It reacts with the metal and metal hydroxides and reduces the soil permeability. The leaching rate (mg/m 2 s) of a metal is the product of leachate flow rate (ell/M 2 s) and the leachate concentration (mg/ell). The leachate flow rate is directly proportional to the hydraulic coefficient (Darcy's Law). Treatment with destabilized silica reduces the hydraulic coefficient of virgin soil (K h = 10 -2 ...10 -4 ) to K h =10 -7 (cm/s) resulting in a flow rate reduction of 3--5 orders of magnitude. Iron plus silica treatment results in a leachate concentration reduction of up to 2 orders of magnitude (Cr:95--99%;Pb:99%;Zn 95--99%; Cd:93--99%; Ni:75--94%). Combined effect of flow rate reduction and leachate concentration reduction results in a potential leaching rate reduction of five to seven orders of magnitude. Iron-silica treatment may be developed into an efficient containment technology, provided the silica gel integrity does not change with time

  20. Heavy metals in human bones in different historical epochs.

    Science.gov (United States)

    Martínez-García, M J; Moreno, J M; Moreno-Clavel, J; Vergara, N; García-Sánchez, A; Guillamón, A; Portí, M; Moreno-Grau, S

    2005-09-15

    The concentration of the metals lead, copper, zinc, cadmium and iron was determined in bone remains belonging to 30 individuals buried in the Region of Cartagena dating from different historical periods and in eight persons who had died in recent times. The metals content with respect to lead, cadmium and copper was determined either by anodic stripping voltammetry or by atomic absorption spectroscopy on the basis of the concentrations present in the bone remains. In all cases, zinc and iron were quantified by means of atomic absorption spectroscopy. The lead concentrations found in the bone remains in our city are greater than those reported in the literature for other locations. This led to the consideration of the sources of these metals in our area, both the contribution from atmospheric aerosols as well as that from the soil in the area. Correlation analysis leads us to consider the presence of the studied metals in the analysed bone samples to be the consequence of analogous inputs, namely the inhalation of atmospheric aerosols and diverse contributions in the diet. The lowest values found in the studied bone remains correspond to the Neolithic period, with similar contents to present-day samples with respect to lead, copper, cadmium and iron. As regards the evolution over time of the concentrations of the metals under study, a clear increase in these is observed between the Neolithic period and the grouping made up of the Bronze Age, Roman domination and the Byzantine period. The trend lines used to classify the samples into 7 periods show that the maximum values of lead correspond to the Roman and Byzantine periods. For copper, this peak is found in the Byzantine Period and for iron, in the Islamic Period. Zinc shows an increasing tendency over the periods under study and cadmium is the only metal whose trend lines shows a decreasing slope.

  1. Assessment of Metal Levels In Some Plants From Giresun

    Directory of Open Access Journals (Sweden)

    Mustafa Türkmen

    2017-09-01

    Full Text Available The study performed the metal bioaccumulations in seven plant species from Giresun city. A total 140 specimens were collected from two stations (Station A; 40° 48’ N, 38° 19’ E, Station B; 50° 54’ N, 38° 26’ E from March 2012 to September 2012. Plant samples were dissected, homogenized and dried at 105°C for 24 hours. An approximately 0.25 g sample of each plant leaf was digested with Cem Mars 5 microwave oven. After cooling, the residue was transferred to 50 ml volumetric flasks and diluted to level with deionized water. Before analysis, the samples were filtered through a 0.45 µm filter. All samples were analyzed (as mg kg-1 dry weight three times for cobalt chromium, copper, iron, manganese, nickel, lead and zinc by ICP-MS. A logarithmic transformation was done on the data to improve normality. One way ANOVA and Duncan’s multiple range tests were performed to test the differences among metal levels of species. Concentrations of metals in the examined species ranged from 0.05 to 1.80 for cobalt, 0.14 to 3.24 for chromium, 2.33 to 28.1 for copper, 38.9 to 533 for iron, 1.81 to 64.6 for manganese, 0.81 to 18.9 for nickel, 0.32 to 6.22 for lead and 14.3 to 536 for zinc, in mg kg-1 respectively. Iron had the highest concentrations in all examined plant species in both stations except Zn for Sambucus ebulus in Station B. Second highest metal was zinc after iron. On the other hand, cobalt had lowest levels than other metals. The differences among metal levels in plant species were statistically significant. Maximum Provisional Tolerable Weekly Intakes (PTWI in edible plant species were calculated.

  2. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides

  3. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-01-01

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  4. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  5. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Robert A Colvin

    Full Text Available Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX and two regions of the hippocampus: dentate gyrus (DG and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.

  6. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  7. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  8. Effects of Polluted Water on the Metallic Water Pipelines

    OpenAIRE

    Abdul-Khaliq M. Hussain; Bashir A. Tantosh; El-Sadeg A. Abdalla

    2010-01-01

    Corrosion of metallic water pipelines buried below ground surface is a function of the nature of the surrounding soil and groundwater. This gives the importance of knowing the physical and chemical characteristics of the pipe-s surrounding environment. The corrosion of externally – unprotected metallic water pipelines, specially ductile iron pipes, in localities with aggressive soil conditions is becoming a significant problem. Anticorrosive protection for metallic water ...

  9. Analysis of trace metals in various brands of cigarettes

    International Nuclear Information System (INIS)

    Iqbal, M.

    1996-01-01

    The present work deals with the analysis of trace metals in various brands of cigarettes belonging to four different countries. In the present research seven trace elements have been determined spectrophotometrically by the use of suitable analytical reagent of the respective metal ions. The metals which has been analysed quantitatively in forty one brand of cigarettes are aluminium, copper, chromium, nickel, iron titanium and zinc. The concentration per cigarette of these metals are in tolerable range. The concentration of above mentioned metal ions is highest in Pakistani cigarettes tobacco while the concentration of nickel is highest in American cigarettes. (author) 221 refs

  10. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  11. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  12. All Metal Iron Core For A Low Aspect Ratio Tokamak

    International Nuclear Information System (INIS)

    Gates, D.A.; Jun, C.; Zatz, I.; Zolfaghari, A.

    2010-01-01

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron-induced conductivity. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  13. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  14. Ecological risks of an old wood impregnation mill: application of the triad approach.

    NARCIS (Netherlands)

    Karjalainen, A.-M.; Kilpi-Koski, J.; Väisänen, A.O.; Penttinen, S.; van Gestel, C.A.M.; Penttinen, O.-P.

    2009-01-01

    Although many studies deal with the distribution and mobility of chromated copper arsenate (CCA) metals in soil, the ecotoxicity of CCA-contaminated soils is rarely studied. The Triad approach was applied to determine the ecological risks posed by a CCA mixture at a decommissioned wood impregnation

  15. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    Science.gov (United States)

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  16. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  17. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    Science.gov (United States)

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.

  18. Amelioration of iron mine soils with biosolids: Effects on plant tissue metal content and earthworms.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-11-01

    The achievement of environmentally sound and economically feasible disposal strategies for biosolids is a major issue in the wastewater treatment industry around the world, including Swaziland. Currently, an iron ore mine site, which is located within a wildlife sanctuary, is being considered as a suitable place where controlled disposal of biosolids may be practiced. Therefore, this study was conducted to investigate the effects of urban biosolids on iron mine soils with regard to plant metal content and ecotoxicological effects on earthworms. This was done through chemical analysis of plants grown in biosolid-amended mine soil. Earthworm behaviour, reproduction and bioaccumulation tests were also conducted on biosolid-amended mine soil. According to the results obtained, the use of biosolids led to creation of soil conditions that were generally favourable to earthworms. However, plants were found to have accumulated Zn up to 346 mg kg -1 (in shoots) and 462 mg kg -1 (in roots). This was more than double the normal Zn content of plants. It was concluded that while biosolids can be beneficial to mine soils and earthworms, they can also lead to elevated metal content in plant tissues, which might be a concern to plant-dependant wildlife species. Nonetheless, it was not possible to satisfactorily estimate risks to forage quality since animal feeding tests with hyperaccumulator plants have not been reported. Quite possibly, there may be no cause for alarm since the uptake of metals from soil is greater in plants grown in pots in the greenhouse than from the same soil in the field since pot studies fail to mimic field conditions where the soil is heterogeneous and where the root system possesses a complex topology. It was thought that further field trials might assist in arriving at more satisfactory conclusions.

  19. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  20. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  1. Designing metallic iron based water filters: Light from methylene blue discoloration.

    Science.gov (United States)

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Metal organic frameworks for gas storage

    KAUST Repository

    Alezi, Dalal

    2016-06-09

    Embodiments provide a method of storing a compound using a metal organic framework (MOF). The method includes contacting one or more MOFs with a fluid and sorbing one or more compounds, such as O2 and CH4. O2 and CH4 can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF, wherein M can include aluminum, iron, gallium, indium, vanadium, chromium, titanium, or scandium.

  3. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  4. Toxicity from Metals, Old Menaces and New Threats

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-12-01

    Full Text Available Metals make up the bulk of the periodic table and range from the very light (e.g., beryllium to the very heavy (e.g., the actinides. Metals are important constituents of life, drive economic activity and industry, but can also be a hazard to human health. The metals can be roughly divided into three groups. The first being those metals, such as iron and zinc, that are essential to human life and have a wide therapeutic dose range. The second group of metals, such as lead, mercury, and uranium, has no known biological role and are toxic even at low doses. The third group of metals, such as selenium and manganese, has a role in maintaining human health but has a very narrow dose range that, when exceeded, produces toxic effects. [...

  5. Damage induced by swift heavy ions in a pure metallic target: iron. Experimental results and numerical simulation

    International Nuclear Information System (INIS)

    Legrand, P.

    1993-01-01

    The damage induced when a high energy deposition occurs in the electronic system of a pure metal (Ag, Co, Fe, Ni, Pd, Pt, Ti, W, Zr) has been investigated using two methods: low temperature swift heavy ion (O, Ar, Kr, Xe, Pb, u) irradiations and computer simulations by molecular dynamics. Irradiations reveal that up to now, it is only in iron, titanium, cobalt and zirconium targets that high levels of energy deposition in electronic excitations lead to a new mechanism of defect creation in addition to the effects of elastic collisions. This mechanism might be the Coulomb explosion: the incident ion creates in its wake a cylinder of highly ionized matter; Coulomb repulsions of short duration in metallic targets could then set a great number of neighbouring atoms into motion and lead to permanent atomic displacements. Using molecular dynamics, we confirm that atomic displacements can indeed occur when neighbouring perturbated atoms receive even a very small amount of kinetic energy (≤ 1 eV). This happens only if the repulsive movements are collective and coherent. Defect creation and annealing of preexisting defects which occur in iron at different energy deposition levels are successfully simulated. An original empirical N-body potential, allowing a realistic description of the bulk properties of the body centered cubic iron, is used. (author). refs., figs., tabs

  6. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  7. Oxygen and iron abundances in two metal-poor dwarfs

    Science.gov (United States)

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  8. General aspects of metal toxicity.

