WorldWideScience

Sample records for metal-inducible mobile genetic

  1. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  2. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Analysis of atomic mobility in a Cu38Zr46Ag8Al8 bulk metallic glass

    International Nuclear Information System (INIS)

    Qiao, J.C.; Pelletier, J.M.

    2013-01-01

    Highlights: ► Atomic mobility in Cu 38 Zr 46 Ag 8 Al 8 bulk metallic glass have been investigated by DMA. ► Loss factor is directly connected to the energy lost during application of the stress. ► Structural relaxation and crystallization induces a decrease of the atomic mobility. ► The concentration of quasi-point defects links to atomic mobility in metallic glasses. - Abstract: Atomic mobility in as-cast and annealed Cu 38 Zr 46 Ag 8 Al 8 bulk metallic glass samples is analyzed by performing dynamic mechanical analysis. The loss factor is directly connected to the energy lost during application of the stress. Structural relaxation process and crystallization lead to a decrease of the atomic mobility in the bulk metallic glass. A physical model, based on the concept of quasi point defects is introduced, to describe the atomic mobility. Movements in amorphous materials are correlated. The correlation factor χ reflects the atomic mobility in bulk metallic glasses: structural relaxation and crystallization lead to a decrease of χ, implying the reduction of atomic mobility. The evolution of elastic, visco-elastic and viscoplastic components after structural relaxation and partial crystallization state during the mechanical response has been obtained. Compared with as-cast state, structural relaxation induced an increase of elastic component and a decrease of visco-elastic component in the metallic glass.

  4. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes.

    Science.gov (United States)

    Hu, Shiben; Ning, Honglong; Lu, Kuankuan; Fang, Zhiqiang; Li, Yuzhi; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao; Lu, Xubing

    2018-03-27

    In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) based on alumina oxide (Al 2 O 3 ) passivation layer (PVL) and copper (Cu) source/drain electrodes (S/D). The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5-220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.

  5. Mobility Enhancement in Amorphous In-Ga-Zn-O Thin-Film Transistor by Induced Metallic in Nanoparticles and Cu Electrodes

    Directory of Open Access Journals (Sweden)

    Shiben Hu

    2018-03-01

    Full Text Available In this work, we fabricated a high-mobility amorphous indium-gallium-zinc-oxide (a-IGZO thin-film transistor (TFT based on alumina oxide (Al 2 O 3 passivation layer (PVL and copper (Cu source/drain electrodes (S/D. The mechanism of the high mobility for a-IGZO TFT was proposed and experimentally demonstrated. The conductivity of the channel layer was significantly improved due to the formation of metallic In nanoparticles on the back channel during Al 2 O 3 PVL sputtering. In addition, Ar atmosphere annealing induced the Schottky contact formation between the Cu S/D and the channel layer caused by Cu diffusion. In conjunction with high conductivity channel and Schottky contact, the a-IGZO TFT based on Cu S/D and Al 2 O 3 PVL exhibited remarkable mobility of 33.5–220.1 cm 2 /Vs when channel length varies from 60 to 560 μ m. This work presents a feasible way to implement high mobility and Cu electrodes in a-IGZO TFT, simultaneously.

  6. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    Science.gov (United States)

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  7. Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration.

    Directory of Open Access Journals (Sweden)

    Dongxu Zhou

    Full Text Available Significant advances have been made on our understanding of the fate and transport of engineered nanomaterials. One unexplored aspect of nanoparticle aggregation is how environmental stimuli such as light exposure and temperature variations affect the mobility of engineered nanoparticles. In this study, TiO(2, ZnO, and CeO(2 were chosen as model materials for investigating the mobility of nanoparticles under three external stimuli: heat, light and sonication. Sunlight and high power sonication were able to partially disagglomerate metal oxide clusters, but primary particles bonded by solid state necks were left intact. A cycle of temperature increase from 25°C to 65°C and then decrease back was found to disagglomerate the compact clusters in the heating phase and reagglomerate them as more open fractal structures during the cooling phase. A fractal model summing the pair-wise DLVO interactions between primary particles within two fractal agglomerates predicts weak attractions on the order of a few kT. Our study shows that common environmental stimuli such as light exposure or temperature variation can disagglomerate nanoparticle clusters and enhance their mobility in open waters. This phenomenon warrants attention since it is likely that metal oxide nanoparticles will experience these natural stimuli during their transport in the environment.

  8. Has long-term metal exposure induced changes in life history traits and genetic diversity of the enchytraeid worm Cognettia sphagnetorum (Vejd.)?

    International Nuclear Information System (INIS)

    Haimi, Jari; Knott, Karelyn Emily; Selonen, Salla; Laurikainen, Marjo

    2006-01-01

    We studied whether long-term metal exposure has affected life history traits, population growth patterns and genetic diversity of the asexual enchytraeid worm Cognettia sphagnetorum (Vejd.). Enchytraeids from metal contaminated and uncontaminated forest soil were compared by growing them individually in the laboratory and by following their population development in patchily Cu contaminated microcosms. Genetic differences between the two native populations were studied using allozyme electrophoresis. Individuals from the contaminated site had slower growth rate and they produced fewer fragments of larger size when compared to individuals from the uncontaminated site. In patchily Cu contaminated microcosms, C. sphagnetorum from the contaminated site had a slower population growth rate. Most alleles were shared by the two native populations, but there was greater diversity and more unique genotypes in the population living in the uncontaminated site. Overall, long-term exposure to metals has induced only slight changes in life history properties and clonal diversity of C. sphagnetorum. - Long-term exposure to metals caused only small changes in life histories of two populations of Cognettia sphagnetorum

  9. Circulating nucleic acids: a new class of physiological mobile genetic elements [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Indraneel Mittra

    2015-09-01

    Full Text Available Mobile genetic elements play a major role in shaping biotic genomes and bringing about evolutionary transformations. Herein, a new class of mobile genetic elements is proposed in the form of circulating nucleic acids (CNAs derived from the billions of cells that die in the body every day due to normal physiology and that act intra-corporeally. A recent study shows that CNAs can freely enter into healthy cells, integrate into their genomes by a unique mechanism and cause damage to their DNA. Being ubiquitous and continuously arising, CNA-induced DNA damage may be the underlying cause of ageing, ageing-related disabilities and the ultimate demise of the organism. Thus, DNA seems to act in the paradoxical roles of both preserver and destroyer of life. This new class of mobile genetic element may be relevant not only to multi-cellular organisms with established circulatory systems, but also to other multi-cellular organisms in which intra-corporeal mobility of nucleic acids may be mediated via the medium of extra-cellular fluid.

  10. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: A case study in Shenzhen, China

    International Nuclear Information System (INIS)

    Chen Kouping; Jiao, Jiu J.

    2008-01-01

    The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system. - Metals in coastal groundwater and marine sediment are affected by land reclamation

  11. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  12. Do earthworms impact metal mobility and availability in soil? - A review

    International Nuclear Information System (INIS)

    Sizmur, Tom; Hodson, Mark E.

    2009-01-01

    The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this. - We review the impact of earthworms on metal mobility and availability and suggest areas for further investigation.

  13. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    Directory of Open Access Journals (Sweden)

    Silvia TRIF

    2011-01-01

    Full Text Available The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer better performance and memory usage than back-propagation and they are fit to be implemented on mobile devices.

  15. Mobile genetic elements in Methanobacterium thermoformicicum

    NARCIS (Netherlands)

    Noelling, J.

    1993-01-01

    The identification of the Archaea as a third primary lineage of life and their adaptation to extreme environmental conditions have generated considerable interest in the molecular biology of these organisms. Most progress in the investigation of archaeal mobile genetic

  16. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-03-01

    Phytoextraction is one of the most promising technologies for the decontamination of metal-polluted agricultural soils. Effects of repeated phytoextraction by the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum plumbizincicola on metal (Cd, Zn, copper (Cu) and lead (Pb)) mobility were investigated in three contaminated soils with contrasting properties. EDTA kinetic extraction and the two first-order reactions model showed advantages in the assessment of soil metal mobility and clearly discriminated changes in metal fractions induced by phytoextraction. Repeated phytoextraction led to large decreases in readily labile (Q 1 0 ) and less labile (Q 2 0 ) fractions of Cd and Zn in all three soils with the sole exception of an increase in the Q 2 0 of Zn in the highly polluted soil. However, Q 1 0 fractions of soil Cu and Pb showed apparent increases with the sole exception of Pb in the acid polluted soil but showed a higher desorption rate constant (k 1 ). Furthermore, S. plumbizincicola decreased the non-labile fraction (Q 3 0 ) of all metals tested, indicating that the hyperaccumulator can redistribute soil metals from non-labile to labile fractions. This suggests that phytoextraction decreased the mobility of the metals hyperaccumulated by the plant (Cd and Zn) but increased the mobility of the metals not hyperaccumulated (Cu and Pb). Thus, phytoextraction of soils contaminated with mixtures of metals must be performed carefully because of potential increases in the mobility of non-hyperaccumulated metals in the soil and the consequent environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flexible Aperture Tuning Solution for Cellular Main Antenna in Metallic Back Cover Mobile Phone

    Directory of Open Access Journals (Sweden)

    Yew Choon Mark Tan

    2017-10-01

    Full Text Available Metal housing has been used extensively on portable communication devices such as on mobile phones and tablets. The choice of metal housing ranges from metallic rim to metallic back cover. This metal housing tends to improve the outlook appearance of the mobile devices, and add mechanical strength towards the mobile devices. However, from the aspect of the communication antenna, the metal housing often posts great challenges towards the flexibility in antenna design and reduction in antenna performance. This paper presents an approach to overcome the challenges by integrating the metal housing of the mobile phone as part of the antenna, along with the introduction of tunable antenna concept to provide different forms of Aperture Tuning to the Cellular Main Antenna, to satisfy its wide frequency band coverages for the 2nd, 3rd and 4th Generation (2G, 3G and 4G mobile network.

  18. Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Walton, Krista S.; Sholl, David S.

    2012-01-01

    is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster......Understanding the adsorption and mobility of metal–organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density...... functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au8, Pd8, and Au4Pd4 we find that the organic part of the MOF...

  19. Metal Distribution and Mobility under alkaline conditions

    International Nuclear Information System (INIS)

    Dario, Maarten

    2004-01-01

    The adsorption of an element, expressed as its distribution between liquid (aquatic) and solid phases in the bio geosphere, largely determines its mobility and transport properties. This is of fundamental importance in the assessment of the performance of e.g. geologic repositories for hazardous elements like radionuclides. Geologic repositories for low and intermediate level nuclear waste will most likely be based on concrete constructions in a suitable bedrock, leading to a local chemical environment with pH well above 12. At this pH metal adsorption is very high, and thus the mobility is hindered. Organic complexing agents, such as natural humic matter from the ground and in the groundwater, as well as components in the waste (cleaning agents, degradation products from ion exchange resins and cellulose, cement additives etc.) would affect the sorption properties of the various elements in the waste. Trace element migration from a cementitious repository through the pH- and salinity gradient created around the repository would be affected by the presence and creation of particulate matter (colloids) that may serve as carriers that enhance the mobility. The objective of this thesis was to describe and quantify the sorption of some selected elements representative of spent nuclear fuel (Eu, Am) and other heavy metals (Zn, Cd, Hg) in a clay/cement environment (pH 10-13) and in the pH-gradient outside this environment. The potential of organic complexing agents and colloids to enhance metal migration was also investigated. It was shown that many organic ligands are able to reduce trace metal sorption under these conditions. It was not possible to calculate the effect of well-defined organic ligands on the metal sorption in a cement environment by using stability constants from the literature. A simple method for comparing the effect of different complexing agents on metal sorption is, however, suggested. The stability in terms of the particle size of suspended

  20. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil.

    Science.gov (United States)

    Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C

    2014-03-01

    Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Laser-induced mobilization of dust produced during fusion reactors operation

    International Nuclear Information System (INIS)

    Vatry, A.

    2010-01-01

    During tokamak operation, plasma-wall interactions lead to material erosion process and dusts production. These dusts are mainly composed by carbon and tungsten, with sizes ranging from 10 nm to 100 μm. For safety reasons and to guarantee an optimum reactor functioning, the dusts have to be kept in reasonable quantity. The dusts mobilization is a first step to collect them, and the laser is a promising technique for this application. To optimize the cleaning, physical mechanisms responsible for dust ejection induced by laser have been identified. Some particles, such as aggregates, are directly ablated by the laser. The metal droplets are ejected intact by an electrostatic force, induced by the photoelectrons. We also characterized the particles ejection to choose an appropriate collection device. (author) [fr

  2. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  3. Mobility and accumulation of heavy metals in podsolic soil via fertilizers usage

    International Nuclear Information System (INIS)

    Pukhovskaya, T.Yu.; Pukhovskij, A.V.

    2008-01-01

    Forecasting of heavy metal mobility and accumulation in soil has a great value for ecosystem status assessment. Results of long-term field and greenhouse experiments with the using X-ray fluorescence method are presented in this paper. New approaches have been proposed for using X-ray spectrometry in agrochemical investigations and heavy metal mobility measurements. (author)

  4. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    Science.gov (United States)

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Estimating mobility using sparse data: Application to human genetic variation.

    Science.gov (United States)

    Loog, Liisa; Mirazón Lahr, Marta; Kovacevic, Mirna; Manica, Andrea; Eriksson, Anders; Thomas, Mark G

    2017-11-14

    Mobility is one of the most important processes shaping spatiotemporal patterns of variation in genetic, morphological, and cultural traits. However, current approaches for inferring past migration episodes in the fields of archaeology and population genetics lack either temporal resolution or formal quantification of the underlying mobility, are poorly suited to spatially and temporally sparsely sampled data, and permit only limited systematic comparison between different time periods or geographic regions. Here we present an estimator of past mobility that addresses these issues by explicitly linking trait differentiation in space and time. We demonstrate the efficacy of this estimator using spatiotemporally explicit simulations and apply it to a large set of ancient genomic data from Western Eurasia. We identify a sequence of changes in human mobility from the Late Pleistocene to the Iron Age. We find that mobility among European Holocene farmers was significantly higher than among European hunter-gatherers both pre- and postdating the Last Glacial Maximum. We also infer that this Holocene rise in mobility occurred in at least three distinct stages: the first centering on the well-known population expansion at the beginning of the Neolithic, and the second and third centering on the beginning of the Bronze Age and the late Iron Age, respectively. These findings suggest a strong link between technological change and human mobility in Holocene Western Eurasia and demonstrate the utility of this framework for exploring changes in mobility through space and time. Copyright © 2017 the Author(s). Published by PNAS.

  6. Genetic toxicology of metal compounds. II. Enhancement of ultraviolet light-induced mutagenesis in Escherichia coli WP2

    International Nuclear Information System (INIS)

    Rossman, T.G.; Molina, M.

    1986-01-01

    Salts of metals which are carcinogenic, noncarcinogenic, or of unknown carcinogenicity were assayed for their abilities to modulate ultraviolet (UV)-induced mutagenesis in Escherichia coli WP2. In addition to the previously reported comutagenic effect of arsenite, salts of three other compounds were found to enhance UV mutagenesis. CuCl 2 , MnCl 2 (and a small effect by KMnO 4 ), and NaMoO 4 acted as comutagens in E coli WP2, which has wild-type DNA repair capability, but were much less comutagenic in the repair deficient strain WP2/sub s/ (uvrA). The survival of irradiated or unirradiated cells was not affected by these compounds. No effects on UV mutagenesis were seen for 16 other metal compounds. We suggest that the comutagenic effects might occur either via metal-induced decreases in the fidelity of repair replication or via metal-induced depurination

  7. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing

    International Nuclear Information System (INIS)

    Kovacs, Elza; Dubbin, William E.; Tamas, Janos

    2006-01-01

    Among the inorganic toxicants of greatest concern in mine tailings, Pb, Zn, Cu, Cd and As figure prominently due to their abundance and potential toxicity. Here we report on their biolability and solid-phase speciation in two sediment cores subject to variable hydrological regimes at an abandoned pyritic mine tailing. The oxic conditions of well-drained sediments induced pyrite oxidation and the subsequent liberation of H + , SO 4 2- and considerable quantities of Fe(III), which precipitated as goethite. Solubility of Pb, Zn, Cu and Cd was closely coupled to pH and goethite presence. Metal lability was particularly low in zones of neutralization, formed by the accumulation of calcite, first carried then deposited by percolating waters in both saturated and unsaturated cores. We conclude that differential hydrology induces variable heavy metal speciation and biolability in Pb-Zn mine tailings, and suggest that site-specific risk assessments must account for past and present hydrological regimes. - Variable hydrology influences heavy metal speciation and mobility, and the formation of neutralization zones, in a Pb-Zn mine tailing

  8. Biodegradation of metal citrate complexes and implications for toxic-metal mobility

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1992-01-01

    The presence of synthetic and naturally occurring chelating agents in nuclear and toxic-metal wastes is a major concern because of their potential to enhance mobilization of metal ions away from the disposal sites. Of particular interest is citric acid, which is present in low-level and transuranic radioactive wastes and in domestic and industrial wastes (as washing fluids, for instance), as well as being found naturally. Citrate ions form multidentate, stable complexes with a variety of toxic metals and radionuclides; but biodegradation of these complexes, precipitating the metal ions as insoluble hydroxides, oxides or other salts, may retard migration. Here we report a study of the biodegradation of citrate complexes of Ca, Fe(II), Fe(III), Cd, Cu, Ni, Pb and U. Several of these complexes were not readily degraded by bacteria, and the biodegradability depended on the chemical nature of the complex, not on the toxicity of the metal to the bacteria. This resistance to biodegradation implies that citrate complexation may play an important part in migration of these hazardous wastes. (author)

  9. SO-limited mobility in a germanium inversion channel with non-ideal metal gate

    International Nuclear Information System (INIS)

    Shah, Raheel; De Souza, M.M.

    2008-01-01

    Germanium is an attractive candidate for ultra fast CMOS technology due to its potential for doubling electron mobility and quadrupling hole mobility in comparison to silicon. To maintain the requirements of the International Technology Roadmap for Semiconductors (ITRS), high-κ insulators and metal gates will be required in conjunction with Ge technology. Key issues which will have to be addressed in achieving Ge technology are: trap free insulators, assessment of appropriate crystallographic orientations and the selection of gate metals for the best mobility. In this work mobilities are evaluated for Ge-nMOSFET with two metal gates (Al and TiN) and high-κ (HfO 2 ) insulator. Scattering with bulk phonons, surface roughness and high-κ phonons are taken into account. It is predicted that Al as the gate material on Ge {100} substrate performs 50% better than Ge {111} orientation at a sheet concentration of 1 x 10 13 cm -2 . Surface roughness is likely to be the most damaging mobility degradation mechanism at high fields for Ge {111}

  10. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    International Nuclear Information System (INIS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-01-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features. - Highlights: • Mobile, hand-guided LIBS apparatus for metal analysis, even for steel • Comparable results as state-of-the-art SD-OES instrument • New sectioned calibration function resulting in smaller deviations • Comparison of univariate and multivariate analysis methods

  11. Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface

    International Nuclear Information System (INIS)

    Boult, Stephen; Hand, Victoria L.; Vaughan, David J.

    2006-01-01

    Laboratory simulations and field studies of the shallow subsurface have shown that microbes and their extracellular products can influence the mobility of toxic metals from waste disposal sites. Modelling the transport of contaminants in groundwater may, therefore, require the input of microbial ecology data in addition to geochemical data, thus increasing the costs and the uncertainty of predictions. However, whether microbial effects on contaminant mobility occur extensively in the natural subsurface is unknown because the conditions under which they have been observed hitherto are generally unrepresentative of the average subsurface environment. Here, we show that microbial activity affects the mobility of a toxic trace metal (Cu) under the relatively low nutrient fluxes that dominate subsurface systems. More particularly, we show that under these low nutrient conditions, microbes and microbial products can immobilize metal but may themselves be subject to subsequent mobilization, thus complicating the pattern of metal storage and release. Our results show that the capability of microbes in the subsurface to change both the capacity of porous media to store metal, and the behaviour of metal that is released, is not restricted to the well researched environments close to sites of waste disposal. We anticipate our simulations will be a starting point for generating input data for transport models, and specifying the mechanism of metal remobilisation in environments more representative of the subsurface generally

  12. Genetically based population divergence in overwintering energy mobilization in brook charr (Salvelinus fontinalis).

    Science.gov (United States)

    Crespel, Amélie; Bernatchez, Louis; Garant, Dany; Audet, Céline

    2013-03-01

    Investigating the nature of physiological traits potentially related to fitness is important towards a better understanding of how species and/or populations may respond to selective pressures imposed by contrasting environments. In northern species in particular, the ability to mobilize energy reserves to compensate for the low external energy intake during winter is crucial. However, the phenotypic and genetic bases of energy reserve accumulation and mobilization have rarely been investigated, especially pertaining to variation in strategy adopted by different populations. In the present study, we documented variation in several energy reserve variables and estimated their quantitative genetic basis to test the null hypothesis of no difference in variation at those traits among three strains of brook charr (Salvelinus fontinalis) and their reciprocal hybrids. Our results indicate that the strategy of winter energy preparation and mobilization was specific to each strain, whereby (1) domestic fish accumulated a higher amount of energy reserves before winter and kept accumulating liver glycogen during winter despite lower feeding; (2) Laval fish used liver glycogen and lipids during winter and experienced a significant decrease in condition factor; (3) Rupert fish had relatively little energy reserves accumulated at the end of fall and preferentially mobilized visceral fat during winter. Significant heritability for traits related to the accumulation and use of energy reserves was found in the domestic and Laval but not in the Rupert strain. Genetic and phenotypic correlations also varied among strains, which suggested population-specific genetic architecture underlying the expression of these traits. Hybrids showed limited evidence of non-additive effects. Overall, this study provides the first evidence of a genetically based-and likely adaptive-population-specific strategy for energy mobilization related to overwinter survival.

  13. Mobile Phones-An asset or a liability: A study based on characterization and assessment of metals in waste mobile phone components using leaching tests.

    Science.gov (United States)

    Hira, Meenakshi; Yadav, Sudesh; Morthekai, P; Linda, Anurag; Kumar, Sushil; Sharma, Anupam

    2018-01-15

    The prolonged use of old fashioned gadgets, especially mobile phones, is declining readily with the advancement in technology which ultimately lead to generation of e-waste. The present study investigates the concentrations of nine metals (Ba, Cd, Cr, Cu, Fe, Ni, Pb, Sn, and Zn) in various components of the mobile phones using Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET) and Synthetic Precipitation Leaching Procedure (SPLP). The results were compared with the threshold limits for hazardous waste defined by the California Department of Toxic Substances Control (CDTSC) and United States Environmental Protection Agency (USEPA). The average concentrations of metals were found high in PWBs. WET was found relatively aggressive as compared to TCLP and SPLP. Redundancy analysis (RDA) suggests that part of mobile, extraction test, manufacturer, mobile model and year of manufacturing explain 34.66% of the variance. According to the present study, waste mobile phones must be considered as hazardous due to the potential adverse impact of toxic metals on human health and environment. However, mobile phones can be an asset as systematic extraction and recycling could reduce the demand of primary metals mining and conserve the natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    Science.gov (United States)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a

  15. High mobility half-metallicity in the (LaMnO3)2/(SrTiO3)8 superlattice

    KAUST Repository

    Cossu, Fabrizio

    2013-01-28

    First principles calculations have been performed to investigate the LaMnO3/SrTiO3 superlattice. Structural relaxation within the generalized gradient approximation results in no significant tiltings or rotations of oxygen octahedra, but in distinct distortions in the SrTiO3 region. Taking into account the onsite Coulomb interaction, we find that the Mn spins order ferromagnetically, in contrast to the antiferromagnetic state of bulk LaMnO3. Most importantly, the interface strain combined with charge transfer across the interface induces half-metallicity within the MnO2 layers. The superlattice is particulary interesting for spintronics applications because the half-metallic states are characterized by an extraordinary high mobility.

  16. High mobility half-metallicity in the (LaMnO3)2/(SrTiO3)8 superlattice

    KAUST Repository

    Cossu, Fabrizio; Schwingenschlö gl, Udo; Singh, Nirpendra

    2013-01-01

    First principles calculations have been performed to investigate the LaMnO3/SrTiO3 superlattice. Structural relaxation within the generalized gradient approximation results in no significant tiltings or rotations of oxygen octahedra, but in distinct distortions in the SrTiO3 region. Taking into account the onsite Coulomb interaction, we find that the Mn spins order ferromagnetically, in contrast to the antiferromagnetic state of bulk LaMnO3. Most importantly, the interface strain combined with charge transfer across the interface induces half-metallicity within the MnO2 layers. The superlattice is particulary interesting for spintronics applications because the half-metallic states are characterized by an extraordinary high mobility.

  17. Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats.

    Science.gov (United States)

    Muller, Ludo A H; Vangronsveld, Jaco; Colpaert, Jan V

    2007-11-01

    The genetic structure of populations of the ectomycorrhizal basidiomycete Suillus luteus in heavy metal polluted and nonpolluted areas was studied. Sporocarps were collected at nine different locations and genotyped at four microsatellite loci. Six of the sampling sites were severely contaminated with heavy metals and were dominated by heavy metal-tolerant individuals. Considerable genetic diversity was found within the geographical subpopulations, but no reduction of the genetic diversity, current or historic, was observed in subpopulations inhabiting polluted soils. The genetic differentiation between the geographical subpopulations was low, and no evidence for clustering of subpopulations from polluted soils vs. subpopulations from nonpolluted soils was found. These results indicate that heavy metal pollution has a limited effect on the genetic structure of S. luteus populations, and this may be due to the high frequency of sexual reproduction and extensive gene flow in S. luteus, which allows rapid evolution of the tolerance trait while maintaining high levels of genetic diversity.

  18. Dietary differentiation and the evolution of population genetic structure in a highly mobile carnivore.

    Directory of Open Access Journals (Sweden)

    Małgorzata Pilot

    Full Text Available Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ(13C and δ(15N values for Eastern European wolves (Canis lupus as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure, to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores.

  19. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Ivana Caputo

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+ homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS: We studied Ca(2+ homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+ from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+ from the endoplasmic reticulum (ER and mitochondria, whereas peptide 57-68 mobilized Ca(2+ only from mitochondria. We also found that gliadin peptide-induced Ca(2+ mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS: By inducing Ca(2+ mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.

  20. Genetic alterations during radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  1. Transfer and mobility of trace metallic elements in the sedimentary column of continental hydro-systems

    International Nuclear Information System (INIS)

    Devallois, V.

    2009-02-01

    In freshwater systems, trace metal pollutants are transferred into water and sedimentary columns under dissolved forms and/or fixed onto solid particles. Accumulated in the sedimentary areas, these latter ones can constitute important stocks of materials and associated pollutants and may impair water quality when environmental changes lead to increase their mobility. The mobility of the stocks of pollutants is mainly depending on the erosion, on the interstitial diffusion of the mobile phases (dissolved and colloidal) and on the bioturbation. In this context, this study involves the analysis of the mobility by interstitial diffusion. This topic consists in studying trace metal fractionation between their mobile (dissolved and colloidal) and non mobile (fixed onto the particles) forms. This point is governed by sorption/desorption processes at the particle surfaces. These processes are regulated by physico-chemical parameters (pH, redox potential, ionic strength...) and are influenced by biogeochemical reactions resulting from the oxidation of the organic matter by the microbial activity. These reactions generate vertical profiles of nutrients and metal concentrations along the sedimentary column. To understand these processes, this work is based on a mixed approach that combines in situ, analysis and modelling. In situ experimental part consists in sampling natural sediments cores collected at 4 different sites (1 site in Durance and 3 sites on the Rhone). These samples are analyzed according to an analytical protocol that provides the vertical distribution of physicochemical parameters (pH, redox potential, size distribution, porosity), nutrients and solid - liquid forms of trace metals (cobalt, copper, nickel, lead, zinc). The analysis and interpretation of these experimental results are based on a model that was developed during this study and that includes: 1) model of interstitial diffusion (Boudreau, 1997), 2) biogeochemical model (Wang and Van Cappellen

  2. Distribution and mobility of metals in contaminated sites. chemometric investigation of pollutant profiles.

    Science.gov (United States)

    Abollino, Ornella; Aceto, Maurizio; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado; Barberis, Renzo

    2002-01-01

    The distribution and mobility of heavy metals in the soils of two contaminated sites in Piedmont (Italy) was investigated, evaluating the horizontal and vertical profiles of 15 metals, namely Al, Cd, Cu, Cr, Fe. La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr. The concentrations in the most polluted areas of the sites were higher than the acceptable limits reported in Italian and Dutch legislations for soil reclamation. Chemometric elaboration of the results by pattern recognition techniques allowed us to identify groups of samples with similar characteristics and to find correlations among the variables. The pollutant mobility was studied by extraction with water, dilute acetic acid and EDTA and by applying Tessier's procedure. The fraction of mobile species, which potentially is the most harmful for the environment, was found to be higher than the one normally present in unpolluted soils, where heavy metals are, to a higher extent, strongly bound to the matrix.

  3. Isolation and Characterization of Mobile Genetic Elements from Microbial Assemblages Obtained from the Field Research Center Site

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Sobecky; Cassie Hodges; Kerri Lafferty; Mike Humphreys; Melanie Raimondo; Kristin Tuttle; Tamar Barkay

    2004-03-17

    Considerable knowledge has been gained from the intensive study of a relatively limited group of bacterial plasmids. Recent efforts have begun to focus on the characterization of, at the molecular level, plasmid populations and associated mobile genetic elements (e.g., transposons, integrons) occurring in a wider range of aquatic and terrestrial habitats. Surprisingly, however, little information is available regarding the incidence and distribution of mobile genetic elements extant in contaminated subsurface environments. Such studies will provide greater knowledge on the ecology of plasmids and their contributions to the genetic plasticity (and adaptation) of naturally occurring subsurface microbial communities. We requested soil cores from the DOE NABIR Field Research Center (FRC) located on the Oak Ridge Reservation. The cores, received in February 2003, were sampled from four areas on the Oak Ridge Site: Area 1, Area 2, Area 3 (representing contaminated subsurface locales) and the background reference sites. The average core length (24 in) was subdivided into three profiles and soil pH and moisture content were determined. Uranium concentration was also determined in bulk samples. Replicate aliquots were fixed for total cell counts and for bacterial isolation. Four different isolation media were used to culture aerobic and facultative microbes from these four study areas. Colony forming units ranged from a minimum of 100 per gram soil to a maximum of 10,000 irrespective of media composition used. The vast majority of cultured subsurface isolates were gram-positive isolates and plasmid characterization was conducted per methods routinely used in the Sobecky laboratory. The percentage of plasmid incidence ranged from 10% to 60% of all isolates tested. This frequency appears to be somewhat higher than the incidence of plasmids we have observed in other habitats and we are increasing the number of isolates screened to confirm this observation. We are also

  4. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  5. Effects of incubation on solubility and mobility of trace metals in two contaminated soils

    International Nuclear Information System (INIS)

    Ma, Lena Q.; Dong Yan

    2004-01-01

    Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl 2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg -1 ), Tampa soil was also contaminated with As (230 mg kg -1 ). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO 3 . The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation. - Iron is important in controlling metal solubility and mobility in flooded soils

  6. Electrorecycling of Critical and Value Metals from Mobile Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lister, Tedd E.; Wang, Peming; Anderko, Andre

    2014-09-01

    Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. Each year over a billion devices are sold world-wide and the average life is only a couple years. Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare earth elements (REE). In recent years the supply chain for REE has moved almost exclusively to China. They are contained in displays, speakers and vibrators within the devices. By US Department of Energy (DOE) classification, specific REEs (Nd, Dy, Eu, Tb and Y) are considered critical while others (Ce, La and Pr) are deemed near critical. Effective recycling schemes should include the recovery of these critical materials. By including more value materials in a recovery scheme, more value can be obtained by product diversification and less waste metals remains to be disposed of. REEs are mined as a group such that when specific elements become critical significantly more ore must be processed to capture the dilute but valuable critical elements. Targeted recycling of items containing the more of the less available critical materials could address their future criticality. This presentation will describe work in developing aqueous electrochemistry-based schemes for recycling metals from scrap mobile electronics. The electrorecycling process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. E vs pH diagrams and metals dissolution experiments are used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using simulated metal mixtures. Both Cu and Ag were recovered at ~ 97% using Fe+3 while

  7. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it

  8. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  9. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  10. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  11. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish.

    Science.gov (United States)

    Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P

    2018-01-12

    Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST  = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.

  12. Radiation induced mutants in elite genetic background for the augmentation of genetic diversity

    International Nuclear Information System (INIS)

    Kumar, V.; Bhagwat, S.G.

    2011-01-01

    Rice (Oryza sativa L.), an important food crop for India, shows large genetic diversity. However, despite the large genetic resource, high genetic similarity is reported in cultivated varieties indicating genetic erosion. Radiation induced mutations provide genetic variability in elite background. In the present study, twenty gamma ray induced mutants of rice variety WL112 (carrying sd-1 semi-dwarfing gene) were analysed for genetic diversity using microsatellite markers. The high range of genetic diversity among mutants indicated that the mutants possess potential for enhancing variability in rice. Cluster analysis showed presence of five clusters having small sub-clusters. Earliness, semi-dwarf stature or resistance to blast disease observed among the mutants showed that these will be useful in breeding programmes. (author)

  13. Mammalian small nucleolar RNAs are mobile genetic elements.

    Directory of Open Access Journals (Sweden)

    Michel J Weber

    2006-12-01

    Full Text Available Small nucleolar RNAs (snoRNAs of the H/ACA box and C/D box categories guide the pseudouridylation and the 2'-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body-specific RNAs (scaRNAs guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs characterized by an A-rich tail and an approximately 14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions.

  14. Trace metal mobilization in an experimental carbon sequestration scenario

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Virginia [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Kaszuba, John [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Univeristy of Wyoming, School of Energy Resources, Larmaie, WY. 82070 (United States)

    2013-07-01

    Mobilizing trace metals with injection of supercritical CO{sub 2} into deep saline aquifers is a concern for geologic carbon sequestration. Hydrothermal experiments investigate the release of harmful metals from two zones of a sequestration injection reservoir: at the cap-rock-reservoir boundary and deeper within the reservoir, away from the cap-rock. In both systems, Cd, Cr, Cu, Pb, and Zn behave in a similar manner, increasing in concentration with injection, but subsequently decreasing in concentration over time. SEM images and geochemical models indicate initial dissolution of minerals and precipitation of Ca-Mg-Fe carbonates, metal sulfides (i.e. Fe, As, Ag, and Co sulfides), and anhydrite in both systems. The results suggest that Ba, Cu, and Zn will not be contaminants of concern, but Pb, Fe, and As may require careful attention. (authors)

  15. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, Michael [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: komarek@af.czu.cz; Tlustos, Pavel [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: tlustos@af.czu.cz; Szakova, Jirina [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: szakova@af.czu.cz; Chrastny, Vladislav [Department of Applied Chemistry and Chemistry Teaching, University of South Bohemia, Studentska 13, 370 05, Ceske Budejovice (Czech Republic)], E-mail: vladislavchrastny@seznam.cz

    2008-01-15

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH{sub 4}Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars.

