WorldWideScience

Sample records for metal-free phthalocyanine molecules

  1. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  2. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Amjad, E-mail: amjad.farooq1212@hotmail.com [Wah Engineering College, University of Wah, Wah Cantt. 47040 (Pakistan); GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Karimov, Kh.S. [GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Physical Technical Institute, Aini St. 299/1, Dushanbe 734063 (Tajikistan); Ahmed, Nisar; Ali, Taimoor [GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi (Pakistan); Khalid Alamgir, M. [National Institute of Vacuum Science and Technology, NCP complex, Islamabad 44000 (Pakistan); Usman, Muhammad [Experimental Physics Laboratories, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2015-01-15

    In this study we present the dependence of electrical properties of copper phthalocyanine (CuPc) and metal free phthalocyanine (H{sub 2}Pc) bulk heterojunction structure under different illumination levels. To fabricate the device on ITO coated glass substrate the bulk heterojunction thin film of CuPc and H{sub 2}Pc with thickness varying from 100 nm to 300 nm are deposited by thermal evaporator. Aluminum thin film was deposited by thermal evaporation as a top contact. The optical properties of the fabricated device are investigated using UV–vis spectroscopy. The current-voltage characteristics in dark and under illumination show that the device is sensitive towards visible light. The absorption spectrum describes its photo sensitivity in the range of wavelength from 200 nm to 850 nm. Simulation of current-intensity of light curve is carried out and experimental results are found in good agreement with simulated ones.

  3. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector

    International Nuclear Information System (INIS)

    Farooq, Amjad; Karimov, Kh.S.; Ahmed, Nisar; Ali, Taimoor; Khalid Alamgir, M.; Usman, Muhammad

    2015-01-01

    In this study we present the dependence of electrical properties of copper phthalocyanine (CuPc) and metal free phthalocyanine (H 2 Pc) bulk heterojunction structure under different illumination levels. To fabricate the device on ITO coated glass substrate the bulk heterojunction thin film of CuPc and H 2 Pc with thickness varying from 100 nm to 300 nm are deposited by thermal evaporator. Aluminum thin film was deposited by thermal evaporation as a top contact. The optical properties of the fabricated device are investigated using UV–vis spectroscopy. The current-voltage characteristics in dark and under illumination show that the device is sensitive towards visible light. The absorption spectrum describes its photo sensitivity in the range of wavelength from 200 nm to 850 nm. Simulation of current-intensity of light curve is carried out and experimental results are found in good agreement with simulated ones

  4. Atomic contributions to the valence band photoelectron spectra of metal-free, iron and manganese phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Bidermane, I., E-mail: ieva.bidermane@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Institut des Nanosciences de Paris, UPMC Univ. Paris 06, CNRS UMR 7588, F-75005 Paris (France); Brumboiu, I.E. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Totani, R. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Grazioli, C. [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Departement of Chemical and Pharmaceutical Sciences, University of Trieste (Italy); Shariati-Nilsson, M.N.; Herper, H.C.; Eriksson, O.; Sanyal, B. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Ressel, B. [University of Nova Gorica, Vipavska Cesta 11c, 5270 Ajdovščina (Slovenia); Simone, M. de [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Lozzi, L. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Brena, B.; Puglia, C. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden)

    2015-11-15

    Highlights: • In detail comparison between the valence band structure of H{sub 2}Pc, FePc and MnPc. • Comparison between the gas phase samples and thin evaporated films on Au (1 1 1). • Detailed analysis of the atomic orbital contributions to the valence band features. • DFT/HSE06 study of the valence band electronic structure of H{sub 2}Pc, FePc and MnPc. - Abstract: The present work reports a photoelectron spectroscopy study of the low-energy region of the valence band of metal-free phthalocyanine (H{sub 2}Pc) compared with those of iron phthalocyanine (FePc) and manganese phthalocyanine (MnPc). We have analysed in detail the atomic orbital composition of the valence band both experimentally, by making use of the variation in photoionization cross-sections with photon energy, and theoretically, by means of density functional theory. The atomic character of the Highest Occupied Molecular Orbital (HOMO), reflected on the outermost valence band binding energy region, is different for MnPc as compared to the other two molecules. The peaks related to the C 2p contributions, result in the HOMO for H{sub 2}Pc and FePc and in the HOMO-1 for MnPc as described by the theoretical predictions, in very good agreement with the experimental results. The DFT simulations, discerning the atomic contribution to the density of states, indicate how the central metal atom interacts with the C and N atoms of the molecule, giving rise to different partial and total density of states for these three Pc molecules.