    Science.gov (United States)

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  9. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Science.gov (United States)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  10. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  11. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  12. Levels of some Trace Metals in Macroalgae from the Red Sea in Egypt

    International Nuclear Information System (INIS)

    Aboul-Naga, Wafiqa Mohamed

    2005-01-01

    The concentrations of iron (Fe), Zinc (Zn), manganese (Mn), Copper (Cu), chromium (Cr), nickel (Ni), and cobalt (Co) in ten macroalgae species from the Red Sea coastal water varied widely and also the trend of abundance of each metal also differed from one group to another. Concentration factors varied among species for iron (Fe) copper (Cu) manganese (Mn), but with iron (Fe) showing generally high concentration factors. Highly significant (P<0.05) relationships were found between manganese (Mn) and Nickel (Ni), and, Zinc (Zn) and copper (Cu). Moreover, moderate correlations were observed between manganese (Mn) and iron (Fe) and chromium (Cr), indicating that manganese (Mn) is the most accumulated metal in the macro algae of the Red Sea. In spite of the level of trace metals in the macro algae of the Red Sea. In spite of the level of trace metals in the macro algae, dominance is moderate relative to other sea areas subjected to intensive pollution. That is, the results indicated a nonpolluted environment. (author)

  13. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  14. Estimation of metal pollutant loads from Nuclear and Energy Research Institute (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joyce R.; Monteiro, Lucilena R.; Soares, Sabrina M.V.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Faustino, Mainara G.; Pires, Maria A.F.; Cotrim, Marycel E.B., E-mail: joyce.marques@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    According to National Environmental Council's (CONAMA) Resolution 357/05, pollutant load can be defined as the amount of a particular pollutant released in receiving water body; it is commonly expressed in a mass-time ratio. As specified in CONAMA's Resolution 430/11, the responsible for the pollutant source must present the Pollutant Load Declaration to environmental authorities. However, pollutant load knowledge is also important to the water quality maintenance and its environmental rating that must be kept to meet the requirements of the most restrictive use. In the control of metals releases is also important due public health matters, since they can cause harmful environmental contamination and major public health issues. Therefore this work aims to present the estimated metal pollutant load released by Nuclear and Energy Research Institute (IPEN/CNEN - Brazil), between 2013 and 2014. Results of cadmium, lead, copper, chromium, zinc, nickel, manganese, iron, barium, silver, boron and tin in composite samples (weekly) via Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and bromide (Br-) released as a tracer, to measure the wastewater flow were used to estimate IPEN's Metal Pollutant load. This study is part of the environmental assessment Program at IPEN, instituted since 2006 to the attendance of the current environmental legislation (CONAMA's Resolution 430/11, Article 19-A of State Decree 8.468/76 and State Decree 15.425/80). (author)

  15. Metallization of Extruded Briquettes (BREX in Midrex Process

    Directory of Open Access Journals (Sweden)

    Aitber Bizhanov

    2017-07-01

    Full Text Available The results of the full-scale testing of the Extruded Briquettes (BREX as the charge components of the industrial Midrex reactor are discussed. The influence of the type of binder on the degree of metallization of BREX is analyzed. Magnesium sulfate-based binder helps to reach highest metallization degree of BREX. Mineralogical study shows the difference in the iron-silicate phase’s development as well as in the porosity change during metallization depending on the binder used.

  16. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China

    International Nuclear Information System (INIS)

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-01-01

    Highlights: ► Elevated magnetic particles and heavy metals coexist in dust. ► Morphology and mineralogy of magnetic particles were studied by SEM-EDX and XRD. ► Magnetic minerals in the dust consist of magnetite, hematite, and metallic iron. ► Impact of metallic iron particles and multi-sources of metal pollutants was notable. -- Abstract: Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ–T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants

  17. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  18. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  19. Heavy metal levels in Sokoto metropolis as a result of local ...

    African Journals Online (AJOL)

    new user

    2013-08-01

    Aug 1, 2013 ... and geological factors) or human activities (industrial and agricultural activities) ... mulation of heavy metal; aluminium, cadmium, chromium iron, copper .... Traditional utensils: potentials sources of poisoning by heavy metals.

  20. Ab initio modeling of interactions between screw dislocations and interstitial solutes in body-centered cubic transition metals

    International Nuclear Information System (INIS)

    Luthi, Berengere

    2017-01-01

    In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr

  1. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  2. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Particulate trace metals in Cochin backwaters: Distribution of seasonal indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Jayalakshmy, K.V.; Joseph, T.

    that surface distribution pattern of the trace metal concentration of cobalt, nickel and iron was almost similar at the four stations thereby stressing the fact that seasonal fluctuations contributed a major part in the surface distribution of these metals...

  4. Method of melting decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Tsuchiya, Hiroyuki.

    1984-01-01

    Purpose: To improve the transfer efficiency of radioactive materials into slags. Method: Contaminated metals are melt with adding slagging agent in order to transfer the radioactive materials into the slag, where the slagging agent holds less free energy than that of metal oxides contaminated with radioactive materials in order to promote the transfer of the contaminated materials into the slag layer. This effect can also be attained on metals or alloys other than iron contaminated with radioactive materials. In the case of alloy, the slagging agent is to containing such metal oxide that free energy is less than that of the oxide of metal being the main ingredient element of the alloy. The decontamination effect can further be improved by containing halogenide such as calcium fluoride together with the metal oxide into the slagging agent. (Ikeda, J.)

  5. Effects of metallic cations in the beryl flotation

    International Nuclear Information System (INIS)

    Lima Leonel, C.M. de; Peres, A.E.C.

    1984-01-01

    The beryl zeta potential in microelectrophoretic cell is studied in the presence of neutral electrolyte, cations of calcium, magnesium and iron. The petroleum sulfonate is used how collector in Hallimond tube. Hydroxy complex of metallic cations seems activate the ore and precipitates of colloidal metallic hidroxies seems lower him when added to the mixture. (M.A.C.) [pt

  6. Metal oxide/polyaniline nanocomposites: Cluster size and ...

    Indian Academy of Sciences (India)

    Wintec

    Metal oxide/polyaniline nanocomposites; structural properties; magnetic properties. 1. Introduction ... The powder obtained was ground in a motor and pestle, sonicated in ... Figure 1. XRD of (a) iron oxide nanoparticles and (b) iron oxide/PANI (1 : 0⋅4) composite. .... shape of the particles and the anisotropy energy, as also.

  7. Direct detection and quantification of transition metal ions in human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Stadler, Nadina; Lindner, Robyn A; Davies, Michael Jonathan

    2004-01-01

    OBJECTIVE: The involvement of transition metals in atherosclerosis is controversial. Some epidemiological studies have reported a relationship between iron (Fe) and cardiovascular disease, whereas others have not. Experimental studies have reported elevated levels of iron and copper (Cu) in disea......OBJECTIVE: The involvement of transition metals in atherosclerosis is controversial. Some epidemiological studies have reported a relationship between iron (Fe) and cardiovascular disease, whereas others have not. Experimental studies have reported elevated levels of iron and copper (Cu......) in diseased human arteries but have often used methods that release metal ions from proteins. METHODS AND RESULTS: In this study, we have used the minimally invasive technique of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICPMS) to quantify iron...... and copper in ex vivo healthy human arteries and carotid lesions. The EPR spectra detected are characteristic of nonheme Fe(III) complexes. Statistically elevated levels of iron were detected in the intima of lesions compared with healthy controls (0.370 versus 0.022 nmol/mg tissue for EPR, 0.525 versus 0...

  8. Metals: In Sickness and in Health

    Science.gov (United States)

    ... They make vital functions like respiration, circulation and reproduction possible. Metals like iron (Fe), zinc (Zn) and ... zinc helps regulate communication between two types of brain cells in the hippocampus, the brain's center of ...

  9. Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

    DEFF Research Database (Denmark)

    Huang, Wei; Li, Shuo; Cao, Xianyi

    2017-01-01

    of a redox conversion-type lithium-ion battery, this composite material has demonstrated high lithium-ion storage capacity at 1148 mA h g-1 under the current rate of 500 mA g-1 for 170 cycles and an impressive rate-retention capability at 657 mA h g-1 with a current density of 2000 mA g-1. On the basis......We report the design and nanoengineering of carbon-film-coated iron sulfide nanorods (C@Fe7S8) as an advanced conversion-type lithium-ion storage material. The structural advantages of the iron-based metal-organic framework (MIL-88-Fe) as both a sacrificed template and a precursor are explored...

  10. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  11. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  12. Effect of temperature on swelling and bubble growth in metals

    International Nuclear Information System (INIS)

    Tiwari, G.P.

    1982-01-01

    The effect of temperature on the swelling of copper-boron alloys has been studied in the temperature range of 900-1040deg C. It is observed that beyond 1030deg C, swelling as well as the rate of bubble growth decrease. Similar characteristics of the bubble growth have been observed in aluminium-boron alloys also. At 590deg C, the bubble growth in aluminium-boron alloys is faster as compared to that at 640deg C. It thus appears that the swelling as well as the growth of the gas bubble are retarded at temperatures near the melting point in metals. Possible reasons for this kind of behaviour are discussed. (author)

  13. Sample preparation and characterization of technetium metal

    International Nuclear Information System (INIS)

    Minato, Kazuo; Serizawa, Hiroyuki; Fukuda, Kousaku; Itoh, Mitsuo

    1997-10-01

    Technetium-99 is a long-lived fission product with a half-life of about 2.1 x 10 5 years, which decays by β-emission. For the transmutation of 99 Tc, research on solid technetium was started. Technetium metal powder purchased was analyzed by X-ray diffraction, γ-ray spectrometry, and inductively coupled plasma-atomic emission spectrometry and -mass spectrometry. The lattice parameters obtained were agreed with the reported values. The metallic impurity was about 15 ppm, where aluminum and iron contributed mainly. No impurity nuclide with γ-emission was found. Using the technetium metal powder, button-, rod-, and disk-shaped samples of technetium metal were prepared by arc-melting technique. Thermal diffusivity of technetium metal was measured on a disk sample from room temperature to 1173 K by laser flash method. The thermal diffusivity decreased with increasing temperature though it was almost constant above 600 K. (author)

  14. Monitoring of Trace Metal Pollution in Meenachil River at Kottayam, Kerala (India

    Directory of Open Access Journals (Sweden)

    Indu. V. Nair

    2011-01-01

    Full Text Available The water quality of the Meenachil river at Kottayam has been studied with reference to toxic trace metals during pre and post monsoon seasons for 10 stations during May 2009-September 2009. The metals analyzed include Zinc, Manganese, Iron, Lead, Copper and Cadmium. Among the metals studied, iron, lead and cadmium showed higher concentrations above the permissible limit for drinking water prescribed by Bureau of Indian Standards. Iron and lead showed higher concentration during post monsoon and the cadmium content was high during pre-monsoon. It was observed that the main causes of deterioration in water quality might be due to the discharge of domestic wastes, municipal wastes, terrestrial runoff from seepage sites, agricultural sites and also due to geological weathering process.

  15. Resource Demand Scenarios for the Major Metals.

    Science.gov (United States)

    Elshkaki, Ayman; Graedel, T E; Ciacci, Luca; Reck, Barbara K

    2018-03-06

    The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.

  16. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  17. Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones

    Directory of Open Access Journals (Sweden)

    Sarah F. L. Lynch

    2014-01-01

    Full Text Available Diffuse metal pollution from mining impacted sediment is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles could cause biogeochemical changes that alter the behaviour of polyvalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining-contaminated sediment, therefore the dissolution and precipitation of these minerals may influence the mobility of potentially toxic trace metals. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episodes may therefore influence the reactivity of secondary minerals that form in the sediment and the flux of dissolved trace metal release. UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk these climate change events pose to mining impacted river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface for flood and drought cycles of different duration and frequency. This paper critically reviews the literature regarding biogeochemical processes that occur at different temporal scales during oxic, reducing and dry periods and focuses on how iron and sulphur based minerals may alter in form and reactivity and influence the mobility of trace metal contaminants. It is clear that changes in redox potential can alter the composition

  18. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    Science.gov (United States)

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15

  19. The role of siderophores in metal homeostasis of members of the genus Burkholderia.

    Science.gov (United States)

    Mathew, Anugraha; Jenul, Christian; Carlier, Aurelien L; Eberl, Leo

    2016-02-01

    Although members of the genus Burkholderia can utilize a high-affinity iron uptake system to sustain growth under iron-limiting conditions, many strains also produce siderophores, suggesting that they may serve alternative functions. Here we demonstrate that the two Burkholderia siderophores pyochelin and ornibactin can protect the cells from metal toxicity and thus play an alternative role in metal homeostasis. We also demonstrate that metals such as copper and zinc induce the production of ornibactin. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Metal recovery from high-grade WEEE

    DEFF Research Database (Denmark)

    Bigum, Marianne; Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2012-01-01

    . The modeled metallurgical treatment facility included a Kaldo plant, a converter aisle, an anode refinery and a precious metal refinery. The metallurgic treatment showed significant environmental savings when credited the environmental load from avoided production of the same amount of metals by mining...... and refining of ore. The resource recovery per tonne of high-grade WEEE ranged from 2 g of palladium to 386 kg of iron. Quantified in terms of person-equivalents the recovery of palladium, gold, silver, nickel and copper constituted the major environmental benefit of the recovery of metals from WEEE....... These benefits are most likely underestimated in the model, since we did not find adequate data to include all the burdens from mining and refining of ore; burdens that are avoided when metals are recovered from WEEE. The processes connected to the pre-treatment of WEEE were found to have little environmental...