  16. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    International Nuclear Information System (INIS)

    Komarek, Michael; Tlustos, Pavel; Szakova, Jirina; Chrastny, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH 4 Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars

  17. Mobile Genome Express (MGE: A comprehensive automatic genetic analyses pipeline with a mobile device.

    Directory of Open Access Journals (Sweden)

    Jun-Hee Yoon

    Full Text Available The development of next-generation sequencing (NGS technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.

  18. Mobile Genome Express (MGE): A comprehensive automatic genetic analyses pipeline with a mobile device.

    Science.gov (United States)

    Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin

    2017-01-01

    The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.

  19. Interaction of mobile phones with superficial passive metallic implants

    International Nuclear Information System (INIS)

    Virtanen, H; Huttunen, J; Toropainen, A; Lappalainen, R

    2005-01-01

    The dosimetry of exposure to radiofrequency (RF) electromagnetic (EM) fields of mobile phones is generally based on the specific absorption rate (SAR, W kg -1 ), which is the electromagnetic energy absorbed in the tissues per unit mass and time. In this study, numerical methods and modelling were used to estimate the effect of a passive, metallic (conducting) superficial implant on a mobile phone EM field and especially its absorption in tissues in the near field. Two basic implant models were studied: metallic pins and rings in the surface layers of the human body near the mobile phone. The aim was to find out 'the worst case scenario' with respect to energy absorption by varying different parameters such as implant location, orientation, size and adjacent tissues. Modelling and electromagnetic field calculations were carried out using commercial SEMCAD software based on the FDTD (finite difference time domain) method. The mobile phone was a 900 MHz or 1800 MHz generic phone with a quarter wave monopole antenna. A cylindrical tissue phantom models different curved sections of the human body such as limbs or a head. All the parameters studied (implant size, orientation, location, adjacent tissues and signal frequency) had a major effect on the SAR distribution and in certain cases high local EM fields arose near the implant. The SAR values increased most when the implant was on the skin and had a resonance length or diameter, i.e. about a third of the wavelength in tissues. The local peak SAR values increased even by a factor of 400-700 due to a pin or a ring. These highest values were reached in a limited volume close to the implant surface in almost all the studied cases. In contrast, without the implant the highest SAR values were generally reached on the skin surface. Mass averaged SAR 1g and SAR 10g values increased due to the implant even by a factor of 3 and 2, respectively. However, at typical power levels of mobile phones the enhancement is unlikely to be

  20. Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur

    NARCIS (Netherlands)

    Wang, G.; Koopmans, G.F.; Song, J.; Temminghoff, E.J.M.; Luo, Y.; Zhao, Q.; Japenga, J.

    2007-01-01

    For enhanced phytoextraction, mobilization of heavy metals (HMs) from the soil solid phase to soil pore water is an important process. A pot incubation experiment mimicking field conditions was conducted to investigate the performance of three soil additives in mobilizing HMs from contaminated paddy

  1. Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals.

    Science.gov (United States)

    Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia

    2017-08-21

    A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.

  2. Chemical Speciation and Mobility of Some Heavy Metals in Soils ...

    African Journals Online (AJOL)

    The mobility of some heavy metals (Fe, Co, Ni and Mn) in soils around automobile waste dumpsites in Northern part of Niger Delta was assessed using Tessier et al. five syteps sequential chemical extraction procedure. The results showed that majority of iron and manganese were associated with the residual fraction with ...

  3. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  4. Rancang Bangun Deteksi Jalur Pipa Terpendam Menggunakan Mobile Robot dengan Metal Detector

    Directory of Open Access Journals (Sweden)

    Dwi Indah Pratiwi

    2017-03-01

    Full Text Available Ketika melaksanakan pembangunan atau perbaikan sesuatu di dalam tanah diperlukan secara akurat mengetahui lokasi utilitas bawah tanah, seperti instalasi pipa logam dan kabel listrik. Sedangkan selama ini masih cenderung kurang adanya pemetaan jaringan utilitas bawah tanah yang jelas. Telah banyak kasus dan pihak yang dirugikan karena masalah ini, seperti kebocoran atau bahkan ledakan. Utilitas bawah tanah yang mengandung logam seperti pipa logam, dapat dideteksi dengan metal detector. Dalam penelitian ini, metal detector yang dibuat menggunakan prinsip beat frequency oscillator (BFO dimana prinsipnya memanfaatkan perubahan frekuensi untuk mendeteksi keberadaan logam. Mikrokontroller Arduino Uno digunakan dalam rangkaian metal detector sebagai frequency counter. Metal detector ini kemudian diaplikasikan sebagai sensor ke sebuah mobile robot. Dengan membaca data metal detector dari Arduino Uno, robot kemudian dapat bergerak mengikuti jalur pipa logam. Robot juga dilengkapi dengan sistem navigasi berdasarkan posisi GPS, sehingga posisi dan gerakan robot dapat diketahui. Pengujian dilakukan pada 3 jenis bahan logam, yaitu besi (ferromagnetik, alumunium (paramagnetik, dan seng (diamagnetik. Hasil pendeteksian paling kuat didapatkan pada bahan besi. Jarak deteksi sensor bervariasi tergantung konstruksi kumparan dan jenis benda logam yang diuji. Pada pengujian dengan pipa besi berdiameter 3 cm, sensor dapat mendeteksi maksimal pada jarak 10 cm tanpa halangan. Dalam aplikasi mobile robot, digunakan 3 sensor untuk mempermudah pendeteksian ketika ada jalur yang berkelok tajam.  

  5. Metal mobilization from metallurgical wastes by soil organic acids.

    Science.gov (United States)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    Science.gov (United States)

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  7. Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda)

    International Nuclear Information System (INIS)

    Ungherese, G.; Mengoni, A.; Somigli, S.; Baroni, D.; Focardi, S.; Ugolini, A.

    2010-01-01

    Trace metals are one of the groups of pollutants that reduce genetic variability in natural populations, causing the phenomenon known as 'genetic erosion'. In this study we evaluate the relationship between trace metals contamination (Hg, Cd and Cu) and genetic variability, assessed using fluorescent Inter-Simple Sequence Repeats (fISSRs). We used eight populations of a well-established biomonitor of trace metals on sandy beaches: the amphipod Talitrus saltator. The trace metals analysis confirmed the ability of sandhoppers to accumulate Hg, Cd and Cu. Moreover, populations from sites with high Hg availability had the lowest values of genetic diversity. Our results validate the use of fISSR markers in genetic studies in sandhoppers and support the 'genetic erosion' hypothesis by showing the negative influence of Hg contamination on sandhopper genetic diversity. Therefore, genetic variability assessed with fISSR markers could be successfully employed as a biomarker of Hg exposure. - Genetic variability of sandhoppers is affected by heavy metals contamination.

  8. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  9. Export, metal recovery and the mobile phone end-of-life ecosystem

    NARCIS (Netherlands)

    Bollinger, L.A.; Blass, V.

    2012-01-01

    Against a background of rapidly growing mobile phone consumption in developing and emerging economies, falling use times and looming metal scarcity, finding better ways to deal with end-of-life (EoL) phones is imperative. The current dynamic in which large numbers of EoL phones are exported from

  10. Mobile genetic elements, a key to microbial adaptation in extreme environments

    Science.gov (United States)

    van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie

    To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and

  11. Channel mobility degradation and charge trapping in high-k/metal gate NMOSFETs

    International Nuclear Information System (INIS)

    Mathew, Shajan; Bera, L.K.; Balasubramanian, N.; Joo, M.S.; Cho, B.J.

    2004-01-01

    NMOSFETs with Metalo-Organic Chemical Vapor Deposited (MOCVD) HfAlO gate dielectric and TiN metal gate have been fabricated. Channel electron mobility was measured using the split-CV method and compared with SiO 2 devices. All high-k devices showed lower mobility compared with SiO 2 reference devices. High-k MOSFETs exhibited significant charge trapping and threshold instability. Threshold voltage recovery with time was studied on devices with oxide/nitride interfacial layer between high-k film and silicon substrate

  12. Risk of post-fire metal mobilization into surface water resources: A review.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2017-12-01

    One of the significant economic benefits to communities around the world of having pristine forest catchments is the supply of substantial quantities of high quality potable water. This supports a saving of around US$ 4.1 trillion per year globally by limiting the cost of expensive drinking water treatments and provision of unnecessary infrastructure. Even low levels of contaminants specifically organics and metals in catchments when in a mobile state can reduce these economic benefits by seriously affecting the water quality. Contamination and contaminant mobility can occur through natural and anthropogenic activities including forest fires. Moderate to high intensity forest fires are able to alter soil properties and release sequestered metals from sediments, soil organic matter and fragments of vegetation. In addition, the increase in post-fire erosion rate by rainfall runoff and strong winds facilitates the rapid transport of these metals downslope and downstream. The subsequent metal deposition in distal soil and water bodies can influence surface water quality with potential impacts to the larger ecosystems inclusive of negative effects on humans. This is of substantial concern as 4 billion hectares of forest catchments provide high quality water to global communities. Redressing this problem requires quantification of the potential effects on water resources and instituting rigorous fire and environmental management plans to mitigate deleterious effects on catchment areas. This paper is a review of the current state of the art literature dealing with the risk of post-fire mobilization of the metals into surface water resources. It is intended to inform discussion on the preparation of suitable management plans and policies during and after fire events in order to maintain potable water quality in a cost-effective manner. In these times of climate fluctuation and increased incidence of fires, the need for development of new policies and management frameworks

  13. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  14. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    Science.gov (United States)

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The heritability and genetic correlates of mobile phone use: a twin study of consumer behavior.

    Science.gov (United States)

    Miller, Geoffrey; Zhu, Gu; Wright, Margaret J; Hansell, Narelle K; Martin, Nicholas G

    2012-02-01

    There has been almost no overlap between behavior genetics and consumer behavior research, despite each field's importance in understanding society. In particular, both have neglected to study genetic influences on consumer adoption and usage of new technologies -- even technologies as important as the mobile phone, now used by 5.8 out of 7.0 billion people on earth. To start filling this gap, we analyzed self-reported mobile phone use, intelligence, and personality traits in two samples of Australian teenaged twins (mean ages 14.2 and 15.6 years), totaling 1,036 individuals. ACE modeling using Mx software showed substantial heritabilities for how often teens make voice calls (.60 and .34 in samples 1 and 2, respectively) and for how often they send text messages (.53 and. 50). Shared family environment - including neighborhood, social class, parental education, and parental income (i.e., the generosity of calling plans that parents can afford for their teens) -- had much weaker effects. Multivariate modeling based on cross-twin, cross-trait correlations showed negative genetic correlations between talking/texting frequency and intelligence (around -.17), and positive genetic correlations between talking/texting frequency and extraversion (about .20 to .40). Our results have implications for assessing the risks of mobile phone use such as radiofrequency field (RF) exposure and driving accidents, for studying adoption and use of other emerging technologies, for understanding the genetic architecture of the cognitive and personality traits that predict consumer behavior, and for challenging the common assumption that consumer behavior is shaped entirely by culture, media, and family environment.

  16. Staphylococcus aureus surface contamination of mobile phones and presence of genetically identical strains on the hands of nursing personnel.

    Science.gov (United States)

    Katsuse Kanayama, Akiko; Takahashi, Hiroshi; Yoshizawa, Sadako; Tateda, Kazuhiro; Kaneko, Akihiro; Kobayashi, Intetsu

    2017-08-01

    We investigated the genetic relatedness of Staphylococcus aureus isolates recovered from mobile phones and palms and fingers of users. Genetically identical isolates were detected from mobile phones and their user and multiple users, which is consistent with mobile phones serving as reservoirs of infection in the health care environment. These findings reinforce the need for hand hygiene prior to patient contact as the most effective intervention for preventing health care-associated infection. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils

    International Nuclear Information System (INIS)

    Bousquet, B.; Travaille, G.; Ismael, A.; Canioni, L.; Michel-Le Pierres, K.; Brasseur, E.; Roy, S.; Le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbeze, S.

    2008-01-01

    Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture

  18. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils

    Science.gov (United States)

    Bousquet, B.; Travaillé, G.; Ismaël, A.; Canioni, L.; Michel-Le Pierrès, K.; Brasseur, E.; Roy, S.; le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbèze, S.

    2008-10-01

    Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture.

  19. Use of high metal-containing biogas digestates in cereal production - Mobility of chromium and aluminium.

    Science.gov (United States)

    Dragicevic, Ivan; Eich-Greatorex, Susanne; Sogn, Trine A; Horn, Svein J; Krogstad, Tore

    2018-07-01

    Biogas digestate use as organic fertilizer has been widely promoted in recent years as a part of the global agenda on recycling waste and new sustainable energy production. Although many studies have confirmed positive effects of digestates on soil fertility, there is still lack of information on the potential adverse effects of digestates on natural soil heavy metal content, metal leaching and leaching of other pollutants. We have investigated the release of aluminium (Al) and chromium (Cr) from different soils treated with commercial digestates high in mentioned potentially problematic metals in a field experiment, while a greenhouse and a laboratory column experiment were used to address mobility of these metals in two other scenarios. Results obtained from the field experiment showed an increase in total concentrations for both investigated metals on plots treated with digestates as well as a significant increase of water-soluble Al concentrations. Factors that were found to be mostly affecting the metal mobility were dissolved organic carbon (DOC), pH and type of soil. Metal binding and free metal concentrations were modelled using the WHAM 7.0 software. Results indicated that the use of digestates with high metal content are comparable to use of animal manure with respect to metal leaching. Data obtained through chemical modelling for the samples from the field experiment suggested that an environmental risk from higher metal mobility has to be considered for Al. In the greenhouse experiment, measured concentrations of leached Cr at the end of the growing season were low for all treatments, while the concentration of leached Al from digestates was higher. The high irrigation column leaching experiment showed an increased leaching rate of Cr with addition of digestates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil

    2010-01-01

    an environmental disorder although null mutations in the filaggrin gene complex were recently found to be associated with nickel allergy and dermatitis. Environmental metal exposures include jewelry, buttons, clothing fasteners, dental restorations, mobile phones, and leather. Although consumer exposure......) dermatitis. Furthermore, metal allergy has been associated with device failure following insertion of intracoronary stents, hip and knee prostheses, as well as other implants. This area is in need of more research....

  1. 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy.

    Science.gov (United States)

    Oguro, Hideyuki; McDonald, Jeffrey G; Zhao, Zhiyu; Umetani, Michihisa; Shaul, Philip W; Morrison, Sean J

    2017-09-01

    Extramedullary hematopoiesis (EMH) is induced during pregnancy to support rapid expansion of maternal blood volume. EMH activation requires hematopoietic stem cell (HSC) proliferation and mobilization, processes that depend upon estrogen receptor α (ERα) in HSCs. Here we show that treating mice with estradiol to model estradiol increases during pregnancy induced HSC proliferation in the bone marrow but not HSC mobilization. Treatment with the alternative ERα ligand 27-hydroxycholesterol (27HC) induced ERα-dependent HSC mobilization and EMH but not HSC division in the bone marrow. During pregnancy, 27HC levels increased in hematopoietic stem/progenitor cells as a result of CYP27A1, a cholesterol hydroxylase. Cyp27a1-deficient mice had significantly reduced 27HC levels, HSC mobilization, and EMH during pregnancy but normal bone marrow hematopoiesis and EMH in response to bleeding or G-CSF treatment. Distinct hematopoietic stresses thus induce EMH through different mechanisms. Two different ERα ligands, estradiol and 27HC, work together to promote EMH during pregnancy, revealing a collaboration of hormonal and metabolic mechanisms as well as a physiological function for 27HC in normal mice.

  2. Final Technical Report: Role of Methanotrophs in Metal Mobilization, Metal Immobilization and Mineral Weathering: Effects on the In Situ Microbial Community and the Sustainability of Subsurface Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Semrau, Jeremy D. [Univ. of Michigan, Ann Arbor, MI (United States); DiSpirito, Alan A. [Iowa State Univ., Ames, IA (United States)

    2016-11-06

    Activities from this DOE sponsored project can be divided into four broad areas: (1) investigations into the potential of methanobactin, a biogenic metal-binding agent produced by methanotrophs, in mitigating mercury toxicity; (2) elucidation of the genetic basis for methanobactin synthesis from methanotrophs; (3) examination of differential gene expression of M. trichosporium OB3b when grown in the presence of varying amounts of copper and/or cerium, and (4) collection and characterization of soil cores from Savannah River Test Site to determine the ubiquity of methanobactin producing methanotrophs. From these efforts, we have conclusively shown that methanobactin can strongly bind mercury as Hg[II], and in so doing significantly reduce the toxicity of this metal to microbes. Further, we have deduced the genetic basis of methanobactin production in methanotrophs, enabling us to construct mutants such that we can now ascribe function to different genes as well as propose a pathway for methanobactin biosynthesis. We have also clear evidence that copper and cerium (as an example of a rare earth element) dramatically affect gene expression in methanotrophs, and thus have an important impact on the activity and application of these microbes to a variety of environmental and industrial issues. Finally, we successfully isolated one methanotroph from the deep subsurface of the Savannah River Test Site and characterized the ability of different forms of methanobactin to mobilize copper and mercury from these soils.

  3. Mobile plant for encapsulating of solid high-level radioactive waste in metal matrix

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.Eh.; Shiryaev, V.V.; Ozhovan, M.I.; Semenov, K.N.; Kachalov, M.B.

    1993-01-01

    Technology for disposal of spent radionuclide sources of ionizing radiation into the standard well-type storage facilities is considered. Universal mobile facility, providing for incorporation of high-level solid wastes into metallic matrices, is proposed. The facility consists of separate moduli, assembled on a transport platform. Electrical meter, wherein the matrix metal (lead and its alloys) is melted and heated up to 600-800 C constitutes the basic modulus in the facility. 4 refs., 4 figs

  4. Nitrogen effects on mobility and plant uptake of heavy metals in sewage sludge applied to soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, P.M.; Mortvedt, J.J.

    1976-01-01

    Cation movement in soil under leaching conditions has been associated with N fertilization. Therefore, this study was conducted to determine whether the mobility of some heavy metals applied in the inorganic form or in sewage sludge is enhanced in the presence of various sources of N. Columns of heavy metal-amended soil in plastic well casings were cropped with tall fescue (Festuca arundinacea Schreb.) and leached three times with deionized H/sub 2/O. Heavy metal concentrations above check values were not detected in leachates from any column. Mobility of the heavy metals from the inorganic sources was slightly greater than that from the sewage sludge. Nitrogen fertilization did not affect the downward movement of Zn, Cd, Cr, Pb, or Ni in soil but enhanced uptake of these metals by fescue because of increased growth. These results suggest that heavy metal contamination of ground water is not likely in heavy textured soils when sewage sludge applications are accompanied by N fertilization, at least for short periods of time. 11 references, 1 figure, 4 tables.

  5. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  6. Mobility of potentially harmful metals in latosols impacted by the municipal solid waste deposit of Londrina, Brazil

    International Nuclear Information System (INIS)

    Souza Teixeira, Raquel; Cambier, Philippe; Davison Dias, Regina; Peccinini Pinese, Jose Paulo; Jaulin-Soubelet, Anne

    2010-01-01

    The contamination of soils by metals issuing from municipal solid waste (MSW) disposal in tropical environments has hardly been studied with regard to the particular problems associated with them, i.e., generally a high permeability of soils despite the abundance of clay, and the role of reactive Fe compounds. From a previous geotechnical and chemical survey, three latosol profiles differently affected by MSW leachates in the region of Londrina (Parana, Brazil) were selected. The aims were to evaluate the extent of their contamination, to better understand the fate of potentially harmful metals in tropical soils and rank the determining factors. Samples between 0.5 and 7 m depth were analyzed for their physical, mineralogical and chemical properties, and their micro-morphology was described by optical and transmission electron microscopy. Two steps of a sequential extraction procedure helped to assess the mobility of elements and to better discriminate between metals originating from pedogenesis and issued from MSW. These combined approaches showed that exposed soil profiles have been impacted at various depths, down to 7 m, through increased metal content, especially enhanced mobility of Zn, Co, Mn, Cu and Fe, and through increased salinity and organic matter. The mobility of potentially harmful metals should decrease with pH, which significantly increased in some impacted horizons, but other factors can reverse this trend.

  7. Hypospermatogenesis and spermatozoa maturation arrest in rats induced by mobile phone radiation.

    Science.gov (United States)

    Meo, Sultan Ayoub; Arif, Muhammad; Rashied, Shahzad; Khan, Muhammad Mujahid; Vohra, Muhammad Saeed; Usmani, Adnan Mahmood; Imran, Muhammad Babar; Al-Drees, Abdul Majeed

    2011-05-01

    To determine the morphological changes induced by mobile phone radiation in the testis of Wistar albino rats. Cohort study. Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia, from April 2007 to June 2008. Forty male Wistar albino rats were divided in three groups. First group of eight served as the control. The second group [group B, n=16] was exposed to mobile phone radiation for 30 minutes/day and the third group [group C, n=16] was exposed to mobile phone radiation for 60 minutes/day for a total period of 3 months. Morphological changes in the testes induced by mobile phone radiations were observed under a light microscope. Exposure to mobile phone radiation for 60 minutes/day caused 18.75% hypospermatogenesis and 18.75% maturation arrest in the testis of albino rats compared to matched controls. However, no abnormal findings were observed in albino rats that were exposed to mobile phone radiation for 30 minutes/day for a total period of 3 months. Long-term exposure to mobile phone radiation can cause hypospermatogenesis and maturation arrest in the spermatozoa in the testis of Wistar albino rats.

  8. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    Science.gov (United States)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  10. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  11. The genetics of radiation-induced osteosarcoma

    International Nuclear Information System (INIS)

    Rosemann, M.; Kuosaite, V.; Nathrath, M.; Atkinson, M.J.

    2002-01-01

    Individual genetic variation can influence susceptibility to the carcinogenic effects of many environmental carcinogens. In radiation-exposed populations those individuals with a greater genetically determined susceptibility would be at greater risk of developing cancer. To include this modification of risk into radiation protection schemes it is necessary to identify the genes responsible for determining individual sensitivity. Alpha-particle-induced osteosarcoma in the mouse has been adopted as a model of human radiation carcinogenesis, and genome-wide screens have been conducted for allelic imbalance and genetic linkage. These studies have revealed a series of genes involved in determining the sensitivity to radiogenic osteosarcoma formation. (author)

  12. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    Science.gov (United States)

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Induced voltages in metallic pipelines near power transmission lines

    International Nuclear Information System (INIS)

    Grcev, Leonid; Jankov, Voislav; Filiposki, Velimir

    2002-01-01

    With the continuous development of the electric power system and the pipeline networks used to convey oil or natural gas, cases of close proximity of high voltage structures and metallic pipelines become more and more frequent. Accordingly there is a growing concern about possible hazards resulting from voltages induced in the metallic pipelines by magnetic coupling with nearby power transmission lines. This paper presents a methodology for computation of the induced voltages in buried isolated metallic pipelines. A practical example of computation is also presented. (Author)

  14. Measurement of Electromagnetic Shielding Effectiveness of Woven Fabrics Containing Metallic Yarns by Mobile Devices

    Directory of Open Access Journals (Sweden)

    Erhan Kenan ÇEVEN

    2016-10-01

    Full Text Available In this study, we introduce an alternative method to evaluate the electromagnetic shielding effectiveness (EMSE of woven fabrics containing metal wires. For experimental measurements, hybrid silk viscose yarns containing metal wires were first produced. Conductive test fabrics were then produced using the hybrid weft yarns and polyester warp yarns. The produced fabrics were separated in two parts and laminated together after rotating one fabric by 90 degrees to create a grid structure. The laminated fabrics were then folded by several times to create multiple layers such as 2,4,8,12,16. The EMSE of the multiple layered fabrics was measured over GSM signals received by a mobile device. For EMSE evaluation, the mobile device was placed between the laminated fabrics. The EMSE values of the fabrics were then calculated in accordance with the power variations of GSM signals.

  15. Optimization of MIS/IL solar cells parameters using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K.A.; Mohamed, E.A.; Alaa, S.H. [Faculty of Engineering, Alexandria Univ. (Egypt); Motaz, M.S. [Institute of Graduate Studies and Research, Alexandria Univ. (Egypt)

    2004-07-01

    This paper presents a genetic algorithm optimization for MIS/IL solar cell parameters including doping concentration NA, metal work function {phi}m, oxide thickness d{sub ox}, mobile charge density N{sub m}, fixed oxide charge density N{sub ox} and the external back bias applied to the inversion grid V. The optimization results are compared with theoretical optimization and shows that the genetic algorithm can be used for determining the optimum parameters of the cell. (orig.)

  16. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  17. Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil

    2010-01-01

    The prevalence of metal allergy is high in the general population, and it is estimated that up to 17% of women and 3% of men are allergic to nickel and that 1-3% are allergic to cobalt and chromium. Among dermatitis patients, the prevalence of metal allergy is even higher. Metal allergy is mainly......) dermatitis. Furthermore, metal allergy has been associated with device failure following insertion of intracoronary stents, hip and knee prostheses, as well as other implants. This area is in need of more research.......The prevalence of metal allergy is high in the general population, and it is estimated that up to 17% of women and 3% of men are allergic to nickel and that 1-3% are allergic to cobalt and chromium. Among dermatitis patients, the prevalence of metal allergy is even higher. Metal allergy is mainly...... an environmental disorder although null mutations in the filaggrin gene complex were recently found to be associated with nickel allergy and dermatitis. Environmental metal exposures include jewelry, buttons, clothing fasteners, dental restorations, mobile phones, and leather. Although consumer exposure...

  18. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation.

    Science.gov (United States)

    Badyaev, Alexander V

    2005-05-07

    Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.

  19. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  20. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    Science.gov (United States)

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  1. Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis.

    Science.gov (United States)

    Tapia, Y; Eymar, E; Gárate, A; Masaguer, A

    2013-05-01

    To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

  2. Biodegradation of PuEDTA and Impacts on Pu Mobility

    International Nuclear Information System (INIS)

    Xun, Luying; Bolton, Jr. Harvey

    2001-01-01

    Ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA) are synthetic chelating agents, which can form strong water-soluble complexes with radionuclides and metals and has been used to decontaminate and process nuclear materials. Synthetic chelating agents were co-disposed with radionuclides (e.g., 60Co, Pu) and heavy metals enhancing their transport in the subsurface. An understanding of EDTA biodegradation is essential to help mitigate enhanced radionuclide transport by EDTA. The objective of this research is to develop fundamental data on factors that govern the biodegradation of radionuclide-EDTA. These factors include the dominant EDTA aqueous species, the biodegradation of various metal-EDTA complexes, the uptake of various metal-EDTA complexes into the cell, the distribution and mobility of the radionuclide during and after EDTA biodegradation, and the enzymology and genetics of EDTA biodegradation

  3. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  4. Mobile phone radiation as an inducer of human disease - a hypothesis

    International Nuclear Information System (INIS)

    French, P.; Penny, R.

    2001-01-01

    There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/ or resistance to anti-cancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer as well as other diseases of protein unfolding, and thus provides an important focus for future experimentation. Copyright (2001) Australasian Radiation Protection Society Inc

  5. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  6. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa H.; Muhl, Thuy Thanh

    2018-01-01

    For use of metal supported solid oxide fuel cell (MS-SOFC) in mobile applications it is important to reduce the thermal mass to enable fast startup, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the Technical...

  7. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water – Evaluation of static versus dynamic leaching

    International Nuclear Information System (INIS)

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-01-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K d values was demonstrated for dynamic leaching which is relevant for environmental processes. - Highlights: ► We examine the mobilization of metal(loid)s by water under simulated conditions. ► Static versus dynamic leaching (RCC) with continuous supply of extractant was compared. ► RCC is favourable for detailed time-resolved investigations of the leaching behaviour. ► The influence of matrices on the leaching behaviour was investigated. ► The capabilities of the K d values in environmentally relevant processes is shown. - Dynamic leaching with continuous supply of water has proved as tool for long-term and time-resolved mobility of metal(loid)s in contaminated soils.

  8. Metal induced gap states at alkali halide/metal interface

    International Nuclear Information System (INIS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  9. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  10. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  11. Effects of a metallic front gate on the temperature-dependent electronic property of pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Tsao, Hou-Yen [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Liu, Day-Shan [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 632, Taiwan (China)

    2014-11-14

    The effect of a metallic front gate on the temperature-dependent electronic property of pentacene films was investigated in this study. The carrier mobility exhibits strong temperature dependence, implying the dominance of tunneling (hopping) at low (high) temperatures. The room-temperature mobility was drastically increased by capping an In (Au) layer on the pentacene front surface. However, the carrier concentration is not affected. An increase in the phonon energy occurs for In-capped or Au-capped pentacene samples, which corresponds to the abrupt transition to the nonlocal electron–phonon coupling. The enhanced mobility by capping a metal layer is attributed to a change in the electron–phonon coupling. - Highlights: • For the metal-capped and uncapped pentacene films, the mobility was researched. • The mobility was dramatically increased by capping an In (Au) layer. • The induced strain by capping a metal layer is found. • The strain may lead to the electron–phonon coupling variation. • The enhanced mobility is attributed to the weakened electron–phonon coupling.

  12. Mobility of trace metals in pore waters of two Central European peat bogs

    International Nuclear Information System (INIS)

    Novak, Martin; Pacherova, Petra

    2008-01-01

    Vertical peat profiles can only be used as archives of past changes in pollution levels if atmogenic elements are immobile after their burial. For mobile elements, similar pore-water concentrations can be expected at different peat depths. Concentrations of Pb, Cu, Zn, Cr, Mn, Fe, Co and Cd were determined in surface bog water and bog pore water 40 cm below surface in two Sphagnum-dominated peat bogs in the Czech Republic. Velke jerabi jezero (VJJ) is an upland bog located in an industrial area, Cervene blato (CB) is a lowland bog located in a rural area. Metal concentrations were monitored seasonally over 3 years (2002-2005) at both sites. Higher concentrations of Pb, Cu, Zn, Cr and Cd and lower concentrations of Mn, Fe and Co were found at the less polluted CB compared to VJJ. No clear-cut seasonality was observed in metal concentrations in bog waters, despite seasonal differences in industrial emission rates of pollutants (more coal burning in winter than in summer). This contrasts with an earlier observation of distinct seasonality in sulfate concentration and isotope composition in these stagnating bog waters. Peat substrate 40 cm below current bog surface represented pre-industrial low-pollution environment, yet pore waters at such depths contained the same metal concentrations as surface waters. The only exception was Pb, whose concentration in water solutes increased with increasing depth. Lack of vertical stratification in pore-water contents of Cu, Zn, Cr, Mn, Fe and Co indicated vertical mobility of these metals

  13. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Muhl, Thuy

    2017-01-01

    For use of metal supported SOFC in mobile applications it is important to reduce the thermal mass to enable fast start up, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the support layer thickness of 313 μm...

  14. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  15. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  16. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    Energy Technology Data Exchange (ETDEWEB)

    Aiuppa, A.; Allard, P.; D' Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  17. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil).

    Science.gov (United States)

    Ribeiro, Andreza Portella; Figueiredo, Ana Maria Graciano; dos Santos, José Osman; Dantas, Elizabeth; Cotrim, Marycel Elena Barboza; Figueira, Rubens Cesar Lopes; Silva Filho, Emmanoel V; Wasserman, Julio Cesar

    2013-03-15

    This study proposes a new methodology to study contamination, bioavailability and mobility of metals (Cd, Cu, Ni, Pb, and Zn) using chemical and geostatistics approaches in marine sediments of Sepetiba Bay (SE Brazil). The chemical model of SEM (simultaneously extracted metals)/AVS (acid volatile sulfides) ratio uses a technique of cold acid extraction of metals to evaluate their bioavailability, and the geostatistical model of attenuation of concentrations estimates the mobility of metals. By coupling the two it was observed that Sepetiba Port, the urban area of Sepetiba and the riverine discharges may constitute potential sources of metals to Sepetiba Bay. The metals are concentrated in the NE area of the bay, where they tend to have their lowest mobility, as shown by the attenuation model, and are not bioavailable, as they tend to associate with sulfide and organic matter originated in the mangrove forests of nearby Guaratiba area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Adrenaline-induced mobilization of T cells in HIV-infected patients

    DEFF Research Database (Denmark)

    Søndergaard, S R; Cozzi-Lepri, A; Ullum, H

    2000-01-01

    The present study aimed to investigate lymphocyte mobilization from peripheral cell reservoirs in HIV-infected patients. Nine HIV-infected patients on stable highly active anti-retroviral therapy (HAART), eight treatment-naive HIV-infected patients and eight HIV- controls received a 1-h adrenaline...... infusion. The adrenaline infusion induced a three-fold increase in the concentration of lymphocytes in all three groups. All HIV-infected patients mobilized significantly higher numbers of CD8+ cells but less CD4+ cells. All subjects mobilized CD45RA+CD62L+ and CD8+CD28+ cells to a lesser extent than CD45......RO+CD45RA- and CD8+CD28-cells. Furthermore, high numbers of CD8+CD38+ cells were mobilized only in the HIV-infected patients. It was therefore predominantly T cells with an activated phenotype which were mobilized after adrenaline stimulation. It is concluded that the HIV-associated immune defect...

  19. Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method.

    Science.gov (United States)

    Hasan, Maria; Kausar, Dilshad; Akhter, Gulraiz; Shah, Munir H

    2018-01-01

    Comparative distribution and mobility of selected essential and toxic metals in the paddy soil from district Sargodha, Pakistan was evaluated by the modified Community Bureau of Reference (mBCR) sequential extraction procedure. Most of the soil samples showed slightly alkaline nature while the soil texture was predominantly silty loam in nature. The metal contents were quantified in the exchangeable, reducible, oxidisable and residual fractions of the soil by flame atomic absorption spectrophotometry and the metal data were subjected to the statistical analyses in order to evaluate the mutual relationships among the metals in each fraction. Among the metals, Ca, Sr and Mn were found to be more mobile in the soil. A number of significant correlations between different metal pairs were noted in various fractions. Contamination factor, geoaccumulation index and enrichment factor revealed extremely severe enrichment/contamination for Cd; moderate to significant enrichment/contamination for Ni, Zn, Co and Pb while Cr, Sr, Cu and Mn revealed minimal to moderate contamination and accumulation in the soil. Multivariate cluster analysis showed significant anthropogenic intrusions of the metals in various fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Electromagnetically induced transparency in a plasmonic system comprising of three metal-dielectric-metal parallel slabs: Plasmon- Plasmon interaction

    Directory of Open Access Journals (Sweden)

    M Moradbeigi

    2018-02-01

    Full Text Available In this paper, electromagnetically induced transparency (EIT in a system consisting of associated arrays of parallel slabs (metal-dielectric-metal is studied. The transmission coefficient, the reflection coefficient and the absorption coefficient as function of the incident light frequency by using the transfer matrix method is calculated and numerically discussed. Influence of the thickness of slab and the type of plasmonic metal on the induced transparency has been investigated. It is shown with decreasing the thickness of intermediate slab of length  (dielectric slab, the induced transparency increases due to the strong plasmon–plasmon couplings.

  1. Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Singh, Seema; Ojha, Bharti; Shrivastava, R.G.

    1996-01-01

    A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals. (author). 33 refs., 5 figs., 1 tab

  2. [Mobile genetic elements in plant sex evolution].

    Science.gov (United States)

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  3. Can environmental pollution by metals change genetic diversity? Ucides cordatus (Linnaeus, 1763) as a study case in Southeastern Brazilian mangroves.