  5. Synthesis and characterization of near-IR absorbing metal-free and zinc(II phthalocyanines modified with aromatic azo groups

    Directory of Open Access Journals (Sweden)

    Mukaddes Özçeşmeci

    2015-05-01

    Full Text Available Metal-free and zinc(II phthalocyanine complexes bearing peripheral (E-4-((2-hydroxynaphthalen-1-yldiazenyl units have been synthesized. Novel phthalonitrile derivative required for the preparation of phthalocyanine complexes was prepared by coupling 4-aminophthalonitrile and 2-naphthol. The structures of these new compounds were characterized by using elemental analyses, proton nuclear magnetic resonance, fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, fluorescence spectroscopy and mass spectrometry. In the UV-Vis spectra a broad absorption band appears for phthalocyanine complexes at around 450–500 nm resulting from azo-group introduced onto the phthalocyanine ring. The photophysical properties of metal-free and zinc(II phthalocyanines were studied in tetrahydrofuran.

  6. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La “Sapienza,” 00185 Roma (Italy); Montoro, Silvia [IFIS Litoral, CONICET-UNL, Laboratorio de Fisica de Superficies e Interfaces, Güemes 3450, Santa Fe (Argentina); Mariani, Carlo, E-mail: carlo.mariani@uniroma1.it [Dipartimento di Fisica, CNISM, Università di Roma La “Sapienza,” 00185 Roma (Italy)

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  7. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.

    Science.gov (United States)

    Umari, P; Fabris, S

    2012-05-07

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  8. Tetra- and octa-[4-(2-hydroxyethyl)phenoxy bearing novel metal-free and zinc(II) phthalocyanines: Synthesis, characterization and investigation of photophysicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Köksoy, Baybars [Marmara University, Department of Chemistry, 34722 Kadıköy, Istanbul (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli (Turkey); Bulut, Mustafa, E-mail: mbulut@marmara.edu.tr [Marmara University, Department of Chemistry, 34722 Kadıköy, Istanbul (Turkey)

    2015-05-15

    In this study, four novel phthalonitriles (1–4) and their corresponding metal-free (5–8) and zinc(II) phthalocyanine derivatives (9–12) bearing 4-(hydroxyethyl)phenoxy groups were synthesized. These novel compounds were characterized by IR, elemental analyses, {sup 1}H-NMR, UV–vis, and MALDI-TOF spectral data. Furthermore, photophysical (fluorescence quantum yields and lifetimes) and photochemical properties (singlet oxygen generation and photodegradation quantum yields) of these phthalocyanines were investigated in dimethylsulfoxide. The studied zinc(II) phthalocyanines generated highly singlet oxygen which is very important for the photodynamic therapy (PDT) of cancer. The fluorescence quenching behaviour of the newly synthesized phthalocyanine compounds were also investigated using 1,4-benzoquinone. - Highlights: • Octa and tetra 4-(hydroxyethyl)phenoxy substituted metal-free and zinc(II) phthalocyanines. • Study of photophysicochemical properties of eight new phthalocyanines. • Highly singlet oxygen generation for novel zinc(II) phthalocyanine photosensitizers.

  9. The photophysical and photochemical properties of new unmetallated and metallated phthalocyanines bearing four 5-chloroquinolin-8-yloxy substituents on peripheral sites

    Energy Technology Data Exchange (ETDEWEB)

    Nas, Asiye; Demirbaş, Ümit [Department of Chemistry, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400 Kocaeli (Turkey); Kantekin, Halit, E-mail: halit@ktu.edu.tr [Department of Chemistry, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-01-15