  1. Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release.

    Science.gov (United States)

    Fabbricino, Massimiliano; Korshin, Gregory V

    2014-10-01

    This study examined the behavior of corrosion potential (Ecorr) of iron exposed to drinking water during episodes of stagnation and flow. These measurements showed that during stagnation episodes, Ecorr values decrease prominently and consistently. This decrease is initially rapid but it becomes slower as the stagnation time increases. During flow episodes, the Ecorr values increase and reach a quasi-steady state. Experiments with varying concentrations of dissolved oxygen showed that the decrease of Ecorr values characteristic for stagnation is likely to be associated with the consumption of dissolved oxygen by the exposed metal. The corrosion potential of iron and its changes during stagnation were sensitive to the concentrations of sulfate and chloride ions. Measurements of iron release showed that both the absolute values of Ecorr measured prior to or after stagnation episodes were well correlated with the logarithms of concentrations of total iron. The slope of this dependence showed that the observed correlations between Ecorr values and Fe concentrations corresponded to the coupling between the oxidant consumption and changes of Fe redox status. These results demonstrate that in situ Ecorr measurements can be a sensitive method with which to ascertain effects of hydrodynamic conditions and short-term variations of water chemistry on metal release and corrosion in drinking water. This approach is valuable practically because Ecorr measurements are precise, can be carried out in situ with any desired time resolution, do not affect the state of exposed surface in any extent and can be carried out with readily available equipment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Development of intertexture detection method on trace of heavy metals by using the tissue print binding assay method

    International Nuclear Information System (INIS)

    Umemiya, Yoshiaki; Hiraoka, Kiyoshi; Nakamura, Yuri; Murakami, Yuriko; Kusaba, Shinnosuke; Honta, Chikako

    1999-01-01

    A method to identify and quantify rapidly metal jointed protein in living body texture by using a radioactive isotope (tissue print biding assay: TPBA) was developed to detect the protein induced by excess heavy metals. By this method, locality, presence states and time-elapsing change of heavy metals in each texture of soils and tree bodies were elucidated to make factor analysis possible on dynamics of the heavy metals in fruit garden. Iron among the heavy metals, form deficiency disease by increased pH of soil to generate typical chlorosis to leaves. In this case, as iron content in leaves reduced but chlorosis was generated, ti was found that iron related closely to metabolic process between roots and leaves. In this study, a peach tree grown at a garden was sampled to clarify soil around roots, and locality and absorptive transfer of iron in root portion and texture and to obtain some basic data for elucidation of metabolic physiological reaction of heavy metal jointed protein. (G.K.)

  3. Assessment of Water Quality Index and Heavy Metal Contamination in Active and Abandoned Iron Ore Mining Sites in Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Madzin Zafira

    2017-01-01

    Full Text Available The composition of heavy metals in water and surface soils of iron ore mining sites were investigated to evaluate on the potential occurrence of heavy metal contamination. Physico-chemical characteristics of the waters were also investigated to determine the current status of water quality index (WQI of the sites. Samples of water and surface soils of active mine (Kuala Lipis and abandoned mine (Bukit Ibam in Pahang were collected at four locations, respectively. The physico-chemical parameters measured for WQI were pH, dissolved oxygen, biological oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SS, and ammoniacal nitrogen (AN. The water quality parameters were classified according to the Department of Environment (DOE water quality classification. The study revealed that most of the sites in Bukit Ibam and Kuala Lipis were categorized as clean to slightly polluted. On the other hand, heavy metal analysis in water showed that aluminium and manganese level in both sites have exceeded the allowable limits for raw and treated water standards by the Ministry of Health. For heavy metal compositions in soils showed most of the heavy metal concentrations were below the recommended guideline values except for lead, arsenic, zinc and copper.

  4. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    Science.gov (United States)

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  5. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  6. A study on the photocatalytic reaction of the metals and organics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    TiO{sub 2}-based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author).

  7. A study on the photocatalytic reaction of the metals and organics

    International Nuclear Information System (INIS)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee

    1995-12-01

    TiO 2 -based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author)

  8. Ductile iron cask with encapsulated uranium, tungsten or other dense metal shielding

    International Nuclear Information System (INIS)

    Barnhart, V.J.; Anderson, R.T.

    1989-01-01

    In a cask for the transportation and storage of radioactive materials, an improvement in the shielding means which achieves significant savings in weight and increases in payload by the use of pipes of depleted uranium, tungsten or other dense metal, encapsulating polyethylene cores, dispersed in two to four rows of concentric boreholes around the periphery of the cask body which is preferably made of ductile iron. Alternatively, rods or small balls of these same shielding materials, alone or in combination, are placed in these bore holes. The thickness, number and arrangement of these shielding pipes or rods is varied to provide optimum protection against the neutrons and gamma radiation emitted by the particular radioactive material being transported or stored. (author) 4 figs

  9. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  10. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  11. Thermoelectric properties of β-boron and some boron compounds. Final report, August 1981-September 1984

    International Nuclear Information System (INIS)

    Slack, G.A.; Rosolowski, J.H.; Miller, M.L.; Huseby, I.C.

    1984-12-01

    The thermoelectric properties, that is the Seebeck coefficient, and electrical and thermal conductivity, of doped β-boron have been measured from 300 to 1600 K. Most of the useful doping elements are transition metals and occupy interstitial sites in the lattice. The highest figure of merit so far achieved at 1000 K is ZT = 0.11 for P-type, polycrystalline, hot-pressed β-boron doped with copper. Higher values may be achievable once a better P-type dopant is found. Some experiments on B 68 Y, α-B 12 Al, B 4 C, and B 6 Si are described. Transition metals appear to be effective dopants for B 68 Y and B 4 C

  12. Synthesis and mechanical properties of Fe–Nb–B thin-film metallic glasses

    International Nuclear Information System (INIS)

    Yao, J.H.; Hostert, C.; Music, D.; Frisk, A.; Björck, M.; Schneider, J.M.

    2012-01-01

    Fe–Nb–B thin-film metallic glasses (TFMGs) were synthesized via a combinatorial sputtering approach to probe the property–composition correlation. The boron content was found to dominate the mechanical properties of the TFMGs. The ∼10% smaller strength of Fe–Nb–B TFMGs compared to existing bulk metallic glass with similar composition may be attributed to the absence of a network-like structure based on (Fe,M) 23 B 6 phase due to the extreme quenching conditions employed.

  13. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    their transformations caused by heat treatment prior to disposal or aging at a proper disposal site. The transformations were investigated by XRD, SEM, XANES, EXAFS, surface area measurements, pH static leaching tests, and extractions with oxalate and weak hydrochloric acid. It was found that at 600 and 900 °C the iron...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...

  14. Trace metal physiology in normal and pathological tissues

    International Nuclear Information System (INIS)

    Hamer, C.J.A. van den; Nooijen, J.L.

    1979-01-01

    Many of the ionic tumour seeking radiopharmaceuticals consist of a metal ion combined with an anion. The choice of metal depends on the existence of radionuclides with suitable radiological properties, and on their availability. Because several of the metal complexes used in nuclear medicine are of rather recent interest, information about their metabolism is scarce. Although nuclear medicine is limited to those metals which radiochemists can produce, we can manipulate the chemical form in which the metals are introduced into the organism to some extent. The relation between chemical form and biological pathway, e.g., the extent of accumulation in certain tissues, is subject of study related to trace metal physiology. It is the purpose of this paper to try and bridge the gap between nuclear medicine and trace metal physiology by showing the progress made by the latter in the study of the metabolism of copper and zinc. Few trace metals have been studied as thoroughly as these, although iron could have been chosen just as well. This presentation is limited to a study of the fate of a metal derivative after its intravenous injection. Where possible the results obtained are related to the behaviour of metals presently of interest to nuclear medicine. (Auth.)

  15. Trace metal dynamics in fishes from the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Nair, M.; Joseph, T.

    metals, with highest bioaccumulation for the essential element iron and lowest bioaccumulation for the non-essential element lead. Among the demersal species, C. melampygus and N. japonicus had high concentration factors for the metals Fe (280,268 to 322...

  16. Homeostasis of metals in the progression of Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  17. Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase.

    Science.gov (United States)

    Nguyen, Kiet T; Wu, Jen-Chieh; Boylan, Julie A; Gherardini, Frank C; Pei, Dehua

    2007-12-15

    Peptide deformylase (PDF, E.C. 3.5.1.88) catalyzes the removal of N-terminal formyl groups from nascent ribosome-synthesized polypeptides. PDF contains a catalytically essential divalent metal ion, which is tetrahedrally coordinated by three protein ligands (His, His, and Cys) and a water molecule. Previous studies revealed that the metal cofactor is a Fe2+ ion in Escherichia coli and many other bacterial PDFs. In this work, we found that PDFs from two iron-deficient bacteria, Borrelia burgdorferi and Lactobacillus plantarum, are stable and highly active under aerobic conditions. The native B. burgdorferi PDF (BbPDF) was purified 1200-fold and metal analysis revealed that it contains approximately 1.1 Zn2+ ion/polypeptide but no iron. Our studies suggest that PDF utilizes different metal ions in different organisms. These data have important implications in designing PDF inhibitors and should help address some of the unresolved issues regarding PDF structure and catalytic function.

  18. Unanticipated potential cancer risk near metal recycling facilities

    International Nuclear Information System (INIS)

    Raun, Loren; Pepple, Karl; Hoyt, Daniel; Richner, Donald; Blanco, Arturo; Li, Jiao

    2013-01-01

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction

  19. Unanticipated potential cancer risk near metal recycling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raun, Loren, E-mail: raun@rice.edu [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States); Pepple, Karl, E-mail: pepple.karl@epa.gov [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States); Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States); Richner, Donald, E-mail: Donald.Richner@houstontx.gov [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States); Blanco, Arturo, E-mail: arturo.blanco@houstontx.gov [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States); Li, Jiao, E-mail: jiao.li@rice.edu [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)

    2013-07-15

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction

  20. Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease.

    Directory of Open Access Journals (Sweden)

    Sirena Soriano

    Full Text Available Friedreich's ataxia (FRDA, the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin deficiency-induced phenotypes. Taken together, these results demonstrate that the metal dysregulation in FRDA includes other metals besides iron, therefore providing a new set of potential therapeutic targets.

  1. Distribution and Multivariate Pollution Risks Assessment of Heavy Metals and Natural Radionuclides Around Abandoned Iron-Ore Mines in North Central Nigeria

    Science.gov (United States)

    Isinkaye, Omoniyi Matthew

    2018-02-01

    The Itakpe abandoned iron-ore mines constitute the largest iron-ore deposits in Nigeria with an estimated reserve of about three million metric tons of ore. The present effort is a part of a comprehensive study to estimate the environmental and radiological health hazards associated with previous mining operations in the study area. In this regard, heavy metals (Fe, Zn, Cu, Cd, Cr, Mn, Pb, Ni, Co and As) and natural radionuclides (U, Th and K) were measured in rock, soil and water samples collected at different locations within the mining sites. Atomic absorption and gamma-ray spectrometry were utilized for the measurements. Fe, Mn, Zn, Cu, Ni, Cd, Cr, Co Pb and As were detected at varying concentrations in rock and soil samples. Cd, Cr, Pb and As were not detected in water samples. The concentrations of heavy metals vary according to the following pattern; rock ˃ soil ˃ water. The mean elemental concentrations of K, U and Th are 2.9%, 0.8 and 1.2 ppm and 1.3%, 0.7 and 1.7 ppm, respectively, for rock and soil samples. Pearson correlation analyses of the results indicate that the heavy metals are mostly negatively correlated with natural radionuclides in the study area. Cancer and non-cancer risks due to heavy metals and radiological hazards due to natural radionuclides to the population living within the vicinity of the abandoned mines are lower than acceptable limits. It can, therefore, be concluded that no significant environmental or radiological health hazard is envisaged.

  2. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  3. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  4. The metal spectrum of river sediments from the Denso reservoir

    International Nuclear Information System (INIS)

    Carboo, C.; Brimah, A.K.; Debrah, C.; Serfor Armah, Y.