    Science.gov (United States)

    Banci, Karina Rodrigues da Silva; Mori, Gustavo Maruyama; Oliveira, Marcos Antonio de; Paganelli, Fernanda Laroza; Pereira, Mariana Rangel; Pinheiro, Marcelo Antonio Amaro

    2017-03-15

    Industrial areas on estuarine systems are commonly affected by heavy metals, affecting all local biota. Random Amplified Polymorphic DNA (RAPD) was used to evaluate genetic diversity of Ucides cordatus at mangroves in southeastern Brazil (Juréia, J; São Vicente, SV; and Cubatão, C), with distinct pollution levels by metals. The genetic diversity of this species was compared with concentrations of metals (Cd, Pb, Cu, Cr and Hg) in the environment. A pollution gradient was confirmed (SV>C>J), with low levels detected in water, except for mercury in SV. All metals in the sediment samples were below Threshold Effect Level (TEL), without an apparent biological risk to the biota. Genetic distance was very similar between J and C, with SV occurring as an out-group. RAPD was a powerful tool to investigate the effect of metal pollution on genetic diversity of this mangrove crab, and to evaluate the conservation status of the mangrove ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station.

    Science.gov (United States)

    Gandhi, Gursatej; Kaur, Gurpreet; Nisar, Uzma

    2015-01-01

    Mobile phone base stations facilitate good communication, but the continuously emitting radiations from these stations have raised health concerns. Hence in this study, genetic damage using the single cell gel electrophoresis (comet) assay was assessed in peripheral blood leukocytes of individuals residing in the vicinity of a mobile phone base station and comparing it to that in healthy controls. The power density in the area within 300 m from the base station exceeded the permissive limits and was significantly (p = 0.000) higher compared to the area from where control samples were collected. The study participants comprised 63 persons with residences near a mobile phone tower, and 28 healthy controls matched for gender, age, alcohol drinking and occupational sub-groups. Genetic damage parameters of DNA migration length, damage frequency (DF) and damage index were significantly (p = 0.000) elevated in the sample group compared to respective values in healthy controls. The female residents (n = 25) of the sample group had significantly (p = 0.004) elevated DF than the male residents (n = 38). The linear regression analysis further revealed daily mobile phone usage, location of residence and power density as significant predictors of genetic damage. The genetic damage evident in the participants of this study needs to be addressed against future disease-risk, which in addition to neurodegenerative disorders, may lead to cancer.

  5. Solubility and Potential Mobility of Heavy Metals in Two Contaminated Urban Soils from Stockholm, Sweden

    International Nuclear Information System (INIS)

    Oborn, Ingrid; Linde, Mats

    2001-01-01

    The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential and leaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highly contaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported from Stockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fraction were between two- and eightfold those in arable soils, indicating that the sequential extraction scheme did not reflect the solid phases affected by anthropogenic inputs. Cadmium and Zn conc. in the rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, which suggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminated with Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibility of other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions

  6. Horizontal gene transfer and mobile genetic elements in marine systems.

    Science.gov (United States)

    Sobecky, Patricia A; Hazen, Tracy H

    2009-01-01

    The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.

  7. Partitioning and mobility of trace metals in the Blesbokspruit: Impact assessment of dewatering of mine waters in the East Rand, South Africa

    International Nuclear Information System (INIS)

    Roychoudhury, Alakendra N.; Starke, Michael F.

    2006-01-01

    A suite of trace metals was analyzed in water and sediment samples from the Blesbokspruit, a Ramsar certified riparian wetland, to assess the impact of mining on the sediment quality and the fate of trace metals in the environment. Limited mobility of trace metals was observed primarily because of their high partition coefficient in alkaline waters. Nickel was most mobile with a mean K d of 10 3.28 L kg -1 whereas Zr was least mobile with a mean K d of 10 5.47 L kg -1 . The overall trace metal mobility sequence, derived for the Blesbokspruit, in increasing order, is: Zr < Cr < Pb < Ba < V < Cu < Zn < Sr < Mn < U < Mo < Co < Ni. Once removed from the solution, most trace metals were preferentially associated with the carbonate and Fe-Mn oxide fraction followed by the exchangeable fraction of the sediments. Organic C played a limited role in trace metal uptake. Only Cu was primarily associated with the organic fraction whereas Ti and Zr were mostly found in the residual fraction. Compared to their regional background, Au and Ag were most enriched, at times by a factor of 20-400, in the sediments. Significant enrichment of U, Hg, V, Cr, Co, Cu and Zn was also observed in the sediments. The calculated geoaccumulation indices suggest that the sediments are very lightly to lightly polluted with respect to most trace metals and highly polluted with respect to Au and Ag. The metal pollution index (MPI) for the 20 sampled sites varied between 2.9 and 45.7. The highest MPI values were found at sites that were close to tailings dams. Sediment eco-toxicity was quantified by calculating the sediment quality guideline index (SQG-I). The calculated SQG-I values (0.09-0.69) suggest that the sediments at the study area have low to moderate potential for eco-toxicity

  8. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    International Nuclear Information System (INIS)

    Sizmur, Tom; Palumbo-Roe, Barbara; Watts, Michael J.; Hodson, Mark E.

    2011-01-01

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: → Earthworms increase the mobility and availability of metals and metalloids in soils. → We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. → Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. → The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  9. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom); Palumbo-Roe, Barbara; Watts, Michael J. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom)

    2011-03-15

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: > Earthworms increase the mobility and availability of metals and metalloids in soils. > We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. > Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. > The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  10. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation.

    Science.gov (United States)

    Li, Wei; Wang, Guanjun; Cui, Jiuwei; Xue, Lu; Cai, Lu

    2004-11-01

    The aim of this study was to investigate the stimulating effect of low-dose radiation (LDR) on bone marrow hematopoietic progenitor cell (HPC) proliferation and peripheral blood mobilization. Mice were exposed to 25- to 100-mGy x-rays. Bone marrow and peripheral blood HPCs (BFU-E, CFU-GM, and c-kit+ cells) were measured, and GM-CSF, G-CSF, and IL-3 protein and mRNA expression were detected using ELISA, slot blot hybridization, and Northern blot methods. To functionally evaluate LDR-stimulated and -mobilized HPCs, repopulation of peripheral blood cells in lethally irradiated recipients after transplantation of LDR-treated donor HPCs was examined by WBC counts, animal survival, and colony-forming units in the recipient spleens (CFUs-S). 75-mGy x-rays induced a maximal stimulation for bone marrow HPC proliferation (CFU-GM and BFU-E formation) 48 hours postirradiation, along with a significant increase in HPC mobilization into peripheral blood 48 to 72 hours postradiation, as shown by increases in CFU-GM formation and proportion of c-kit+ cells in the peripheral mononuclear cells. 75-mGy x-rays also maximally induced increases in G-CSF and GM-CSF mRNA expression in splenocytes and levels of serum GM-CSF. To define the critical role of these hematopoietic-stimulating factors in HPC peripheral mobilization, direct administration of G-CSF at a dose of 300 microg/kg/day or 150 microg/kg/day was applied and found to significantly stimulate GM-CFU formation and increase c-kit+ cells in the peripheral mononuclear cells. More importantly, 75-mGy x-rays plus 150 microg/kg/day G-CSF (LDR/150-G-CSF) produced a similar effect to that of 300 microg/kg/day G-CSF alone. Furthermore, the capability of LDR-mobilized donor HPCs to repopulate blood cells was confirmed in lethally irradiated recipient mice by counting peripheral WBC and CFUs-S. These results suggest that LDR induces hematopoietic hormesis, as demonstrated by HPC proliferation and peripheral mobilization, providing a

  11. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  12. Stress-induced evolution and the biosafety of genetically modified

    Indian Academy of Sciences (India)

    This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse ...

  13. Distribution and Potential Mobility of Selected Heavy Metals in a Fluvial Environment Under the Influence of Tanneries

    Directory of Open Access Journals (Sweden)

    Rodrigues M. L. K.

    2013-04-01

    Full Text Available In this study we evaluated the occurrence of heavy metals in a fluvial environment under the influence of tanneries – the Cadeia and Feitoria rivers basin (RS, south Brazil, highlighting the distribution and potential mobility of the selected elements. Every three months, over one year-period, selected heavy metals and ancillary parameters were analyzed in water and sediment samples taken at ten sites along the rivers. Water analyses followed APHA recommendations, and sediment analyses were based on methods from USEPA (SW846 and European Community (BCR sequential extraction. The determinations were performed by ICP/OES, except for Hg (CV/ETA. Statistical factor analysis was applied to water and sediment data sets, in order to obtain a synthesis of the environmental diagnosis. The results revealed that water quality decreased along the rivers, and mainly on the dry period (January, showing the influence of tannery plants vicinity and flow variations. Except for Fe, Al, and eventually Mn, heavy metal contents in water were in agreement with Brazilian standards. Concerning sediments, Al, Cu, Fe, Ni, Mn, Ti, and Zn concentrations appeared to reflect the base levels, while Cr and Hg were enriched in the deposits from the lower part of the basin. The partition of heavy metals among the sediment geochemical phases showed higher mobility of Mn along the sampling sites, followed by Cr in the lower reach of the basin, most affected by tanneries. Since Cr was predominantly associated to the oxidizable fraction, its potential mobilization from contaminated sediments would be associated to redox conditions. The detection of Hg in the tissue of a bottom-fish species indicated that the environmental conditions are apparently favoring the remobilization of this metal from contaminated sediments.

  14. Radiation induced genetic damage in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  15. An Investigation into Heavy Metal Contamination and Mobilization in the Lower Rouge River, Michigan

    Science.gov (United States)

    Shihadeh, M.; Forrester, J.; Napieralski, J. A.

    2010-12-01

    Similar to many densely populated watersheds in the Great Lakes Basin, the Rouge River in Michigan drains a heavily urbanized watershed, which, over time, has accumulated a substantial amount of contamination due to decades of manufacturing and refining industries. Statistically significant levels of heavy metals have been found in the bed sediment of the Rouge; however, little is known about the mobilization of these contaminated bed sediments. The goal of this study was to ascertain the extent to which these potentially contaminated sediments are mobilized and transported downstream. Suspended sediment samples were collected at four sites along the lower Rouge River using composite depth integrated sediment samples three times per week, resulting in a total of twenty samples from each site. Turbidity was measured simultaneously using a YSI datalogger at all sampling locations. Sediment was also extracted from floodplain soil pits and silted vegetation, as well as river bed sediment cores along stream channel cross-sections. Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Zn) were analyzed using ICP-MS and compared against both background characteristics for Michigan soils and EPA Hazardous Criteria Limits. As expected, a positive correlation exists between turbidity and heavy metal concentrations. Even in the sampling sites furthest upstream, heavy metal concentrations exceeded background soil characteristics, with a few also exceeding hazardous criteria limits. The heavy metal concentrations found in the Lower Rouge affirm the elevated pollution classification of the river, depict the overall influence of industrialization on stream health, and verify that contaminated sediments are being deposited in aquatic and floodplain environments during variable flow or high discharge events. Results from this study emphasize the need to remediate bed sediments in the Rouge and suggest that there may be significant bioaccumulation potential for organisms

  16. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water--evaluation of static versus dynamic leaching.

    Science.gov (United States)

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-06-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K(d) values was demonstrated for dynamic leaching which is relevant for environmental processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  18. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  19. Mobility of Hazardous Metals in Environment

    International Nuclear Information System (INIS)

    Fedor Macasek

    1999-01-01

    Mobility of metal ions, including radionuclides, is influenced by their interactions with natural components (inorganic and polyelectrolyte ligands, colloids, biota and biota debris) of water. The breakthrough of pollutant in aqueous flow, and hydrodynamic characterisation of near-and far-field of waste deposits is analysed on the base of Rosen's theory, by a particular accentuation of the role of the distribution coefficient KD of pollutant. Humic substances are those natural multifunctional ligands, which may enhance transportation of many pollutants by influencing their KD values. As an example, the distribution factors of plutonium were modelled through the ph-independent effective interaction constants with humic acids in solution and on the surface by a two-sites- two-species (''2s2s ) model of distribution. Though the interaction constant of plutonium with humic acid is rather high, the naturally occurring concentration of humic acids should not change seriously the patterns of its fixation in the far fields of the waste repositories, unless its distribution coefficient in the rock bed drops below 10 L/kg what depends at most on the nature of filtration media. The last conclusion is general for other pollutants as well

  20. Influence of mobility and annihilation of forest dislocations on radiation creep rate of metals

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.; Tyupkina, O.G.

    1988-01-01

    Dependence of radiation creep rate ε of metals on stress σ is calculated. It is established that account of mobility and annihilation of 'forest' dislocations leads to the increase of calculational value ε and the effect increases with the growth of σ, reaching 10-15% at σ ∼ 0.8 σ cr (σ cr - critical shear stress)

  1. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    Science.gov (United States)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  2. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  3. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    Directory of Open Access Journals (Sweden)

    M. A. Ashraf

    2012-01-01

    Full Text Available This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES. Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  4. The genetics of radiation-induced and sporadic osteosarcoma: a unifying theory?

    International Nuclear Information System (INIS)

    Rosemann, Michael; Kuosaite, Virginija; Nathrath, Michaela; Atkinson, Michael J.

    2002-01-01

    Cancer is a disease of the genome, with the neoplastic phenotype being passed from one cell generation to the other. Radiation-induced cancer has often been considered to represent a unique entity amongst neoplasia, with the energy deposition being held responsible for both direct (gene mutations) and indirect (bystander effects, induced instability etc) alterations to the cellular genome. However, radiogenic tumours in man and experimental animals appear to be physiologically and genetically indistinguishable from their sporadic counterparts, suggesting that the aetiologies of these two tumour types are in fact closely related. We have conducted a general screen of the genetic alterations in radiation-induced mouse osteosarcoma, a tumour that is histopathologically indistinguishable from human sporadic osteosarcoma. Comparison of the two tumour types indicates the existence of a common set of genetic changes, providing additional evidence to support the concept that the molecular pathology of radiation-induced malignancy is no different to that of sporadic cancers. (author)

  5. A comprehensive review of metal-induced cellular transformation studies.

    Science.gov (United States)

    Chen, Qiao Yi; Costa, Max

    2017-09-15

    In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Morrison, Kelsey A.; Clowers, Brian H.

    2017-06-01

    The alternative dissociation pathways initiated by ultraviolet photodissociation (UVPD) compared with collision-induced dissociation (CID) may provide useful diagnostic fragments for biomolecule identification, including glycans. However, underivatized glycans do not commonly demonstrate strong UV absorbance, resulting in low fragmentation yields for UVPD spectra. In contrast to UVPD experiments that leverage covalent modification of glycans, we detail the capacity of metal adduction to yield comparatively rich UVPD fragmentation patterns and enhance separation factors for an isomeric glycan set in a drift tube ion mobility system. Ion mobility and UVPD-MS spectra for two N-acetyl glycan isomers were examined, each adducted with sodium or cobalt cations, with the latter providing fragment yield gains of an order of magnitude versus sodium adducts. Furthermore, our glycan analysis incorporated front-end ion mobility separation such that the structural glycan isomers could still be identified even as a mixture and not simply composite spectra of isomeric standards. Cobalt adduction proved influential in the glycan separation by yielding an isomer resolution of 0.78 when analyzed simultaneously versus no discernable separation obtained with the sodium adducts. It is the combined enhancement of both isomeric drift time separation and isomer distinction with improved UVPD fragment ion yields that further bolster multivalent metal adduction for advancing glycan IM-MS experiments. [Figure not available: see fulltext.

  7. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  8. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  10. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  11. Estimation of environmental mobility of heavy metals using a sequential leaching of particulate material emitted from an opencast chrome mine complex

    Energy Technology Data Exchange (ETDEWEB)

    Poeykioe, R. [Meri-Lappi Institute, Centre for Environmental Technology, University of Oulu, Kemi (Finland); Peraemaeki, P.; Kuokkanen, T. [University of Oulu, Department of Chemistry, Oulu (Finland); Vaelimaeki, I. [Suomen Ympaeristoepalvelu Oy, Oulu (Finland)

    2002-06-01

    A four-stage sequential leaching procedure was applied to assess the bioavailability and environmental mobility of heavy metals (Cr, Fe, Cu, Ni and Cd) in total suspended particulate (TSP) material emitted from an opencast chrome mine complex (Kemi, Northern Finland). TSP material was collected on glass fibre filters by a high-volume sampler, and a sequential leaching procedure was used to determine the distribution of heavy metals between the water-soluble fraction (H{sub 2}O), environmentally mobile fraction (CH{sub 3}COONH{sub 4}), the fraction bound to carbonate and oxides (HONH{sub 3}Cl + CH{sub 3}COOH), and the fraction bound to silicates and organic matter, that is the environmentally immobile fraction (HNO{sub 3} + HF + HCl). The sequential leaching procedure was also applied to the certified reference materials VKI (QC Loam Soil A) and PACS-2 (Marine Sediment) to evaluate the accuracy and reproducibility of the leaching procedure. The heavy metals were determined by graphite furnace atomic absorption spectrometry (GFAAS) and flame atomic absorption spectrometry (FAAS). The concentrations of metals in the water-soluble fraction (H{sub 2}O) decreased in the order Fe >Cu >Cr >Ni >Cd, and in the environmentally mobile fraction (CH{sub 3}COONH{sub 4}) in the order Cu >Fe >Ni >Cr >Cd. (orig.)

  12. Radition-induced genetic damage in plutella xylostella

    International Nuclear Information System (INIS)

    Ismail bin Bahari; Mahani binti Mohamad

    1993-01-01

    Radiation-induced chromosomal aberrations in progenies of irradiated Plutella xylostella was determined in a F1 sterility study. A total of 4 types of crosses (irradiated males against unirradiated females, irradiated females against unirradiated males, both parents irradiated and normal) were made following gamma irradiation at the pupal stage. Testes squash preparations made from F1 male larvae revealed 3 main types of chromosomal abberations induced by doses of 100, 150 and 200 Gy. Results obtained indicate the possibility of using chromosome translocations as the genetic marker

  13. Noise-induced hearing loss in small-scale metal industry in Nepal.

    Science.gov (United States)

    Whittaker, J D; Robinson, T; Acharya, A; Singh, D; Smith, M

    2014-10-01

    There has been no previous research to demonstrate the risk of noise-induced hearing loss in industry in Nepal. Limited research on occupational noise-induced hearing loss has been conducted within small-scale industry worldwide, despite it being a substantial and growing cause of deafness in the developing world. The study involved a cross-sectional audiometric assessment, with questionnaire-based examinations of noise and occupational history, and workplace noise level assessment. A total of 115 metal workers and 123 hotel workers (control subjects) were recruited. Noise-induced hearing loss prevalence was 30.4 per cent in metal workers and 4.1 per cent in hotel workers, with a significant odds ratio of 10.3. Except for age and time in occupation, none of the demographic factors were significant in predicting outcomes in regression analyses. When adjusted for this finding, and previous noise-exposed occupations, the odds ratio was 13.8. Workplace noise was significantly different between the groups, ranging from 65.3 to 84.7 dBA in metal worker sites, and from 51.4 to 68.6 dBA in the control sites. Metal workers appear to have a greater risk of noise-induced hearing loss than controls. Additional research on occupational noise-induced hearing loss in Nepal and small-scale industry globally is needed.

  14. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2017-04-01

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  16. Light-induced attractive force between two metal bodies separated by a subwavelength slit

    International Nuclear Information System (INIS)

    Nesterov, Vladimir; Frumin, Leonid

    2011-01-01

    A novel light-induced attractive force which acts as a force with negative light pressure has been revealed. The force arises by the interaction of plasmon polaritons which are excited at the surface of metal when a transverse magnetic mode propagates through a subwavelength slit between two metal bodies. The estimation of the repulsive force acting on the metal walls of the slit in the case of subwavelength TE mode propagation along the slit is presented. The explicit analytical expressions of light-induced forces between two macroscopic metal bodies or films separated by a subwavelength slit have been derived. These forces could be used to manipulate metallic macro-, micro- and nano-objects in vacuum or in a dielectric medium. Estimations of these light-induced forces show that the forces are sufficient for measurements and practical applications

  17. Mobilization of arsenic and heavy metals from polluted soils by humic acid

    Science.gov (United States)

    Reyes, Arturo; Fuentes, Bárbara; Letelier, María Victoria; Cuevas, Jacqueline

    2017-04-01

    The existence of soils contaminated with harmful elements by mining activities is a global environmental concern. The northern part of Chile has several heavy metal contaminated sites due to former copper and gold artisanal mining activities. Therefore, a complete characterization of abandoned sites and the implementation of remediation technologies are of interest for regulators, the industry, and the population. The objective of the study was to test the use of humic acid as a washing treatment to reduce the heavy metal concentration of soil samples impacted by mine waste material. A stratified random sampling was conducted on the target site to determine the physical and chemical composition of mine waste and soil material. The sampling consisted of taking 37 samples at 0-20 cm depths in a 10,000 square-meter area. The samples were dried and sieved at 2 mm. The batch washing experiments were conducted in triplicate at pH 7.0. A 1:10 solid to liquid ratio and three humic acid dose (0, 50, and 100 mg/l) were used. After shaking (24 h, room temperature) and subsequently filtration (0.22 μm), the supernatants were analyzed for heavy metals, redox potential and pH. The heavy metals mobility was assessed using extraction methods before and after treatments. The soils had alkaline pH values, conductivity ranged between 8 and 35 mS/cm, with low organic matter. Total concentrations of Vanadium (V) (10.80 to 175.00 mg/kg), Lead (Pb) (7.31 to 90.10 mg/kg), Antimonium (Sb) (0.83 to 101.00 mg/kg), and Arsenic (As) (9.53 to 2691.00 mg/kg) exceeded several times the EPA`s recommended values for soils. At 100 mg/L HA the removal efficiencies for V, Pb, Sb, and As were 32, 68, 77, and 82% respectively. According to the extraction procedure V, Pb, Sb, and As species are mainly as oxidizable and residual fractions. According to the results, the target mine site is contaminated with harmful elements. It can be concluded that the use of humic acid is a good alternative as a

  18. Spontaneous plant colonization of brownfield soil and sludges and effects on substrate properties and pollutants mobility

    Science.gov (United States)

    Rocco, Claudia; Agrelli, Diana; Gonzalez, Maria Isabel; Mingo, Antonio; Motti, Riccardo; Stinca, Adriano; Coppola, Ida; Adamo, Paola

    2017-04-01

    This work was done on brownfield soil and sludges from a dismantled steel plant, moderately polluted by heavy metals (mainly Pb and Zn), 1) to analyzed the effects of substrate properties and environmental conditions on spontaneous vegetation; 2) to assess changes in the chemical properties of soils and sludges, with particular reference to the mobility and bioavailability of pollutants, induced by spontaneous plants revegetation. From 2006 to 2011, spontaneous plant colonization was monitored in the presence or absence of acidic peat both inside the degraded brownfield site and after transferal into a nearby Oak Park environment. During the five experimental years the vegetation growth was monitored using phytosociological method and data analyzed statistically. Both substrates, before and after plant growth, were analyzed for main chemical properties. Metals mobility and bioavailability was assessed using single (H2O; DTPA) and sequential extractions (EU-BCR). At the end of the experiment, plant ability to uptake metal was evaluated on selected species. Overall, 57 plant species grew healthily on the substrates. The combination of soil and sludges with peat resulted in an effective revegetation with a sensible increasing of plants biomass. Most of the species were found in the park (91%), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Furthermore, after the five years, the substrate properties (pH, O.C.) were slightly affected by plant growth and, although metal pollutants in both substrates are characterized by low water solubility and DTPA availability, after plants growth an increase (even if not significant) of rhizospheric Cu, Fe, Mn and Zn solubility in H2O was detected. Metals speciation indicated a low risk of Pb and Zn mobility being either largely trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. Restricted metal

  19. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Astrid D. Haase

    2016-01-01

    Full Text Available Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1 the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2 a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.

  20. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E.; Smith, E.J.; Lawlor, A.J.; Hughes, S.; Stevens, P.A

    2003-05-01

    Metals stored in peats can be remobilised by sulphuric acid, generated by the drought-induced oxidation of reduced sulphur. - Ombrotrophic peats in northern England and Scotland, close to industrial areas, have substantial contents of potentially toxic metals (Al, Ni, Cu, Zn, Cd and Pb) and of pollutant sulphur, all derived from atmospheric deposition. The peat sulphur, ordinarily in reduced form, may be converted to sulphuric acid under drought conditions, due to the entry of oxygen into the peats. The consequent lowering of soil solution pH is predicted to cause the release of metals held on ligand sites of the peat organic matter. The purpose of the present study was to explore, by simulation modelling, the extent of the metal response. Chemical variables (elemental composition, pH, metal contents) were measured for samples of ombrotrophic peats from three locations. Water extracts of the peats, and samples of local surface water, were also analysed, for pH, dissolved organic carbon (DOC) and metals. Metal release from peats due to acidification was demonstrated experimentally, and could be accounted for reasonably well using a speciation code (WHAM/Model VI). These data, together with information on metal and S deposition, and meteorology, were used to construct a simple description of peat hydrochemistry, based on WHAM/Model VI, that takes into account ion-binding by humic substances (assumed to be the 'active' constituents of the peat with respect to ion-binding). The model was used to simulate steady state situations that approximated the observed soil pH, metal pools and dissolved metal concentrations. Then, drought conditions were imposed, to generate increased concentrations of H{sub 2}SO{sub 4}, in line with those observed during the drought of 1995. The model calculations suggest that the pH will decrease from the initial steady state value of 4.3 to 3.3-3.6 during rewetting periods following droughts, depending upon assumptions about the

  1. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Christopher J. [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Stevens, Jamie R. [University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD (United Kingdom); Hogstrand, Christer [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R., E-mail: nic.bury@kcl.ac.uk [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2011-12-15

    The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region. - Highlights: > River Hayle, Cornwall, UK, water is toxic to metal-naive brown trout. > Some brown trout populations resident in the River Hayle are tolerant of elevated metals (e.g. copper and zinc). > Elevated metals do not affect the gene flow between sites on the river. > The population genetic structure of the brown trout in the River Hayle appears unaffected by elevated metals. - Aquatic metal pollution does not affect the gene flow between brown trout resident below and above a metal mining waste discharge point in the River Hayle, Cornwall, UK.

  2. SXT/R391 ICE elements encode a novel ‘trap-door’ strategy for mobile element escape

    Directory of Open Access Journals (Sweden)

    Michael P Ryan

    2016-05-01

    Full Text Available Integrative Conjugative Elements (ICEs are a class of bacterial mobile elements that have the ability to mediate their own integration, excision and transfer from one host genome to another by a mechanism of site-specific recombination, self-circularisation and conjugative transfer. Members of the SXT/R391 ICE family of enterobacterial mobile genetic elements display an unusual UV-inducible sensitisation function which results in stress induced killing of bacterial cells harbouring the ICE. This sensitisation has been shown to be associated with a stress induced overexpression of a mobile element encoded conjugative transfer gene, orf43, a traV homolog. This results in cell lysis and release of a circular form of the ICE. Induction of this novel system may allow transfer of an ICE, enhancing its survival potential under conditions not conducive to conjugative transfer.

  3. Chelation in metal intoxication. V. Lowering of manganese content in poisoned rat organs

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S K; Mathur, A K

    1976-01-01

    Metal chelation has been considered useful in the management of manganese poisoning to a considerable extent. Our own studies in this direction have shown that some polyaminocarboxylic acids and a few amino acids are effective in not only removing manganese from the vital organs of experimentally poisoned animals but also in restoring certain metal induced biochemical and histological changes in such organs. Further, the success of p-aminosalicylic acid (PAS), a chemotherapeutic agent for tuberculosis, in manganese mobilization has led us to examine some other structurally related compounds together with a few other possible metal binding agents for their ability to remove excess metal from the organs, their sub-cellular fractions and blood cells of manganese administered rats and to investigate if there exists any relationship between the structure of such compounds and their metal mobilizing capacity. The present communication deals with the results of these investigations.

  4. Mobility decline in old age

    DEFF Research Database (Denmark)

    Rantakokko, Merja; Mänty, Minna Regina; Rantanen, Taina

    2013-01-01

    Mobility is important for community independence. With increasing age, underlying pathologies, genetic vulnerabilities, physiological and sensory impairments, and environmental barriers increase the risk for mobility decline. Understanding how mobility declines is paramount to finding ways...... to promote mobility in old age....

  5. Mobility-induced persistent chimera states

    Science.gov (United States)

    Petrungaro, Gabriela; Uriu, Koichiro; Morelli, Luis G.

    2017-12-01

    We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states in which coherent in-phase and antiphase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.

  6. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  7. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    Science.gov (United States)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.

  8. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  9. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework

    Science.gov (United States)

    Musho, Terence D.; Yasin, Alhassan S.

    2018-03-01

    This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH_2 ) and a nitro group (BDC + NO_2 ). The design space of this study is bound by UiO-66(M)-R, [M=Zr , Ti, Hf; R=BDC , BDC+NO_2 , BDC+NH_2 ]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron-phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(Hf_5Zr_1 ) achieving a value of approximately 1.4× 10^{-3} cm^2 /V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.

  11. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    Science.gov (United States)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  12. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK

    International Nuclear Information System (INIS)

    Durrant, Christopher J.; Stevens, Jamie R.; Hogstrand, Christer; Bury, Nicolas R.

    2011-01-01

    The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region. - Highlights: → River Hayle, Cornwall, UK, water is toxic to metal-naive brown trout. → Some brown trout populations resident in the River Hayle are tolerant of elevated metals (e.g. copper and zinc). → Elevated metals do not affect the gene flow between sites on the river. → The population genetic structure of the brown trout in the River Hayle appears unaffected by elevated metals. - Aquatic metal pollution does not affect the gene flow between brown trout resident below and above a metal mining waste discharge point in the River Hayle, Cornwall, UK.

  13. Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils

    Science.gov (United States)

    Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.

    2017-01-01

    This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…

  14. Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument

    Science.gov (United States)

    Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.

    2018-03-01

    When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.

  15. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting.

    Science.gov (United States)

    Guo, Aiyun; Gu, Jie; Wang, Xiaojuan; Zhang, Ranran; Yin, Yanan; Sun, Wei; Tuo, Xiaxia; Zhang, Li

    2017-11-01

    Superabsorbent polymers (SAPs) are considered suitable amendments for reducing the selection pressure due to heavy metals and the abundances of antibiotic resistance genes (ARGs) during composting. In this study, three SAP (sodium polyacrylate) levels (0, 5, and 15mgkg -1 of compost) were applied and their effects on the abundances of ARGs, mobile genetic elements (MGEs), and the bacterial community were investigated. After composting, the abundances of ARGs and MGEs decreased to different extent, where the removal efficiencies for tetW, dfrA7, ermX, aac(6')-ib-cr and MGEs exceeded 90%. The high SAP concentration significantly reduced the abundances of ARGs and MGEs, and changed the microbial community. Redundancy analysis indicated that the moisture content mainly explained the changes in ARGs and MGEs. Network analysis determined the potential hosts of ARGs and MGEs, and their co-occurrence. The results suggested that applying 15mgkg -1 SAP is appropriate for reducing ARGs in compost. Copyright © 2017. Published by Elsevier Ltd.

  16. Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Pang Liang; Kim, Kyekyoon

    2012-01-01

    A bimodal deposition scheme combining radiofrequency magnetron sputtering and plasma enhanced chemical vapour deposition (PECVD) is proposed as a means for improving the performance of GaN-based metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs). High-density sputtered-SiO 2 is utilized to reduce the gate leakage current and enhance the breakdown voltage while low-density PECVD-SiO 2 is employed to buffer the sputtering damage and further increase the drain current by engineering the stress-induced-polarization. Thus-fabricated MOSHEMT exhibited a low leakage current of 4.21 × 10 -9 A mm -1 and high breakdown voltage of 634 V for a gate-drain distance of 6 µm, demonstrating the promise of bimodal-SiO 2 deposition scheme for the development of GaN-based MOSHEMTs for high-power application. (paper)

  17. Heavy metal-induced gene expression in fish and fish cell lines

    International Nuclear Information System (INIS)

    Price-Haughey, J.; Bonham, K.; Gedamu, L.

    1986-01-01

    Two isoforms of metallothionein (MT) have been isolated from rainbow trout livers following CdCl 2 injections. These MTs have been identified by standard procedures and appear to be similar to mammalian MTs. Total RNA from such induced livers was shown to contain high levels of MT-mRNA activity when translated in cell free systems. This activity was demonstrated to be in the 8 to 10S region of a sucrose gradient. The RNA fractions also showed homology to a mouse MT-I cDNA probe. The exposure of rainbow trout hepatoma (RTH) cells to various concentrations of CdCl 2 and ZnCl 2 induced the expression of MT and MT-mRNA. Exposure of Chinook salmon embryonic (CHSE) cells to these metals, however, did not result in MT synthesis, suggesting that the MT genes have not become committed to transcription. Instead, an unknown low molecular weight (MW = 14 kDa) protein was induced. This metal-inducible protein (MIP) was capable of binding 109 Cd and was stable to heating, while the binding of the metal to this protein was not. These characteristics have been reported for a protein induced in rainbow trout liver following environmental exposure to cadmium

  18. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  19. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    Science.gov (United States)

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  20. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok

    2011-03-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  1. Mobile phone induced sensorineural hearing loss

    International Nuclear Information System (INIS)

    Al-Dousary, Surayie H.

    2007-01-01

    The increased use of mobile phones worldwide has focused interest on the biological effects and possible health outcomes of exposure to radiofrequency fields from mobile phones, and their base stations. Various reports suggest that mobile phone use can cause health problems like fatigue, headache, dizziness, tension and sleep disturbances, however, only limited research data is available in medical literature regarding interaction between electromagnetic fields emitted by mobile phones and auditory function and the possible impact on hearing. We report a case of sensorineural hearing loss due to Global System for Mobile Communication mobile phone use in a 42-year-old male. (author)

  2. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.

    Science.gov (United States)

    Usharani, B; Vasudevan, N

    2016-01-01

    The objective of this review is to throw light upon the global concern of heavy metal-contaminated sites and their remediation through an ecofriendly approach. Accumulated heavy metals in soil and water bodies gain entry through the food chain and pose serious threat to all forms of life. This has engendered interest in phytoremediation techniques where hyperaccumulators are used. Constructed wetland has a pivotal role and is a cost-effective technique in the remediation of heavy metals. Metal availability and mobility are influenced by the addition of chelating agents, which enhance the availability of metal uptake. This review helps in identifying the critical knowledge gaps and areas to enhance research in the future to develop strategies such as genetically engineered hyperaccumulators to attain an environment devoid of heavy metal contamination.

  3. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond

    International Nuclear Information System (INIS)

    Jacob, Donna L.; Otte, Marinus L.