    The synthesis and characterization of novel peripherally tetrakis-(5-chloroquinolin-8-yloxy) substituted metal-free (4), zinc(II) (5), lead(II) (6), cobalt(II) (7), copper(II) (8) and nickel(II) (9) phthalocyanines are described for the first time in this study. The spectroscopic, photophysical (fluorescence quantum yields and lifetimes) and photochemical properties (singlet oxygen production and photodegradation under light irradiation) of metal-free (4), zinc(II) (5) and lead(II) (6) phthalocyanines are investigated in N,N-dimetilformamid (DMF). The newly synthesized cobalt(II) (7), copper(II) (8) and nickel(II) (9) phthalocyanine compounds were not evaluated for this purpose due to open shell nature of these central metals in the phthalocyanine cavity. The influence of various the nature of the central metal ion (zinc, lead or without metal) on these properties has also been investigated and compared. -- Highlights: • The synthesis and characterization of novel peripherally tetrakis-(5-chloroquinolin-8-yloxy) substituted metal-free (4), zinc(II) (5), lead(II) (6), cobalt(II) (7), copper(II) (8) and nickel(II) (9) phthalocyanines. • The spectroscopic, photophysical (fluorescence quantum yields and lifetimes) and photochemical properties of metal-free (4), zinc(II) (5) and lead(II) (6)phthalocyanines in N, N-dimetilformamid (DMF). • The influence of various the nature of the central metal ion (zinc, lead or without metal) on these properties.

  10. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    Science.gov (United States)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  11. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M; Eckern, U; Romero, A H; Schwingenschlö gl, Udo

    2015-01-01

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  12. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  13. Dynamics of copper-phthalocyanine molecules on Au/Ge(001)

    NARCIS (Netherlands)

    Sotthewes, Kai; Heimbuch, Rene; Zandvliet, Henricus J.W.

    2015-01-01

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a “molecular

  14. Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties

    Science.gov (United States)

    Bayrak, Rıza; Akçay, Hakkı Türker; Beriş, Fatih Şaban; Şahin, Ertan; Bayrak, Hacer; Demirbaş, Ümit

    2014-12-01

    In this study, novel phthalonitrile derivative (3) was synthesized by the reaction between 4-nitrophthalonitrile (2) and a triazole derivative (1) containing pyridine moiety. Crystal structure of compound (3) was characterized by X-ray diffraction. New metal free and metallo-phthalocyanine complexes (Zn, Cu, and Mg) were synthesized using the phthalonitrile derivative (3). Cationic derivatives of these phthalocyanines (5, 7, 9, and 11) were prepared from the non-ionic phthalocyanines (4, 6, 8, and 10). All proposed structures were supported by instrumental methods. The aggregation behaviors of the phthalocyanines (4-11) were investigated in different solvents such as dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), chloroform and water. Water soluble cationic Pcs (5, 7, 9, and 11) aggregated in water and sodium dodecyl sulfate was used to prevent the aggregation. The second derivatives of the UV-Vis spectra of aggregated Pcs were used for analyzing the Q and B bands of aggregated species. Thermal behaviors of the phthalocyanines were also studied. In addition, anti-bacterial properties of the phthalocyanines were investigated. We used four gram negative and two gram positive bacteria to determine antibacterial activity of these compounds. Compound 7 has the best activity against the all bacteria with 125 μg/mL of MIC value. Compounds 4, 6, and 10 have the similar effect on the bacteria with 250 μg/mL of MIC value.

  15. Self-Assembly of Individually Addressable Complexes of C-60 and Phthalocyanines on a Metal Surface : Structural and Electronic Investigations

    NARCIS (Netherlands)

    Samuely, Tomas; Liu, Shi-Xia; Haas, Marco; Decurtins, Silvio; Jung, Thomas A.; Stoehr, Meike

    2009-01-01

    The hosting properties of a close-packed layer of phenoxy-substituted phthalocyanine derivatives adsorbed on Ag(III) were investigated for the adsorption of C-60 molecules. The C-60 molecules bind to two clearly distinguishable sites, namely, to the underlying metal substrate in between two adjacent

  16. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  17. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  18. Photoinduced charge and energy transfer in phthalocyanine-functionalized gold nanoparticles

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Efimov, Alexander; Metsberg, Hanna Kaisa; Sariola, Essi; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2010-01-01