    1998-01-01

    The heavy metals in the sediment of the Densu reservoir was determined using instrumental neutron activation analysis. In all, about twenty nine elements were identified to be present in the river sediment. Of all the metals determined iron was found to have the the highest concentration with a maximum value of 15.090 g/kg and a minimum of 6.724 g/kg dry weight , other macro elements identified were Al, Na, K, and Ca. The concentration of most of the metals were higher before the major rains than after the rains. Though baseline data for heavy metals in sediment is not available, the values obtained for some of the metals were higher than normal , suggesting some form of heavy metal pollution in the reservoir. (author)

  5. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1992-01-01

    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  6. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-regulated genes

    International Nuclear Information System (INIS)

    Li Qin; Chen Haobin; Huang Xi; Costa, Max

    2006-01-01

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1α-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1α protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1α responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1α protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1α protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1α-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1α protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1α after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1α protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the significant stabilization and elevation of HIF-1

  7. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    and in practice—to be effective in most cases. But it has the disadvantage that the nucleation effect fades away over time. In particular, in heavy castings (slow cooling) this effect may cause non-uniform and unacceptable material properties in some parts of the casting. Nitrogen is also known to influence grey...... iron microstructure. Both graphite flake formation and matrix formation are influenced. However, the obtained effects differ considerably between different reported investigations. This investigation deals with the combined effect of nitrogen and boron and how it is possible to utilize this effect...... to enhance material properties in heavy grey iron castings. It is shown that the controlled additions of nitrogen and boron can be used to control the microstructure of thick section grey iron castings. A plausible theory for the formation of boron nitride nuclei effective for graphite growth is presented....

  8. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  10. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    Science.gov (United States)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  11. Structural investigations of some metallic glasses

    International Nuclear Information System (INIS)

    Sietsma, J.

    1987-03-01

    Metallic glasses were prepared by the melt spinning technique from iron and nickel alloys (Fe-Ni-P; Fe-B; Ni-Nb; Ni-B). Structure investigations were made by means of neutron diffraction experiments. Distribution functions and range orders were determined. (Auth.)

  12. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  13. Significance of bioleaching method in dissolution of iron and in the quality improvement of non-metallics

    Directory of Open Access Journals (Sweden)

    Iveta Štyriaková

    2006-12-01

    Full Text Available Simple laboratory bioleaching experiments for the iron removal with heterotrophic bacteria on natural raw materials were conducted to explore a simple cyclic operation for a potential use at the industrial scale. Heterotrophic bacteria of Bacillus spp. growing in the presence of feldspar raw materials are able to dissolve iron. Anaerobic conditions Quickly formed by bacteria enable a simple manipulation with the sample solution. Insoluble Fe(III in the feldspars sample could be enzymatically dissolved as Fe3+ and also reduced to soluble Fe2+ by silicate bacteria of Bacillus spp. This metal was efficiently removed from the feldspars sample as documented by a Fe2O3 decrease (from 0.29 % to 0.12 % after bioleaching in the conical flask and by a Fe2O3 decrease (from 0.29 % to 0.19 % after bioleaching in the percolate column. Bioleaching of Fe was more effective in the conical flask. Iron-bearing minerals can be easily removed by magnetic separation, but ultra fine iron particles are difficult to treat by conventional mineral processing methods. Thus bioleaching is an attractive alternative for effective removal of iron minerals. The removal of iron with the whiteness increase should give a product, which is fit for industrial ceramic applications.

  14. Metallic spintronic devices

    CERN Document Server

    Wang, Xiaobin

    2014-01-01

    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  15. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  16. A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores

    Directory of Open Access Journals (Sweden)

    Kevin B. Hallberg

    2013-01-01

    Full Text Available Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn were effectively solubilised and maintained in solution due to the low pH (1.8 of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.

  17. Dynamic Sensing of Localized Corrosion at the Metal/Solution Interface

    Directory of Open Access Journals (Sweden)

    Shenhao Chen

    2012-04-01

    Full Text Available A Mach-Zehnder interferometer is employed to detect localized corrosion at the metal/solution interface in the potentiodynamic sweep of the iron electrode in solutions. During the electrochemical reactions, local variations of the electrolyte’s refractive index, which correlate with the concentration of dissolved species, change the optical path length (OPL of the object beam when the beam passes through the electrolyte. The distribution of the OPL difference was obtained to present the concentration change of the metal ions visually, which enable direct evidence of corrosion processes. The OPL difference distribution shows localized and general corrosion during the anodic dissolution of the iron electrode in solutions with and without chloride ions, respectively. This method provides an approach for dynamic detection of localized corrosion at the metal/solution interface.

  18. Heavy metal: Can molten metal technology turn toxic dross into gold? A study in alchemy, controversy, and green tech

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, S.

    1995-12-31

    In a Massachusetts industrial park, inside a renovated helicopter factory, stands a giant, Rube Goldbergesque machine of metal boxes and pipes. Technicians in blue uniforms, hard hats, and safety glasses attend this contraption, watching over the fire at its heart: a cauldron of molten metal, usually iron, heated to some 3,000 degrees Fahrenheit. Hazardous wastes are injected into this molten bath. There, according to its inventor, the metal acts as a catalyst for a chemical reaction that instantly reduces compound molecules to their elemental components. A considerable portion for the wastes thus digested are spit out again in the form of industrial-grade materials, ready for reuse or resale. This article describes both the processing of hazardous wastes by using molten metal to drive reactions that would recover useful materials from hazardous waste and the future possibilities for its use.

  19. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    International Nuclear Information System (INIS)

    Pustal, B; Schelnberger, B; Bührig-Polaczek, A

    2016-01-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content. (paper)

  20. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  1. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  2. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  3. Psyche: The Science of a Metal World

    Science.gov (United States)

    Elkins-Tanton, L. T.

    2016-12-01

    (16) Psyche is a large metallic asteroid orbiting in the outer main belt at 3 AU. Psyche's metal composition is indicated by high radar albedo, thermal inertia, and density. Models show that among the accretionary collisions early in the solar system, some destructive "hit and run" impacts could strip the silicate mantle from differentiated bodies. This is the leading hypothesis for Psyche's formation: it is a bare planetesimal core. It is the only one we can explore for substantial information about a metal core (other metallic asteroids are far smaller and not roughly spherical). If our observations indicate that it is not a core, Psyche may instead be highly reduced, primordial metal-rich materials that accreted closer to the Sun, and never melted. Psyche is also a Discovery-class mission, selected for a Step 2 concept study, to investigate this metal body. The Psyche investigation has three broad goals: Understand a previously unexplored building block of planet formation: iron cores. Look inside the terrestrial planets, including Earth, by directly examining the interior of a differentiated body, which otherwise could not be seen. Explore a new type of world. For the first time, examine a world made not of rock, ice, or gas, but of metal. We will meet our science objectives with three domestic high heritage instruments and radio science: Multispectral imagers with clear and seven color filters map surface morphology and reveal the distribution of residual mantle silicates. A gamma-ray and neutron spectrometer determines elemental composition, particularly the concentrations of iron, nickel, silicon, and potassium. Dual fluxgate magnetometers, in a gradiometer configuration, characterize the magnetic field. Radio science maps the gravity field sufficiently to differentiate among core-formation hypotheses. New models for magnetic dynamo generation and solidification of planetesimal cores make testable predictions for geophysical measurements, and lead as well to

  4. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    of graphene, Since the discovery of graphene, series of two-dimensional (2-D) nanosheets materials such as metal oxides, metal hydroxides, transition metal chalcogenides (TMDs), boron nitride (BN) and black phosphorus have been of great interests, and have been extensively investigated for applications...... in electronics, lithium-ion batteries, catalysis and mechanical properties, etc. 2-D MOF nanosheets materials, as a new member of the 2-D nanomaterials family, are still at the very early stage. However, to the best of our knowledge, the 2-D MOF nanosheets materials for luminescent sensing have been rarely...

  5. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Microstructural characterization aluminium alloys from the addition of boron

    International Nuclear Information System (INIS)

    Nunes, A.G.P.; Pipano, T.F.; Mota, M.A.; Mariano, N.A.; Ramos, E.C.T.

    2014-01-01

    In the electrical industry, the aluminum becomes attractive because it has excellent characteristics for transmitting electricity. The liquid aluminum has in its composition transition elements (zirconium, titanium, vanadium and chromium) that interfere negatively on the quality of the product. The addition of aluminum-boron alloys have been used to remove transition metals through the formation of borides, enabling an increase in electrical conductivity. However, no detailed reports of reactions between boron, transition metals and primary aluminum engines. However, the objective is to determine the stoichiometric composition that enables an increase in electrical conductivity of an aluminum alloy. Samples with different concentrations of boron were characterized by optical emission spectrometry, electrical conductivity and X-ray diffraction. The addition of boron in excess reduces the time in the formation of borides, and enable an increase in electrical conductivity. (author)

  7. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    International Nuclear Information System (INIS)

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  8. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    Science.gov (United States)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  9. Studies on the Production of NdFeB Alloy by Calciothermic Reduction of Neodymium Oxide

    International Nuclear Information System (INIS)

    Charoensri, Apisara

    2003-06-01

    Neodymium-Iron-Boron (NdFeB) is a class of permanent magnets having the highest energy product (BH max ). It has been used in various electronic devices of small size and light weight. This research is to study the preparation of Neodymium-Iron-Boron alloy by calciothermic reduction of neodymium oxide mixed with iron and iron-boron. The reduction process essentially involves the compaction of the charge mixture with calcium metal and then heating at 900-1200οC in argon atmosphere. The results show that charge blend compaction, temperature and time of reaction are important parameters of the process. It is found that at proper conditions, magnetic phase structure of Neodymium-Iron-Boron alloy can be prepared satisfactory although the alloy produced from the reduction contains higher impurities of oxygen and calcium than the alloy produced from the conventional method using Nd metal

  10. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle

    International Nuclear Information System (INIS)

    Vijayarangan, S.; Rajamanickam, N.; Sivananth, V.

    2013-01-01

    Highlights: ► A FE model is developed to study the suitability of MMC for steering knuckle. ► Structural analysis of steering knuckle is carried out for 12 load cases. ► The cross section of the critical region is optimized using genetic algorithm. ► The life of the MMC (Al-10 wt.% TiC) knuckle is compared before and after optimization. ► MMC material could replace SG iron for automotive steering knuckle. -- Abstract: Steering knuckle is considered as one of the critical component in automotive suspension system. It is subjected to time varying loads during its service life, leading to fatigue failure. Therefore, its design is an important aspect in the product development cycle. Currently, spheroidal graphite (SG) iron is widely used to manufacture steering knuckle in the commercial automobile sector. It has been observed from the knuckle manufacturers that advanced materials and weight reduction are the real need for the current automobile industry. Due to their high strength to weight ratio, Metal Matrix Composites (MMCs) have the potential to meet the demanded design requirements of the automotive industry, compared to conventional materials. In this work, an aluminum alloy reinforced with titanium carbide particulate is suggested as an alternate material in place of existing SG iron. Structural analysis of steering knuckle made of alternate material Al-10 wt.% TiC was performed using commercial code ANSYS. The results of steering knuckle made of MMC (Al-10 wt.% TiC) were compared with that of aluminum alloy and SG iron steering knuckles for its performance based on real time load cases. It is found from this analysis, the knuckle strut region has maximum stress and deflection during its life time. The critical strut region cross section area of knuckle was analyzed and geometrically optimized for minimum bending stress and deflection using genetic algorithm available in MatLab. Since, the knuckle experiences time varying loads, fatigue analysis also

  11. Prospects for Ukrainian ferrous metals in the post-soviet period

    Science.gov (United States)

    Levine, R.M.; Bond, A.R.

    1998-01-01

    Two specialists on the mineral industries of the countries of the former USSR survey current problems confronting producers of ferrous metals in Ukraine and future prospects for domestic production and exports. A series of observations documenting the importance of ferrous metals production to Ukraine's economy is followed by sections describing investment plans and needs in the sector, and the role played by Ukraine within the iron and steel industry of the Soviet Union. The focus then turns to assessment of the current regional and global competitive position of Ukrainian producers for each of the major commodities of the sector-iron ore, manganese ore, ferroalloys, steel, and the products of the machine manufacturing and metal working industries. In conclusion, the paper discusses a potential regional industrial integration strategy analogous to that employed in the United States' Great Lakes/Midwest region, which possesses similar types of iron ore deposits and similar transport cost advantages and metallurgical and manufacturing industries. Journal of Economic Literature, Classification Numbers: F14, L61, L72. 1 table, 26 references.