    2004-01-01

    A Pb-Zn tailings pond, abandoned for approximately 90 years, has been naturally colonized by Glyceria fluitans and is an excellent example of long-term metal retention in tailings ponds under various water cover and vegetation conditions. Shallow/intermittently flooded areas (dry zone) were unvegetated and low in organic matter (OM) content. Permanently flooded areas were either unvegetated with low OM, contained dead vegetation and high OM, or living plants and high OM. It was expected that either water cover or high OM would result in enhanced reducing conditions and lower metal mobility, but live plants would increase metal mobility due to root radial oxygen loss. The flooded low OM tailings showed higher As and Fe mobility compared with dry low OM tailings. In the permanently flooded areas without live vegetation, the high OM content decreased Zn mobility and caused extremely high concentrations of acid-volatile sulfides (AVS). In areas with high OM, living plants significantly increased Zn mobility and decreased concentrations of AVS, indicating root induced sediment oxidation or decreased sulfate-reduction. This is the first study reporting the ability of wetland plants to affect the metal mobility and AVS in long-term (decades), unmanaged tailings ponds. - Metal and acid-volatile sulfide concentrations were affected differently by flooding vegetation

  4. Genetic improvement of black gram using induced mutations

    International Nuclear Information System (INIS)

    Pawar, S.E.; Manjaya, J.G.; Souframanien, J.; Bhatkar, S.M.

    2000-01-01

    Induced mutagenesis is an important tool for creating genetic variability in crop plants and has played a significant role in the development of many crop varieties. Genetic improvement of black gram (Vigna mungo L. Hepper) through induced mutations has been in progress at BARC for the past three decades. Mutation studies of genotype EC-168200 have resulted in isolating large number of mutants with distinct morphological characters. TAU-5, an early maturing mutant was identified as a resistant donor for yellow mosaic virus (YMV) disease by the All India Pulse Improvement Project, ICAR, Kanpur. TAU-5 was used in cross breeding with elite cultivars like T-9, TPU-4 and LBG-17. Twelve selections with high yield potential suitable for both kharif and rabi cultivation have been developed. One of the selections TU94-2 has been released for commercial cultivation for southern zone during 1999. The work on the development of YMV resistant genotypes is in progress and will be discussed. (author)

  5. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improved AODV route recovery in mobile ad-hoc networks using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ahmad Maleki

    2014-09-01

    Full Text Available An important issue in ad-hoc on-demand distance vector (AODV routing protocols is route failure caused by node mobility in the MANETs. The AODV requires a new route discovery procedure whenever a route breaks and these frequent route discoveries increase transmission delays and routing overhead. The present study proposes a new method for AODVs using a genetic algorithm to improve the route recovery mechanism. When failure occurs in a route, the proposed method (GAAODV makes decisions regarding the QOS parameter to select source or local repair. The task of the genetic algorithm is to find an appropriate combination of weights to optimize end-to-end delay. This paper evaluates the metrics of routing overhead, average end-to-end delay, and packet delivery ratio. Comparison of the new algorithm and AODV (RFC 3561 using a NS-2 simulator shows that GAAODV obtains better results for the QOS parameters.

  7. The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Dursun KISA

    2017-12-01

    Full Text Available Plants maintain their life cycles under the various environmental conditions such as oxidative stress induced by heavy metals. Accumulation of metal ions in plants causes the formation of free radicals and stimulates the antioxidative defense systems. In this study, the activities of APX, POD, and SOD are investigated in the leaves and roots of tomato cultivated under the heavy metal-induced stress. The activities of APX, POD, and SOD exhibited remarkable induction with the treatment of Cd, Cu and Pb (10, 20 and 50 ppm in the leaves of tomato compared to control plants except for 50 ppm Pb. In roots, APX activity changed depending on the heavy metal types and concentrations, while Cd clearly increased it with stress conditions, but Cu decreased in tomato compared to control. The activity of POD clearly exhibited that the all doses of heavy metals reduced the enzyme activity in roots polluted with heavy metals. The treatment of Cd (10, 20 and 50 ppm significantly increased the activity of SOD, however, Cu showed the opposite effect which significantly decreased with increasing doses in roots compared to uncontaminated plants. Also, roots from plants grown on the high concentration of Pb (20 and 50 ppm induced the activity of SOD. Briefly, it is clear responses which Cd significantly raised the activities of APX and SOD in leaves and roots of tomato. The decreases caused by these metals in the activity of POD and Cu in the activities of APX and SOD in roots of tomato can be clarified by the result of heavy metal-induced the over production of free radical.

  8. Metal-induced changes in photosynthetic electron transport in poplar Ieaves

    International Nuclear Information System (INIS)

    Kralova, K.; Gaplovsky, A.; Masarovicova, E.; Havranek, E.

    2001-01-01

    This study reports the effect of different toxic metals (Cu, Hg and Cd) on dark-induced changes in the photochemical activity of detached poplar leaves that were submersed in solutions of tested metals at different pH level, on the metal accumulation in poplar leaves as well as on fluorescence quenching ability of the tested metals. Cu and Hg inhibited the photosynthetic electron transport (PET) in chloroplast prepared from the leaves of P. nigra and the corresponding IC 50 values were 32.7 and 512.7 μmol dm -3 , respectively. We could not determine the IC 50 value for CdCl 2 due to its very low PET-inhibiting activity. These results are in agreement with previous findings concerning PET inhibition by the studied metals in spinach chloroplasts. The accumulated metal amounts in poplar leaves were determined using radionuclide X-ray fluorescence analysis. The accumulated metal amount increased with the increasing metal concentration and with the decreasing pH value of the applied metal solution. (authors)

  9. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Visser, C.W.; Pohl, Ralph; Sun, Chao; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Lohse, Detlef

    2015-01-01

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified

  10. SXT/R391 Integrative and Conjugative Elements (ICEs) Encode a Novel 'Trap-Door' Strategy for Mobile Element Escape.

    Science.gov (United States)

    Ryan, Michael P; Armshaw, Patricia; Pembroke, J Tony

    2016-01-01

    Integrative conjugative elements (ICEs) are a class of bacterial mobile elements that have the ability to mediate their own integration, excision, and transfer from one host genome to another by a mechanism of site-specific recombination, self-circularisation, and conjugative transfer. Members of the SXT/R391 ICE family of enterobacterial mobile genetic elements display an unusual UV-inducible sensitization function which results in stress induced killing of bacterial cells harboring the ICE. This sensitization has been shown to be associated with a stress induced overexpression of a mobile element encoded conjugative transfer gene, orf43, a traV homolog. This results in cell lysis and release of a circular form of the ICE. Induction of this novel system may allow transfer of an ICE, enhancing its survival potential under conditions not conducive to conjugative transfer.

  11. The Dual Nature of Metallothioneins in the Metabolism of Heavy Metals and Reactive Oxygen Species in Aquatic Organisms: Implications of Use as a Biomarker of Heavy-Metal Effects in Field Investigations

    Directory of Open Access Journals (Sweden)

    F. Gagné

    2008-01-01

    Full Text Available The purpose of this study was to examine the function of metallothioneins (MT in respect to the mobilization of heavy metals and superoxide anion (O 2 – scavenging in aquatic organisms. Using an O 2 – generating system, liberation of free zinc from native and zinc MT (Zn-MT was measured in vitro. Addition of the O 2 – generating system and H 2 O 2 readily increased the di- and trimeric forms of MT as determined by gel electrophoresis analysis. To determine whether the proportion of oxidized MT could change in contaminated environments, metal-contaminated Mya arenaria clams were collected from a harbour in the St. Lawrence Estuary. The levels of labile zinc, superoxide dismutase (O 2 – scavenging enzyme, lipid peroxidation (LPO and the oxidized/metallic form of MT were determined in the digestive gland. The results revealed that the induction of total MT levels was the result of increased oxidized MT at the expense of the reduced or metallic form of MT. Both superoxide dismutase (SOD and labile zinc (Zn levels were induced and they were significantly correlated with the oxidized form of MT, but not the metallic form, in feral clam populations. We concluded that the level of total MT was related to Zn mobility and the activation of antioxidant mechanisms such as SOD, and corresponded to the levels of oxidized MT. The metallic form of MT was negatively associated with Zn mobility but positively associated with oxidative damage such as LPO. Overall, the oxidized fraction of MT appeared to be more closely related to detoxification, while the metallic form of MT was associated with metal mobility and toxicity via oxidative damage. The protective effect of MT during heavy-metal contamination depends on the availability of metals and on its capacity to sequester reactive oxygen species.

  12. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure.

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2017-07-01

    Full Text Available The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system.

  13. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  14. Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird

    Science.gov (United States)

    Wiley, Anne E.; Welch, Andreanna J.; Ostrom, P.H.; James, Helen F.; Stricker, C.A.; Fleischer, R.C.; Gandhi, H.; Adams, J.; Ainley, D.G.; Duvall, F.; Holmes, N.; Hu, D.; Judge, S.; Penniman, J.; Swindle, K.A.

    2012-01-01

    Foraging segregation may play an important role in the maintenance of animal diversity, and is a proposed mechanism for promoting genetic divergence within seabird species. However, little information exists regarding its presence among seabird populations. We investigated genetic and foraging divergence between two colonies of endangered Hawaiian petrels (Pterodroma sandwichensis) nesting on the islands of Hawaii and Kauai using the mitochondrial Cytochrome b gene and carbon, nitrogen and hydrogen isotope values (?? 13C, ?? 15N and ??D, respectively) of feathers. Genetic analyses revealed strong differentiation between colonies on Hawaii and Kauai, with ?? ST = 0. 50 (p Feather ??D varied from -69 to 53???. This variation cannot be related solely to an isotopically homogeneous ocean water source or evaporative water loss. Instead, we propose the involvement of salt gland excretion. Our data demonstrate the presence of foraging segregation between proximately nesting seabird populations, despite high species mobility. This ecological diversity may facilitate population coexistence, and its preservation should be a focus of conservation strategies. ?? 2011 Springer-Verlag (outside the USA).

  15. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  16. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Studies on the mobility of some heavy metals and transuranic radionuclides in major Indian soil types

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Vyas, B.N.; Athalye, V.V.; Ramachandran, V.; Mistry, K.B.

    1983-01-01

    Studies on the mobility of the heavy metals, chromium, lead, zinc and transuranic radionuclides plutonium and americium in three major Indian soils, namely a vertisol-pellustert (black soil), an oxisol (laterite soil) and an entisol-haplaquent (alluvial soil), indicated that more than 98% of the surface-deposited pollutants were retained in the top 0 to 2.5 cm layer when leached with rain-water. In general, the mobility of these elements was either unaffected or marginally reduced at high doses of added organic matter as compared with controls. However, leaching with dilute solutions of (10 -4 M-bar) EDTA, EDDHA and DTPA resulted in enhancement of the mobility of all these pollutants with a high degree of chelate specificity for individual ions, depending upon the soil type. Rapid formation of stable soluble Cr-EDDHA, Pu-DTPA and Am-DTPA complexes facilitated the leaching of these pollutants from the contaminated soils. (author)

  18. Epigenetic control of mobile DNA as an interface between experience and genome change

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2014-04-01

    Full Text Available Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.

  19. Study of the mobilization of pollutants in soils of the Bogota Savanna - phase 1, Heavy Metals

    International Nuclear Information System (INIS)

    Gonzalez, Luz Myrian; Vargas Zarate, Orlando

    1997-01-01

    In this study the soils contamination of the Bogota Savanna was evaluated by heavy metals, that they have importance to be this the area of population's of the country bigger density, where the use of the soils has suffered changes in the last years that have affected its properties, as consequence of the not controlled growth of the urban area, of the industrialization and of the agricultural use not planned. As a first stage toward the risk evaluation for the presence of metals weighed in the soils of the Bogota Savanna, the concentrations of cadmium, cobalt, chromium, copper, manganese, nickel, lead, zinc, molybdenum, arsenic and mercury were measured. It was also measured the movilizable fraction and the mobile fraction, that is to say, the quantity of metals that can be taken by the roots of the plants or that it can be leached toward the water bodies. Equally, the soils of the Savanna were characterized in an area of the plane part that covers 800 km 2 , as for the physical and chemical properties that can affect the retention and mobilization of heavy metals. The results obtained shows elements, that will allow in a future to develop mobilization and transport models, adapted for our specific conditions and to make an risks evaluation for the population's health, foods consumption on these soils or for the possibility of contamination of the underground waters. The obtained data of levels of heavy metals and other properties of the soils will serve as base for future studies of the conditions of the Savanna soils and for the establishment of standard of quality in our country. During 1997 it plans to enlarge the study area to 1200 km 2 and to begin the sampling and analysis of the soils. In the first phase of the study were found levels of heavy metals that overcome the world averages especially cadmium, cobalt, nickel, lead and zinc and in some cases chromium and mercury, levels that put in evidence the existence an ecological risk and for the population

  20. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    Science.gov (United States)

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  1. Transfer and mobility of trace metallic elements in the sedimentary column of continental hydro-systems; Transferts et mobilite des elements traces metalliques dans la colonne sedimentaire des hydrosystemes continentaux

    Energy Technology Data Exchange (ETDEWEB)

    Devallois, V.

    2009-02-15

    In freshwater systems, trace metal pollutants are transferred into water and sedimentary columns under dissolved forms and/or fixed onto solid particles. Accumulated in the sedimentary areas, these latter ones can constitute important stocks of materials and associated pollutants and may impair water quality when environmental changes lead to increase their mobility. The mobility of the stocks of pollutants is mainly depending on the erosion, on the interstitial diffusion of the mobile phases (dissolved and colloidal) and on the bioturbation. In this context, this study involves the analysis of the mobility by interstitial diffusion. This topic consists in studying trace metal fractionation between their mobile (dissolved and colloidal) and non mobile (fixed onto the particles) forms. This point is governed by sorption/desorption processes at the particle surfaces. These processes are regulated by physico-chemical parameters (pH, redox potential, ionic strength...) and are influenced by biogeochemical reactions resulting from the oxidation of the organic matter by the microbial activity. These reactions generate vertical profiles of nutrients and metal concentrations along the sedimentary column. To understand these processes, this work is based on a mixed approach that combines in situ, analysis and modelling. In situ experimental part consists in sampling natural sediments cores collected at 4 different sites (1 site in Durance and 3 sites on the Rhone). These samples are analyzed according to an analytical protocol that provides the vertical distribution of physicochemical parameters (pH, redox potential, size distribution, porosity), nutrients and solid - liquid forms of trace metals (cobalt, copper, nickel, lead, zinc). The analysis and interpretation of these experimental results are based on a model that was developed during this study and that includes: 1) model of interstitial diffusion (Boudreau, 1997), 2) biogeochemical model (Wang and Van Cappellen

  2. Robust nanopatterning by laser-induced dewetting of metal nanofilms

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2006-01-01

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO 2 was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting

  3. Robust nanopatterning by laser-induced dewetting of metal nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Favazza, Christopher [Department of Physics, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, Ramki [Department of Physics, Washington University in St Louis, MO 63130 (United States); Sureshkumar, Radhakrishna [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States)

    2006-08-28

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1{<=}h{<=}8 nm on SiO{sub 2} was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.

  4. Robust nanopatterning by laser-induced dewetting of metal nanofilms.

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2006-08-28

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO(2) was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.

  5. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  6. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy

    Science.gov (United States)

    Meng, Deshuo; Zhao, Nanjing; Wang, Yuanyuan; Ma, Mingjun; Fang, Li; Gu, Yanhong; Jia, Yao; Liu, Jianguo

    2017-11-01

    The enrichment method of heavy metal in water with graphite and aluminum electrode was studied, and combined with plasma restraint device for improving the sensitivity of detection and reducing the limit of detection (LOD) of elements. For aluminum electrode enrichment, the LODs of Cd, Pb and Ni can be as low as several ppb. For graphite enrichment, the measurement time can be less than 3 min. The results showed that the graphite enrichment and aluminum electrode enrichment method can effectively improve the LIBS detection ability. The graphite enrichment method combined with plasma spatial confinement is more suitable for on-line monitoring of industrial waste water, the aluminum electrode enrichment method can be used for trace heavy metal detection in water. A LIBS method and device for soil heavy metals analysis was also developed, and a mobile LIBS system was tested in outfield. The measurement results deduced from LIBS and ICP-MS had a good consistency. The results provided an important application support for rapid and on-site monitoring of heavy metals in soil. (Left: the mobile LIBS system for analysis of heavy metals in soils. Top right: the spatial confinement device. Bottom right: automatic graphite enrichment device for on0line analysis of heavy metals in water).

  7. Flow-induced coalescence: arbitrarily mobile interface model and choice of its parameters

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Jůza, Josef

    2015-01-01

    Roč. 60, č. 10 (2015), s. 628-635 ISSN 0032-2725 R&D Projects: GA ČR GAP106/11/1069 Institutional support: RVO:61389013 Keywords : flow-induced coalescence * polymer blends * interface mobility Subject RIV: BK - Fluid Dynamics Impact factor: 0.718, year: 2015

  8. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  9. Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous

    International Nuclear Information System (INIS)

    Hillairet, J.

    1985-01-01

    This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena

  10. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-01-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study

  11. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin [Montana State Univ., Bozeman, MT (United States); Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Apel, William A. [Idaho National Lab., Idaho Falls, ID (United States)

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  12. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    International Nuclear Information System (INIS)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-01

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  13. The effect of dithiothreitol on radiation-induced genetic damage in Arabidopsis thaliana (L) Heynh

    International Nuclear Information System (INIS)

    Dellaert, L.M.W.

    1980-01-01

    A study was made on the effect of dithiothreitol (DTT; present during irradiation) on M 1 ovule sterility, M 2 embryonic lethals, M 2 chlorophyll mutants and M 2 viable mutants induced with fast neutrons or X-rays in Arabidopsis thaliana. DTT provides considerable protection against both fast-neutron and X-ray induced genetic damage. However, a higher protection was observed against M 1 ovule sterility, than against embryonic lethals, chlorophylls and viable mutants. This implies a significant DTT-induced spectral shift (0.01 < p < 0.05), i.e. a shift in the relative frequencies of the different genetic parameters. This spectral shift is explained on the basis of a specific DTT protection against radiation-induced strand breaks, and by differences in the ratio strand breaks/base damage for the genetic parameters concerned, i.e. a higher ratio for ovule sterility than for the other parameters. The induction of the genetic damage by ionizing radiation, either with or without DTT, is described by a mathematical model, which includes both strand breaks and base damage. The model shows that the resolving power of a test for a 'mutation'spectral shift depends on the relative values of the strandbreak reduction factor of -SH compounds and on the ratio strand breaks/base damage of the genetic parameters. For each genetic parameter the DTT damage reduction factor (DRF) is calculated per irradiation dose, and in addition the average (over-all doses) ratio strand breaks/base damage. (orig.)

  14. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    Science.gov (United States)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  15. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    Science.gov (United States)

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  16. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  17. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs

    DEFF Research Database (Denmark)

    Jurado-Rabadan, Sonia; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, Jose A.

    2014-01-01

    Background: In Escherichia coli the genes involved in the acquisition of tetracycline resistance are mainly tet(A) and tet(B). In addition, tet(M) is the most common tetracycline resistance determinant in enterococci and it is associated with conjugative transposons and plasmids. Although tet......(M) has been identified in E. coli, to our knowledge, there are no previous reports studying the linkage of the tet(M) gene in E. coli to different mobile genetic elements. The aim of this study was to determine the occurrence of tet(A), tet(B), and tet(M) genes in doxycycline-resistant E. coli isolates...... from pigs, as well as the detection of mobile genetic elements linked to tet(M) in E. coli and its possible transfer from enterococci. Results: tet(A) was the most frequently detected gene (87.9%) in doxycycline-resistant isolates. tet(M) was found in 13.1% E. coli isolates. The tet(M) gene...

  18. Extraction procedure compared to attenuation model to assess heavy metals mobility in sediments from Sepetiba Bay, Rio de Janeiro

    International Nuclear Information System (INIS)

    Ribeiro, Andreza Portella

    2006-01-01

    Sepetiba bay, located about 60 km west of the metropolitan region of Rio de Janeiro city, has undergone notable development in the last decades, with the establishment of about 400 industrial plants in its basin, basically metallurgical, which release its industrial waste either straight into the bay or through local rivers. The Sepetiba harbor also brought up a lot of industrial investment in that area. This urban and industrial expansion caused several environmental impacts, mainly due to the presence of heavy metals and other potentially toxic substances present in the effluents discharged into the bay. This work aimed to assess heavy metal (Cd, Cu, Ni, Pb e Zn) contamination and mobility in sediments from Sepetiba bay. The acid-volatile sulfides (AVS) and the concentration of simultaneously extracted metals (SIGMA[SEM) were determined in 65 sediment samples from Sepetiba bay, representing the whole area. The results obtained showed that Cd, Cu, Pb and Zn presented higher concentrations in the northeastern area (mainly in the mouth of Guandu and Canal de Sao Francisco rivers), while the highest concentration of Ni were observed in the western region of the bay. The comparison between SEM concentrations with the Canadian Sediment Quality Guidelines (TEL and PEL) indicated that Cd and Zn presented values which may hazard to aquatic organisms (concentration levels above PEL); the elements Cu, Pb and Ni presented concentration levels below PEL, suggesting low probability of toxicological effects to the aquatic organisms. On the other hand, the ratio Σ[SEM]/[AVS] was below 1 in the northeastern region, indicating that, in spite of the high concentration of the analyzed metals in this area, they are trapped in the sediment, as sulfides. The total metal concentrations in the sediments were also determined and the same distribution pattern obtained for the SEM were observed, with high concentrations in the northeastern region of the bay, classifying the area as level 2

  19. Evaluation of geochemical mobility of heavy metals in the dump mine rocks Western Donbass

    Directory of Open Access Journals (Sweden)

    Yatsechko N.Y.

    2014-12-01

    Full Text Available Typification of turn mine rocks of Western Donbas is conducted after a size acid-lye the index of water-soluble complex. It is set that exactly rocks with the low value of it an index characterized the most sizes of middle content of water-soluble forms of heavy metals. It is well-proven that exactly mine dumps are the generating source of contamination of objects of environment of this region by heavy metals. The significant impact on the environment inflicted not only directly in the process of coal mining, but for many years after its completion. The source of contamination of environmental objects are dumps that occupy large areas of fertile land. Every year in the dumps is stored about 40 million. m3 moldboard mine rock. Most of the waste coal industry have potential toxic and mutagenic properties as containing a significant amount of heavy metals, which are practically not biodegradable in the environment and is therefore especially dangerous for living organisms paramount importance score geochemical mobility of heavy metals, ie their property to move from solid to liquid phase, migrate to the natural landscape and absorbed by vegetation. This applies particularly to water-soluble forms of metals, as in warehousing surface mine dump piles of rocks, the priority factor that regulates the processes of migration of heavy metals are leaching precipitation of solid phase wastes. It is the existence and content of heavy metals in water-soluble complex characterized by their solubility and migration activity and can be used to assess the real extent of possible contamination of the hydrosphere.

  20. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  1. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Barrick, Brian [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Christopher, Emily P. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Shafer, Martin M. [Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718 (United States); Makar, Karen W.; Song, Xiaoling [Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Lampe, Johanna W. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Vilchis, Hugo [Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003 (United States); Ulery, April [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Newcomb, Polly A. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States)

    2015-12-15

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  2. The impact of uniaxial stress on subband structure and mobility of strain Si NMOSFETs

    International Nuclear Information System (INIS)

    Chang, S.T.; Liao, S.H.; Lin, C.-Y.

    2008-01-01

    An effect of stress distortion on the conduction band structure was derived by k.p method considering a second order perturbation. From k.p conduction band calculations, stress-induced band edge split and the change of effective mass are quantitatively evaluated. The physical reasons of warped subband structure and abnormal mobility enhancement by uniaxial stress are investigated. Variation rates of experimental electron mobility in the silicon n-channel metal-oxide-semiconductor field-effect-transistors under a [110] uniaxial stress as a function of channel direction is theoretically studied

  3. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  4. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  5. An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Yi-Chen Lin

    2014-01-01

    Full Text Available In this paper, a new application of an electro-active-polymer for a radio frequency (RF switch is presented. We used an ionic polymer metallic composite (IPMC switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than −10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO4 was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  6. Genetic and molecular analysis of radon-induced rat lung tumours

    International Nuclear Information System (INIS)

    Guilly, M.N.; Joubert, Ch.; Levalois, C.; Dano, L.; Chevillard, S.

    2002-01-01

    We have a model of radon-induced rat lung tumours, which allow us to analyse the cytogenetic and molecular alterations of the tumours. The aim is to better understand the mechanisms of radio-induced carcinogenesis and to define if it exists a specificity of radio-induced genetic alterations as compared to the genetic alterations found in the sporadic tumours. We have started our analysis by developing global cytogenetic and molecular approaches. We have shown that some alterations are recurrent. The genes that are potentially involved are the oncogene MET and the tumour suppressor Bene p16, which are also frequently altered in human lung tumours. Simultaneously, we have focussed our analysis by targeting the search of mutation in the tumour suppressor gene TP3. We have found that 8 of 39 tumours were mutated by deletion in the coding sequence of TP53. This high frequency of deletion, which is not observed in the human p53 mutation database could constitute a signature of radio-induced alterations. On this assumption, this type of alteration should not be only found on TP53 Bene but also in other suppressor genes which are inactivated by a mutation such as p16 for example. The work we are carrying out on radio-induced tumours among humans and animals is directed to this end. (author)

  7. Ion mobility spectrometry focusing on speciation analysis of metals/metalloids bound to carbonic anhydrase.

    Science.gov (United States)

    Pessôa, Gustavo de Souza; Pilau, Eduardo Jorge; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2013-09-01

    In the present work, traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) was applied to speciation analysis of metalloproteins. The influence of pH on complexation conditions between some metals and bovine carbonic anhydrase was evaluated from pH 6 to 9, as well as the time involved in their complexation (0-24 h). Employing TWIMS-MS, two conformational states of bovine carbonic anhydrase were observed with charge states of +12 and +11; these configurations being evaluated in terms of the folded state of the apo form and this protein (at charge state +11) being linked to barium, lead, copper, and zinc in their divalent forms. Metalloprotein speciation analysis was carried out for copper (Cu(+) and Cu(2+)), lead (Pb(2+) and Pb(4+)), and selenium (Se(4+) and Se(6+)) species complexed with bovine carbonic anhydrase. Mobilities of all complexed species were compared, also considering the apo form of this protein.

  8. Synergistic interaction of gamma rays and some metallic salts in the induction of chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Reddy, T.P.; Vaidyanath, K.

    1978-01-01

    In this study the mutagenic activity of 9 metallic salts was tested in comparison and conjunction with gamma rays on rice seed. In M 2 , barium and cadmium produced chlorophyll mutation and mutant frequencies on a par with those of 20 kR gamma rays. Similarly, copper and mercury induced moderately high mutation and mutant frequencies. Salts of strontium, iron and lead showed rather weak mutagenic effects. On the other hand, two metals - manganese anc calcium - failed to provoke chlorophyll mutations in rice seed. Sequential treatments of gamma rays + 5 metals, namely Sr, Cd, Hg, Pb and Cu, produced synergistic yields of chlorophyll mutants in the M 2 generation. Two genetically active metals, Ba and Fe, showed less than additive effects when post-treated after gamma irradiation. Manganese, which failed to induce chlorophyll mutations in independent treatment, potentiated the mutagenic activity of gamma radiation in sequential treatment. On the other hand, sequential treatment with calcium seemed to confer a substantial protection against gamma-ray-induced genetic lesions. The probable mechanisms of synergistic interaction, mutagenic potentiation and protection, observed in sequential treatments, are discussed. (Auth.)

  9. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kleinstiver

    Full Text Available Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.

  10. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  11. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Andrew D. Wales

    2015-11-01

    Full Text Available Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations.

  12. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  13. Printing of metallic 3D micro-objects by laser induced forward transfer.

    Science.gov (United States)

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  14. Genetic Romanticism

    DEFF Research Database (Denmark)

    Tupasela, Aaro

    2016-01-01

    inheritance as a way to unify populations within politically and geographically bounded areas. Thus, new genetics have contributed to the development of genetic romanticisms, whereby populations (human, plant, and animal) can be delineated and mobilized through scientific and medical practices to represent...

  15. Electron mobility variance in the presence of an electric field: Electron-phonon field-induced tunnel scattering

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2012-01-01

    The problem of electron mobility variance is discussed. It is established that in equilibrium semiconductors the mobility variance is infinite. It is revealed that the cause of the mobility variance infinity is the threshold of phonon emission. The electron-phonon interaction theory in the presence of an electric field is developed. A new mechanism of electron scattering, called electron-phonon field-induced tunnel (FIT) scattering, is observed. The effect of the electron-phonon FIT scattering is explained in terms of penetration of the electron wave function into the semiconductor band gap in the presence of an electric field. New and more general expressions for the electron-non-polar optical phonon scattering probability and relaxation time are obtained. The results show that FIT transitions have principle meaning for the mobility fluctuation theory: mobility variance becomes finite.

  16. Assessment of heavy metal mobility in mine tailings in the province of Huelva; Evaluacion de la movilidad de metales pesados en residuos mineros de flotacion de mineria metalica en la provincia de Huelva

    Energy Technology Data Exchange (ETDEWEB)

    Arranz Gonzalez, J. C.; Cala Rivero, V.

    2011-07-01

    Metallurgic mine wastes often contain high concentrations of potentially toxic elements, the mobility of which may pose an environmental hazard for water and surrounding ecosystems. We have examined the mobility of Ag, As, Cu, Pb and Zn from composite surface samples (0-20 cm) of different pyritic tailings impoundments in the province of Huelva (Spain). These samples were also subject to physical chemical and mineralogical (XRD) characterization. The total metal content of the tailings ranged between 1.89-11.2 ppm for Ag, 72-610 ppm for As, 245-1194 ppm for Cu, 220-11933 for Pb and 41-706 for Zn, all proving to be highly acidic. The mobility of these elements was assessed by using a seven-step sequential extraction procedure and applying the toxicity characteristic leaching procedure (TCLP). We investigated the applicability of TCLP to the tailings by comparing the results with those of the first steps of the sequential extraction procedure. It was found that the pH values remained buffered (close to 4.97) upon adding the TCLP extraction reagent and that the pH values differed significantly from those of the aqueous extracts. This could result in an underestimation of mobile forms compared with those dissolved in water. We may also conclude that due to the presence of specific minerals or to the preference of some elements for acetate ions the results of any assessment of metal mobility in pyritic tailings using the TCLP test may be questionable. (Author) 42 refs.

  17. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    Science.gov (United States)

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3

  18. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  19. Alkali metals effect on the diffusion mobility of fluorine base of GaF3 and IF3

    International Nuclear Information System (INIS)

    Bakhvalov, S.G.; Livshits, A.I.; Shubin, A.A.; Petrova, E.M.

    2000-01-01

    The structure of fluoride glasses on the basis of GaF 3 and InF 3 is studied. The glass lattice bond, i.e. its uniformity or nonuniformity, was analyzed through introduction of alkali metal (LiF, NaF, RbF, CsF) into the composition of fluoride glasses. The consecutive replacement of a modification by alkali metal fluorides made it possible to establish the nonuniformity of the glass-forming lattice by studying through the NMR 19 F method. It may be confirmed by comparing the fluorine ions dynamic behavior in the glasses, based on the indium and gallium trifluorides, that the glass fluorine subsystem on the In basis is more mobile [ru

  20. Advances in improvement of stress tolerance by induced mutation and genetic transformation in alfalfa

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    In order to provide references for stress-tolerant breeding of alfalfa, genetic basis of stress-tolerant traits was briefly introduced and advanced in improvement of stress-tolerance by induced mutation and genetic transformation in alfalfa were reviewed. (authors)

  1. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Jackson, E.D.

    2002-01-01

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  2. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Science.gov (United States)

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  3. Limited dispersal in mobile hunter–gatherer Baka Pygmies

    Science.gov (United States)

    Verdu, Paul; Leblois, Raphaël; Froment, Alain; Théry, Sylvain; Bahuchet, Serge; Rousset, François; Heyer, Evelyne; Vitalis, Renaud

    2010-01-01

    Hunter–gatherer Pygmies from Central Africa are described as being extremely mobile. Using neutral genetic markers and population genetics theory, we explored the dispersal behaviour of the Baka Pygmies from Cameroon, one of the largest Pygmy populations in Central Africa. We found a strong correlation between genetic and geographical distances: a pattern of isolation by distance arising from limited parent–offspring dispersal. Our study suggests that mobile hunter–gatherers do not necessarily disperse over wide geographical areas. PMID:20427330

  4. Phytoremediation: an overview of metallic ion decontamination from soil

    Energy Technology Data Exchange (ETDEWEB)

    Singh, O.V.; Labana, S.; Pandey, G.; Budhiraja, R.; Jain, R.K. [Inst. of Microbial Technology, Chandigarh (India)

    2003-07-01

    In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options. (orig.)

  5. Decrease in electrical resistivity on depletion of islands of mobility during aging of a bulk metal glass

    Science.gov (United States)

    Aji, Daisman P. B.; Johari, G. P.

    2018-04-01

    The effect of structural relaxation on electrical resistivity, ρglass, of strain-free Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass was studied during isothermal aging at several temperatures, Tas. Since cooling of a liquid metal increases its resistivity ρliq, one expects ρglass to increase on aging toward ρliq at T = Ta. Instead, ρglass decreased non-exponentially with the aging time. The activation energy of aging kinetics is 189 kJ mol-1, which is higher than the activation energy of the Johari-Goldstein (JG) relaxation. After considering the sample's contraction, phase separation, and crystallization as possible causes of the decrease in ρglass, we attribute the decrease to depletion of islands of atomic mobility, soft spots, or static heterogeneity. Vibrations of the atoms in these local (loosely packed) regions and in the region's interfacial area contribute to electron scattering. As these deplete on aging, the contribution decreases and ρglass decreases, with a concomitant decrease in macroscopic volume, enthalpy, and entropy (V, H, and S). Local regions of faster mobility also decrease on cooling as V, H, and S of a liquid decrease, but structure fluctuations dominate electron scattering of a liquid metal and ρliq increases effectively according to the Ziman-Nagel theory for a homogenously disordered structure. Whether depletion of such local regions initiates the structural relaxation of a glass, or vice versa, may be resolved by finding a glass that physically ages but shows no JG relaxation.

  6. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    NARCIS (Netherlands)

    van Pel, M; van Os, R; Velders, GA; Hagoort, H; Heegaard, PMH; Lindley, IJD; Willemze, R; Fibbe, WE

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulatory

  7. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    DEFF Research Database (Denmark)

    van Pel, M.; van Os, R.; Velders, G.A.

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulat...

  8. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes

    International Nuclear Information System (INIS)

    Margui, E.; Salvado, V.; Queralt, I.; Hidalgo, M.