    Photoinduced processes in phthalocyanine-functionalized gold nanoparticles (Pc-AuNPs) have been investigated by spectroscopic measurements. The metal-free phthalocyanines used have two linkers with thioacetate groups for bonding to the gold nanoparticle surface, and the attachment was achieved using

  19. Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode

    International Nuclear Information System (INIS)

    Mashazi, Philani N.; Westbroek, Philippe; Ozoemena, Kenneth I.; Nyokong, Tebello

    2007-01-01

    Surface chemistry and electrocatalytic properties of self-assembled monolayers of metal tetra-carboxylic acid phthalocyanine complexes with cobalt (Co), iron (Fe) and manganese (Mn) as central metal ions have been studied. These phthalocyanine molecules are immobilized on gold electrode via the coupling reaction between the ring substituents and pre-formed mercaptoethanol self-assembled monolayer (Au-ME SAM). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed chemisorption of mercaptoethanol via sulfur group on gold electrode and also coupling reaction between phthalocyanines and Au-ME SAM. Electrochemical parameters of the immobilized molecules show that these molecules are densely packed with a perpendicular orientation. The potential applications of the gold modified electrodes were investigated towards L-cysteine detection and the analysis at phthalocyanine SAMs. Cobalt and iron tetra-carboxylic acid phthalocyanine monolayers showed good oxidation peak for L-cysteine at potentials where metal oxidation (M III /M II ) takes place and this metal oxidation mediates the catalytic oxidation of L-cysteine. Manganese tetra-carboxylic acid phthalocyanine monolayer also exhibited a good catalytic oxidation peak towards L-cysteine at potentials where Mn IV /Mn III redox peak occurs and this redox peak mediates L-cysteine oxidation. The analysis of cysteine at phthalocyanine monolayers displayed good analytical parameters with good detection limits of the orders of 10 -7 mol L -1 and good linearity for a studied concentration range up to 60 μmol L -1

  20. Photoemission from valence bands of transition metal-phthalocyanines

    International Nuclear Information System (INIS)

    Shang, Ming-Hui; Nagaosa, Mayumi; Nagamatsu, Shin-ichi; Hosoumi, Shunsuke; Kera, Satoshi; Fujikawa, Takashi; Ueno, Nobuo

    2011-01-01

    Research highlights: → The HOMO mainly comes from the carbon atoms of Pc rings and the central metal atoms almost have no contribution on the highest occupied molecular orbital (HOMO: a 1u ) distribution of CoPc as well as NiPc. → Influence by central metal atom on the photoemission intensities from the HOMO of two single molecule systems is negligible for the major. → The modification of the distribution for π-orbital upon adsorption as well as the scattering effects of the central metal on the photoemission intensities are negligible for the major. - Abstract: Angular dependencies of ultraviolet photoelectron spectrum of transition metal-phthalocyanines (TM-Pcs), NiPc and CoPc, have been studied by using multiple-scattering theory to explore the electronic structure of the organometallic complexes influenced by central metal atom. The calculated angular distributions of photoelectrons for the highest occupied molecular orbital (HOMO: a 1u ) from the two single systems are nearly the same and represent well the experimental results obtained for the well-ordered monolayer on the highly oriented pyrolytic graphite substrate. The central metal atoms almost have no contribution on the HOMO distribution, which mainly comes from the carbon atoms of Pc ring. Moreover, the modification of the distribution for π orbital upon adsorption as well as the scattering effects of the central metal on the photoemission intensities are negligible for the major.

  1. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline

  2. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  3. Supramolecular assemblies of pyridyl porphyrin and diazadithia phthalocyanine

    Directory of Open Access Journals (Sweden)

    OZER BEKAROGLU

    1999-08-01

    Full Text Available In this paper we report for the first time on a mixed complex between the cationic porphyrin 5, 10, 15, 20-tetra-N- -methyl-pyrydinium-p-il porphyrin (TMPyP and a new metal phthalocyanine with four 16-membered diazadithia macrocycles (denoted here as Pc16, in order to obtain an active complex with an intense absorption on the lower energy side of the visible spectrum and with a higher sensitivity in photodynamic therapy of cancer. The dimerization constant for Pc16 and also the ratio between the oscillator strengths for monomeric and dimeric forms of this compound, were evaluated. The ratio between these oscillator strengths was 2.01 showing a certain dimerization process. The Job mathematical method allowed the establishment of the stoichiometry and the formation constants for the heteroaggregates between the porphyrin and the phthalocy- anine (a diad between one phthalocyanine molecule and one porphyrin molecule and a triad between two phthalocyanine molecules and only one porphyrin molecule. The coulombic attraction resulting from the p-p interaction of the two highly conjugated macrocycles and from the interaction between the substituents, favors a face-to-face geometry.