  12. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions.

    Science.gov (United States)

    Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J

    2014-06-01

    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Determination of extraction equilibria for several metals in the development of a process designed to recover aluminum and other metals from coal combustion ash

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; McDowell, W.J.; Felker, L.K.; Kelmers, A.D.; Egan, B.Z.

    1981-01-01

    Laboratory-scale tests of several methods for the recovery of resource materials from fly ash have led to the development of a sinter/dilute acid leach method (Calsinter process) in which fly ash is sintered with a source of calcium oxide (CaCO/sub 3/, CaSO/sub 4/, CaO, and/or limestone flue-gas desulfurization scrubber sludge) at 1000 to 1200/sup 0/C, followed by a two-stage leach of the sintered solids with dilute sulfuric acid. Recovery of aluminum from this leach solution in a relatively pure form requires that several contaminants, particularly iron, must be separated from the aluminum before it can be precipitated. Therefore, distribution coefficients for iron (III) and 16 other metal ions have been determined in the liquid-liquid extraction system: Primene JM-T - toluene versus aqueous ammonium sulfate (and sodium sulfate) as a function of sulfate, acid, metal ion, and amine sulfate concentration. A study of iron (III) loading equilibria as a function of time indicated that equilibrium was essentially achieved in 1 h; however, some changes, probably in the nature of the extracted species, occurred over a period of approximately 20 h. Iron (III) extraction results obtained under various sulfate concentration matrix conditions suggested the formation of an aqueous complex of ferric ammonium sulfate, which depressed iron distribution to the organic phase. Extraction isotherms for Ag, As, Cd, Cr, and Fe all exhibit linearity at low loading conditions with unit slopes, including the same degree of association of the metal ion species in both the organic and the aqueous phase. Other metal ions for which distribution coefficients are reported are: Ba, Mg, Mn, Na, K, P, Pb, Th, Ti, and U.

  14. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    International Nuclear Information System (INIS)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I—V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  16. Metallic materials for mechanical damping capacity applications

    Science.gov (United States)

    Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.

    2016-08-01

    Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.

  17. Acute toxicity of selected heavy metals to Oreochromis ...

    African Journals Online (AJOL)

    Copper was more toxic than lead and iron to both life stages. The species sensitivity distributions of O. mossambicus, as well as those of freshwater fish species from the ECOTOX database and literature, were closely predicted by the models for all three metals. The sensitivity of O. mossambicus to copper, iron and lead ...

  18. The coloring problem in the solid-state metal boride carbide ScB{sub 2}C{sub 2}. A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lassoued, Souheila [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Boucher, Benoit [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Boutarfaia, Ahmed [Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Gautier, Regis; Halet, Jean-Francois [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques

    2016-08-01

    The electronic properties of the layered ternary metal boride carbide ScB{sub 2}C{sub 2}, the structure of which consists of B/C layers made of fused five- and seven-membered rings alternating with scandium sheets, are analyzed. In particular, the respective positions of the B and C atoms (the so-called coloring problem) are tackled using density functional theory, quantum theory of atoms in molecules, and electron localizability indicator calculations. Results reveal that (i) the most stable coloring minimizes the number of B-B and C-C contacts and maximizes the number of boron atoms in the heptagons, (ii) the compound is metallic in character, and (iii) rather important covalent bonding occurs between the metallic sheets and the boron-carbon network.

  19. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  20. Influence of metal dental materials on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi [Nippon Medical School, Tokyo (Japan). Main Hospital; Nakata, Minoru; Fujita, Isao

    1998-11-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  1. Influence of metal dental materials on MR imaging

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Nakata, Minoru; Fujita, Isao

    1998-01-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  2. Corrosion behavior of metals and alloys in marine-industrial environment

    Directory of Open Access Journals (Sweden)

    Mariappan Natesan, Subbiah Selvaraj, Tharmakkannu Manickam and Gopalachari Venkatachari

    2008-01-01

    Full Text Available This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn, were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  3. Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, X.L.; Xu, B.H.; Xue, J.M.; Zhao, Y.; Wei, C.C.; Sun, J.; Wang, Y.; Zhang, X.D.; Geng, X.H.

    2007-01-01

    Boron-doped zinc oxide (ZnO:B) films were grown by metal organic chemical vapor deposition using diethylzinc (DEZn), and H 2 O as reactant gases and diborane (B 2 H 6 ) as an n-type dopant gas. The structural, electrical and optical properties of ZnO films doped at different B 2 H 6 flow rates were investigated. X-ray diffraction spectra and scanning electron microscopy images indicate that boron-doping plays an important role on the microstructure of ZnO films, which induced textured morphology. With optimized conditions, low sheet resistance (∼ 30 Ω/□), high transparency (> 85% in the visible light and infrared range) and high mobility (17.8 cm 2 V -1 s -1 ) were obtained for 700-nm ZnO:B films deposited on 20 cm x 20 cm glass substrates at the temperature of 443 K. After long-term exposure in air, the ZnO:B films also showed a better electrical stability than the un-doped samples. With the application of ZnO:B/Al back contacts, the short circuit current density was effectively enhanced by about 3 mA/cm 2 for a small area a-Si:H cell and a high efficiency of 9.1% was obtained for a large-area (20 cm x 20 cm) a-Si solar module

  4. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  5. Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem.

    Science.gov (United States)

    Jelaska, Lucija Serić; Blanusa, Maja; Durbesić, Paula; Jelaska, Sven D

    2007-01-01

    The objective of this study was to quantify the relationships between heavy metal concentrations in soil, leaf litter, and ground beetles at four sampling sites of a forest ecosystem in Medvednica Nature Park, Croatia. Ground beetles were sampled by pitfall trapping. Specimens were dry-ashed and soil and beetle samples digested with nitric acid. Lead, cadmium, copper, zinc, manganese, and iron were analyzed using atomic absorption spectrometry. Statistically significant differences between plots were found for lead, cadmium, and iron in ground beetles. Correlations between ground beetles and soil or leaf litter were positive for lead and cadmium concentrations and negative for iron concentration. Differences in species metal concentrations were recorded. Higher concentrations of all studied metals were found in female beetles. However, a significant difference between sexes was found only for manganese. Significant differences in species metal concentrations were found for species that differ in feeding strategies and age based on breeding season and emergence of young adults.

  6. 48 CFR 252.225-7009 - Restriction on Acquisition of Certain Articles Containing Specialty Metals.

    Science.gov (United States)

    2010-10-01

    ... metal (by mass). (ii) If two metals are specified in the name (e.g., nickel-iron alloy), those metals..., billet, wire, slab, plate, or sheet, and in the grade appropriate for the production of— (i) A finished... of the following elements: Aluminum, chromium, cobalt, molybdenum, nickel, niobium (columbium...

  7. BioMetals: a historical and personal perspective.

    Science.gov (United States)

    Silver, Simon

    2011-06-01

    Understanding of BioMetals developed basically from a starting point about 60 years ago to current mechanistic understanding of the biological behavior of many metal ions from protein structural and functional studies. Figure 1 shows a Biochemical Periodic Table, element by element, with requirements, roles and biochemistry of the specific ions indicated. With few exceptions, the biology is of the ions formed and not of the elemental state of each. Early BioMetals efforts defined nutritional growth needs for animals, plants and microbes for inorganic "macro-nutrients" such as magnesium, calcium, potassium, sodium, and phosphate and of "micronutrients" such as copper, iron, manganese and zinc. Surprises came early with regard to microbes, for example the finding that Escherichia coli (then and now the standard microbial model) grows happily in the apparent total absence of calcium, sodium, and chloride, which are certainly major animal nutrients. Some elements such as mercury and arsenic are never required by living cells, but are always toxic, often at very low levels. Therefore, the division into nutrient elements and toxic elements came soon. For most inorganic nutrients, excessive amounts can be toxic as well, for example for copper and iron.

  8. Yttrium interaction with iron family metals

    International Nuclear Information System (INIS)

    Kharchenko, O.I.; Bodak, O.I.; Gladyshevskij, E.I.

    1977-01-01

    X-ray and micro-structure analyses were used to study ternary systems Y-Fe-Co, Y-Fe-Ni, Y-Co-Ni and phase equilibrium diagrams were plotted. The formation of a compound YCosub(0.8-0.38)Nisub(0.2-0.62) with a type MoB structure (a=3.946, c=20.85 A) was detected. Isostructural compounds with other rare earth metals (R) were found (R-Cd, Tb, Dy, Ho, Er, Tm)

  9. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  10. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    Science.gov (United States)

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  11. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  12. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Dongmei Zhou; Yujun Wang; Xiangdong Zhu; Shengyang Jin

    2011-01-01

    Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation.The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated.The results showed that the de chlorination of 4-CIBP by NZVI increased with decreased solution pH.When the initial pH value was 4.0,5.5,6.8,and 9.0,the de chlorination efliciencies of 4-C1BP after 48 hr were 53.8%,47.8%,35.7%,and 35.6%,respectively.The presence of humic acid inhibited the reduction of 4-ClBP in the first 4 hr,and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr.Divalent metal ions,Co2+,Cu2+,and Ni2+,were reduced and formed bimetals with NZVI,thereby enhanced the dechlorination of 4-CIBP.The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2+,Cu2+ and Ni2+ were 66.1%,66.0% and 64.6% in 48 hr,and then increased to 67.9%,71.3% and 73.5%,after 96 hr respectively.The dechlorination kinetics of 4-CIBP by the NZVI in all cases followed pseudo-first order model.The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.

  13. Assessment of heavy metal concentration in soil and leaves of tree ...

    African Journals Online (AJOL)

    The gaseous emissions from scrap metal recycling factory could cause pollution to the environment if the concentrations are substantial and not properly controlled. This study determined the concentration of some heavy metals (Iron, Copper, Lead and Cadmium) in the leaves of selected tree species and soils around the ...

  14. Antipollution processing of a used refining catalyst and metal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-04-30

    The used catalyst, containing metals such as vanadium, nickel and iron, is unloaded from the plant and is first processed by stripping; it is then calcined in critical conditions, and the catalyst metals are leached with a sodium hydroxide or sodium carbonate aqueous solution. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  15. Winter Maintenance Wash-Water Heavy Metal Removal Pilot Scale Evaluation

    Directory of Open Access Journals (Sweden)

    Christopher M. Miller

    2016-01-01

    Full Text Available To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead removal in a filtration unit (maximum flow rate of 45 L/minute containing proprietary (MAR Systems Sorbster® media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.

  16. Feedback interactions between trace metal nutrients and phytoplankton in the ocean

    Directory of Open Access Journals (Sweden)

    William eSunda

    2012-06-01

    Full Text Available In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon the productivity and species composition of marine phytoplankton communities are affected by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium. Of these, iron exerts the greatest limiting influence on carbon fixation rates and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2 fixation rates, and thus exerts an important influence on ocean inventories of biologically available fixed nitrogen. Because of these effects, iron is thought to play a key role in controlling the biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 levels and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese have a lesser effect on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among algal species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals affect the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and regeneration processes, downward flux of biogenic particles, cellular release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution marine and terrestrial biology over geologic history.