    2004-01-01

    Abandoned mining sites contain residues from ore processing operations that are characterised by high concentrations of heavy metals. The form in which a metal exists strongly influences its mobility and, thus, the effects on the environment. Operational methods of speciation analysis, such as the use of sequential extraction procedures, are commonly applied. In this work, the modified three-stage sequential extraction procedure proposed by the BCR (now the Standards, Measurements and Testing Programme) was applied for the fractionation of Ni, Zn, Pb and Cd in mining wastes from old Pb-Zn mining areas located in the Val d'Aran (NE Spain) and Cartagena (SE Spain). Analyses of the extracts were performed by inductively coupled plasma atomic emission spectrometry and electrothermal atomic absorption spectrometry. The procedure was evaluated by using a certified reference material, BCR-701. The results of the partitioning study indicate that more easily mobilised forms (acid exchangeable) were predominant for Cd and Zn, particularly in the sample from Cartagena. In contrast, the largest amount of lead was associated with the iron and manganese oxide fractions. On the other hand, the applicability of lixiviation tests commonly used to evaluate the leaching of toxic species from landfill disposal (US-EPA Toxicity Characteristic Leaching Procedure and DIN 38414-S4) to mining wastes was also investigated and the obtained results compared with the information on metal mobility derivable from the application of the three-stage sequential extraction procedure

  9. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    Science.gov (United States)

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  10. Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals

    NARCIS (Netherlands)

    Pohl, Ralph; Visser, C.W.; Römer, Gerardus Richardus, Bernardus, Engelina; Lohse, Detlef; Sun, Chao; Huis in 't Veld, Bert

    2015-01-01

    Laser-induced forward transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials, including pure metals. To understand the ejection mechanism and thereby improve deposition, here we present visualizations of ejection events at high-spatial (submicrometer) and

  11. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  12. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  13. Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland

    OpenAIRE

    Engström, Adam

    2013-01-01

    Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, ob...

  14. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  15. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    Science.gov (United States)

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which

  16. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  17. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  18. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  19. Extinction probabilities and stationary distributions of mobile genetic elements in prokaryotes: The birth-death-diversification model.

    Science.gov (United States)

    Drakos, Nicole E; Wahl, Lindi M

    2015-12-01

    Theoretical approaches are essential to our understanding of the complex dynamics of mobile genetic elements (MGEs) within genomes. Recently, the birth-death-diversification model was developed to describe the dynamics of mobile promoters (MPs), a particular class of MGEs in prokaryotes. A unique feature of this model is that genetic diversification of elements was included. To explore the implications of diversification on the longterm fate of MGE lineages, in this contribution we analyze the extinction probabilities, extinction times and equilibrium solutions of the birth-death-diversification model. We find that diversification increases both the survival and growth rate of MGE families, but the strength of this effect depends on the rate of horizontal gene transfer (HGT). We also find that the distribution of MGE families per genome is not necessarily monotonically decreasing, as observed for MPs, but may have a peak in the distribution that is related to the HGT rate. For MPs specifically, we find that new families have a high extinction probability, and predict that the number of MPs is increasing, albeit at a very slow rate. Additionally, we develop an extension of the birth-death-diversification model which allows MGEs in different regions of the genome, for example coding and non-coding, to be described by different rates. This extension may offer a potential explanation as to why the majority of MPs are located in non-promoter regions of the genome. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  1. Genetic improvement of Sesamun indicum through induced mutations

    International Nuclear Information System (INIS)

    Rajput, M.A.; Khan, Z.H.; Jafri, K.A.; Fazal Ali, J.A.

    2001-01-01

    Pakistan is chronically deficient in the production of edible oils. To enhance local production of edible oils, a mutation breeding project entitled ''Genetic improvement of Sesamum indicum through induced mutations'' was initiated for developing high yielding and widely adapted varieties of sesame. Quite a few mutants having earliness, short stature, semi-indehiscence, compact plant type, heavy bearing and high seed yield have been developed. The true breeding mutant lines developed have exhibited impressive yield potential. (author)

  2. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage......Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...

  3. Study on the immunological and genetic effects induced by internal exposure to radionuclides

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Liuyi; Luan Meiling

    1995-02-01

    The immune system is the important part of defense mechanism in organism. Studies have demonstrated the high radiosensitivity of the immunocytes to internal radionuclide exposure. It is evident that serious functional disturbances and morphological changes of immune organs are induced by internal contamination of radionuclides, including suppression of division and proliferation of immunocytes, induction of irreversible sequelae, leading to injurious effects on both central and peripheral immune organs. In order to study the consequences of the injuries of genetic material caused by internal contamination of radionuclides, researches have developed from the harmful effects on parental generation to those on the offspring. The present paper reports the study on the genetic injuries of somatic and germ cells induced by internal radionuclide exposure. Emphasis is placed on the molecular basis of radio-genetic effect and the relations of the molecular basis of DNA injury to gene mutation and chromosome aberration

  4. Differential effects of genetic - and diet - induced obesity on fertility, spermatogenesis and sperm epigenome in adult male rats

    Directory of Open Access Journals (Sweden)

    Sharvari Deshpande

    2017-10-01

    Full Text Available Obesity is a global health issue affecting millions of people of different age groups. The incidence of male obesity induced infertility is rising in couples undergoing ARTs suggesting that obesity is an established risk factor for male infertility. Recent studies demonstrate that paternal diet induced obesity could induce epigenetic disturbances in offspring. Obesity is a multifactorial disorder with predominantly genetic or environmental causes. No studies have compared the effect of genetic and diet induced obesity on male reproduction. The present study aims to delineate effects of obesity on male fertility, spermatogenesis and sperm epigenome using two rat models: genetically induced obese (GIO – WNIN/OB and diet induced obese (DIO – High fat diet. Body weights were similar in both groups, but, differential effects on hormonal profiles were observed. Fertility assessment showed decreased litter size mainly due to increased pre- and post-implantation loss in DIO group. However, GIO group were infertile due to decrease in libido. We observed a decrease in sperm counts in GIO group but not in DIO group despite the body weights being similar in both the groups. Flow cytometry and cell type specific marker expression studies in testis revealed that both DIO and GIO affect mitosis and differentiation process by increasing spermatogonial proliferation. In DIO group, no effect was observed on meiosis whereas in GIO group, we observed an effect on meiosis. Spermiogenesis process was affected in both the groups. In order to study the effect of genetic and diet induced obesity on different aspects of spermatogenesis, we performed qRT-PCR to study expression of genes involved in spermatocyte progression, spermiogenesis process, reproductive hormone receptors and leptin signaling in testis. Since epigenetic mechanisms are susceptible to environmental and genetic changes, we analyzed the methylation status of Igf2-H19 DMR in spermatozoa of both the

  5. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants. In addi...... adaptation to metal stress did not significantly increase the permissiveness of the soil bacterial community towards conjugal plasmid transfer........ In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  6. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn.

    Science.gov (United States)

    Chiapello, M; Martino, E; Perotto, S

    2015-05-01

    Although adaptive metal tolerance may arise in fungal populations in polluted soils, the mechanisms underlying metal-specific tolerance are poorly understood. Comparative proteomics is a powerful tool to identify variation in protein profiles caused by changing environmental conditions, and was used to investigate protein accumulation in a metal tolerant isolate of the ericoid mycorrhizal fungus Oidiodendron maius exposed to zinc and cadmium. Two-dimensional gel electrophoresis and shotgun proteomics followed by mass spectrometry lead to the identification of common and metal-specific proteins and pathways. Proteins selectively induced by cadmium exposure were molecular chaperons of the Hsp90 family, cytoskeletal proteins and components of the translation machinery. Zinc significantly up-regulated metabolic pathways related to energy production and carbohydrates metabolism, likely mirroring zinc adaptation of this fungal isolate. Common proteins induced by the two metal ions were the antioxidant enzyme Cu/Zn superoxide dismutase and ubiquitin. In mycelia exposed to zinc and cadmium, both proteomic techniques also identified agmatinase, an enzyme involved in polyamine biosynthesis. This novel finding suggests that, like plants, polyamines may have important functions in response to abiotic environmental stress in fungi. Genetic evidence also suggests that the biosynthesis of polyamines via an alternative metabolic pathway may be widespread in fungi.

  7. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  9. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO2-based surfaces

    International Nuclear Information System (INIS)

    Gole, James L.; Prokes, S.M.; White, Mark G.

    2008-01-01

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO 2 and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO 2 nanocolloid lattice

  10. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study.

    Science.gov (United States)

    Abdelaleem, Shereen Abdelhakim; Hassan, Osama A; Ahmed, Rasha F; Zenhom, Nagwa M; Rifaai, Rehab A; El-Tahawy, Nashwa F

    2017-01-01

    Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups). Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7-15 days) rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.

  11. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Neeraj K., E-mail: neerajkjaiswal@gmail.com [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Tyagi, Neha [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Amit [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior 474015 (India)

    2017-02-28

    Highlights: • F passivated zigzag graphene nanoribbon (F-ZGNR) are more favorable than pristine ones. • External electric field induces half metallicity in F-ZGNR. • The observed half metallicity is independent of ribbon widths. • Enhanced stability makes F-ZGNR preferable over pristine ribbon. - Abstract: Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  12. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

    International Nuclear Information System (INIS)

    Panagopoulos, D. J; Chavdoula, E. D.; Nezis, I. P.; Margaritis, L. H.

    2007-01-01

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay '' a well known technique widely used for detecting fragmented DNA in various types of cells'' was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29''43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within ''safety levels'' alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17''20, 2000, pp. 169''175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545''578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of

  13. Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals

    Science.gov (United States)

    Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey

    2017-11-01

    A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.

  14. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  15. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  16. Metal induced embrittlement. Annual report, [March 1, 1987--February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, R.G.

    1988-11-01

    This program is investigating the causes of embrittlement that occur in certain solid metals when exposed to liquid metals. The degree of embrittlement varies enormously among different solid/liquid pairs as witness, for example, the modest loss of load carrying, ability induced in carbon steels by Pb or the profound embrittlment of aluminum (particularly high strength) alloys by Hg and Ga. The structure of this study involves two types of activities: an experimental fracture mechanics study of the behavior of certain solid metals in liquid metals, and a theoretical study on an atomic scale of the crack tip deformation and extension behavior by means of atomistic simulation. This research, which began March 1, 1987, has completed its 20 month. A brief synopsis is given of performance in each of the areas of activity during the past year.

  17. Knee joint mobilization reduces secondary mechanical hyperalgesia induced by capsaicin injection into the ankle joint.

    Science.gov (United States)

    Sluka, K A; Wright, A

    2001-01-01

    Joint mobilization is a treatment approach commonly used by physical therapists for the management of a variety of painful conditions. However, the clinical effectiveness when compared to placebo and the neurophysiological mechanism of action are not known. The purpose of this study was to establish that application of a manual therapy technique will produce antihyperalgesia in an animal model of joint inflammation and that the antihyperalgesia produced by joint mobilization depends on the time of treatment application. Capsaicin (0.2%, 50 microl) was injected into the lateral aspect of the left ankle joint and mechanical withdrawal threshold assessed before and after capsaicin injection in Sprague-Dawley rats. Joint mobilization of the ipsilateral knee joint was performed 2 h after capsaicin injection for a total of 3 min, 9 min or 15 min under halothane anaesthesia. Control groups included animals that received halothane for the same time as the group that received joint mobilization and those whose limbs were held for the same duration as the mobilization (no halothane). Capsaicin resulted in a decreased mechanical withdrawal threshold by 2 h after injection that was maintained through 4 h. Both 9 and 15 min of mobilization, but not 3 min of mobilization, increased the withdrawal threshold to mechanical stimuli to baseline values when compared with control groups. The antihyperalgesic effect of joint mobilization lasted 30 min. Thus, joint mobilization (9 or 15 min duration) produces a significant reversal of secondary mechanical hyperalgesia induced by intra-articular injection of capsaicin. Copyright 2001 European Federation of Chapters of the International Association for the Study of Pain.

  18. Dynamic Flow-through Methods for Metal Fractionation in Environmental Solid Samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Petersen, Roongrat

    occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative flow-through dynamic methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. In this lecture particular emphasis is paid......Accummulation of metal ions in different compartments of the biosphere and their possible mobilization under changing environmental conditions induce a pertubation of the ecosystem and may cause adverse health effects. Nowadays, it is widely recognized that the information on total content...... the ecotoxicological significance of metal ions in solid environmental samples. The background of end-over-end fractionation for releasing metal species bound to particular soil phases is initially discussed, its relevant features and limitations being thoroughly described. However, taking into account that naturally...

  19. Behavioral and genetic effects promoted by sleep deprivation in rats submitted to pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Matos, Gabriela; Ribeiro, Daniel A; Alvarenga, Tathiana A; Hirotsu, Camila; Scorza, Fulvio A; Le Sueur-Maluf, Luciana; Noguti, Juliana; Cavalheiro, Esper A; Tufik, Sergio; Andersen, Monica L

    2012-05-02

    The interaction between sleep deprivation and epilepsy has been well described in electrophysiological studies, but the mechanisms underlying this association remain unclear. The present study evaluated the effects of sleep deprivation on locomotor activity and genetic damage in the brains of rats treated with saline or pilocarpine-induced status epilepticus (SE). After 50 days of pilocarpine or saline treatment, both groups were assigned randomly to total sleep deprivation (TSD) for 6 h, paradoxical sleep deprivation (PSD) for 24 h, or be kept in their home cages. Locomotor activity was assessed with the open field test followed by resection of brain for quantification of genetic damage by the single cell gel electrophoresis (comet) assay. Status epilepticus induced significant hyperactivity in the open field test and caused genetic damage in the brain. Sleep deprivation procedures (TSD and PSD) did not affect locomotor activity in epileptic or healthy rats, but resulted in significant DNA damage in brain cells. Although PSD had this effect in both vehicle and epileptic groups, TSD caused DNA damage only in epileptic rats. In conclusion, our results revealed that, despite a lack of behavioral effects of sleep deprivation, TSD and PSD induced genetic damage in rats submitted to pilocarpine-induced SE. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  1. Metals mobility in tailings coming from the mining district of Guanajuato, Mexico; Movilidad de metales en jales procedentes del distrito minero de Guanajuato, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ramos G, M.; Avelar, J.; Yamamoto, L.; Ramirez, M. [Universidad Autonoma de Aguascalientes, Departamento de Fisiologia y Farmacologia, Laboratorio de Estudios Ambientales, Av. Universidad No. 904, Ciudad Universitaria, 20131 Aguascalientes (Mexico); Medel R, A.; Godinez, L.; Rodriguez, F. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Subdireccion de Investigacion, Parque Tecnologico Queretaro Sanfadila, 76703 Pedro Escobedo, Queretaro (Mexico); Guerra, R., E-mail: frodriguez@cideteq.mx [Centro de Innovacion Aplicada en Tecnologias Competitivas, A. C., Direccion de Investigacion, Omega No. 201, Fracc. Industrial Delta, 37545 Leon, Guanajuato (Mexico)

    2012-07-01

    Characterization of different tailings from the mining district of Guanajuato, Mexico were carried out, including a tailing from an abandoned dam 20 years ago, a dam in operation and another coming from the mixture of different companies. The three tailings presented alkaline conditions, normal salinity, aerobic environment with oxidative tendency, low humidity, very low capacity of cationic exchange, and absence of organic matter. These conditions restrict the metal mobility. The mineralogical analysis showed that the tailings contained mainly quartz, calcite and magnetite. Tailings coming from the mixture of different companies had greater total concentrations (mg/kg) of Mn (1042.8), Al (12919.8), Fe (23911.3), Cr (71.3), Pb (24.6) and Cu (19.8). The highest concentration of Zn was observed at the abandoned tailing (53.3 mg/kg). No significant concentrations of Cd and Hg were observed, although Pb (24.6 mg/kg) and Cr (71.4 mg/kg) were detected. Leaching tests indicated that metals cannot be leached in percentages higher than 0.1%, and so these tailings do not represent an environmental risk. The low leaching of metals in the studied tailings was consistent with the mineralogical and physicochemical prevailing conditions, the low acid drainage generation potential and the high degree of stability observed in the tests of metals fractionation. The mineralogical characteristics were determined by X-ray diffraction. (Author)

  2. Mobile genetic elements of Pseudomonas aeruginosa isolates from hydrotherapy facility and respiratory infections.

    Science.gov (United States)

    Pereira, S G; Cardoso, O

    2014-03-01

    The content of mobile genetic elements in Pseudomonas aeruginosa isolates of a pristine natural mineral water system associated with healthcare was compared with clinical isolates from respiratory infections. One isolate, from the therapy pool circuit, presented a class 1 integron, with 100% similarity to a class 1 integron contained in plasmid p4800 of the Klebsiella pneumoniae Kp4800 strain, which is the first time it has been reported in P. aeruginosa. Class 1 integrons were found in 25.6% of the clinical isolates. PAGI1 orf3 was more prevalent in environmental isolates, while PAGI2 c105 and PAGI3 sg100 were more prevalent in clinical isolates. Plasmids were not observed in either population. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  3. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium.

    Science.gov (United States)

    Li, Gang; Khan, Sardar; Ibrahim, Muhammad; Sun, Tian-Ran; Tang, Jian-Feng; Cotner, James B; Xu, Yao-Yang

    2018-04-15

    Biochar application has attracted great attention due to its diverse uses and benefits in the fields of environmental management and agriculture. Biochar modifies the composition of dissolved organic matter (DOM) in soil, which directly or indirectly controls the mobility of metal contaminants and their bioaccumulation. In this study, ten different hydrothermal biochars pyrolysed from mushroom waste (MSBC), soybean straw (SBBC), sewage sludge (SSBC), peanut shells (PNBC) and rice straw (RSBC) at two pyrolysis temperatures (200 °C and 350 °C) were used to investigate DOM changes in soil solution and their effects on metal availability and bioaccumulation. Biochar induced modification of soil DOM which was characterized by spectroscopic analysis of water soluble organic carbon, specific absorbance (SUVA 254 ), UV-vis absorption, spectral slope (S R ) and the absorption coefficient. Regarding rice plant growth, the biochar effects on biomass were greatly varied. Biochars (except for RSBC and MSBC) prepared at high temperature significantly (P ≤ 0.05) suppressed the availability of As and Cd in soil and their subsequent bioaccumulation in rice plants. The highest reduction (88%) in bioaccumulated As was observed in rice grown on soil amended with SBBC prepared at 350 °C (the highest temperature for hydrothermal technique). The addition of biochars (except RSBC and MSBC) prepared at high temperature markedly (p < 0.05) decreased AsIII (30-92%), while the effects on dimethylarsenic acid (DMA) and arsenate (AsV) concentrations were not significant except for SSBC350 (prepared at 350 °C) treatment. These results highlight the potential of biochar-DOM interactions as an important mechanism for suppressing the mobility and bioaccumulation of As and Cd in biochar-amended paddy agricultural systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mobility and eco-risk of trace metals in soils at the Hailuogou Glacier foreland in eastern Tibetan Plateau.

    Science.gov (United States)

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Liang, Jianhong; Wang, Jipeng; Yang, Zijiang

    2016-03-01

    The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment.

  5. Mutations induced by the action of metal ions in Pisum

    Energy Technology Data Exchange (ETDEWEB)

    von Rosen, G

    1957-01-01

    Simple metal ions may induce both radiomimetic effects and genuine gene mutations of the same type which occurs from ionizing radiation and from treatment with some chemical agencies as e.g., mustard gas. The main material during the experiments has been species of Pisum. The biochemical principle which lies behind these reactions is the complex-forming ability among those reactive bivalent metal elements. The author assumes that interruptions of the chelate formation in the cell synthesis form the real background to the observed activity of the metal ions. The possible role in the evolution of the plant- and animal kingdom and the probable value for plant-breeding of the mutation activity observed are suggested. A new field for mutation experiments may here be opened and the results must hitherto be judged as interesting and promising. 13 references, 7 figures, 4 tables.

  6. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease.

    Science.gov (United States)

    Imm, Jennifer; Kerrigan, Talitha L; Jeffries, Aaron; Lunnon, Katie

    2017-11-01

    It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.

  7. Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain).

    Science.gov (United States)

    Hanebuth, Till J J; King, Mary Lee; Mendes, Isabel; Lebreiro, Susana; Lobo, Francisco J; Oberle, Ferdinand K; Antón, Laura; Ferreira, Paulo Alves; Reguera, Maria Isabel

    2018-05-10

    Natural and human-induced seabed sediment disturbances affect wide areas of the global coastal ocean. These recurrent to chronic disturbances mobilize significant amounts of material, including substances that have the potential to significantly harm the environment once re-released. This very challenging issue is difficult to deal with if sub-surface contaminant concentrations are unknown. Based on the analysis of 11 new, up to 5-m long sediment cores taken offshore in the Gulf of Cadiz, the contamination history (using the trace elements lead and zinc) is well documented over major parts of the gulf. Ore mining and metal processing industries on the southwestern Iberian Peninsula started five thousand years ago and experienced a first peak during the Roman Period, which can be detected over the entire gulf. The Industrial Era added a massive, shelf-wide heavy metal excursion of unprecedented dimension. This metal contamination to the coastal ocean decreased in the 1990s and appears to be today limited to larger areas off the Tinto/Odiel and Guadiana River mouths. The unforeseen, significant finding of this study is that the gulf-wide, peak heavy metal concentration, stemming from the Industrial Era, is widely overlain by a modern sediment veneer just thick enough to cover the contaminant horizon, but thin enough to have this layer within the reach of natural or human-induced sediment mobilization events. Published by Elsevier B.V.

  8. Municipal landfill leachates induced chromosome aberrations in rat ...

    African Journals Online (AJOL)

    Physico-chemical and heavy metal analysis of the test samples showed that they contained high concentrations of toxic anions and cations that are capable of inducing mutation in living cells. The interaction of these constituents with the genetic material in the bone marrow cells of rat caused the observed chromosome ...

  9. Ion chromatography of transition metals: specific alteration of retention by complexation reactions in the mobile and on the stationary phase

    International Nuclear Information System (INIS)

    Baumgartner, S.

    1992-05-01

    Ion chromatography of mono- and bivalent cations was performed on a conventional cation exchanger. The pH influence of an ethylene-diamine/citrate eluent was significant for the retention of alkaline earth and transition metals, but negligible for alkali ions. This was dealt with from a mechanistic point of view. Mobile phase optimization allowed fast isocratic analysis of mono- and bivalent cations and the separation of the radionuclides Cs-137 and Sr-90. A newly synthesized stationary phase containing iminodiacetate (IDA) function was investigated for cation chromatography using ethylenediamine/citrate eluents, polyhydroxy acid and dipicolinic acid. The column's high selectivity for transition metal ions in comparison to alkali and alkaline earth metals may be governed by the choice of complexing ability and pH of the eluent. Applications verified by atomic absorption spectroscopy include alkaline earth metals in beverages and the determination of Co, Cd and Zn in solutions containing more than 10 14 -fold excess of Na and Mg, such as sea water

  10. Genome wide analyses of metal responsive genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Michael eAschner

    2012-04-01

    Full Text Available Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans (C. elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study how the mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.

  11. Ion-beam-mixing in metal-metal systems and metal-silicon systems

    International Nuclear Information System (INIS)

    Hung, L.

    1984-01-01

    The influence of energetic ion bombardment on the composition and structure of thin film materials and utilization of ion-beam-mixing techniques to modify interfacial reactions are reported in this thesis. The phase formation in metals by using ion mixing techniques has been studied. Upon ion irradiation of Al/Pt, Al/Pd and Al/Ni thin films, only the simplest intermetallic compounds of PdAl and NiAl were formed in crystalline structure, while the amorphous phase has been observed over a large range of composition. Ion mixing of Au/Cu bilayers resulted in the formation of substitutional solid solutions with no trace of ordered compounds. The formation of the ordered compound CuAu was achieved either by irradiation of bilayers with Ar ions at elevated substrate temperature or by irradiation of the mixed layers with He ions at relatively low temperature. In the Au/Al system several crystal compounds existed in the as-deposited samples. These phases remained crystalline or transformed into other equilibrium compounds upon ion irradiation. The results suggest that the phase formation by ion mixing is dependent on the high quench rate in the collision cascade region and the atomic mobility at the irradiation temperature. The argument can be applied to silicide forming systems. With near-noble metals, the mixed atoms are mobile and form metallurgically distinct phases. With refractory metals, amorphous phases are formed due to lack of atomic mobility

  12. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The electric field at hole injecting metal/organic interfaces as a cause for manifestation of exponential bias-dependent mobility

    International Nuclear Information System (INIS)

    Cvikl, B.

    2014-01-01

    It is shown that the well-known empirical exponential bias-dependent mobility is an approximation function of the relevant term emerging in the Mott–Gurney space charge limited current model when the constant non-zero electric field at the hole injecting metal/organic interface E int is taken into account. The term in question is the product of the bias-independent (but organic layer thickness-dependent) effective mobility coefficient and the algebraic function, f(λ), of the argument λ = E int /E a , where E a is the externally applied electric field. On account of the non-zero interfacial field, E int , the singularity of the spatial dependence of the hole current density, p(x), is removed. The resulting hole drift current density, j, is tested as a function of E a against a number of published room temperature hole current j–E a data sets, all characterized by good ohmic contact at the hole injecting interface. It is shown that the calculated current density provides a very good fit to the measurements within a high range of E a intervals. Low values of E a , are investigated analytically under the assumption of hole drift-diffusion. The extremely large internal electric fields at the anode/organic junction indicate drift-diffusion to be an improbable process for the structures investigated. However, a description of hole transport throughout the whole interval of experimental E a values may be obtained at low values of E a by an extended Mark–Helfrich drift model with traps occupying the exponentially distributed energy levels, followed by the extended Mott–Gurney model description within the remaining part of the E a interval. In both models the same (bias-independent) effective mobility coefficient is incorporated into the calculations. The results present evidence that within the framework of the extended Mott–Gurney expression the properly derived term should replace the empirical exponential bias-dependent mobility, making it redundant in the

  14. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  15. [Intra-prosthetic dislocation of the Bousquet dual mobility socket].

    Science.gov (United States)

    Lecuire, F; Benareau, I; Rubini, J; Basso, M

    2004-05-01

    The Bousquet system is a dual mobility head-polyethylene polyethylene-metal cup socket. The polyethylene insert retaining the femoral head moves in the noncemented metal cup, increasing both mobility and stability. Between 1989 and 1997, seven cases of intra-prosthetic dislocation (six patients) were observed. The femoral head escaped from the polyethylene insert due to wear. On the average, this complication occurred ten Years after implantation. Risk of dislocation was high in six of the seven hips. All patients had a large sized stem screwed into the femoral neck. There was a characteristic radiological aspect with loss of the concentric head metal cup configuration. The head was applied against the upper wall of the metal cup. Surgical replacement was undertaken early in six patients by simply changing the insert without modifying the other stable components. Outcome remained good at three to eight Years. One patient underwent late surgery. The insert and the cup were replaced with a classical implant. Functional outcome was good but recurrent dislocation occurred. At mid-term, intra-prosthetic dislocation of dual mobility sockets appears to be exceptional. Dislocation results from polyethylene wear leading to failure of the insert to retain the prosthetic head. Wear is favored by direct phenomena (direct contact between neck and insert which can occur early if there is a small difference in the head and neck diameters) or indirect phenomena (factors limiting polyethylene metal-cup mobility). Surgical treatment is necessary. If undertaken early, replacement with a modular head and insert can be sufficient if the prosthesis has not loosened but the metal cup may have to be replaced in the event of metal-metal contact between the head and the cup. Prosthesis loosening, wear of the metal cup, or an identified cause of dislocation imply replacing the failing implants. Implantation of the dual mobility system is particularly interesting for patients with a high risk

  16. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  17. Hartree-Fock study of the Anderson metal-insulator transition in the presence of Coulomb interaction: Two types of mobility edges and their multifractal scaling exponents

    Science.gov (United States)

    Lee, Hyun-Jung; Kim, Ki-Seok

    2018-04-01

    We investigate the role of Coulomb interaction in the multifractality of Anderson metal-insulator transition, where the Coulomb interaction is treated within the Hartree-Fock approximation, but disorder effects are taken into account exactly. An innovative technical aspect in our simulation is to utilize the Ewald-sum technique, which allows us to introduce the long-range nature of the Coulomb interaction into Hartree-Fock self-consistent equations of order parameters more accurately. This numerical simulation reproduces the Altshuler-Aronov correction in a metallic state and the Efros-Shklovskii pseudogap in an insulating phase, where the density of states ρ (ω ) is evaluated in three dimensions. Approaching the quantum critical point of a metal-insulator transition from either the metallic or insulting phase, we find that the density of states is given by ρ (ω ) ˜|ω| 1 /2 , which determines one critical exponent of the McMillan-Shklovskii scaling theory. Our main result is to evaluate the eigenfunction multifractal scaling exponent αq, given by the Legendre transformation of the fractal dimension τq, which characterizes the scaling behavior of the inverse participation ratio with respect to the system size L . Our multifractal analysis leads us to identify two kinds of mobility edges, one of which occurs near the Fermi energy and the other of which appears at a high energy, where the density of states at the Fermi energy shows the Coulomb-gap feature. We observe that the multifractal exponent at the high-energy mobility edge remains to be almost identical to that of the Anderson localization transition in the absence of Coulomb interactions. On the other hand, we find that the multifractal exponent near the Fermi energy is more enhanced than that at the high-energy mobility edge, suspected to result from interaction effects. However, both the multifractal exponents do not change even if the strength of the Coulomb interaction varies. We also show that the

  18. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  19. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study

    Directory of Open Access Journals (Sweden)

    Shereen Abdelhakim Abdelaleem

    2017-01-01

    Full Text Available Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups. Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7–15 days rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.

  20. A Novel Microwave-Induced Plasma Ionization Source for Ion Mobility Spectrometry

    Science.gov (United States)

    Dai, Jianxiong; Zhao, Zhongjun; Liang, Gaoling; Duan, Yixiang

    2017-03-01

    This work demonstrates the application of a novel microwave induced plasma ionization (MIPI) source to ion mobility spectrometry (IMS). The MIPI source, called Surfatron, is composed of a copper cavity and a hollow quartz discharge tube. The ion mobility spectrum of synthetics air has a main peak with reduced mobility of 2.14 cm2V-1s-1 for positive ion mode and 2.29 cm2V-1s-1 for negative ion mode. The relative standard deviations (RSD) are 0.7% and 1.2% for positive and negative ion mode, respectively. The total ion current measured was more than 3.5 nA, which is much higher than that of the conventional 63Ni source. This indicates that a better signal-to-noise ratio (SNR) can be acquired from the MIPI source. The SNR was 110 in the analysis of 500 pptv methyl tert-butyl ether (MTBE), resulting in the limit of detection (SNR = 3) of 14 pptv. The linear range covers close to 2.5 orders of magnitude in the detection of triethylamine with a concentration range from 500 pptv to 80 ppbv. Finally, this new MIPI-IMS was used to detect some volatile organic compounds, which demonstrated that the MIPI-IMS has great potential in monitoring pollutants in air.

  1. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  2. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.

    Science.gov (United States)

    Schmidt, Ulrich

    2003-01-01

    For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective

  3. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  4. Effects of Heavy Metals from Soil and Dust Source on DNA Damage of the Leymus chinensis Leaves in Coal-Mining Area in Northwest China.

    Science.gov (United States)

    Li, Tianxin; Zhang, Minjie; Lu, Zhongming; Herman, Uwizeyimana; Mumbengegwi, Dzivaidzo; Crittenden, John

    2016-01-01

    important action pathway for heavy metal induced genetic damage in mining area. Furthermore, heavy metal contents in foliar dust showed a higher positive correlation with genetic damage than when compared with soil. This means the heavy metal contents that L.chinensis absorbed through respiration from the atmosphere could make more serious genetic damage than when absorbed by root systems from soil in the mining area. This study can provide theoretical support for research on plant genetic damage mechanisms and exposure pathways induced by environmental pollution.

  5. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO{sub 2}-based surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gole, James L. [Schools of Physics and Mechanical Engineering, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)], E-mail: jim.gole@physics.gatech.edu; Prokes, S.M. [Code 6876, NRL, Washington, DC 20375 (United States)], E-mail: prokes@estd.nrl.navy.mil; White, Mark G. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Box 959, MS 39762 (United States)], E-mail: white@che.msstate.edu

    2008-11-30

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO{sub 2} and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO{sub 2} nanocolloid lattice.

  6. The genetic effects induced by an irradiation in low doses at Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zajnullin, V.G.; Taskaev, A.I.; Moskalev, A.A.; Shaposhnikov, M.V.

    2006-01-01

    The review generalizes the results obtained in researches of genetic radiation effects for Drosophila melanogaster from contamination regions near the Chernobylsk NPP. The results of laboratory investigations of low dose irradiation effects on genotype variability and lifetime of Drosophila are presented too. It supposed that the main effect of low dose irradiation is caused by the induced genetic instability against the background of which the realization of different-directed radiobiological reactions is possible [ru

  7. Examination of Organic Vapor Adsorption onto Alkali Metal and Halide Atomic Ions by using Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Maiβer, Anne; Hogan, Christopher J

    2017-11-03

    We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K + , Rb + , Cs + , Br - , and I - exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K + ) has the smallest apparent mobility and the largest (I - ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb + , Cs + , and Br - in the presence of n-butanol (typically within 10 % of measurements). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Implications of metal accumulation mechanisms to phytoremediation.

    Science.gov (United States)

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For

  9. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation

    Directory of Open Access Journals (Sweden)

    Claudio A Navarro

    2013-01-01

    Full Text Available Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI, which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each

  10. Genetic variation of soybean agronomic characters induced by irradiation of seed

    International Nuclear Information System (INIS)

    He Zhihong; Wang Jinling

    1988-02-01

    Dry seeds of three soybean varieties were irradiated by 60 Co γ ray with dosage of 4.1C/kg. The varieties irradiated were Fengshou No. 10, Donghong 74-403 and Heinong No. 26, and nonirradiated seeds of the corresponding variety was used as a control. The following genetic parameters of the nine agronomic characters were estimated, including genotypic coefficient of variation, genotypic variance, broad sense heritanility and genetic advance expected through selection. Three types of plant in M 2 and M 3 were used for the estimation of these parameters which comprise semisterility (MS), fertility (MF) in M 1 and control (CK). The genetic advance expected through selection was compared with the actual effect of selection for date of maturity, seed weigh per plant and 100 seed wight. The pattern of the genetic variation in the early generations of the induced population was analysed. Problems of selection for main agronomic characters in the early generations, and significance of fertility of M 1 plants for mutation breeding were discussed

  11. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study

    OpenAIRE

    Abdelaleem, Shereen Abdelhakim; Hassan, Osama A.; Ahmed, Rasha F.; Zenhom, Nagwa M.; Rifaai, Rehab A.; El-Tahawy, Nashwa F.

    2017-01-01

    Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this ...

  12. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  13. Failure of irradiated beef and ham to induce genetic aberrations of Drosophila

    International Nuclear Information System (INIS)

    Mittler, S.

    1979-01-01

    Ham that had been irradiated by electrons and beef which had been exposed to gamma rays from 60 Co were fed to Drosophila melanogaster to determine whether meat sterilized by these methods would induce genetic aberrations. The results showed that for yB/sc 8 y + Y males, fed on irradiated ham or beef, thermally preserved beef or frozen beef for their entire larval life, there was no significant increase in the loss of X or Y chromosomes or non-disjunction of these chromosomes; there was also no significant increase in any of the broods. Similarly for the Oregon R males, there was no significant increase in yield of sex-linked recessive lethals. Thus feeding of irradiated ham and beef to Drosophila males did not induce significant increases in genetic aberrations. The present findings are discussed in relation to the conflicting results of previous studies. (U.K.)

  14. Effect of electrolyte sorbed by nonion-exchange mechanism on the state and diffusive mobility of water and alkali metal ions in perfluorinated sulfocationic membranes from NMR data

    International Nuclear Information System (INIS)

    Volkov, V.I.; Sidorenkova, E.A.; Korochkova, S.A.; Novikov, N.A.; Sokol'skaya, I.B.; Timashev, S.F.