  17. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  18. Metal luminescence in a bright disintegrated prominence

    International Nuclear Information System (INIS)

    Yakovkin, N.A.; Zel'dina, M.Yu.; Rakhubovskij, A.S.; AN Ukrainskoj SSR, Kiev. Glavnaya Astronomicheskaya Observatoriya)

    1975-01-01

    It is found that Na, Mg, Ca, Sc, Ti, Fe, Sr, and Ba contents in a protuberance relative to the hydrogen content is about the same as in photosphere and chromosphere (except for the Na abundance). The metals are in the state of single ionization with the exception of calcium [Ca ++ ] approximately [Ca + ], strontium [Sr ++ ] = 0.5 [Sr + ], and barium [Ba ++ ] = 6Ba + , whose secondary ionization occurs from metastable states by Lsub(α)-emission in the protuberance. The Lsub(α)-emission ionizes neutral iron as well. Primary ionization of remaining metals is performed by the solar near ultraviolet. Luminescence in metal lines is provided by the photosphere emission scattering, and only H and KCa + lines are excited by electron impacts

  19. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  20. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  1. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  2. Determination of the levels of heavy metals in cocoa products

    International Nuclear Information System (INIS)

    Dankyi Enock

    2009-06-01

    Fermented and dried cocoa beans from all the major cocoa-producing regions in Ghana were analyzed for levels of the following heavy metals: arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel and zinc. The shells of the beans which usually do not form a part of the edible portion of the beans were removed and analyzed separately from the cocoa nibs (de-shelled beans) for all the elements above. To determine the distribution of metals during processing of the beans soxhlet extractions of fat from pulverised cocoa nibs was performed and cocoa powders obtained analyzed for their levels of heavy metals. Three commercial brands of 'natural' cocoa powders on the local market were also analyzed to determine the levels of these metals. The analyses were performed using an inductively coupled plasma - optical emission spectrophotometer (ICP-OES) following a microwave-assisted digestion process. The levels of toxic metals lead, cadmium and arsenic were found to be low (≤ 0.020 μg/g, ≤ 0.087 μg/g, < 0.001 μg/g, respectively) and well within the acceptable limits set by the WHO (0.100 μg/g, 0.100 μg/g, and 0.010 μg/g respectively). However, the levels of zinc copper, iron and manganese were however quite high. With a high fat content of the cocoa beans (approximately 50%) and greater portioning of metals into the non-fat portions of the beans, metals levels were considerably higher (almost double) in processed cocoa than in the cocoa itself. (au)

  3. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.

    Science.gov (United States)

    Bruijnincx, Pieter C A; van Koten, Gerard; Klein Gebbink, Robertus J M

    2008-12-01

    Iron-containing enzymes are one of Nature's main means of effecting key biological transformations. The mononuclear non-heme iron oxygenases and oxidases have received the most attention recently, primarily because of the recent availability of crystal structures of many different enzymes and the stunningly diverse oxidative transformations that these enzymes catalyze. The wealth of available structural data has furthermore established the so-called 2-His-1-carboxylate facial triad as a new common structural motif for the activation of dioxygen. This superfamily of mononuclear iron(ii) enzymes catalyzes a wide range of oxidative transformations, ranging from the cis-dihydroxylation of arenes to the biosynthesis of antibiotics such as isopenicillin and fosfomycin. The remarkable scope of oxidative transformations seems to be even broader than that associated with oxidative heme enzymes. Not only are many of these oxidative transformations of key biological importance, many of these selective oxidations are also unprecedented in synthetic organic chemistry. In this critical review, we wish to provide a concise background on the chemistry of the mononuclear non-heme iron enzymes characterized by the 2-His-1-carboxylate facial triad and to discuss the many recent developments in the field. New examples of enzymes with unique reactivities belonging to the superfamily have been reported. Furthermore, key insights into the intricate mechanistic details and reactive intermediates have been obtained from both enzyme and modeling studies. Sections of this review are devoted to each of these subjects, i.e. the enzymes, biomimetic models, and reactive intermediates (225 references).

  4. The effect of transition metals on the structure of h-BN intercalation compounds

    International Nuclear Information System (INIS)

    Budak, Erhan; Bozkurt, Cetin

    2004-01-01

    In this study, hexagonal boron nitride (h-BN) were synthesized by the modified O'Connor method in the presence of various metal nitrates [M(NO 3 ) x , M=Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ag]. The composites were analyzed by FTIR, XRF, XRD, and SEM techniques. XRD results indicated a change in the interlayer spacing due to the intercalation of Cr, Mn, Fe and Ag. SEM analyses illustrated the grain growth upon metal intercalation even at a temperature of 1320 K

  5. Heavy Metals in Air Nanoparticles in the Moravian-Silesian Region (Czech Republic

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2017-03-01

    Full Text Available The Moravian-Silesian Region is one of the most polluted sites by dust particles in the Czech Republic. Therefore, atmospheric concentrations of heavy metals as cadmium, cobalt, chromium, copper, nickel, lead, antimony, thallium, manganese, iron and zinc, were monitored at 10 localities in the region during summer of 2014. Heavy metals were monitored in 10 particle size classes from 18.3 nm to 9.93 mm. The percentage of the amount of heavy metals in the sum PM at all localities ranged from 0.2 to 2.5 %. It was found that chromium, manganese, iron and zinc were mostly accumulated in dust particles with diameter greater than 1.6 µm. Lead, cadmium and antimony occur mainly in the class below 0.949 µm. These metals are more dangerous for human health, and can have potential carcinogenic effect. The influence of metallurgical industry evaluated on the basis of heavy metals in the individual particle size classes in the air within the Moravian-Silesian Region has not been unequivocally demonstrated.

  6. Production and use of metals and oxygen for lunar propulsion

    Science.gov (United States)

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  7. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  8. Microbial virulence and interactions with metals

    DEFF Research Database (Denmark)

    German, N.; Lüthje, Freja Lea; Hao, X.

    2016-01-01

    Transition metals, such as iron, copper, zinc, and manganese play an important role in many bacterial biological processes that add to an overall evolutional fitness of bacteria. They are often involved in regulation of bacterial virulence as a mechanism of host invasion. However, the same transi...

  9. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  10. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  11. Vacuum tight sodium resistant compound between ThO2 ceramic and metal

    International Nuclear Information System (INIS)

    Reetz, T.

    A method for evaluating the mechanical tensions for metal/ ceramic joinings was applied to the selection of metal components for a highly vacuum tight, sodium-resistant metal/ThO 2 ceramic solder joining. The metal component selected was the iron--nickel alloy Dilasil which is joined to the ceramic using a nickel-based solder. The wetting of the cearamic could be carried out using the titanium hydride technique or after the formation of a W-cerium layer on the surface of this ceramic. (U.S.)

  12. EAG Eminent Speaker: Cold war biogeochemistry: Microbes as architects for metal attenuation

    Science.gov (United States)

    Küsel, K.

    2012-04-01

    Legacy uranium mining in the area of Ronneburg, Germany, has resulted in extensive outflow of highly heavy metal contaminated ground and upcoming mine waters. Mine water flows along a grassland into a small creek and forms iron-rich precipitates yielding rust-colored terraces at the creek bank. These iron oxyhydroxides could have been formed by iron oxidizing bacteria (FeOB) or by chemical oxidation. Precipitates may serve as important biogeochemical interfaces, because heavy metals can adsorb or co-precipitate with Fe(II) or Fe(III) minerals. Thus, microbial Fe(II) oxidation but also the reductive dissolution of iron oxides can be important processes affecting the stability of metal contaminants. Here we present a study on the potential for iron cycling processes and on indigenous bacterial communities in this acidic creek. Oxic and anoxic in vitro sediment incubations revealed iron oxidation and reduction rates of same magnitude, indicating active iron cycling regardless of pH. XRD and TEM comparing the suspended particle load of water samples with fresh creek sediment showed that amorphous particles likely formed first, then aged to become more crystalline iron oxyhydroxides, such as akaganeite and goethite. During this aging process some of the initially smooth, 50-300 nm spherical particles may have formed nano-sized needles, which could potentially provide high reactive surface area for chemical and biological reactions. Surprisingly, total and dissolved metal concentrations in creek water and sediment revealed that elements such as Mn, Si, Ni, or Zn stayed mostly in solution. Only some metals such as Cu, Cr, and U seemed to be particle-associated in the water, likely co-precipitated with or adsorbed onto freshly-precipitating minerals. Pelagic and particle-associated organisms from water as well as fresh sediments were used for 16S rRNA gene cloning and sequencing and showed that members of the Proteobacteria (mainly Betaproteobacteria and

  13. Theoretical studies on the thermodynamic properties and detonation properties of cyclotrimethylene trinitramine (RDX with aluminum and boron metals.

    Directory of Open Access Journals (Sweden)

    Nilgün Şen

    2016-10-01

    Full Text Available The B3LYP/6-311++G(2df,2p density functional theory (DFT method was used to investigate molecular geometry and thermodynamic properties of RDX and RDX derivatives containing Al and B metals. The detonation velocity (D and detonation pressure (P, estimated by using Kamlet–Jacobs and in literature equations, respectively. Total energies (Et, frontier orbital energy (EHOMO, ELOMO, energy gap (ΔELUMO–HOMO and theoretical molecular density (ρ were calculated with Spartan 14 software package program. It was shown that the presence of aluminum and boron atoms affects the good thermal stabilities. The results show that the composite RDX-Al, RDX-B derivatives have higher detonation performance and higher density than RDX. RDX-Al derivatives appeared to be superior to RDX-B mixtures in terms of these parameters. These results provide information on the moleculer design of new energetic materials.

  14. Long-term perspectives on world metal use - a model-based approach

    NARCIS (Netherlands)

    Vuuren DP; Strengers BJ; Vries HJM de; MNV

    1999-01-01

    In this report, a system dynamics model is described, which simulates long-term trends in the production and consumption of metals (i.e. iron/steel and an aggregate of metals of medium abundance) in relation to impacts such as ore-grade decline, capital and energy requirements and waste flows. This

  15. Determination of the Levels of some Heavy Metals in Urban Run

    African Journals Online (AJOL)

    The heavy metals in urban road sediments take their origin from sources such as vehicles, road wear, activities of roadside artisans (battery charging, vehicle repairs, iron-bending, vehicle painting and panel beating) and emissions and /or discharges fi'om industries. The metals come mainly from vehicular activities such as ...

  16. Global supply and demand of metals in the future.

    Science.gov (United States)

    Backman, Carl-Magnus

    2008-01-01

    This article is a short review on the subject of diminishing mineral resources in a world with increasing population. The concepts of reserves, resources, and life index are described. A forecast is made on the global consumption in the year 2050 of the metals iron (Fe), aluminum (Al), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb). Evidence indicates that a physical depletion of metals does not occur (fixed stock paradigm) but certain metals will become too expensive to extract (opportunity cost paradigm). The future demand for cadmium (Cd), mercury (Hg), arsenic (As), and selenium (Se) is presented. Finally, some metals presently of great interest for mineral prospectors that may have an important role in the future society are presented.

  17. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    Science.gov (United States)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  18. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  19. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  20. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  1. Heavy metal burden of the Pinnau river

    International Nuclear Information System (INIS)

    1993-01-01

    The water phase and sediment of the Pinnau river were investigated for their heavy-metal pollution. Tests for the elements chromium, mercury, nickel, arsenic, lead, copper, cadmium, zinc and iron were carried through with sediment samples in 1984 and 1989 and with water samples in 1987 and 1989. Whereas no significant changes in the levels of these metals were found in the water phase during the two-year period of invetigation, slightly reduced levels of zinc, cadmium and mercury were established in the sediment in 1989 as compared to 1984. (orig.) [de

  2. Effects of iron concentration and redox states on failure of boron-free ...

    Indian Academy of Sciences (India)

    Effects of iron concentration and redox states on failure of boron-free E-glass fibres under applied stress in different conditions ... Materials, Donghua University, Shanghai 201620, China; Material Research Center, Missouri University of Science and Technology, Rolla 65409, USA; Fiber Glass Science and Technology, ...

  3. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  4. Modelling of gas-metal arc welding taking into account metal vapour

    Energy Technology Data Exchange (ETDEWEB)

    Schnick, M; Fuessel, U; Hertel, M; Haessler, M [Institute of Surface and Manufacturing Technology, Technische Universitaet Dresden, D-01062 Dresden (Germany); Spille-Kohoff, A [CFX Berlin Software GmbH, Karl-Marx-Allee 90, 10243 Berlin (Germany); Murphy, A B [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2010-11-03

    The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielinska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.

  5. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    Science.gov (United States)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  6. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Potential for iron oxides to control metal releases in CO2 sequestration scenarios

    Science.gov (United States)

    Berger, P.M.; Roy, W.R.

    2011-01-01

    The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction

  8. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    Science.gov (United States)

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-05

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review.