    1994-01-01

    On the basis of data of high-resolution NMR on 1 H nuclei of water, 23 Na and 133 Cs, of counterions Na + and Ca + the influence of nonionexchange sorved alkalis and metal chlorides on the state and diffusive mobility of the counterions was studied. It is shown that the type of co-ion can affect considerably the translational diffusion of metal ions

  15. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers

    Science.gov (United States)

    Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei

    2018-05-01

    Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with  ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.

  16. Direct observation of shear–induced nanocrystal attachment and coalescence in CuZr-based metallic glasses: TEM investigation

    International Nuclear Information System (INIS)

    Hajlaoui, K.; Alrasheedi, Nashmi H.; Yavari, A.R.

    2016-01-01

    In-situ tensile straining tests were performed in a transmission electron microscope (TEM) to analyse the deformation processes in CuZr-based metallic glasses and to directly observe the phase transformation occurrence. We report evidence of shear induced coalescence of nanocrystals in the vicinity of deformed regions. Nanocrystals grow in shear bands, come into contact, being attached and progressively coalesce under applied shear stress. - Highlights: • In-situ tensile straining test in TEM was investigated on CuZr-Based metallic glass. • Strain induces nanocrystallization and subsequent attachment and coalescence of nanocrystals. • The coalescence of nanocrystals compensates strain softening in metallic glasses.

  17. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  18. Genetic susceptibility factors for alcohol-induced chronic pancreatitis.

    Science.gov (United States)

    Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter

    2015-07-01

    Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  19. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers.

    Science.gov (United States)

    Gulati, Sachin; Yadav, Anita; Kumar, Neeraj; Priya, Kanu; Aggarwal, Neeraj K; Gupta, Ranjan

    2018-03-01

    In the present era, cellular phones have changed the life style of human beings completely and have become an essential part of their lives. The number of cell phones and cell towers are increasing in spite of their disadvantages. These cell towers transmit radiation continuously without any interruption, so people living within 100s of meters from the tower receive 10,000 to 10,000,000 times stronger signal than required for mobile communication. In the present study, we have examined superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, lipid peroxidation assay, and effect of functional polymorphism of SOD and CAT antioxidant genes against mobile tower-induced oxidative stress in human population. From our results, we have found a significantly lower mean value of manganese superoxide dismutase (MnSOD) enzyme activity, catalase (CAT) enzyme activity, and a high value of lipid peroxidation assay in exposed as compared to control subjects. Polymorphisms in antioxidant MnSOD and CAT genes significantly contributed to its phenotype. In the current study, a significant association of genetic polymorphism of antioxidant genes with genetic damage has been observed in human population exposed to radiations emitted from mobile towers.

  20. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  1. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Energy Technology Data Exchange (ETDEWEB)

    Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Thopan, P.; Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  2. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    International Nuclear Information System (INIS)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation

  3. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers

    Directory of Open Access Journals (Sweden)

    Francisco Kuhar

    Full Text Available Ganoderma lucidum (Curtis P. Karst is a white rot fungus that is able to degrade the lignin component in wood. The ability of two strains of this species to produce the ligninolytic enzyme laccase was assessed. After the evaluation of induction with heavy metals and phenolic compounds, it was found that among the tested substances, copper and ferulic acid are the best laccase inducers. It was also observed that the two types of inducers (phenolic and metallic produce different electrophoretic patterns of laccase activity. Optimized concentrations of inducers were obtained through a factorial design and the thermal stability of optimized supernatants was studied at a wide range of acidic pH. We found that the enzyme is more thermostable at higher pH values.

  4. Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model.

    Science.gov (United States)

    Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; Mora-García, María de Lourdes

    2015-09-25

    BACKGROUND Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. MATERIAL AND METHODS Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. RESULTS We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (psodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings.

  5. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  6. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  7. Assessment of the mobility of metals and semi-metals in Sepetiba Bay (Rio de Janeiro - Brazil) by analyzing sediments sampled in different periods

    International Nuclear Information System (INIS)

    Cortez, Vinicius D.; Ribeiro, Andreza P.; Figueiredo, Ana M.G.; Santos, Jose O.; Wassermann, Julio C.

    2005-01-01

    In the last three decades, Sepetiba bay, located about 60 km south of the city of Rio de Janeiro, Brazil, has been subjected to increasing pollution impacts. The Sepetiba region has undergone fast industrial expansion leading to high levels of pollution by metals. For the last two decades, an industrial park composed of about 400 industrial plants, basically metallurgical, was established in the Sepetiba Bay basin, releasing its effluents either straight into the bay or through local rivers. Potential toxic elements such as As, Zn, Cr, Pb and Cd have been introduced into the bay through industrial and domestic wastes. In the present paper, instrumental neutron activation analysis (INAA) was applied to determine the elements As, Cr and Zn in sediments from Sepetiba bay, sampled in August 2003, in order to compare to previous results obtained in 1998, for these elements, by Pellegatti et al. (2001). By using a geostatistical model it was possible to evaluate the spatial mobility of As, Cr and Zn in the last six years. The results obtained showed that none of the studied elements showed a significant spatial mobility. This behavior is probably related to geochemical barriers present in Sepetiba bay. (author)

  8. Study of the influence of the laterality of mobile phone use on the SAR induced in two head models

    Science.gov (United States)

    Ghanmi, Amal; Varsier, Nadège; Hadjem, Abdelhamid; Conil, Emmanuelle; Picon, Odile; Wiart, Joe

    2013-05-01

    The objective of this paper is to investigate and to analyse the influence of the laterality of mobile phone use on the exposure of the brain to radio-frequencies (RF) and electromagnetic fields (EMF) from different mobile phone models using the finite-difference time-domain (FDTD) method. The study focuses on the comparison of the specific absorption rate (SAR) induced on the right and left sides of two numerical adult and child head models. The heads are exposed by both phone models operating in GSM frequency bands for both ipsilateral and contralateral configurations. A slight SAR difference between the two sides of the heads is noted. The results show that the variation between the left and the right sides is more important at 1800 MHz for an ipsilateral use. Indeed, at this frequency, the variation can even reach 20% for the SAR10g and the SAR1g induced in the head and in the brain, respectively. Moreover, the average SAR induced by the mobile phone in the half hemisphere of the brain in ipsilateral exposure is higher than in contralateral exposure. Owing to the superficial character of energy deposition at 1800 MHz, this difference in the SAR induced for the ipsilateral and contralateral usages is more significant at 1800 MHz than at 900 MHz. The results have shown that depending on the phantom head models, the SAR distribution in the brain can vary because of differences in anatomical proportions and in the geometry of the head models. The induced SAR in child head and in sub-regions of the brain is significantly higher (up to 30%) compared to the adult head. This paper confirms also that the shape/design of the mobile and the location of the antenna can have a large influence at high frequency on the exposure of the brain, particularly on the SAR distribution and on the distinguished brain regions.

  9. Evidence for photo-induced monoclinic metallic VO2 under high pressure

    International Nuclear Information System (INIS)

    Hsieh, Wen-Pin; Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-01

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M 1 )-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M 1 ) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions

  10. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  11. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  12. Radiation tolerance of Si{sub 1−y}C{sub y} source/drain n-type metal oxide semiconductor field effect transistors with different carbon concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Toshiyuki, E-mail: nakashima_t@cdk.co.jp [Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki (Japan); Chuo Denshi Kogyo Co., Ltd., 3400 Kohoyama, Matsubase, Uki, Kumamoto (Japan); Asai, Yuki; Hori, Masato; Yoneoka, Masashi; Tsunoda, Isao; Takakura, Kenichiro [Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Gonzalez, Mireia Bargallo [Institut de Microelectronica de Barcelona (Centre Nacional de Microelectronica — Consejo Superior de Investigaciones Cientificas) Campus UAB, 08193 Bellaterra (Spain); Simoen, Eddy [imec, Kapeldreef 75, B-3001 Leuven (Belgium); Claeys, Cor [imec, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Yoshino, Kenji [Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki (Japan)

    2014-04-30

    The 2-MeV electron radiation damage of silicon–carbon source/drain (S/D) n-type metal oxide semiconductor field effect transistors with different carbon (C) concentrations is studied. Before irradiation, an enhancement of the electron mobility with C concentration of the S/D stressors is clearly observed. On the other hand, after electron irradiation, both the threshold voltage shift and the maximum electron mobility degradation are independent on the C concentration for all electron fluences studied. These results indicate that the strain induced electron mobility enhancement due to the C doping is retained after irradiation in the studied devices. - Highlights: • We have investigated the electron irradiation effect of the Si{sub 1−y}C{sub y} S/D n-MOSFETs. • The threshold voltage variations by irradiation are independent on the C doping. • The electron-mobility decreased for all C concentrations by electron irradiation. • The strain induced mobility enhancement effect is retained after irradiation.

  13. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  14. Persistent genetic instability induced by synergistic interaction between x-irradiation and 6-thioguanine

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Nelson, S.L.; Smith, L.E.

    1995-01-01

    Clonal karyotypic analysis was performed using G-banding on four groups of clones derived from TK6 human lymphoblasts: 25 HPRT - total gene deletion mutants induced by exposure to 2 Gy of x-rays; 8 spontaneous HPRT - total gene deletion mutants; 25 clones irradiated with 2 Gy, not selected with 6-thioguanine. Ten to twenty metaphases were examined for each clone. Extensive karyotypic heterogeneity was observed among x-ray induced HPRT - mutants involving translocations, deletions, duplications and aneuploidy; recovery of chromosomal aberrations and karyotypic heterogeneity was greater than the additive effects of clones treated with x-irradiation or 6-thioguanine alone. This synergistic interaction between x-irradiation and 6-thioguanine was observed despite a 7 day phenotypic expression interval between exposure to the two agents. Thus, x-irradiated TK6 cells appear to be persistently hypersensitive to the induction of genetic instability. Several mutants appeared to exhibit evidence of clonal evolution since aberrant chromosomes observed in one metaphase, were found to be further modified in other metaphases. In order to determine if genetic instability, identified by clonal karyotypic heterogeneity, affected specific locus mutation rates, we utilized the heterozygous thymidine kinase (tk) locus as a genetic marker. Four x-ray induced HPRT - mutants with extensive karyotypic heterogeneity, exhibited mutation rates at tk ranging from 5 to 8 fold higher than the parental TK6 cells. Further analysis, using fractionated low dose radiation exposure, is currently in progress

  15. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  16. Protective effects of vitamin C against gamma-ray induced wholly damage and genetic damage

    International Nuclear Information System (INIS)

    Fu Chunling; Jiang Weiwei; Zhang Ping; Chen Xiang; Zhu Shengtao

    2000-01-01

    Objective: Protective effects of supplemental vitamin C against 60 Co-gamma-ray induced wholly damage and genetic damage was investigated in mice. Method: Mice were divided into normal control group, irradiation control group and vitamin C experimental group 1,2,3 (which were orally given vitamin C 15, 30, 45 mg/kg.bw for 10 successive days respectively prior to gamma-ray irradiation). Micronuclei in the bone marrow polychromatophilic erythrocytes in each group of mice were examined and the 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Supplemental vitamin C prior to gamma-rays irradiation can significantly decrease bone marrow PECMN rate of mice and increase 30 day survival rate and prolong average survival time. The protection factor is 2.09. Conclusion: Vitamin C has potent protective effects against gamma irradiation induced damage in mice. In certain dose range, vitamin C can absolutely suppress the gamma-rays induced genetic damage in vivo

  17. Genetic algorithm based approach to investigate doped metal oxide materials: Application to lanthanide-doped ceria

    Science.gov (United States)

    Hooper, James; Ismail, Arif; Giorgi, Javier B.; Woo, Tom K.

    2010-06-01

    A genetic algorithm (GA)-inspired method to effectively map out low-energy configurations of doped metal oxide materials is presented. Specialized mating and mutation operations that do not alter the identity of the parent metal oxide have been incorporated to efficiently sample the metal dopant and oxygen vacancy sites. The search algorithms have been tested on lanthanide-doped ceria (L=Sm,Gd,Lu) with various dopant concentrations. Using both classical and first-principles density-functional-theory (DFT) potentials, we have shown the methodology reproduces the results of recent systematic searches of doped ceria at low concentrations (3.2% L2O3 ) and identifies low-energy structures of concentrated samarium-doped ceria (3.8% and 6.6% L2O3 ) which relate to the experimental and theoretical findings published thus far. We introduce a tandem classical/DFT GA algorithm in which an inexpensive classical potential is first used to generate a fit gene pool of structures to enhance the overall efficiency of the computationally demanding DFT-based GA search.

  18. When is thermodynamics relevant to ion-induced atomic rearrangements in metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Cheng, Y.T.; Van Rossum, M.; Nicolet, M.A.

    1984-08-01

    The problem of ion-induced mixing of metal bilayers is examined in the limit of heavy metals (Z > 20) and heavy energetic ions (E > 100 keV) and in the absence of delayed effects such as radiation enhanced thermal diffusion. Thermochemical effects are shown to play an important role in biasing the random walk process of mixing. A universal mixing equation is derived which predicts the evolution of the concentration profile as a function of ion dose. Finally, a model is presented which allows one to predict what metallurgical phases are formed during the mixing process. Criteria for amorphous phase formation are particularly emphasized

  19. Effects of thermal desorption on the composition of two coking plant soils: Impact on solvent extractable organic compounds and metal bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Biache, Coralie [G2R UMR 7566, Nancy Universite, CNRS, Boulevard des Aiguillettes B.P. 239, F-54506 Vandoeuvre-les-Nancy (France); LIMOS UMR 7137, Nancy Universite, CNRS, Boulevard des Aiguillettes B.P. 239, F-54506 Vandoeuvre-les-Nancy (France)], E-mail: coralie.biache@g2r.uhp-nancy.fr; Mansuy-Huault, Laurence; Faure, Pierre [G2R UMR 7566, Nancy Universite, CNRS, Boulevard des Aiguillettes B.P. 239, F-54506 Vandoeuvre-les-Nancy (France); Munier-Lamy, Colette; Leyval, Corinne [LIMOS UMR 7137, Nancy Universite, CNRS, Boulevard des Aiguillettes B.P. 239, F-54506 Vandoeuvre-les-Nancy (France)

    2008-12-15

    To evaluate the efficiency and the influence of thermal desorption on the soil organic compartment, contaminated soils from coking plant sites (NM and H) were compared to their counterparts treated with thermodesorption. The extractable organic matter, and the metal content and distribution with soil compartments were studied. In both thermodesorbed soils, PAH (polycyclic aromatic hydrocarbon) degradation exceeded 90%. However, the thermal desorption led not only to a volatilization of the organic compounds but also to the condensation of extractable organic matter. The treatments only affected the Fe and Zn distribution within the more stable fractions, whereas the organic compound degradation did not affect their mobility and availability. - Thermal desorption does not induce a metal mobilization but condensation seems to occur during the treatment.

  20. Variation on a theme; an overview of the Tn916 / Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci.

    Directory of Open Access Journals (Sweden)

    Francesco eSantoro

    2014-10-01

    Full Text Available The oral and nasopharyngeal streptococci are a major part of the normal microbiota in humans. Most human associated streptococci are considered commensals however a small number of them are pathogenic, causing a wide range of diseases including oral infections such as dental caries and periodontitis and diseases at other body sites including sinusitis and endocarditis, and in the case of Streptococcus pneumoniae, meningitis. Both phenotypic and sequence based studies have shown that the human associated streptococci from the mouth and nasopharynx harbour a large number of antibiotic resistance genes and these are often located on mobile genetic elements known as conjugative transposons or integrative and conjugative elements of the Tn916 / Tn1545 family. These mobile genetic elements are responsible for the spread of the resistance genes between streptococci and also between streptococci and other bacteria. In this review we describe the resistances conferred by, and the genetic variations between the many different Tn916-like elements found in recent studies of oral and nasopharyngeal streptococci and show that Tn916-like elements are important mediators of antibiotic resistance genes within this genus. We will also discuss the role of the oral environment and how this is conducive to the transfer of these elements and discuss the contribution of both transformation and conjugation on the transfer and evolution of these elements in different streptococci.

  1. A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    Directory of Open Access Journals (Sweden)

    Rohith Srivas

    2013-12-01

    Full Text Available Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions among 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks.

  2. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  3. Proposal of a simple screening method for a rapid preliminary evaluation of ''heavy metals'' mobility in soils of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Valentina; Chiusolo, Francesca; Cremisini, Carlo [ENEA - Italian Agency for New Technologies, Energy and Environment, Rome (Italy). Section PROTCHIM

    2010-09-15

    Risks associated to ''heavy metals'' (HM) soil contamination depend not only on their total content but, mostly, on their mobility. Many extraction procedures have been developed to evaluate HM mobility in contaminated soils, but they are generally time consuming (especially the sequential extraction procedures (SEPs)) and consequently applicable on a limited number of samples. For this reason, a simple screening method, applicable even ''in field'', has been proposed in order to obtain a rapid evaluation of HM mobility in polluted soils, mainly focused on the fraction associated to Fe and Mn oxide/hydroxides. A buffer solution of trisodium citrate and hydroxylamine hydrochloride was used as extractant for a single-step leaching test. The choice of this buffered solution was strictly related to the possibility of directly determining, via titration with dithizone (DZ), the content of Zn, Cu, Pb and Cd, which are among the most representative contaminants in highly mineralised soils. Moreover, the extraction solution is similar, aside from for the pH value, which is the one used in the BCR SEP second step. The analysis of bivalents ions through DZ titration was exploited in order to further simplify and quicken the whole procedure. The proposed method generically measures, in few minutes, the concentration of total extractable ''heavy metals'' expressed as molL{sup -1} without distinguishing between elements. The proposed screening method has been developed and applied on soil samples collected from rural, urban and mining areas, representing different situation of soil contamination. Results were compared with data obtained from the BCR procedure. The screening method demonstrated to be a reliable tool for a rapid evaluation of metals mobility. Therefore, it could be very useful, even ''in field'', both to guide the sampling activity on site and to monitor the efficacy of the subsequent

  4. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  5. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    Science.gov (United States)

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  6. Statistical Approach of Assessing Horizontal Mobility of Heavy Metals in the Soil of Akouedo Landfill Nearby Ebrie Lagoon (Abidjan-Cote D'Ivoire

    Directory of Open Access Journals (Sweden)

    Innocent Kouassi KOUAME

    2010-09-01

    Full Text Available The present study aim to quantify heavy metals in the Akouedo landfill soil and evaluate the extent of their contamination, to better understand the horizontal migration of these pollutants towards the Ebrie lagoon located downstream. Horizontal mobility of heavy metals in soil was performed by the Kruskal-Wallis test which was used to evaluate the heavy metals concentrations according to the upstream downstream disposition of soil sample sites. Then the Mann-Whitney test was applied to find if variances between upgradient and downgradient parameters concentrations in the soil sample sites were homogenous. The results show that the soil is rich in organic matter (organic carbon and organic nitrogen with a basic pH (7.94 Metals such as lead (Pb and zinc (Zn are retained by the organic matter while the other metals (Cd, Cr, Cu, Fe relative to migrate upstream to downstream. Thus, the flow of infiltration water into the soil of the Akouedo landfill drains more easily iron, cadmium, copper, chromium towards the lagoon Ebrie located downstream, increasing the risk of pollution by heavy metals.

  7. Decrease in effective electron mobility in the channel of a metal-oxide-semiconductor transistor as the gate length is decreased

    International Nuclear Information System (INIS)

    Frantsuzov, A. A.; Boyarkina, N. I.; Popov, V. P.

    2008-01-01

    Effective electron mobility μ eff in channels of metal-oxide-semiconductor transistors with a gate length L in the range of 3.8 to 0.34 μm was measured; the transistors were formed on wafers of the silicon-oninsulator type. It was found that μ eff decreases as L is decreased. It is shown that this decrease can be accounted for by the effect of series resistances of the source and drain only if it is assumed that there is a rapid increase in these resistances as the gate voltage is decreased. This assumption is difficult to substantiate. A more realistic model is suggested; this model accounts for the observed decrease in μ eff as L is decreased. The model implies that zones with a mobility lower than that in the middle part of the channel originate at the edges of the gate. An analysis shows that, in this case, the plot of the dependence of 1/μ eff on 1/L should be linear, which is exactly what is observed experimentally. The use of this plot makes it possible to determine both the electron mobility μ 0 in the middle part of the channel and the quantity A that characterizes the zones with lowered mobility at the gate’s edges.

  8. Monolayer CS as a metal-free photocatalyst with high carrier mobility and tunable band structure: a first-principles study

    Science.gov (United States)

    Yang, Xiao-Le; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong

    2018-02-01

    Producing hydrogen fuel using suitable photocatalysts from water splitting is a feasible method to harvest solar energy. A desired photocatalyst is expected to have suitable band gap, moderate band edge position, and high carrier mobility. By employing first-principles calculations, we explore a α-CS monolayer as a metal-free efficient photocatalyst. The α-CS monolayer shows good energetic, dynamic, and thermal stabilities and is insoluble in water, suggesting its experimental practicability. Monolayer and bilayer α-CS present not only appropriate band gaps for visible and ultraviolet light absorption but also moderate band alignments with water redox potentials in pH neutral water. Remarkably, the α-CS monolayer exhibits high (up to 8453.19 cm2 V-1s-1 for hole) and anisotropic carrier mobility, which is favorable to the migration and separation of photogenerated carriers. In addition, monolayer α-CS experiences an interesting semiconductor-metal transition by applying uniaxial strain and external electric field. Moreover, α-CS under certain strain and electric field is still dynamically stable with the absence of imaginary frequencies. Furthermore, we demonstrate that the graphite (0 0 1) surface is a potential substrate for the α-CS growth with the intrinsic properties of α-CS maintaining. Therefore, our results could pave the way for the application of α-CS as a promising photocatalyst.

  9. Cyclic metal migration in a groundwater stream

    International Nuclear Information System (INIS)

    Goerlich, W.; Portmann, W.; Wernli, C.; Linder, P.; Burkart, W.

    1988-04-01

    The behaviour of dissolved (<0.45 μm) inorganic species (e.g. metals, anions), and changes in relevant properties of polluted river water during infiltration into adjacent groundwater are investigated. Water from the river and from several wells is analyzed for temporal and spacial changes. For many of the measured quantities a pronounced annual cycle is observed. The temperature differences between summer and winter influence biological activity. Growth and degradation of organic material lead to drastic changes in pH and redox conditions in the near infiltration field. During summer, under relatively anoxic conditions, manganese oxides/hydroxides dissolve. In winter, the higher concentration of dissolved oxygen induce reprecipitation of manganese. Trace metal mobility (e.g. Cu, Zn, Cd) is influenced by these annual variations. In the river, daily cycles are observed for many of the measured quantities. These short term variations are induced by photosynthesis and respiration of aquatic biota. The cyclic behaviour disappears during the early stage of infiltration. The changes between river and groundwater can be modelled by a combination of simplified electron transfer and weathering reactions. (author) 11 refs., 5 figs

  10. Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation

    Science.gov (United States)

    Lee, Eun-Jae; Lee, Hyejin; Huang, Tzyy-Nan; Chung, Changuk; Shin, Wangyong; Kim, Kyungdeok; Koh, Jae-Young; Hsueh, Yi-Ping; Kim, Eunjoon

    2015-01-01

    Genetic aspects of autism spectrum disorders (ASDs) have recently been extensively explored, but environmental influences that affect ASDs have received considerably less attention. Zinc (Zn) is a nutritional factor implicated in ASDs, but evidence for a strong association and linking mechanism is largely lacking. Here we report that trans-synaptic Zn mobilization rapidly rescues social interaction in two independent mouse models of ASD. In mice lacking Shank2, an excitatory postsynaptic scaffolding protein, postsynaptic Zn elevation induced by clioquinol (a Zn chelator and ionophore) improves social interaction. Postsynaptic Zn is mainly derived from presynaptic pools and activates NMDA receptors (NMDARs) through postsynaptic activation of the tyrosine kinase Src. Clioquinol also improves social interaction in mice haploinsufficient for the transcription factor Tbr1, which accompanies NMDAR activation in the amygdala. These results suggest that trans-synaptic Zn mobilization induced by clioquinol rescues social deficits in mouse models of ASD through postsynaptic Src and NMDAR activation. PMID:25981743

  11. Metal contamination in water sediments; Contaminacion por metales en sedimentos acuaticos

    Energy Technology Data Exchange (ETDEWEB)

    Usero Garcia, J.; Morillo Aguado, J.; Gracia Manarillo, I. [Universidad de Sevilla. Sevilla (Spain)

    1997-09-01

    The origin, distribution, and behaviour of metals in aquatic systems, and factors affecting the solubilization and entry into the water column of metals associated with sediments are examined. Also, the interaction of these metals with and toxic effects on living organisms are studied. Finally, the existing methods for assessing the degree of pollution of sediments and the mobility of the metals associated with the sediments are explained. In the second section of this paper, the methods used for sampling, preparing, and analysing the sediments are described. (Author) 48 refs.

  12. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields

    Science.gov (United States)

    Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  13. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields.

    Science.gov (United States)

    Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  14. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles

    Science.gov (United States)

    Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu

    2017-06-01

    Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.

  15. Genetic improvement of 'NPq' rice with induced mutations

    International Nuclear Information System (INIS)

    Ram, Mahabal

    1974-01-01

    Exposure of the seeds of rice to different doses of gamma-rays increased the total mutation frequency with an increase in the dose rate, and the most economic mutations occurred around 30 kr. Induced mutants with dwarf plant type, early maturity, fine grain, high-yielding ability, and resistance to lodging and major diseases were isolated in the M, and M generations. Genetical studies indicated that height is controlled by 4 pairs of additive genes, grass-clumps by 2 pairs of non-allelic interacting genes (inhibitory), and chlorophyll mutations such as albina by 2 pairs of duplicate genes and xantha by a single gene pair. (author)

  16. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  17. Reentrant Metal-Insulator Transitions in Silicon -

    Science.gov (United States)

    Campbell, John William M.

    This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by

  18. 30 CFR 57.12027 - Grounding mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 57.12027 Section 57.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  19. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    Science.gov (United States)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-05-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  20. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    Science.gov (United States)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-02-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  1. Mutagenic activities of metal compounds in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H

    1975-01-01

    Environmental contaminations by certain metal compounds are bringing about serious problems to human health, including genetic hazards. It has been reported that some compounds of iron, manganese and mercury induce point mutations in microorganisms. Also it has been observed that those of aluminum, antimony, arsenic, cadmium, lead and tellurium cause chromosome aberrations in plants, insects and cultured human cells. The mechanism of mutation induction by these metals remains, however, still obscure. For screening of chemical mutagens, Kada et al, recently developed a simple and efficient method named rec-assay by observing differential growth sensitivities to drugs in wild and recombination-deficient strains of Bacillus subtilis. When a chemical is more inhibitory for Rec/sup -/ than for Rec/sup +/ cells, it is reasonable to suspect mutagenicity based on its DNA-damaging capacity. In the present report, 56 metal compounds were tested by the rec-assay. Compounds showing positive results in the assay such as potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/), ammonium molybdate ((NH/sub 4/)/sub 6/Mo/sub 7/O/sub 24/) and sodium arsenite (NaAsO/sub 2/) were then examined as to their capacities to induce reversions in E. coli Trp/sup -/ strains possessing different DNA repair pathways. 11 references, 3 tables.

  2. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  3. Genetic analysis of somaclonal variants and induced mutants of potato ( solanum tuberosum l.) cv. diamant using RAPD markers

    International Nuclear Information System (INIS)

    Afrasiab, H.; Iqbal, J.

    2011-01-01

    The objective of this work was to genetically analyze somaclonal variants and gamma induced mutants of potato ( Solanum tuberosum L.) cv. Diamant using RAPD-PCR technique. In the present work, callus was induced from nodes, inter nodes and leaf explants in MS medium supplemented with NAA (1.0 mg/l) and BAP (0.5 mg/l) and plants were regenerated from 14-20 weeks old calli. For gamma irradiation, ten-week old well proliferating calli were exposed to doses ranging from 5-50 Gy. All the four selected somaclonal variants and five gamma induced mutants were differentiated by banding patterns obtained from 22 primers that generated 140 polymorphic bands. The presence of polymorphic bands in variants and mutants suggest that genetic variation occurred in all the treatments as compared to control. Similarity and clustered analysis were conducted using Jaccard's coefficients and the un-weighted pair-group method using arithmetic averages. The results summarized in a dendrogram, show genetic diversity among the variants and mutants. The study shows that RAPD markers were efficient in discriminating somaclonal variants and induced mutants of potato. (author)

  4. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alfica Sehgal

    2007-08-01

    Full Text Available Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP, directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.

  5. Radiation-induced processes in the metallic powders after electron and gamma-radiation

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Aliev, B.A.

    2001-01-01

    In the work the quantitative assessments for conditions both healing and growth of micropores in metal volume and surface layers have been made. Taking into account of these rules is important at a choice of radiation processing conditions for fine-disperse powders characterizing with increased porosity. Numerical evaluation shows, that under irradiation of a metals by electrons with energy 2 MeV and electron current density about 1 μA/cm 2 within 300-400 K temperature range the optimal doses for the micropores healing make up a several Mrad. Further increase of dose could lead to formation of pores in the crystal volume. Principal conclusions about radiation porosity development character of metallic particles surface layers one can make from analysis of the point defects distribution near surface and computing of radiation-induced diffusion coefficients

  6. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  7. Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai, E-mail: jai.gupta1983@gmail.com [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Chemical Physics of Materials, Université Libre de Bruxelles, Campus de la Plaine, CP 243, B-1050 Bruxelles (Belgium); Tripathi, A. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India); Gautam, Sanjeev; Chae, K.H.; Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Rigato, V. [INFN Laboratori Nazionali di Legnaro, Via Romea. 4, 35020 Legnaro, Padova (Italy); Tripathi, Jalaj [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India)

    2014-10-15

    The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 10{sup 16} ions/cm{sup 2} become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate. - Highlights: • Phenomenological interpretation of dewetting and embedding of metal NPs in thin film. • Exploring fundamental thermodynamic principles under influence of ion irradiation. • Ion induced surface/interface microstructural changes using SEM/X-TEM. • Ion induced sputtering, thermal spike induced local melting. • Thermodynamic driving forces relate to surface and interfacial energies.

  8. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  10. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  11. 30 CFR 56.12027 - Grounding mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  12. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  13. UV-induced bond modifications in thymine and thymine dideoxynucleotide: structural elucidation of isomers by differential mobility mass spectrometry.

    Science.gov (United States)

    St-Jacques, Antony; Anichina, Janna; Schneider, Bradley B; Covey, Thomas R; Bohme, Diethard K

    2010-07-15

    Differential mobility spectrometry has been applied to reveal the occurrence of isomerization of thymine nucleobase and of thymine dideoxynucleotide d(5'-TT-3') due to bond redisposition induced by UV irradiation at 254 nm of frozen aqueous solutions of these molecules. Collision-induced dissociation (CID) spectra of electrosprayed photoproducts of the thymine solution suggest the presence of two isomers (the so-called cyclobutane and 6,4-photoproducts) in addition to the proton-bound thymine dimer, and these were separated using differential mobility spectrometry/mass spectrometry (DMS/MS) techniques with water as the modifier. Similar experiments with d(5'-TT-3') revealed the formation of a new isomer of deprotonated thymine dideoxynucleotide upon UV irradiation that was easily distinguished using DMS/MS with isopropanol as the modifier. The results reinforce the usefulness of DMS/MS in isomer separation.

  14. Combining Diffusion Models and Macroeconomic Indicators with a Modified Genetic Programming Method: Implementation in Forecasting the Number of Mobile Telecommunications Subscribers in OECD Countries

    Directory of Open Access Journals (Sweden)

    Konstantinos Salpasaranis

    2014-01-01

    Full Text Available This paper proposes a modified Genetic Programming method for forecasting the mobile telecommunications subscribers’ population. The method constitutes an expansion of the hybrid Genetic Programming (hGP method improved by the introduction of diffusion models for technological forecasting purposes in the initial population, such as the Logistic, Gompertz, and Bass, as well as the Bi-Logistic and LogInLog. In addition, the aforementioned functions and models expand the function set of hGP. The application of the method in combination with macroeconomic indicators such as Gross Domestic Product per Capita (GDPpC and Consumer Prices Index (CPI leads to the creation of forecasting models and scenarios for medium- and long-term level of predictability. The forecasting module of the program has also been improved with the multi-levelled use of the statistical indices as fitness functions and model selection indices. The implementation of the modified-hGP in the datasets of mobile subscribers in the Organisation for Economic Cooperation and Development (OECD countries shows very satisfactory forecasting performance.

  15. DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    DEFF Research Database (Denmark)

    Dang, Vinh Quang

    problem is to minimize the total traveling time of the single mobile robot and thereby increase its availability. For the second scheduling problem, a fleet of mobile robots is considered together with a set of machines to carry out different types of tasks, e.g. pre-assembly or quality inspection. Some...... problem and finding optimal solutions for each one. However, the formulated mathematical models could only be applicable to small-scale problems in practice due to the significant increase of computation time as the problem size grows. Note that making schedules of mobile robots is part of real-time....... For the first scheduling problem, a single mobile robot is considered to collect and transport container of parts and empty them into machine feeders where needed. A limit on carrying capacity of the single mobile robot and hard time windows of part-feeding tasks are considered. The objective of the first...

  16. Plasma damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  17. Plasma Damage in Floating Metal-Insulator-Metal Capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; Backer, E.; Coppens, P.

    2001-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  18. Infrared thermography based studies on mobile phone induced heating

    Science.gov (United States)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Jayakumar, T.; Philip, John

    2015-07-01

    Here, we report the skin temperature rise due to the absorption of radio frequency (RF) energy from three handheld mobile phones using infrared thermography technique. Experiments are performed under two different conditions, viz. when the mobile phones are placed in soft touch with the skin surface and away from the skin surface. Additionally, the temperature rise of mobile phones during charging, operation and simultaneous charging and talking are monitored under different exposure conditions. It is observed that the temperature of the cheek and ear regions monotonically increased with time during the usage of mobile phones and the magnitude of the temperature rise is higher for the mobile phone with higher specific absorption rate. The increase in skin temperature is higher when the mobile phones are in contact with the skin surface due to the combined effect of absorption of RF electromagnetic power and conductive heat transfer. The increase in the skin temperature in non-contact mode is found to be within the safety limit of 1 °C. The measured temperature rise is in good agreement with theoretical predictions. The empirical equation obtained from the temperature rise on the cheek region of the subjects correlates well with the specific absorption rate of the mobile phones. Our study suggests that the use of mobile phones in non-contact mode can significantly lower the skin temperature rise during its use and hence, is safer compared to the contact mode.

  19. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    Science.gov (United States)

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  1. Behavior of Metals in Soils

    Science.gov (United States)

    One of the major issues of concern to the Forum is the mobility of metals in soils as related to subsurface remediation. For the purposes of this Issue Paper, those metals most commonly found at Superfund sites will be discussed in terms of the processes..

  2. Approaches for enhanced phytoextraction of heavy metals.

    Science.gov (United States)

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Asparagus cochinchinensis Extract Alleviates Metal Ion-Induced Gut Injury in Drosophila: An In Silico Analysis of Potential Active Constituents

    Directory of Open Access Journals (Sweden)

    Weiyu Zhang

    2016-01-01

    Full Text Available Metal ions and sulfate are components of atmospheric pollutants that have diverse ways of entering the human body. We used Drosophila as a model to investigate the effect of Asparagus cochinchinensis (A. cochinchinensis extracts on the gut and characterized gut homeostasis following the ingestion of metal ions (copper, zinc, and aluminum. In this study, we found that the aqueous A. cochinchinensis extract increased the survival rate, decreased epithelial cell death, and attenuated metal ion-induced gut morphological changes in flies following chronic exposure to metal ions. In addition, we screened out, by network pharmacology, six natural products (NPs that could serve as putative active components of A. cochinchinensis that prevented gut injury. Altogether, the results of our study provide evidence that A. cochinchinensis might be an effective phytomedicine for the treatment of metal ion-induced gut injury.

  4. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Trigo, Mariano [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reis, David A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Photon Science and Applied Physics, Stanford University, Stanford, California 94305 (United States); Andrea Artioli, Gianluca; Malavasi, Lorenzo [Dipartimento di Chimica, Sezione di Chimica Fisica, INSTM (UdR Pavia), Università di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  5. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  6. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  7. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    OpenAIRE

    Jennifer L. Wood; Caixian Tang; Ashley E. Franks; Wuxing Liu

    2016-01-01

    The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediat...

  8. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  9. Role of Interchain Coupling in the Metallic State of Conducting Polymers

    Science.gov (United States)

    Kim, Nara; Lee, Byoung Hoon; Choi, Doowhan; Kim, Geunjin; Kim, Heejoo; Kim, Jae-Ryoung; Lee, Jongjin; Kahng, Yung Ho; Lee, Kwanghee

    2012-09-01

    We investigated the charge dynamics of the conductivity enhancement from 2 to 1000S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density. Therefore, we demonstrate that the conduction-character defining disorder in this conducting polymer system is determined by the extent of interchain coupling.

  10. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  11. Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

    International Nuclear Information System (INIS)

    Kaldre, Imants; Bojarevičs, Andris; Grants, Ilmārs; Beinerts, Toms; Kalvāns, Matīss; Milgrāvis, Mikus; Gerbeth, Gunter

    2016-01-01

    Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispersive X-ray spectroscopy (EDX). It is observed that SiC nanoparticles are dispersed in an aluminum magnesium alloy, whereas in tin the same particles remain agglomerated in micron-sized clusters despite a more intense cavitation.

  12. Epidemic spreading induced by diversity of agents' mobility.

    Science.gov (United States)

    Zhou, Jie; Chung, Ning Ning; Chew, Lock Yue; Lai, Choy Heng

    2012-08-01

    In this paper, we study the impact of the preference of an individual for public transport on the spread of infectious disease, through a quantity known as the public mobility. Our theoretical and numerical results based on a constructed model reveal that if the average public mobility of the agents is fixed, an increase in the diversity of the agents' public mobility reduces the epidemic threshold, beyond which an enhancement in the rate of infection is observed. Our findings provide an approach to improve the resistance of a society against infectious disease, while preserving the utilization rate of the public transportation system.

  13. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: Uranium, arsenic, barium

    International Nuclear Information System (INIS)

    Phan, Thai T.; Capo, Rosemary C.; Stewart, Brian W.; Graney, Joseph R.; Johnson, Jason D.; Sharma, Shikha; Toro, Jaime

    2015-01-01

    Highlights: • Distributions of U, As, and Ba in Marcellus Shale were determined. • As is primarily associated with sulfide minerals, Ba with exchange sites. • Most U is in the silicate minerals, but up to 20% is partitioned into carbonate. • Low [U] and [As] in produced water are consistent with reducing downhole conditions. • Proper waste management should account for potential mobilization of U and As. - Abstract: Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg −1 , respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L −1 ) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals. Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U

  14. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  15. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    Orifjon Ganiev

    2017-05-30

    May 30, 2017 ... sizes and effective masses are large polarons. According ... nating metallic and insulating domains with mobile ... The mobile polaronic carriers are con- ..... [51] T Kondo, Y Hamaya, A D Palczewski, T Takeuchi, J S Wen,.

  16. New Approach for Fractioning Metal Compounds Studies in Soils

    Science.gov (United States)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    A combined approach for fractioning metal compounds in soils on the basis of sequential (Tessier, 1979) and parallel extractions (1 N NH4Ac, pH 8; 1% EDTA in NH4Ac; and 1N HCl) is proposed. Metal compounds in sequential and parallel extracts are grouped according to the strength of their bonds with soil components. A given group includes metal compounds with similar strengths of bonds and, hence, with similar migration capacities. The groups of firmly and loosely bound metal compounds can be distinguished. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. Contamination of an ordinary chernozem from Rostov oblast with heavy metals caused a disturbance of the natural ratios between the metal compounds. In the natural soil, firmly bound metals predominate (88-95%of the total content), which is mainly caused by the fixation of metals in lattices of silicate minerals (56-83%of the total content). The mobility of the metals in the natural soil is low (5-12%) and is mainly related to metal compounds loosely bound with the soil carbonates. Upon the soil contamination with metals (application rates of 100-300 mg/kg), the content of all the metal compounds increases, but the ratio between them shifts towards a higher portion of the potentially mobile metal compounds (up to 30-40% of the bulk contents of the metals). Organic substances and non-silicate Fe, Al, and Mn minerals become the main carriers of the firmly and loosely bound metals. The strengths of their bonds with Cu, Pb, and Zn differ. Lead in the studied chernozems is mainly fixed in a loosely bound form with organic matter, whereas copper and zinc are fixed both by the organic matter and by the non-silicate Fe, Al, and Mn compounds. Firm fixation of the applied Cu and Pb is mainly ensured by the soil organic matter and non-silicate minerals, whereas firm fixation of Zn is mainly due to non

  17. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough.

    Science.gov (United States)

    Grilo, Antonio; Sáez-Rosas, María P; Santos-Morano, Juan; Sánchez, Elena; Moreno-Rey, Concha; Real, Luis M; Ramírez-Lorca, Reposo; Sáez, María E

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) are the first selected drugs for hypertensive patients because of its protective properties against heart and kidney diseases. Persistent cough is a common adverse reaction associated with ACEi, which can bind to the treatment cessation, but its etiology remains an unresolved issue. The most accepted mechanism is that the inhibition of ACEi increases kinins levels, resulting in the activation of proinflammatory mechanisms and nitric oxide generation. However, relatively little is known about the genetic susceptibility to ACEi-induced cough in hypertensive patients. We carried out a monogenic association analysis of 39 polymorphisms and haplotypes in genes encoding key proteins related to ACEi activity with the occurrence of ACEi-induced cough. We also carried out a digenic association analysis and investigated the existence of epistatic interactions between the analyzed polymorphisms using a logistic regression procedure. Finally, we investigated the predictive value of the identified associations for ACEi-induced cough. We found that genetic polymorphisms in MME [rs2016848, P=0.002, odds ratio (OR)=1.795], BDKRB2 (rs8012552, P=0.012, OR=1.609), PTGER3 (rs11209716, P=0.002, OR=0.565), and ACE (rs4344) genes are associated with ACEi-related cough. For the latter, the effect is sex specific, having a protective effect in males (P=0.027, OR=0.560) and increasing the risk in females (P=0.031, OR=1.847). In addition, genetic interactions between peptidases involved in kinins levels (CPN1 and XPNPEP1) and proteins related to prostaglandin metabolism (PTGIS and PTGIR) strongly modify the risk of ACEi-induced cough presentation (0.102≤OR≤0.384 for protective combinations and 2.732≤OR≤7.216 for risk combinations). These results are consistent with the hypothesis that the mechanism of cough is related to the accumulation of bradykinin, substance P, and prostaglandins.

  18. Mobile phones and sleep - A review

    Science.gov (United States)

    Supe, Sanjay S.

    2010-01-01

    The increasing use of mobile phones has raised concerns regarding the potential health effects of exposure to the radiofrequency electromagnetic fields. An increasing amount research related to mobile phone use has focussed on the possible effects of mobile phone exposure on human brain activity and function. In particular, the use of sleep research has become a more widely used technique for assessing the possible effects of mobile phones on human health and wellbeing especially in the investigation of potential changes in sleep architecture resulting from mobile phone use. Acute exposure to a mobile phone prior to sleep significantly enhances electroencephalogram spectral power in the sleep spindle frequency range. This mobile phone-induced enhancement in spectral power is largely transitory and does not linger throughout the night. Furthermore, a reduction in rapid eye movement sleep latency following mobile phone exposure was also found, although interestingly, neither this change in rapid eye movement sleep latency or the enhancement in spectral power following mobile phone exposure, led to changes in the overall quality of sleep. In conclusion, a short exposure to the radiofrequency electromagnetic fields emitted by a mobile phone handset immediately prior to sleep is sufficient to induce changes in brain activity in the initial part of sleep. The consequences or functional significance of this effect are currently unknown and it would be premature to draw conclusions about possible health consequences.

  19. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  20. Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides

    Science.gov (United States)

    Lu, Hua; Yue, Zengqi; Zhao, Jianlin

    2018-05-01

    We propose and investigate a new kind of bandpass filters based on the plasmonically induced transparency (PIT) effect in a special metal-insulator-metal (MIM) waveguide system. The finite element method (FEM) simulations illustrate that the obvious PIT response can be generated in the metallic nanostructure with the stub and coupled cavities. The lineshape and position of the PIT peak are particularly dependent on the lengths of the stub and coupled cavities, the waveguide width, as well as the coupling distance between the stub and coupled cavities. The numerical simulations are in accordance with the results obtained by the temporal coupled-mode theory. The multi-peak PIT effect can be achieved by integrating multiple coupled cavities into the plasmonic waveguide. This PIT response contributes to the flexible realization of chip-scale multi-channel bandpass filters, which could find crucial applications in highly integrated optical circuits for signal processing.

  1. An overview of human genetic privacy.

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2017-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. © 2016 New York Academy of Sciences.

  2. An overview of human genetic privacy

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2016-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. PMID:27626905

  3. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  4. Naturally occurring and radiation-induced tumors in SPF mice, and genetic influence in radiation leukemogenesis

    International Nuclear Information System (INIS)

    Kasuga, T.

    1979-01-01

    The data obtained so far in this study point to a strong genetic influence not only on the types and incidence of naturally occurring and radiation-induced tumors but also on radiation leukemogenesis. (Auth.)

  5. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    Laser induced selective activation (LISA) is a molded interconnected devices technique for selective metallization of polymers. On the working piece, only the laser-machined area can be metalized in the subsequent plating. The principle of the technology is introduced. Surface analysis was perfor...

  6. Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients.

    Science.gov (United States)

    McCormack, Mark; Gui, Hongsheng; Ingason, Andrés; Speed, Doug; Wright, Galen E B; Zhang, Eunice J; Secolin, Rodrigo; Yasuda, Clarissa; Kwok, Maxwell; Wolking, Stefan; Becker, Felicitas; Rau, Sarah; Avbersek, Andreja; Heggeli, Kristin; Leu, Costin; Depondt, Chantal; Sills, Graeme J; Marson, Anthony G; Auce, Pauls; Brodie, Martin J; Francis, Ben; Johnson, Michael R; Koeleman, Bobby P C; Striano, Pasquale; Coppola, Antonietta; Zara, Federico; Kunz, Wolfram S; Sander, Josemir W; Lerche, Holger; Klein, Karl Martin; Weckhuysen, Sarah; Krenn, Martin; Gudmundsson, Lárus J; Stefánsson, Kári; Krause, Roland; Shear, Neil; Ross, Colin J D; Delanty, Norman; Pirmohamed, Munir; Carleton, Bruce C; Cendes, Fernando; Lopes-Cendes, Iscia; Liao, Wei-Ping; O'Brien, Terence J; Sisodiya, Sanjay M; Cherny, Stacey; Kwan, Patrick; Baum, Larry; Cavalleri, Gianpiero L

    2018-01-23

    To characterize, among European and Han Chinese populations, the genetic predictors of maculopapular exanthema (MPE), a cutaneous adverse drug reaction common to antiepileptic drugs. We conducted a case-control genome-wide association study of autosomal genotypes, including Class I and II human leukocyte antigen (HLA) alleles, in 323 cases and 1,321 drug-tolerant controls from epilepsy cohorts of northern European and Han Chinese descent. Results from each cohort were meta-analyzed. We report an association between a rare variant in the complement factor H-related 4 ( CFHR4 ) gene and phenytoin-induced MPE in Europeans ( p = 4.5 × 10 -11 ; odds ratio [95% confidence interval] 7 [3.2-16]). This variant is in complete linkage disequilibrium with a missense variant (N1050Y) in the complement factor H ( CFH ) gene. In addition, our results reinforce the association between HLA-A*31:01 and carbamazepine hypersensitivity. We did not identify significant genetic associations with MPE among Han Chinese patients. The identification of genetic predictors of MPE in CFHR4 and CFH, members of the complement factor H-related protein family, suggest a new link between regulation of the complement system alternative pathway and phenytoin-induced hypersensitivity in European-ancestral patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  7. Metal fate and partitioning in soils under bark beetle-killed trees

    Energy Technology Data Exchange (ETDEWEB)

    Bearup, Lindsay A., E-mail: lbearup@mines.edu [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Mikkelson, Kristin M. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Wiley, Joseph F. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Navarre-Sitchler, Alexis K.; Maxwell, Reed M. [Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Sharp, Jonathan O.; McCray, John E. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid–liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of

  8. Phase transformation induced by swift heavy ion irradiation of pure metals

    International Nuclear Information System (INIS)

    Dammak, H.; Dunlop, A.; Lesueur, D.

    1996-01-01

    It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)

  9. The effect of grooves in amorphous substrates on the orientation of metal deposits. I - Carbon substrates

    Science.gov (United States)

    Anton, R.; Poppa, H.; Flanders, D. C.

    1982-01-01

    The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.

  10. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  11. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany); Miehler, Dominik [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Zaumseil, Jana, E-mail: zaumseil@uni-heidelberg.de [Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany)

    2015-08-24

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.

  12. Strain- and electric field-induced band gap modulation in nitride nanomembranes

    International Nuclear Information System (INIS)

    Amorim, Rodrigo G; Zhong Xiaoliang; Mukhopadhyay, Saikat; Pandey, Ravindra; Rocha, Alexandre R; Karna, Shashi P

    2013-01-01

    The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. (paper)

  13. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period.

    Science.gov (United States)

    Neugschwandtner, Reinhard W; Tlustos, Pavel; Komárek, Michael; Száková, Jirina; Jakoubková, Lucie

    2012-09-01

    Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.

  14. Radiation and transposon-induced genetic damage in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Balter, H.; Griffith, C.S.; American Museum of Natural History, New York; Margulies, L.

    1992-01-01

    The interaction of X-ray-induced and transposon-induced damage was investigated in P-M hybrid dysgenesis in Drosophila melanogaster. X-ray dose-response of 330-1320 rad was monitored for sterility, fecundicity and partial X/Y chromosome loss among F 2 progeny derived from dysgenic cross of M strain females xP strain males (cross A) and its reciprocal (cross B), using a weaker and the standard Harwich P strain subline. The synergistic effect of P element activity and X-rays on sterility was observed only in cross A hybrids and the dose-response was nonlinear in hybrids derived from the strong standard reference Harwich subline, H W . This finding suggests that lesions induced by both mutator systems which produce the synergistic effects are 2-break events. Effect of increasing dose on the decline of fecundicity was synergistic, but linear, in hybrids of either subline. There was no interaction evident and thus no synergism in X/Y nondisjunction and partial Y chromosome loss measured by the loss of the B s marker alone or together with the y + marker. Interaction was detected in the loss of the y + marker alone from the X and Y chromosomes. The possible three-way interaction of X-rays (660 rad), post-replication repair deficiency and P elements mobility was assessed by measuring transmission distortion in dysgenic males derived from the Π 2 P strain. (author). 38 refs.; 5 tabs

  15. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suleiman Zubair

    2016-01-01

    Full Text Available The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage, PU signal protection (by the introduction of a mobility-induced guard (mguard distance and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput. It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  16. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-29

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  17. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-01

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. PMID:26840312

  18. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site

    International Nuclear Information System (INIS)

    Impellitteri, Christopher A.

    2005-01-01

    Arsenic in soils from the Asarco lead smelter in East Helena, Montana was characterized by X-ray absorption spectroscopy (XAS). Arsenic oxidation state and geochemical speciation were analyzed as a function of depth (two sampling sites) and surface distribution. These results were compared with intensive desorption/dissolution experiments performed in a pH stat reactor for samples from the site with the highest degree of As heterogeneity. The objectives of the study were to investigate the solid-phase geochemical As speciation, assess the speciation of As in solutions equilibrated with the solids under controlled pH (pH=4 or 6) and Eh (using hydrogen or air) environments, observe the effects of phosphate on the release of As into solution, and examine the effects of phosphate on metal mobility in the systems. Arsenic was predominantly found in the As(V) valence state, though there was evidence that As(III) and As(0) were present also. The dominant geochemical phase was scorodite (FeAsO 4 .2H 2 O). The pH was controlled in the pH stat experiments by the addition of equinormal solutions of monoprotic (HNO 3 ), diprotic (H 2 SO 4 ), or triprotic (H 3 PO 4 ) acids. For many of the divalent metal cations, solution concentrations greatly decreased in the presence of phosphate. Solutions were also analyzed for anions. Evidence exists for sulfate release into solution. More As was released into solution at lower pH. A slight increase in solution arsenate occurs with the addition of phosphate, but the risk posed from the increased desorption/dissolution of As must be weighed against the decrease in solution concentrations of many metals especially Pb. If tailings from this site underwent acidification (e.g., acid mine drainage), in situ sequestration of metals by phosphate could be combined with placement of subsurface permeable reactive barriers for capture of As to reduce the risk associated with arsenic and trace metal mobilization. Results from this study could be used

  20. Chemical changes of minerals trapped in the lichen Trapelia involuta. Implication for lichen effect on mobility of uranium and toxic metals

    International Nuclear Information System (INIS)

    Kasama, Takeshi; Murakami, Takashi; Ohnuki, Toshihiko

    2002-01-01

    To elucidate development of minerals trapped in a lichen, we examined the lichen Trapelia involuta growing directly on secondary uranyl minerals and U-enriched Fe oxide and hydroxide minerals. Sericite and other minerals in the underlying rock are trapped in the lichen T. involuta during its biological growth and chemically changed by lichen activities. The presence of chemically changed sericite accompanied by an Fe-bearing mineral in the lichen suggests that dissolution of sericite is promoted mainly by polysaccharides excreted by the lichen. Oxalic acid or lichen acids absent in the medulla may not play an important role in the dissolution. Our results suggest that lichens on metal-rich surface affect the mobility of uranium and other toxic metals through dissolution followed by trap of minerals from the underlying rock. (author)

  1. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  2. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    Science.gov (United States)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  3. Study of the interface stability of the metal (Mo, Ni, Pd/HfO2/AlN/InGaAs MOS devices

    Directory of Open Access Journals (Sweden)

    Huy Binh Do

    2017-08-01

    Full Text Available The degeneration of the metal/HfO2 interfaces for Mo, Ni, and Pd gate metals was studied in this paper. An unstable PdOx interfacial layer formed at the Pd/HfO2 interface, inducing the oxygen segregation for the Pd/HfO2/InGaAs metal oxide capacitor (MOSCAP. The low dissociation energy for the Pd-O bond was the reason for oxygen segregation. The PdOx layer contains O2− and OH− ions which are mobile during thermal annealing and electrical stress test. The phenomenon was not observed for the (Mo, Ni/HfO2/InGaAs MOSCAPs. The results provide the guidance for choosing the proper metal electrode for the InGaAs based MOSFET.

  4. Use of the MicroRespTM method to assess pollution-induced community tolerance to metals for lotic biofilms

    International Nuclear Information System (INIS)

    Tlili, Ahmed; Marechal, Marjorie; Montuelle, Bernard; Volat, Bernadette; Dorigo, Ursula; Berard, Annette

    2011-01-01

    Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp TM technique, in a pollution-induced community tolerance approach. The results show that MicroResp TM can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp TM was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river. - A modified MicroResp TM technique as a tool for measuring induced tolerance to heavy metals of a microbial biofilm community. - Research highlights: → MicroResp TM allows to plot dose-response curves with various tested metals. → Induced-tolerance to copper of heterotrophic biofilm community was successfully measured. → No co-tolerance detected between copper, silver and cadmium by using MicroResp TM . → MicroResp TM allows assessment of change in catabolic diversity in microbial community.

  5. Impact of the structural state on the mechanical properties in a Zr–Co–Al bulk metallic glass

    International Nuclear Information System (INIS)

    Qiao, J.C.; Pelletier, J.M.; Esnouf, C.; Liu, Y.; Kato, H.

    2014-01-01

    Highlights: • Atomic mobility in metallic glass was studied by DMA, HRTEM and nanoindentation. • Physical ageing and crystallization reduce the atomic mobility. • Plastic deformation, i.e. cold-rolling enhances the atomic mobility. • Atomic mobility in glassy materials can be described by quasi-point defects model. - Abstract: This paper reports on the use of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and nanoindentation technique to investigate atomic mobility in Zr 56 Co 28 Al 16 bulk metallic glass in the as-cast state, after thermal annealing and after cold rolling. From the DMA results together with nanoindentation data point of view, the atomic mobility is significantly modified by the thermo-mechanical history. On the one hand, atomic mobility in bulk metallic glass is reduced after physical aging or crystallization. On the other hand, the atomic mobility in metallic glass is enhanced by cold rolling. To analyze the atomic mobility in amorphous materials, a physical theory is introduced. This model invoked the concept of quasi-point defects, which correspond to the density fluctuations in the glassy materials. Correlated movements of atoms are assisted by these quasi-point defects and the correlation factor χ is connected to the concentration of these “defects” in metallic glasses: (i) physical aging and crystallization decreases the parameter χ and (ii) the concentration of defects augments via plastic deformation (i.e. cold-rolling), suggesting that the correlation factor χ reflects the atomic mobility for glassy materials in a quantitative manner. This correlation bridges the gap between the mechanical properties on macroscopic scale and atomic mobility in microstructural regions in metallic glasses

  6. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer.

    Science.gov (United States)

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-09-07

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm 2 /V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm 2 /V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.

  7. Effect of salinity on metal mobility in Sečovlje salina sediment (northern Adriatic, Slovenia)

    Science.gov (United States)

    Kovač, N.; Ramšak, T.; Glavaš, N.; Dolenec, M.; Rogan Šmuc, N.

    2016-12-01

    Saline sediment (saline healing mud or "fango") from the Sečovlje Salina (northern Adriatic, Slovenia) is traditionally used in the coastal health resorts as a virgin material for medical treatment, wellness and relax purposes. Therapeutic qualities of the healing mud depend on its mineralogical composition and physical, mineralogical, geochemical and biological properties. Their microbial and potentially toxic elements contamination are the most important features affecting user safety. However, the degree of metal toxicity (and its regulation) for natural healing mud is still under discussion. Therefore, the influence of the overlying water salinity on the mobility of heavy metals (and some other geochemical characteristic) was studied for saline sediments of the Sečovlje Salina. Experiments takes place in tanks under defined conditions i.e. at day (21 °C): night (16 °C) cycle for three months. Sediment was covered with water of different salinities (36, 155, 323 g NaCl L-1 and distillate water) and mixed/stirred every week during the experimental period. At the same time, the evaporated water was replaced with distilled water. The mud samples were analyzed, at the beginning and at the end of experiment, for mineral (XRD), elemental composition (ICP-MS) and organic content (% TOC, % TN). Geochemical analysis of the aqueous phase (content of cations and anions) have also been carried out in an accredited Canadian laboratory Actlabs (Activation Laboratories, Canada). Salinity and maturation of sediment does not significantly affect its mineral composition. The samples taken at the end of the experiment have higher percent of water but lower organic carbon concentration. Concentrations of investigated elements are comparable to that in surface sediments from Central Adriatic Sea. In the water phase, concentrations of most elements (As, Ba, Cu, Mo, Mn, Ni, Sr, Sb) rise from the beginning to the end of the experiment, whereas the metal (potentially toxic elements

  8. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice

    OpenAIRE

    Al-Attar, Atef M.

    2010-01-01

    Toxic heavy metals in water, air and soil are global problems that are a growing threat to humanity. Heavy metals are widely distributed in the environment and some of them occur in food, water, air and tissues even in the absence of occupational exposure. The antioxidant and protective influences of vitamin E on a mixture of some heavy metals (Pb, Hg, Cd and Cu)-induced oxidative stress and renal and testicular injuries were evaluated in male mice. Exposure of mice to these heavy metals in d...

  9. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May, E-mail: eekmlau@ust.hk [Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  10. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-01-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme

  11. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum

    International Nuclear Information System (INIS)

    Trigiano, R.N.; Scott, M.C.; Caetano-Anolles, G.

    1998-01-01

    The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars 'Dark Charm', 'Salmon Charm', 'Coral Charm' and 'Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of 'Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing approximately 37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars

  12. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  13. Mobile application to induce lifestyle modifications in type 2 diabetic patients: prototype based on international guidelines

    Science.gov (United States)

    García-Jaramillo, M.; Delgado, J. S.; León-Vargas, F.

    2015-12-01

    This paper describes a prototype app to induce lifestyle modifications in newly diagnosed type 2 diabetic patients. The app design is based on International Diabetes Federation guidelines and recommendations from clinical studies related to diabetes health-care. Two main approaches, lifestyle modification and self-management education are used owing to significant benefits reported. The method used is based on setting goals under medical support related to physical activity, nutritional habits and weight loss, in addition to educational messages. This is specially implemented to address the main challenges that have limited the success of similar mobile applications already validated on diabetic patients. A traffic light is used to show the overall state of the goals compliance. This state could be understood as excellent (green), there are aspects to improve (yellow), or some individual goals are not carrying out (red). An example of how works this method is presented in results. Furthermore, the app provides recommendations to the user in case the overall state was in yellow or red. The recommendations pretend to induce the user to make changes in their eating habits and physical activity. According to international guidelines and clinical studies, a prototype of mobile application to induce a lifestyle modification in order to prevent adverse risk factors related to diabetes was presented. The resulting application is apparently consistent with clinical judgments, but a formal clinical validation is required. The effectiveness of this app is currently under consideration for the Colombian population with type 2 diabetes.

  14. Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures.

    Science.gov (United States)

    Shin, Yong Seon; Lee, Kiyoung; Kim, Young Rae; Lee, Hyangsook; Lee, I Min; Kang, Won Tae; Lee, Boo Heung; Kim, Kunnyun; Heo, Jinseong; Park, Seongjun; Lee, Young Hee; Yu, Woo Jong

    2018-03-01

    Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field-effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe 2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap-limited transport, and space-charge-limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe 2 . This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe 2 and metal/WSe 2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    Hamza, V.M.; Iyer, S.S.S.

    1989-01-01

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3 He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x10 12 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  16. Molecular genetic researches on the radiation genetics of Drosophila in JINR

    International Nuclear Information System (INIS)

    Afanas'eva, K.P.; Aleksandrova, M.V.; Aleksandrov, I.D.

    2016-01-01

    Molecular genetic studies of radiation-induced heritable DNA lesions are carried out by the genetic group of Laboratory of nuclear problem in Joint Institute for Nuclear Research. The first results of molecular analysis of γ –ray- and neutron-induced vestigial mutations using PCR and sequencing will be presented. (authors)

  17. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  18. Metal-insulator transition induced in CaVO3 thin films

    International Nuclear Information System (INIS)

    Gu Man; Laverock, Jude; Chen, Bo; Smith, Kevin E.; Wolf, Stuart A.; Lu Jiwei

    2013-01-01

    Stoichiometric CaVO 3 (CVO) thin films of various thicknesses were grown on single crystal SrTiO 3 (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 μA. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film (∼60 nm), thin films of CVO (2–4 nm) were more two-dimensional with the V charge state closer to V 4+ .

  19. Mobile Tower Radiation Protection System

    Directory of Open Access Journals (Sweden)

    Jabbar Slman Hussein

    2017-12-01

    Full Text Available Clean environment is one of the most necessarily needs for Human life. So what about mobile effect and its towers pollution? It's effect on public health? Effect of huge groan of mobile networks. In counting of these dangers that will harm us from mobile towers in the far run, was the reasons for writing this research, came this study to look at the mobile towers and mobile effects possible health harm for the purpose of diagnosis of these effects and to suggest ways that can be used to avoid or minimize the risks.  Faraday Cage, is the solution suggested here, also there are many other solutions for this problem, a Faraday cage is a metallic enclosure that stops the entry or escape of an EM field. Also, two experiments are accomplished, first one showing the effect of Faraday cage on preventing the EMR from mobile cellphone, and the second  experiment gives the effect of Faraday cage on preventing the EMR from mobile tower EMR on human health listed in the research, that have been done by using conducting shell (grid design according the EM wavelength used by three company's mobile working in Iraq, the result show good isolations.

  20. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study

    International Nuclear Information System (INIS)

    Wu, S.C.; Luo, Y.M.; Cheung, K.C.; Wong, M.H.

    2006-01-01

    A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism. - Influence of bacterial activities on heavy metal is two-edged

  1. Biopsychosocial influence on exercise-induced injury: genetic and psychological combinations are predictive of shoulder pain phenotypes

    OpenAIRE

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2013-01-01

    Chronic pain is influenced by biological, psychological, social, and cultural factors. The current study investigated potential roles for combinations of genetic and psychological factors in the development and/or maintenance of chronic musculoskeletal pain. An exercise-induced shoulder injury model was used and a priori selected genetic (ADRB2, COMT, OPRM1, AVPR1A, GCH1, and KCNS1) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors...

  2. The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting.

    Science.gov (United States)

    Zhang, Bo; Wang, Meng Meng; Wang, Bing; Xin, Yanjun; Gao, Jiaqi; Liu, Huiling

    2018-03-01

    In this study, aerobic co-composting of tylosin fermentation dregs (TFDs) and sewage sludge with different adding concentrations of copper (Cu) was investigated to inspect the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs) and mobile genetic elements (MGEs). Results showed that two concentrations of Cu did affect not only the abiotic factors but the relative abundances of resistance genes. High concentration of Cu inhibited the metabolic capacity of microbial community and the nitrogen-fixing process while had little effect on the degradation of TYL and TOC. The abundance of ermT, mefA, mphA increased partly attributed to the toxic effects and co-selective pressure from heavy metal reflected by MRGs. There was significant correlation among some environmental factors like pH, bio-Cu, organic matters and ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genetic characterization of the inducible SOS-like system of Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Love, P.E.; Yasbin, R.E.

    1984-12-01

    The SOS-like system of Bacillus subtilis consists of several coordinately induced phenomena which are expressed after cellular insult such as DNA damage of inhibition of DNA replication. Mutagenesis of the bacterial chromosomes and the development of maintenance of competence also appear to be involved in the SOS-like response in this bacterium. The genetic characterization of the SOS-like system has involved an analysis of (i) the effects of various DNA repair mutations on the expression of inducible phenomena and (ii) the tsi-23 mutation, which renders host strains thermally inducible for each of the SOS-like functions. Bacterial filamentation was unaffected by any of the DNA repair mutations studied. In contrast, the induction of prophage after thermal or UV pretreatment was abolished in strains carrying the recE4, recA1, recB2, or recG13 mutation. The Weigle reactivation of UV-damaged bacteriophage was also inhibited by the recE4, recA1, recB2, or recG13 mutation, whereas levels of Weigle reactivation were lower in strains which carried the uvrA42, polA5, or rec-961 mutation than in the DNA repair-proficient strain. Strains which carried the recE4 mutation were incapable of chromosomal DNA-mediated transformation, and the frequency of this event was decreased in strains carrying recA1, recB2, or tsi-23 mutation. Plasmid DNA transformation efficiency was decreased only in strains carrying the tsi-23 mutation in addition to the recE4, recA1, or recB2 mutation. The results indicate that the SOS-like system of B. subtilis is regulated at different levels by two or more gene products. In this report, the current data regarding the genetic regulation of inducible phenomena are summarized, and a model is proposed to explain the mechanism of SOS-like induction in B. subtillis. 50 references, 3 figures, 6 tables.

  4. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    International Nuclear Information System (INIS)

    Yamane, Luciana Harue; Tavares de Moraes, Viviane; Crocce Romano Espinosa, Denise; Soares Tenorio, Jorge Alberto

    2011-01-01

    Highlights: → This paper presents new and important data on characterization of wastes of electric and electronic equipments. → Copper concentration is increasing in mobile phones and remaining constant in personal computers. → Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results

  5. Development of TRU waste mobile analysis methods for RCRA-regulated metals

    International Nuclear Information System (INIS)

    Mahan, C.A.; Villarreal, R.; Drake, L.; Figg, D.; Wayne, D.; Goldstein, S.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Glow-discharge mass spectrometry (GD-MS), laser-induced breakdown spectroscopy (LIBS), dc-arc atomic-emission spectroscopy (DC-ARC-AES), laser-ablation inductively-coupled-plasma mass spectrometry (LA-ICP-MS), and energy-dispersive x-ray fluorescence (EDXRF) were identified as potential solid-sample analytical techniques for mobile characterization of TRU waste. Each technology developers was provided with surrogate TRU waste samples in order to develop an analytical method. Following successful development of the analytical method, five performance evaluation samples were distributed to each of the researchers in a blind round-robin format. Results of the round robin were compared to known values and Transuranic Waste Characterization Program (TWCP) data quality objectives. Only two techniques, DC-ARC-AES and EDXRF, were able to complete the entire project. Methods development for GD-MS and LA-ICP-MS was halted due to the stand-down at the CMR facility. Results of the round-robin analysis are given for the EDXRF and DCARC-AES techniques. While DC-ARC-AES met several of the data quality objectives, the performance of the EDXRF technique by far surpassed the DC-ARC-AES technique. EDXRF is a simple, rugged, field portable instrument that appears to hold great promise for mobile characterization of TRU waste. The performance of this technique needs to be tested on real TRU samples in order to assess interferences from actinide constituents. In addition, mercury and beryllium analysis will require another analytical technique because the EDXRF method failed to meet the TWCP data quality objectives. Mercury analysis is easily accomplished on solid samples by cold vapor atomic fluorescence (CVAFS). Beryllium can be analyzed by any of a variety of emission techniques

  6. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  7. Radiotherapy-induced plasticity of prostate cancer mobilizes stem-like non-adherent, Erk signaling-dependent cells

    Czech Academy of Sciences Publication Activity Database

    Kyjacová, Lenka; Hubáčková, Soňa; Krejčíková, Kateřina; Strauss, R.; Hanzlíková, Hana; Dzijak, Rastislav; Imrichová, Terezie; Šímová, Jana; Reiniš, Milan; Bartek, Jiří; Hodný, Zdeněk

    2015-01-01

    Roč. 22, č. 6 (2015), s. 898-911 ISSN 1350-9047 R&D Projects: GA ČR GA13-17658S; GA MZd NT14461 EU Projects: European Commission 259893 Institutional support: RVO:68378050 Keywords : Radiotherapy-induced plasticity * prostate cancer * Erk signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.218, year: 2015

  8. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  9. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  10. Bump Bonding Using Metal-Coated Carbon Nanotubes

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  11. Induced magnetization spiral in a nonmagnetic metal sandwiched between two ferromagnets

    CERN Document Server

    Mathon, J; Villeret, M; Muniz, R B; Edwards, D M

    2000-01-01

    Calculation of the magnetic moment induced in a non-magnetic metal, sandwiched between two ferromagnets with magnetizations at an arbitrary angle, is reported. It is found that the induced magnetization rotates along a complex three-dimensional spiral and can undergo many complete 360 deg. rotations. A simple free-electron model is used to derive an analytic formula for the twist angle phi inside the spacer. This demonstrates that, contrary to the behavior of magnetization inside a domain wall in a ferromagnet, phi varies non-uniformly inside the spacer and exhibits plateaus of almost constant rotation separated by regions of sharp rotations by large angles. The calculation is extended to the case of a realistic Co/Cu/Co(0 0 1) trilayer described by s, p, d tight-binding bands fitted to an ab initio band structure. An analytic formula for the components of the induced moment (and hence, for phi) is derived using the stationary phase approximation. Its validity is tested against a fully numerical calculation u...