    Science.gov (United States)

    Meena, Ramakrishnan Anu Alias; Sathishkumar, Palanivel; Ameen, Fuad; Yusoff, Abdull Rahim Mohd; Gu, Feng Long

    2018-02-01

    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.

  10. Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.

    Science.gov (United States)

    Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J

    2008-08-18

    Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.

  11. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  12. Origin and spatial distribution of metals in agricultural soils

    International Nuclear Information System (INIS)

    Mohammadpour, Gh.A.; Karbassi, A.R.; Baghvand, A.

    2016-01-01

    Presence of toxic metals in agricultural soils can impose adverse health impact on consumers. The main purpose of this study was to determine spatial distribution of elements Fe, Sb, Mn in agriculture soils and crops of Hamedan Province in Iran. Soil samples (0-20 cm depth) were collected from an area of 2831 km 2 . Iron, Antimony and Manganese in samples of soil and agricultural crops were extracted and their amount was determined using atomic absorption spectrometer. The spatial distribution map of the studied elements was developed using Kriging method. The main concentration of Fe, Sb and Mn in the soil of the study area is about 3.8%, 2.5 and 403 mg/kg, respectively. According to chemical partitioning studies, the anthropogenic share of Fe, Sb and Mn is about 28.51%, 34.83% and 30.35%, respectively. Results of comparison of heavy metals pollution intensity in the agricultural soil with geoaccumulation index and also pollution index, illustrated that iron and manganese are classified in the Non-polluted class and antimony is in the moderately polluted class. Analysis of zoning map of pollution index showed that Fe, Sb and Mn are of geological sources. In fact, these metals are naturally found in soil. However, anthropogenic activities have led to more accumulation of these metals in the soil. The obtained health risk for metals in agricultural crops is indicative of safe value for consumers.

  13. Metal leaching from experimental coal fly-ash oyster cultch

    Energy Technology Data Exchange (ETDEWEB)

    Homziak, J.; Bennett, L.; Simon, P.; Herring, R. (Mississippi State University, MS (USA). Coastal Research and Extension Center)

    1993-08-01

    Because oysters accumulate metals far in excess of ambient concentrations potential leaching and bioaccumulation of metals may be important public health concerns where ash-cement aggregates are being considered for oyster cultivation. This study examined the potential for metal release from an ash-cement aggregate proposed for use in oyster reef construction in Mississippi coastal waters. Seven acid-washed aquaria were each filled with 77L of artificial seawater. Five randomly selected aquaria each received 8.6 L of aggregate pellets. Samples were taken from each aquarium one hour after the start of the experiment and at 10 day intervals on six subsequent sampling dates. The samples were analysed for arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium and zinc. Cadmium, iron and mercury were essentially not detected in the treatment aquaria. Except for chromium, the mean concentrations of metals in the treatment samples were generally less than 10 ppb. An overall comparison of the concentrations of 8 metals among all aquaria and sampling dates detected significant differences in the concentration of chromium (p[lt]0.001), manganese (p[lt]0.05) and selenium (p[lt]0.001). Treatment aquaria had significantly greater concentrations of chromium and selenium than did either control (nonparametric multiple comparison, p[lt]0.05). Most of the chromium found in the treatment aquaria was the hexavalent form (means range from 0.052 to 1.328 ppm). Treatment hexavalent chromium concentrations increased over time. 14 refs., 1 fig., 2 tabs.

  14. Alzheimer’s disease: How metal ions define β-amyloid function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    focuses on the essential coordination chemistry and biochemistry that relate transition metal ions iron, copper, and zinc to β-amyloid (Aβ) and most likely define the peptide's roles in neurons. The metal-Aβ interactions have elements of both gain of toxic function, as usually considered, but also loss......Alzheimer’s disease is increasingly recognized to be linked to the function and status of metal ions, and recently, the amyloid hypothesis has been strongly intertwined with the metal ion hypothesis; in fact, these two hypotheses fit well together and are not mutually contradictory. This review...... of natural functions, as emphasized in this review. Both these aspects and their relationships are discussed and their implications for future therapeutic strategies are outlined....

  15. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    Science.gov (United States)

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  16. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  17. Towards nanoprinting with metals on graphene

    Science.gov (United States)

    Melinte, G.; Moldovan, S.; Hirlimann, C.; Liu, X.; Bégin-Colin, S.; Bégin, D.; Banhart, F.; Pham-Huu, C.; Ersen, O.

    2015-08-01

    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a `pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections.

  18. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  19. Raman spectra of hot-pressed boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-01-01

    Full Text Available on in- situ/online measurements (such as GIXRD, Raman Spectroscopy, FIB- Electron Microscopy) during (i) ion implantation, (ii) PLD growth of nanoparticles SW/MW-CNTs, oxide semiconductor multi-layer, metal/Si and metal/metal systems. Moreover, He...], aluminium magnesium boride ? AlMgB14 [8], and the newly synthesized boron subnitride ? B13N2 [9, 10]. With hardness values reported between 24 GPa and 45 GPa [7, 11, 12], B6O is sometimes considered to be the third hardest material only after diamond...

  20. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    Science.gov (United States)

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  1. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  2. Certification of an iron metal reference material for neutron dosimetry (EC nuclear reference material 524)

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Pauwels, J.; Lievens, F.

    1993-01-01

    Iron metal, of > 99.996% nominal purity, in the form of 0.1 mm thick foil and of 0.5 mm diameter wire has been certified for its manganese and cobalt mass fractions. The certified value of the cobalt mass fraction ( -1 ) is based on 39 accepted results from five laboratories using two different methods. The certified value of the manganese mass fraction ( -1 ) is based on 41 accepted results from five laboratories using three different methods. The overall purity was also verified. The material is intended to be used as a reference material in neutron dosimetry. (authors). 8 refs., 9 tabs., 2 figs

  3. Study of extraction-spectrophotometric micro-determination of boron with methylene blue and its application

    International Nuclear Information System (INIS)

    Zhu Daohong

    1990-08-01

    A sensitive extraction-spectrophotometric method for microdetermination of boron with methylene blue was investigated. The method was based on the extraction of a BF 4 - -methylene blue complex into dichloroethane. Boron was determined directly by measuring the absorbance at 658 nm. The calibration graph was linear over the range of 2.5 x 10 -9 to 8 x 10 -8 g/mL. The blank, mechanism of the reactions, interference of other ions and some optimum conditions of the method were studied in detail. The main source of the blank resulted from methylene blue and the complex of F - -methylene blue. In order to reduce the blank, the amounts of methylene blue, H 2 SO 4 and HF were used as less as possible. Only one to one complex BF 4 - -methylene blue was formed in the medium of H 2 SO 4 . About 90% of methylene blue and F - -methylene blue complex was removre with 5 ml of water and only a little amount of BF 4 -methylene blue complex was decomposed. The extraction-spectrophotometric method with methylene blue was first applied to the microdetermination of boron in sodium metal and UF 6 . The sample of sodium metal was taken and weighed in the glovebox filled with argon. Then sodium metal was oxidized, hydrolyzed, netralized and fluorizated with H 2 O, H 2 SO 4 and HF, respectively. The 0.5 ppm of boron in sodium metal was determined with a relative error about ±4%. This method can be applied to the determination of boron in sodium metal, sodium sulfate and sodium hydroxide at diffeent grades. The species of boron in the hydrolysate of UF 6 is BF 4 - anion, so the sample can be directly analyzed. Boron contents in the range of 0.1 to 0.5 ppm was determined with a relative error about ±3%. Six samples could be analysed in 2h

  4. Assessment of biotechnological strategies for the valorization of metal bearing wastes

    International Nuclear Information System (INIS)

    Beolchini, Francesca; Fonti, Viviana; Dell’Anno, Antonio; Rocchetti, Laura; Vegliò, Francesco

    2012-01-01

    Highlights: ► We examine biological strategies to valorize different metal rich solid waste. ► Bacteria play a key role in the mobilization of Zn and Y from fluorescent powders. ► Ferrous iron is crucial for the bioleaching of Ni, V, Mo from spent catalysts. ► No biological effect is observed for Ni, Zn, As, Cr mobilisation from sediments. - Abstract: The present work deals with the application of biotechnology for the mobilization of metals from different solid wastes: end of life industrial catalysts, heavy metal contaminated marine sediments and fluorescent powders coming from a cathode ray tube glass recycling process. Performed experiments were aimed at assessing the performance of acidophilic chemoautotrophic Fe/S-oxidizing bacteria for such different solid matrices, also focusing on the effect of solid concentration and of different substrata. The achieved results have evidenced that metal solubilization seems to be strongly influenced by the metal speciation and partitioning in the solid matrix. No biological effect was observed for Ni, Zn, As, Cr mobilization from marine sediments (34%, 44%, 15%, 10% yields, respectively) due to metal partitioning. On the other hand, for spent refinery catalysts (Ni, V, Mo extractions of 83%, 90% and 40%, respectively) and fluorescent powders (Zn and Y extraction of 55% and 70%, respectively), the improvement in metal extraction observed in the presence of a microbial activity confirms the key role of Fe/S oxidizing bacteria and ferrous iron. A negative effect of solid concentration was in general observed on bioleaching performances, due to the toxicity of dissolved metals and/or to the solid organic component.

  5. Wüstite in the fusion crust of Almahata Sitta sulfide-metal assemblage MS-166: Evidence for oxygen in metallic melts

    Science.gov (United States)

    Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.

    2013-05-01

    Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.

  6. Biofilters for stormwater harvesting: understanding the treatment performance of key metals that pose a risk for water use.

    Science.gov (United States)

    Feng, Wenjun; Hatt, Belinda E; McCarthy, David T; Fletcher, Tim D; Deletic, Ana

    2012-05-01

    A large-scale stormwater biofilter column study was conducted to evaluate the impact of design configurations and operating conditions on metal removal for stormwater harvesting and protection of aquatic ecosystems. The following factors were tested over 8 months of operation: vegetation selection (plant species), filter media type, filter media depth, inflow volume (loading rate), and inflow pollutant concentrations. Operational time was also integrated to evaluate treatment performance over time. Vegetation and filter type were found to be significant factors for treatment of metals. A larger filter media depth resulted in increased outflow concentrations of iron, aluminum, chromium, zinc, and lead, likely due to leaching and mobilization of metals within the media. Treatment of all metals except aluminum and iron was generally satisfactory with respect to drinking water quality standards, while all metals met standards for irrigation. However, it was shown that biofilters could be optimized for removal of iron to meet the required drinking water standards. Biofilters were generally shown to be resilient to variations in operating conditions and demonstrated satisfactory removal of metals for stormwater-harvesting purposes. © 2012 American Chemical Society

  7. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    Science.gov (United States)

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology.

    Science.gov (United States)

    Skjørringe, Tina; Burkhart, Annette; Johnsen, Kasper Bendix; Moos, Torben

    2015-01-01

    Iron is required in a variety of essential processes in the body. In this review, we focus on iron transport in the brain and the role of the divalent metal transporter 1 (DMT1) vital for iron uptake in most cells. DMT1 locates to cellular membranes and endosomal membranes, where it is a key player in non-transferrin bound iron uptake and transferrin-bound iron uptake, respectively. Four isoforms of DMT1 exist, and their respective characteristics involve a complex cell-specific regulatory machinery all controlling iron transport across these membranes. This complexity reflects the fine balance required in iron homeostasis, as this metal is indispensable in many cell functions but highly toxic when appearing in excess. DMT1 expression in the brain is prominent in neurons. Of serious dispute is the expression of DMT1 in non-neuronal cells. Recent studies imply that DMT1 does exist in endosomes of brain capillary endothelial cells denoting the blood-brain barrier. This supports existing evidence that iron uptake at the BBB occurs by means of transferrin-receptor mediated endocytosis followed by detachment of iron from transferrin inside the acidic compartment of the endosome and DMT1-mediated pumping iron into the cytosol. The subsequent iron transport across the abluminal membrane into the brain likely occurs by ferroportin. The virtual absent expression of transferrin receptors and DMT1 in glial cells, i.e., astrocytes, microglia and oligodendrocytes, suggest that the steady state uptake of iron in glia is much lower than in neurons and/or other mechanisms for iron uptake in these cell types prevail.