  12. Prospect of Induced Pluripotent Stem Cell Genetic Repair to Cure Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Jeanne Adiwinata Pawitan

    2012-01-01

    Full Text Available In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient’s own cell can be developed. However, iPSC from the patients’s cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.

  13. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    Directory of Open Access Journals (Sweden)

    Chia-Yin Chang

    2017-05-01

    Full Text Available In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165, and platelet-derived growth factor-BB (PDGF-BB] by modifying nanoparticles (NPs of three different metals (Au, Ag, and Pt with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  14. Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics.

    Science.gov (United States)

    Villen-Guzman, Maria; Paz-Garcia, Juan M; Amaya-Santos, Gema; Rodriguez-Maroto, Jose M; Vereda-Alonso, Carlos; Gomez-Lahoz, Cesar

    2015-07-01

    Understanding the possible pH-buffering processes is of maximum importance for risk assessment and remediation feasibility studies of heavy-metal contaminated soils. This paper presents the results about the effect of the buffering capacity of a polluted soil, rich in carbonates, on the pH and on the leaching evolution of its main contaminant (lead) when a weak acid (acetic acid) or a strong one (nitric acid) are slowly added. In both cases, the behavior of lead dissolution could be predicted using available (scientifically verified freeware) models assuming equilibrium between the solid and the aqueous phase. However, the experimental results indicate that the dissolution of calcium and magnesium carbonates is kinetically controlled. These kinetic limitations affect the overall behavior, and should be considered to understand also the response of the metals under local equilibrium. The well-known BCR sequential extraction procedure was used before- and after-treatment, to fractionate the lead concentration in the soil according to its mobility. The BCR results were also in agreement with the predictions of the equilibrium model. This agreement allows new insights about the information that could be derived from the BCR fractionation analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Heavy metals pollution in the eastern part of Peshawar metropolis, north Pakistan

    International Nuclear Information System (INIS)

    Hamidullah, S.; Saifullah; Shah, M.T.

    1997-01-01

    Heavy metals are considered one of the harmful substances threatening the environment in the modern industrialised world. Peshawar city, the capital of NWFP, is one of the metropolises of Pakistan, facing a tremendous environmental chaos due to pollution from extensive vehicular examinations and small and large industrial installation in the city. Heavy metal including Cr, Co, Cu, Ni, Zn, Fe an Pb have dangerously polluted the atmosphere and sewerage system of Peshawar city and its suburbs. Both stationary and mobile sources can be named as responsible for this pollution. Traffic mobility is considered as playing a major role in keeping the metals constantly in air is a better sorting agent than water. The mobility path of these heavy metals from ground surface thorough sewerage system, to Shahalam river has been traced. (author)

  16. Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27.

    Science.gov (United States)

    Hirose, H; Sakuma, N; Kaji, N; Nakayama, K; Inoue, K; Sekijima, M; Nojima, T; Miyakoshi, J

    2007-02-01

    An in vitro study focusing on the effects of low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields act to induce phosphorylation and overexpression of heat shock protein hsp27. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced activation or gene expression of hsp27 and other heat shock proteins (hsps). Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80 and 800 mW/kg for 2-48 h, and CW radiation at 80 mW/kg for 24 h. Human IMR-90 fibroblasts from fetal lungs were exposed to W-CDMA at 80 and 800 mW/kg for 2 or 28 h, and CW at 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the expression levels of phosphorylated hsp27 at serine 82 (hsp27[pS82]) were observed between the test groups exposed to W-CDMA or CW signal and the sham-exposed negative controls, as evaluated immediately after the exposure periods by bead-based multiplex assays. Moreover, no noticeable differences in the gene expression of hsps were observed between the test groups and the negative controls by DNA Chip analysis. Our results confirm that exposure to low-level RF field up to 800 mW/kg does not induce phosphorylation of hsp27 or expression of hsp gene family.

  17. Calcium mobilization in HeLa cells induced by nitric oxide.

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  18. Are mobile phones harmful?

    DEFF Research Database (Denmark)

    Blettner, M; Berg, Gabriele

    2000-01-01

    There is increasing public interest in health risks of mobile phone use. Although there is a vast body of material on the biological effects of radiofrequency fields, current risk assessment is still limited. The article describes several hypotheses and results of biological effects such as thermal...... effect, genetic and carcinogenic effects and cancer related investigations. Mobile phones transmit and receive waves of frequencies mainly at 800-1800 MHz. Findings on the thermal effect of acute exposure to radiofrequency fields were consistent, resulting in an increase of cellular, tissue or body...... in cells. Implications of these experimental results on public health concerns are yet unclear. Few epidemiological studies are available on the use of mobile phones or on the radiofrequency exposure and the development of cancer. Most of these studies have no or little quantitative exposure data...

  19. Monitoring transport and equilibrium of heavy metals in soil using induced polarization

    Science.gov (United States)

    Shalem, T.; Huisman, J. A.; Zimmermann, E.; Furman, A.

    2017-12-01

    Soil and groundwater pollution in general, and by heavy metals in particular, is a major threat to human health, and especially in rapidly developing regions, such as China. Fast, accurate and low-cost measurement of heavy metal contamination is of high desire. Spectral induced polarization (SIP) may be an alternative to the tedious sampling techniques typically used. In the SIP method, an alternating current at a range of low frequencies is injected into the soil and the resultant potential is measured along the current's path. SIP is a promising method for monitoring heavy metals, because it is sensitive to the chemical composition of both the absorbed ions on the soil minerals and the pore fluid and to the interface between the two. The high sorption affinity of heavy metals suggests that their electrical signature may be significant, even at relatively low concentrations. The goal of this research is to examine the electrical signature of soil contaminated by heavy metals and of the pollution transport and remediation processes, in a non-tomographic fashion. Specifically, we are looking at the SIP response of various heavy metals in several settings: 1) at equilibrium state in batch experiments; 2) following the progress of a pollution front along a soil column through flow experiments and 3) monitoring the extraction of the contaminant by a chelating agent. Using the results, we develop and calibrate a multi-Cole-Cole model to separate the electrochemical and the interfacial components of the polarization. Last, we compare our results to the electrical signature of contaminated soil from southern China. Results of single metals from both batch and flow experiments display a shift of the relaxation time and a decrease in the phase response of the soil with increase of the metal concentration, suggesting strong sorption of the metals on the stern layer. Preliminary results also show evidence of electrodic polarization, assuming to be related to the formation of

  20. Wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite

    Directory of Open Access Journals (Sweden)

    Malkin Polad

    2018-04-01

    Full Text Available Despite the wide practical use of sorption methods and complexones in treatment of industrial wastewater, some problems are still to be solved in this field. These are the most significant: insufficient sorption capacity of materials, lack of reliable methods for regenerating sorbents and resource-saving ecology friendly treatment technologies with the use of sorbents as well as methods of utilization of heavy metals from waste by complex formation. An important factor affecting the behavior of heavy metals in the soil is the medium acidity. With a neutral and slightly alkaline reaction of the medium, hardly soluble compounds are formed: hydroxides, sulphides, phosphates, carbonates, and oxalates of heavy metals. When acidity increases the reverse process runs in the soil: hardly soluble compounds become more mobile, while mobility of many heavy metals increases. However, the effect of soil acidity on mobility of heavy metals is ambiguous. Although mobility of many heavy metals decreases with increasing pH of the medium (for example, Fe, Mn, Zn, Co, etc., there are a number of metals whose mobility increases with soil neutralization. These include molybdenum and chromium, which are able to form soluble salts in a weak ly acidic and alkaline medium. In addition, heavy metals such as mercury and cadmium are able to maintain mobility in an alkaline medium through formation of complex compounds with organic matter in soils. Heavy metals interact with a solid phase of the soil by mechanisms of specific and nonspecific adsorption. In this article, a technique of wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite is proposed. This technique can reduce significant costs in preparation of raw materials and subsequent chemical modification of them. Technological solutions aimed at disposal and recycling of industrial wastewater have been proposed. These solutions make it possible to obtain the water

  1. Phytoremediation of heavy metal polluted sites

    International Nuclear Information System (INIS)

    Aery, N.C.; Panchal, Jayesh

    2007-01-01

    The nature of soil, the contaminant's chemical and physical characteristics and environmental factors such as climate and hydrology interact to determine the accumulation, mobility, toxicity, and overall significance of the contaminant in any specific instance. Although many metals are essential, all metals are toxic at higher concentrations, because they cause oxidative stress by formation of free radicals. Another reason why metals may be toxic is that they can replace essential metals in enzymes disrupting their function. Thus, metals render the land unsuitable for plant growth and destroy the biodiversity. Metal contaminated soil can be remediated by chemical, physical and biological techniques

  2. Magnetization induced by odd-frequency spin-triplet Cooper pairs in a Josephson junction with metallic trilayers

    Science.gov (United States)

    Hikino, S.; Yunoki, S.

    2015-07-01

    We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization exhibits a discontinuous peak at each resonance dc voltage Vn=n ℏ ωS/2 e (n : integer) when dc voltage V as well as ac voltage vac(t ) with frequency ωS are both applied to the S /F 1 /N /F 2 /S junction. This is because MII(d ,θ ) oscillates generally in time t (ac magnetization) with d θ /d t =2 e [V +vac(t ) ]/ℏ and thus =0 , but can be converted into the time-independent dc magnetization for the dc voltage at Vn. We also discuss that the magnetization induced in the N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between the two S s in Josephson junctions. Our results

  3. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  4. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-01-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million

  5. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  6. Engineering MerR for Sequestration and MerA for Reduction of Toxic Metals and Radionuclides

    International Nuclear Information System (INIS)

    Summers, Anne O.

    2008-01-01

    The objectives of this project were (1) to alter a metalloregulatory protein (MerR) so that it would bind other toxic metals or radionuclides with similar affinity so that the engineered protein itself and/or bacteria expressing it could be deployed in the environment to specifically sequester such metals and (2) to alter the mercuric reductase, MerA, to reduce radionuclides and render them less mobile. Both projects had a basic science component. In the first case, such information about MerR illuminates how proteins discriminate very similar metals/elements. In the second case, information about MerA reveals the criteria for transmission of reducing equivalents from NADPH to redox-active metals. The work involved genetic engineering of all or parts of both proteins and examination of their resultant properties both in vivo and in vitro, the latter with biochemical and biophysical tools including equilibrium and non-equilibrium dialysis, XAFS, NMR, x-ray crystallography, and titration calorimetry. We defined the basis for metal specificity in MerR, devised a bacterial strain that sequesters Hg while growing, characterized gold reduction by MerA and the role of the metallochaperone domain of MerA, and determined the 3-D structure of MerB, the organomercurial lyase.

  7. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    International Nuclear Information System (INIS)

    Audry, Stephane; Grosbois, Cecile; Bril, Hubert; Schaefer, Joerg; Kierczak, Jakub; Blanc, Gerard

    2010-01-01

    flood event, about 870 t of Zn, 18 t of Cd, 25 t of Pb and 17 t of Cu could be mobilized from the downstream reservoir sediments along the Lot River by resuspension-induced oxidation of sulfide phases. These amounts are equivalent to 13-fold (Cd), ∼6-fold (Zn), 4-fold (Pb) the mean annual inputs of the respective dissolved trace metals into the Gironde estuary.

  8. Ontogenic and sexual differences in pituitary GnRH receptors and intracellular Ca2+ mobilization induced by GnRH.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Lux-Lantos, V; Libertun, C; Becú-Villalobos, D

    1998-04-01

    The present experiments were designed in order to elucidate the participation of the developing hypophysis in determining the changing sensitivity of gonadotrophins to gonadotropin-releasing hormone (GnRH) during ontogeny in the rat. To that end, we chose two well defined developmental ages that differ markedly in sexual and ontogenic characteristics of hypophyseal sensitivity to GnRH, 15 and 30 d. In order to study sex differences and the role of early sexual organization of the hypothalamus, experiments were carried out in males, females, and neonatally androgenized females (TP females). We evaluated (1) the characteristics of pituitary GnRH receptors, and (2) associated changes in GnRH-induced mobilization of intracellular Ca2+ (a second messenger involved in gonadotropins exocytosis). We measured binding characteristics of the GnRH analog D-Ser(TBu)6-des-Gly10-GnRH ethylamide in pituitary homogenates. We found that Kds did not vary among the different sex groups. Total number and concentration of receptors decreased in the female rat from 15-30 d of age, whereas in the male and TP female, receptors/pituitary increased, and the concentration/mg tissue did not change. Also, at 30 days of age, males presented higher content and concentration of receptors than females, and higher content than TP females. In order to evaluate if developmental and sexual differences in pituitary sensitivity to GnRH might be expressed through variations in the intracellular Ca2+ signal, we studied the mobilization of intracellular Ca2+ induced by GnRH (1 x 10(-8) to 1 x 10(-11) M) in a suspension of dispersed pituitary cells in the six groups. In cells from 15-d-old females, Ca2+ response was greater than in 30-d-old females at the doses of 10(-8) to 10(-10) M, indicating that in the infantile female rat activation of highly concentrated GnRH receptors is reflected in an increase in signal transduction mediated by Ca2+. In males and in female rats androgenized at birth, there was also

  9. Ion-beam-induced reactions in metal-thin-film-/BP system

    International Nuclear Information System (INIS)

    Kobayashi, N.; Kumashiro, Y.; Revesz, P.; Mayer, J.W.

    1989-01-01

    Ion-beam-induced reactions in Ni thin films on BP(100) have been investigated and compared with the results of the thermal reaction. The full reaction of Ni layer with BP induced by energetic heavy ion bombardments (600 keV Xe) was observed at 200degC and the formation of the crystalline phase corresponding to a composition of Ni 4 BP was observed. Amorphous layer with the same composition was formed by the bombardments below RT. For thermally annealed samples the reaction of the Ni layer on BP started at temperatures between 350degC and 400degC and full reaction was observed at 450degC. Metal-rich ternary phase or mixed binary phase is thought to be the first crystalline phase formed both in the ion-beam-induced and in the thermally induced reactions. The crystalline phase has the same composition and X-ray diffraction pattern both for ion-beam-induced and thermal reactions. Linear dependence of the reacted thickness on the ion fluence was also observed. The authors would like to express their sincere gratitude to Jian Li and Shi-Qing Wang for X-ray diffraction measurements at Cornell University. One of the authors (N.K.) acknowledge the Agency of Science and Technology of Japan for the financial support of his stay at Cornell. We also acknowledge Dr. H. Tanoue at ETL for his help in ion bombardment experiments. (author)

  10. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  11. Effect of cadmium on genetic toxicity and protection of cortex acanthopanasia radicis against genetic damage induced by cadmium

    International Nuclear Information System (INIS)

    Liu Bing; Pang Huimin; Chen Minyi

    1999-01-01

    Objective and Methods: The test of sperm aberration and micronucleus of bone marrow cells in mice were used to detect the mutagenicity of cadmium and anti-mutagenicity of Cortex Acanthopanasia Radicis (CAR) on germ cell and somatic cell. Kunming mice were divided randomly into four groups: normal saline control group (NS): MMC control group (MMC 1.0 mg/kg); Cd-mutate group (1/5 LD 50 ), 17.6 mg/kg); CAR anti-mutate group (CAR 1,2,4 g/kg + Cd). Ridit test and x 2 were used to evaluate the statistical significance of the date. Results: The experiment demonstrated that Chinese medicine CAR can significantly decrease sperm aberration and micronuclei frequencies induced by Cd (P<0.01). Conclusion: As an anti-mutagen CAR has practical value in occupational protection against genetic damage induced by Cd

  12. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    Science.gov (United States)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  13. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  14. Synchrotron Analysis Of Metal Immobilization In Sediments

    Science.gov (United States)

    Heavy metal contamination is a problem at many marine and fresh water environments as a result of industrial and military activities. Metals such as lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) are common contaminants in sediments due to many Navy activities. The mobile...

  15. Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array

    Directory of Open Access Journals (Sweden)

    Yoshiki Osaka

    2015-01-01

    Full Text Available We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz. Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.

  16. Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate

    Science.gov (United States)

    Xiu, Jun-Shan; Bai, Xue-Shi; Motto-Ros, Vincent; Yu, Jin

    2015-04-01

    Optical emissions from the major and trace elements embodied in a transparent gel prepared from cooking oil were detected after the gel was spread in a thin film on a metallic substrate. Such emissions are due to the indirect breakdown of the coating layer. The generated plasma, a mixture of substances from the substrate, the layer, and the ambient gas, was characterized using emission spectroscopy. The characteristics of the plasma formed on the metal with and without the coating layer were investigated. The results showed that Al emission induced from the aluminum substrates coated with oil films extends away from the target surface to ablate the oil film. This finally formed a bifurcating circulation of aluminum vapor against a spherical confinement wall in the front of the plume, which differed from the evolution of the plasma induced from the uncoated aluminum target. The strongest emissions of elements from the oil films can be observed at 2 mm above the target after a detection delay of 1.0 μs. A high temperature zone has been observed in the plasma after the delay of 1.0 μs for the plasma induced from the coated metal. This higher temperature determined in the plasma allows the consideration of the sensitive detection of trace elements in liquids, gels, biological samples, or thin films.

  17. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  18. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity.

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z; Jedrychowski, Mark P; Bare, Curtis J; Mina, Amir I; Kumari, Manju; Zhang, Song; Vuckovic, Ivan; Laznik-Bogoslavski, Dina; Dzeja, Petras; Banks, Alexander S; Rosen, Evan D; Spiegelman, Bruce M

    2017-10-03

    Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity. Published by Elsevier Inc.

  19. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  20. Biopsychosocial influence on exercise-induced injury: genetic and psychological combinations are predictive of shoulder pain phenotypes.

    Science.gov (United States)

    George, Steven Z; Parr, Jeffrey J; Wallace, Margaret R; Wu, Samuel S; Borsa, Paul A; Dai, Yunfeng; Fillingim, Roger B

    2014-01-01

    Chronic pain is influenced by biological, psychological, social, and cultural factors. The current study investigated potential roles for combinations of genetic and psychological factors in the development and/or maintenance of chronic musculoskeletal pain. An exercise-induced shoulder injury model was used, and a priori selected genetic (ADRB2, COMT, OPRM1, AVPR1 A, GCH1, and KCNS1) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors were included as predictors. Pain phenotypes were shoulder pain intensity (5-day average and peak reported on numerical rating scale), upper extremity disability (5-day average and peak reported on the QuickDASH), and shoulder pain duration (in days). After controlling for age, sex, and race, the genetic and psychological predictors were entered as main effects and interaction terms in separate regression models for the different pain phenotypes. Results from the recruited cohort (N = 190) indicated strong statistical evidence for interactions between the COMT diplotype and 1) pain catastrophizing for 5-day average upper extremity disability and 2) depressive symptoms for pain duration. There was moderate statistical evidence for interactions for other shoulder pain phenotypes between additional genes (ADRB2, AVPR1 A, and KCNS1) and depressive symptoms, pain catastrophizing, or kinesiophobia. These findings confirm the importance of the combined predictive ability of COMT with psychological distress and reveal other novel combinations of genetic and psychological factors that may merit additional investigation in other pain cohorts. Interactions between genetic and psychological factors were investigated as predictors of different exercise-induced shoulder pain phenotypes. The strongest statistical evidence was for interactions between the COMT diplotype and pain catastrophizing (for upper extremity disability) or depressive symptoms (for pain duration). Other novel

  1. Neogambogic acid prevents silica-induced fibrosis via inhibition of high-mobility group box 1 and MCP-1-induced protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Zhang, Mei, E-mail: meizhang1717@163.com [Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Zhongjiang [Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Cheng, Yusi; Liu, Haijun [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Zhou, Zewei [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Han, Bing [Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Chen, Baoan [Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong, E-mail: yaohh@seu.edu.cn [Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China)

    2016-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}); early stages are characterized by alveolar inflammation, and later stages are characterized by progressive lung fibrosis. Mounting evidence indicates that high-mobility group box 1 (HMGB1) is involved in pulmonary fibrosis. Whether neogambogic acid (NGA) inhibits macrophage and fibroblast activation induced by SiO{sub 2} by targeting HMGB1 remains unclear. Methods and results: Experiments using cultured mouse macrophages (RAW264.7 cells) demonstrated that SiO{sub 2} treatment induces the expression of HMGB1 in a time- and dose-dependent manner via mitogen-activated protein kinases (MAPKs) and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway; in turn, this expression causes macrophage apoptosis and fibroblast activation. Pretreating macrophages with NGA inhibited the HMGB1 expression induced by SiO{sub 2} and attenuated both macrophage apoptosis and fibroblast activation. Moreover, NGA directly inhibited MCP-1-induced protein 1 (MCPIP1) expression, as well as markers of fibroblast activation and migration induced by SiO{sub 2}. Furthermore, the effects of NGA on macrophages and fibroblasts were confirmed in vivo by exposing mice to SiO{sub 2}. Conclusion: NGA can prevent SiO{sub 2}-induced macrophage activation and apoptosis via HMGB1 inhibition and SiO{sub 2}-induced fibrosis via the MCPIP1 pathway. Targeting HMGB1 and MCPIP1 with NGA could provide insights into the potential development of a therapeutic approach for alleviating the inflammation and fibrosis induced by SiO{sub 2}. - Highlights: • The SiO{sub 2} induced HMGB1 in alveolar macrophage and MCPIP1 in fibroblast. • NGA rescued the SiO{sub 2}-induced apoptosis of alveolar macrophages via HMGB1 signaling. • NGA inhibited the fibroblast activation induced by SiO{sub 2} via MCPIP1 signaling. • NGA might represent a potential therapeutic approach for silicosis.

  2. Mobility of trace metals associated with urban particles exposed to natural waters of various salinities from the Gironde Estuary, France

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Joerg; Blanc, Gerard [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Norra, Stefan [Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry; Klein, Daniel [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry

    2009-08-15

    extracted by means of concentrated HNO{sub 3}, estuarine freshwaters and waters of two different salinities (S=15 and S=31). Analysis of trace elements was carried out by means of quadrupole inductively coupled plasma-mass spectrometry. Furthermore, single particles from road sediments were characterised with scanning electron microscopy (SEM). Results: SEM analysis clearly showed that some particles contained fairly high concentrations of potentially toxic trace elements. Extractions of materials investigated by varying acidities and salinities documented that the potentially bioavailable fractions extracted by concentrated HNO{sub 3} may cover wide concentration ranges. Natural estuarine waters of various salinities (S=0.5; S=15; S=31) extracted high proportions of Co, Ni, Cu, Zn and Cd from urban particles, especially for high-salinity water (S=31). Extractions with freshwater revealed the lowest concentrations of desorbed trace elements. Particulate Mo, Pb and V showed similar or lower mobility in saline water compared with freshwater, depending on the sample type. Discussion: Trace element mobility in estuarine waters varied according to the type of urban particles and depended on salinity for Co, Ni, Cu, Zn and Cd. This is of high importance for towns located directly at the coast or for cities like Bordeaux, where water courses crossing the agglomerations are connected to saline water masses. Since trace elements desorbed from particles in saline waters may become highly bioavailable, they bear a potential risk for organisms. Comprehensive studies on the behaviour of urban particles in estuarine waters and the related potential environmental impact are still missing. Conclusions: Saline waters mobilise relatively high amounts of Co, Ni, Cu, Zn and Cd from urban particles suggesting considerable metal fluxes from riverine urban systems into coastal waters. Although estimates of trace metal inputs by urban bulk deposition (urban dust) and other types of urban particles

  3. Radiotherapy-induced plasticity of prostate cancer mobilizes stem-like non-adherent, Erk signaling-dependent cells

    Czech Academy of Sciences Publication Activity Database

    Kyjacová, Lenka; Hubáčková, Soňa; Krejčíková, Kateřina; Strauss, R; Hanzlíková, Hana; Dzijak, Rastislav; Imrichová, Terezie; Šímová, Jana; Reiniš, Milan; Bartek, Jiří; Hodný, Zdeněk

    -, July (2014) ISSN 1350-9047 R&D Projects: GA ČR GA13-17658S; GA MZd NT14461 Grant - others:Danish Research Council(DK) DFF-1331-00262B; Lundbeck Foundation(DK) (R93-A8990; European Commission DDResponse 259893 Institutional support: RVO:68378050 Keywords : Radiotherapy * induced plasticity * prostate cancer * Erk Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.184, year: 2014

  4. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  5. New Digital Metal-Oxide (MOx Sensor Platform

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2018-03-01

    Full Text Available The application of metal oxide gas sensors in Internet of Things (IoT devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

  6. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Glisezinski, I. de; Larrouy, D.; Bajzova, M.

    2009-01-01

    The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched...... of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean...... individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent...

  7. Metal partitioning and uptake in central Ontario forests

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; Dillon, Peter J.; Epova, Ekaterina N.

    2005-01-01

    Evaluation of the potential environmental risk posed by metals depends to a great extent on modeling the fate and mobility of metals with soil-solution partitioning coefficients (K d ). However, the effect of biological cycling on metal partitioning is rarely considered in standard risk assessments. We determined soil-solution partitioning coefficients for 5 metals (Cd, Zn, Pb, Co and Ni) at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH aq varied from 3.9 to 8.1. Foliage from the dominant tree species and forest floor samples were also collected from each site to compare their metal levels with K d predictions. Analogous to other studies, log K d values for all metals were predicted by empirical linear regression with soil pH (r 2 = 0.66-0.72), demonstrating that metal partitioning between soil and soil solution can be reliably predicted for relatively unpolluted forest mineral soils by soil pH. In contrast, whereas the so-called bioavailable water-soluble metal fraction could be predicted from soil pH, metal concentrations in foliage and the forest floor at each site were not consistently related to pH. Risk assessment of metals should take into account the role of biota in metal cycling and partitioning in forests, particularly if metal bio-accumulation and chronic toxicity in the food chain, rather than metal mobility in soils, are of primary concern. - Metal cycling by plants should be considered in risk assessment studies

  8. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site

    Energy Technology Data Exchange (ETDEWEB)

    Impellitteri, Christopher A. [United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)]. E-mail: Impellitteri.christopher@epa.gov

    2005-06-01

    Arsenic in soils from the Asarco lead smelter in East Helena, Montana was characterized by X-ray absorption spectroscopy (XAS). Arsenic oxidation state and geochemical speciation were analyzed as a function of depth (two sampling sites) and surface distribution. These results were compared with intensive desorption/dissolution experiments performed in a pH stat reactor for samples from the site with the highest degree of As heterogeneity. The objectives of the study were to investigate the solid-phase geochemical As speciation, assess the speciation of As in solutions equilibrated with the solids under controlled pH (pH=4 or 6) and Eh (using hydrogen or air) environments, observe the effects of phosphate on the release of As into solution, and examine the effects of phosphate on metal mobility in the systems. Arsenic was predominantly found in the As(V) valence state, though there was evidence that As(III) and As(0) were present also. The dominant geochemical phase was scorodite (FeAsO{sub 4}.2H{sub 2}O). The pH was controlled in the pH stat experiments by the addition of equinormal solutions of monoprotic (HNO{sub 3}), diprotic (H{sub 2}SO{sub 4}), or triprotic (H{sub 3}PO{sub 4}) acids. For many of the divalent metal cations, solution concentrations greatly decreased in the presence of phosphate. Solutions were also analyzed for anions. Evidence exists for sulfate release into solution. More As was released into solution at lower pH. A slight increase in solution arsenate occurs with the addition of phosphate, but the risk posed from the increased desorption/dissolution of As must be weighed against the decrease in solution concentrations of many metals especially Pb. If tailings from this site underwent acidification (e.g., acid mine drainage), in situ sequestration of metals by phosphate could be combined with placement of subsurface permeable reactive barriers for capture of As to reduce the risk associated with arsenic and trace metal mobilization. Results

  9. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    Science.gov (United States)

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy

  10. Interactions between heavy metals and sewer slimes. Wechselwirkungen zwischen Schwermetallen und Sielhaut

    Energy Technology Data Exchange (ETDEWEB)

    Gutekunst, B.

    1989-09-01

    Sewer slimes in wastewater pipes are an efficient means for detecting heavy metals discharged into the sewer system. The chances and limits of this method are discussed on the basis of the interactions between the heavy metals and the sewer slime. Chemical processes which lead to an accumulation of heavy metals are precipitation, adsorption and sedimentation. The mobilization is due to dissolution, desorption and complexation. The dependency of the waste water parameters pH, redox potential, heavy metal concentration and speciation on the accumulation and mobilization of the heavy metals is investigated as well as the binding capacity and strength. The heavy metals speciations in sewer slime are estimated by the application of a sequential leaching technique. Finally the practical significance of the experiments is shown. (orig.).

  11. Mobility of Ra-226 and Heavy Metals (U, Th and Pb) from Pyritic Uranium Mine Tailings under Sub-aqueous Disposal Conditions - 59283

    International Nuclear Information System (INIS)

    Dave, Nand K.

    2012-01-01

    All uranium mines in the Elliot Lake uranium mining district of north-central Ontario, Canada, have been closed due to low ore grade and prevailing market conditions. A majority of the waste management facilities have been rehabilitated and decommissioned with in-situ shallow water covers to minimize sulphide oxidation, and hence acid generation and release of metal enriched effluents. Laboratory lysimeter studies were undertaken to evaluate the leaching characteristics and mobility of Ra-226 and other heavy metals (U, Th and Pb) from pyritic uranium mine tailings under sub-aqueous disposal conditions for assessing the long-term radiological stability of such waste repositories. The experiments were conducted using three types of un-oxidized tailings: fine, coarse and gypsum depleted mill total tailings. Shallow water covers of depth ∼ 0.3 m were established using natural lake water. The leaching characteristics of radium and other major and trace metals were determined by monitoring both surface and pore water qualities as a function of time. The results showed that Ra-226 was leached from surface of the submerged tailings and released to both surface water and shallow zone pore water during initial low sulphate ion concentration of the surface water cover in all three cases. The release of Ra-226 was further enhanced with the onset of weak acidic conditions in the surface water covers of both coarse and gypsum depleted mill total tailings. With additional acid generation and increasing sulphate and iron concentrations, the dissolved Ra-226 concentrations in the water covers of these tailings gradually decreased back to low levels. Pb was also leached and mobilized with the development of moderate acidic conditions at the surface of the submerged coarse and gypsum deplete tailings. No leaching of U and Th was observed. (authors)

  12. The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors

    International Nuclear Information System (INIS)

    Lee, Sunghwan; Park, Hongsik; Paine, David C.

    2012-01-01

    The effect of contact resistance on the measurement of the field effect mobility of compositionally homogeneous channel indium zinc oxide (IZO)/IZO metallization thin film transistors (TFTs) is reported. The TFTs studied in this work operate in depletion mode as n-channel field effect devices with a field effect mobility calculated in the linear regime (μ FE ) of 20 ± 1.9 cm 2 /Vs and similar of 18 ± 1.3 cm 2 /Vs when calculated in the saturation regime (μ FE sat ). These values, however, significantly underestimate the channel mobility since a large part of the applied drain voltage is dropped across the source/drain contact interface. The transmission line method was employed to characterize the contact resistance and it was found that the conducting-IZO/semiconducting-IZO channel contact is highly resistive (specific contact resistance, ρ C > 100 Ωcm 2 ) and, further, this contact resistance is modulated with applied gate voltage. Accounting for the contact resistance (which is large and modulated by gate voltage), the corrected μ FE is shown to be 39 ± 2.6 cm 2 /Vs which is consistent with Hall mobility measurements of high carrier density IZO.

  13. Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas.

    Science.gov (United States)

    Kurniawan, Koo Hendrik; Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Suliyanti, Maria Margaretha; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kagawa, Kiichiro

    2015-09-01

    We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications.

  14. Influence of Protozoan Grazing on the Marine Geochemistry of Particle Reactive Trace Metals

    National Research Council Canada - National Science Library

    Barbeau, Katherine

    1998-01-01

    .... Principle findings included mobilization of extracellular as well as intracellular trace metals by protists, apparent generation of metal-organic complexes, and decoupling of metal and carbon cycling...

  15. Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease.

    Directory of Open Access Journals (Sweden)

    Sirena Soriano

    Full Text Available Friedreich's ataxia (FRDA, the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin deficiency-induced phenotypes. Taken together, these results demonstrate that the metal dysregulation in FRDA includes other metals besides iron, therefore providing a new set of potential therapeutic targets.

  16. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  17. Interface States in AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors

    International Nuclear Information System (INIS)

    Feng Qian; Du Kai; Li Yu-Kun; Shi Peng; Feng Qing

    2013-01-01

    Frequency-dependent capacitance and conductance measurements are performed on AlGaN/GaN high electron mobility transistors (HEMTs) and NbAlO/AlGaN/GaN metal-insulator-semiconductor HEMTs (MISHEMTs) to extract density and time constants of the trap states at NbAlO/AlGaN interface and gate/AlGaN interface with the gate-voltage biased into the accumulation region and that at the AlGaN/GaN interface with the gate-voltage biased into the depletion region in different circuit models. The measurement results indicate that the trap density at NbAlO/AlGaN interface is about one order lower than that at gate/AlGaN interface while the trap density at AlGaN/GaN interface is in the same order, so the NbAlO film can passivate the AlGaN surface effectively, which is consistent with the current collapse results

  18. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    Science.gov (United States)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  19. The protective effect of hypoxia and dithiothreitol on X-ray-induced genetic damage in Arabidopsis

    International Nuclear Information System (INIS)

    Sree Ramulu, K.; Veen, J.H. van der

    1987-01-01

    A study was made on the protective effect of hypoxia and dithiothreitol (DTT) on X-ray-induced ovule sterility and embryonic lethality in Arabidopsis. Both hypoxia and DTT gave a pronounced and additive reduction of radiation-induced genetic damage. The reduction was significantly higher for ovule sterility than for embryonic lethals. It is suggested that non-fertilized ovules contain a higher ratio of strand breaks/other damage than embryonic lethals do, for hypoxia and DTT are known specifically to give a reduction of strand breaks. (Auth.)

  20. Unsupervised Power Profiling for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik

    Today, power consumption is a main limitation for mobile phones. To minimize the power consumption of popular and traditionally power-hungry location-based services requires knowledge of how individual phone features consume power, so that those features can be utilized intelligently for optimal...... power savings while at the same time maintaining good quality of service. This paper proposes an unsupervised API-level method for power profiling mobile phones based on genetic algorithms. The method enables accurate profiling of the power consumption of devices and thereby provides the information...