  9. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  10. Behavior of shut-down dose rate of recirculation piping of BWR under noble metal application

    International Nuclear Information System (INIS)

    Fuse, Motomasa; Nagase, Makoto; Aizawa, Motohiro; Wada, Yoichi; Ishida, Kazushige; Hosokawa, Hideyuki; Hettiarachchi, Samson; Weber, Christoph

    2014-01-01

    The cause of shut-down dose rate change of the recirculation piping observed in KKM (Kern Kraftwerk Mühleberg) after application of noble metal injection method is analyzed. The plant experienced the sharp decrease of piping dose rate in the cycle just after the application of noble metal(classic NobleChem TM ) and re-buildup of radioactivity in the subsequent several cycles. After the application of online noble metal injection (online NobleChem TM ), gradual decrease of dose rate has been observed. The presence of a certain amount of noble metal on the iron rich oxide film promotes the dissolution of the oxide under hydrogen addition, resulting in a decrease of deposited noble metal on the oxide film surface as well as of radioactive species in the film. Under the condition of lower amount of noble metal on the surface oxides, the oxidant species, especially hydrogen peroxide, slightly increases facilitating the re-growth of iron rich oxides along with re-buildup of radioactivity. After the application of online noble metal injection during each cycle, gradual dissolution of iron rich oxides and gradual decrease of radioactivity in the oxides proceed to decrease the piping dose rate. In the radioactivity decreasing phase, the presence of zinc is considered to assist the suppression of radioactivity buildup in the oxide film. From the analysis, treating piping surface with platinum after chemical decontamination process is expected to work well for suppression of the piping dose rate. (author)

  11. Mixtures of herbicides and metals affect the redox system of honey bees.

    Science.gov (United States)

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  13. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  14. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  15. Enhanced Nanotribology and Optimal Self-lubrication in Novel Polymer-Metal Composites

    Science.gov (United States)

    Seam, Alisha; Brostow, Witold; Olea-Mejia, Oscar

    2006-10-01

    Cheaper to produce, light-weight polymeric materials with improved micro and nano-scale tribological characteristics ar gradually replacing the heavier metals in gears, cams, ball-bearings, chains, and other critical machine components which operate under high stress, experience substantial sliding friction and wear, and require external lubrication regimes. Application of such high-performance synthetic materials in a whole range of machinery, manufacturing, aerospace and transportation industries would produce far reaching economic, energy conservation and environmental benefits. This paper devises and investigates a novel and previously untested method of developing self-lubricating and wear-resistant polymer based materials (PBMs) by blending a polymer with small proportions of a metallic additive. Tribological experiments establish that as increasing proportions of the metallic additive Iron (Fe) are added to the polymeric base polyethylene (PE), the friction and wear of the resulting composite (PE-Fe) experiences significant decline until an optimal value of 3 to 5 % Iron and then stabilize. Theoretical analysis reveals this phenomenon to likely be a result of the nano-structural formation of a lubricating oxide layer on surface of the polymer-metal composite. Furthermore, the oxide layer prevented significant degradation of the viscoelastic scratch-recovery of the base polymer, even with 10 percent metal additive (Fe) in the composite samples.

  16. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  17. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    Science.gov (United States)

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fungal accumulation of metals from building materials during brown rot wood decay.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody

    2014-08-01

    This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood

  19. Effects of metal compounds with distinct physicochemical properties on iron homeostasis and antibacterial activity in the lungs: chromium and vanadium.

    Science.gov (United States)

    Cohen, Mitchell D; Sisco, Maureen; Prophete, Colette; Yoshida, Kotaro; Chen, Lung-chi; Zelikoff, Judith T; Smee, Jason; Holder, Alvin A; Stonehuerner, Jacqueline; Crans, Debbie C; Ghio, Andrew J

    2010-02-01

    In situ reactions of metal ions or their compounds are important mechanisms by which particles alter lung immune responses. The authors hypothesized that major determinants of the immunomodulatory effect of any metal include its redox behavior/properties, oxidation state, and/or solubility, and that the toxicities arising from differences in physicochemical parameters are manifest, in part, via differential shifts in lung iron (Fe) homeostasis. To test the hypotheses, immunomodulatory potentials for both pentavalent vanadium (VV; as soluble metavanadate or insoluble vanadium pentoxide) and hexavalent chromium (CrVI; as soluble sodium chromate or insoluble calcium chromate) were quantified in rats after inhalation (5h/day for 5 days) of each at 100 microg metal/m3. Differences in effects on local bacterial resistance between the two VV, and between each CrVI, agents suggested that solubility might be a determinant of in situ immunotoxicity. For the soluble forms, VV had a greater impact on resistance than CrVI, indicating that redox behavior/properties was likely also a determinant. The soluble VV agent was the strongest immunomodulant. Regarding Fe homeostasis, both VV agents had dramatic effects on airway Fe levels. Both also impacted local immune/airway epithelial cell Fe levels in that there were significant increases in production of select cytokines/chemokines whose genes are subject to regulation by HIF-1 (whose intracellular longevity is related to cell Fe status). Our findings contribute to a better understanding of the role that metal compound properties play in respiratory disease pathogenesis and provide a rationale for differing pulmonary immunotoxicities of commonly encountered ambient metal pollutants.

  20. The complex metal-rich boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68, y=1.06) with a new structure type containing B{sub 4} zigzag fragments: Synthesis, crystal chemistry and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52064 Aachen (Germany)

    2012-08-15

    Polycrystalline samples and single crystals of the new complex boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B{sub 4} fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) A, b=14.995(2) A and c=3.234(1) A. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B{sub 4} fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior. - graphical abstract: The structure of Ti{sub 1.68(2)}Rh{sub 2.38(6)}Ir{sub 1.94(4)} B{sub 3}, a new structure type containing planar trans zigzag B{sub 4} units, is another example which illustrates the tendency of metal-rich borides to form B-B bonds with increasing boron content. Beside the B{sub 4} fragment it exhibits one-dimensional chains of titanium atoms and hold one-dimensional strings of face-sharing empty tetrahedral and square pyramidal clusters (see figure). Highlights

  1. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including cobalt antimonate and vanadium antimonate. Reactivity measurements were made using a continuous flow microreactor, which was used in conjunction with a variety of characterisation techniques to determine relationships between the catalytic behaviour and the properties of the materials. The ratio of Fe/Sb in the iron antimonate catalyst affects the reactivity of the system under steady state conditions, with additional iron beyond the stoichiometric value being detrimental to the acrolein selectivity, while extra antimony provides a means of enhancing the selectivity by decreasing acrolein combustion. Studies on the single antimony oxides of iron antimonate have shown a similarity between the reactivity of 'Sb 2 O 5 ' and FeSbO 4 , and a significant difference between these and the Sb 2 O 3 and Sb 2 O 4 phases, implying that the mixed oxide catalyst has a surface mainly comprised of Sb 5+ . The lack of reactivity of Sb 2 O 4 implies a similarity of the surface with

  2. Metal-on-metal hip joint tribology.

    Science.gov (United States)

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  3. Approximation of Moessbauer spectra of metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1988-01-01

    Moessbauer spectra of iron-rich metallic glasses are approximated by means of six broadened lines which have line position relations similar to those of α-Fe. It is shown via the results of the DISPA (dispersion mode vs. absorption mode) line shape analysis that each spectral peak is broadened owing to a sum of Lorentzian lines weighted by a Gaussian distribution in the peak position. Moessbauer parameters of amorphous metallic Fe 83 B 17 and Fe 40 Ni 40 B 20 alloys are presented, derived from the fitted spectra. (author). 2 figs., 2 tabs., 21 refs

  4. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  5. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  6. Review of alkali metal and refractory alloy compatibility for Rankine cycle applications

    International Nuclear Information System (INIS)

    DiStefano, J.R.

    1989-01-01

    The principal corrosion mechanisms in refractory metal-alkali systems are dissolution, mass transfer, and impurity reactions. In general, niobium, tantalum, molybdenum, and tungsten have low solubilities in the alkali metals, even to very high temperatures, and static corrosion studies have verified that the systems are basically compatible. Loop studies with niobium and tantalum based alloys do not indicate any serious problems due to temperature gradient mass transfer. Above 1000 K, dissimilar metal mass transfer is noted between the refractory metals and iron or nickel based alloys. The most serious corrosion problems encountered are related to impurity reactions associated with oxygen

  7. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  8. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes

    Czech Academy of Sciences Publication Activity Database

    Schwarzová-Pecková, K.; Vosáhlová, J.; Barek, J.; Šloufová, I.; Pavlova, Ewa; Petrák, Václav; Zavázalová, J.

    2017-01-01

    Roč. 243, 20 July (2017), s. 170-182 ISSN 0013-4686 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : 2-aminobiphenyl * boron content * boron-doped diamond Subject RIV: CD - Macromolecular Chemistry; CG - Electrochemistry (FZU-D) OBOR OECD: Polymer science; Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (FZU-D) Impact factor: 4.798, year: 2016

  9. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822 (United States); Kraus, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States)

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  10. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    International Nuclear Information System (INIS)

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-01-01

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6σ confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  11. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.

    Science.gov (United States)

    Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie

    2017-10-01

    The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.

  12. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  13. Metal availability and the expanding network of microbial metabolisms in the Archaean eon

    Science.gov (United States)

    Moore, Eli K.; Jelen, Benjamin I.; Giovannelli, Donato; Raanan, Hagai; Falkowski, Paul G.

    2017-09-01

    Life is based on energy gained by electron-transfer processes; these processes rely on oxidoreductase enzymes, which often contain transition metals in their structures. The availability of different metals and substrates has changed over the course of Earth's history as a result of secular changes in redox conditions, particularly global oxygenation. New metabolic pathways using different transition metals co-evolved alongside changing redox conditions. Sulfur reduction, sulfate reduction, methanogenesis and anoxygenic photosynthesis appeared between about 3.8 and 3.4 billion years ago. The oxidoreductases responsible for these metabolisms incorporated metals that were readily available in Archaean oceans, chiefly iron and iron-sulfur clusters. Oxygenic photosynthesis appeared between 3.2 and 2.5 billion years ago, as did methane oxidation, nitrogen fixation, nitrification and denitrification. These metabolisms rely on an expanded range of transition metals presumably made available by the build-up of molecular oxygen in soil crusts and marine microbial mats. The appropriation of copper in enzymes before the Great Oxidation Event is particularly important, as copper is key to nitrogen and methane cycling and was later incorporated into numerous aerobic metabolisms. We find that the diversity of metals used in oxidoreductases has increased through time, suggesting that surface redox potential and metal incorporation influenced the evolution of metabolism, biological electron transfer and microbial ecology.

  14. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  15. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  16. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  17. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  18. Detection of metal residues on bone using SEM-EDS. Part I: Blunt force injury.

    Science.gov (United States)

    Pechníková, Markéta; Porta, Davide; Mazzarelli, Debora; Rizzi, Agostino; Drozdová, Eva; Gibelli, Daniele; Cattaneo, Cristina

    2012-11-30

    Previous studies have indicated that metal particles remain on bone after sharp force injury or gunshot and that their detection by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) could greatly help in tool identification. However, the presence of metal particles on bone surfaces in the context of blunt force trauma has never been assessed experimentally. For this reason the present paper represents an experimental study of the behaviour of metal residues on bone following blunt force injury. Ten fresh sub-adult bovine metatarsal bones were manually cleaned of soft tissues. They were then struck by metal bars (copper, iron or aluminium) on the external surface of the mid-diaphysis. All blunt metal instruments used in this study left a sign in the form of single particles, a smear or a powder-like deposit on the bone surface. The residues of all three metal implements were detected on the bone surface, 0.3-10 mm from the fracture border. The presence of metal particles was confirmed in all samples struck with iron and copper and in two of six aluminium samples; no particles were detected on the negative control. Chemical composition of residues highly corresponded with the composition of applied bars. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  20. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    1980-01-01

    Finely divided powders are prepared by first reacting an aqueous solution containing dissolved metal values with excess urea. After the reaction of water in the solution with urea is complete, the resulting molten urea solution is heated to cause metal values in solution to precipitate. The resulting mixture containing precipitated metal values is heated to evaporate volatile material, leaving a dry powder containing the metal values. Detailed examples are given. (U.K.)