  4. Direct observation of hindered eccentric rotation of an individual molecule : Cu-phthalocyanine on C60

    NARCIS (Netherlands)

    Stöhr, Meike; Wagner, T; Gabriel, M; Weyers, B; Moller, R

    2002-01-01

    Individual Cu-phthalocyanine molecules have been investigated by scanning tunnel microscopy on a closed packed film of C-60 at various temperatures. The molecules are found to bind asymmetrically to one C-60. While they remain in one position at low temperature, they can hop between six equivalent

  5. Novel non-symmetrical bifunctionally-substituted phthalonitriles and corresponding d-metal phthalocyaninates

    Science.gov (United States)

    Vashurin, Artur; Maizlish, Vladimir; Tikhomirova, Tatiyana; Nemtseva, Marina; Znoyko, Serafima; Aleksandriiskii, Viktor

    2018-05-01

    The work reports synthesis of 4-(2-tert-butyl-4,5-dicyanophenylsulfonyl)benzene and its analogue containing carboxyl group in phenyl fragment by nucleophilic substitution of nitro-group of 4-tert-butyl-5-nitrophthalonitrile. Unique structure of the obtained compounds is explained by presence of bulky tert-butyl substituent in combination with carboxyl group, which being part of phthalocyanine molecule impart it higher solubility within different solvents (organic and water mediums) and act as anchoring groups. Based on obtained nitriles phthalocyanine complexes of copper, nickel, cobalt and magnesium are synthesized with good yields. Demetallization of initial magnesium phthalocyanine by hydrochloric acid was performed in order to obtain ligand of phthalocyanine. Synthetic and purification techniques are described in detail. Obtained substances are of specific structure making them to be applied in sensorics for smart materials production, as sensitizers or part of molecular magnets. The structure, NMR and IR spectra are modeled using special software. Resulting experimental and theoretical data are compared. The results show sufficient correlation that confirms correctness of chosen methods and its applicability for theoretical studying compounds related to investigated ones.

  6. Hindered rotation of a copper phthalocyanine molecule on C60 : Experiments and molecular mechanics calculations

    NARCIS (Netherlands)

    Fendrich, M.; Wagner, Th.; Stöhr, M.; Möller, R.

    2006-01-01

    If copper phthalocyanine (CuPc) molecules are deposited on a Au(111) surface covered with a monolayer of C60, the molecules are found to adsorb individually onto the close-packed layer of C60. As the adsorption site of the CuPc is not symmetric with respect to the underlying C60 layer, the CuPc

  7. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  8. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Science.gov (United States)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  9. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Short-lived γ-emitting metal isotopes phthalocyanine tetrasulfonic acid

    International Nuclear Information System (INIS)

    Lier, J. Van; Rousseau, J.; Autenrieth, D.

    1981-01-01

    New phthalocyanine tetrasulfonic acid metal complexes selected from technetium-99m, gallium-67, gallium-68, copper-64, chromium-51, cobalt-57, indium-111, mercury-197 and zinc-62 have been found to have affinity for malignant growth and thus are useful in detecting the presence, size and location thereof with radiation imaging device. (author)

  11. Solvent Effect, Photochemical and Photophysical Properties of Phthalocyanines with Different Metallic Nuclei

    Directory of Open Access Journals (Sweden)

    Charles Biral Silva

    2017-12-01

    Full Text Available Photophysical and photochemical properties of lithium phthalocyanine (1, gallium(III phthalocyanine chloride (2, titanium(IV phthalocyanine dichloride (3 and iron(II phthalocyanine (4 were investigated in dimethyl sulfoxide (DMSO, tetrahydrofuran (THF and DMSO-THF mixtures. The influence of the central metal on these properties was analyzed according to solvent type, axial ligands and their paramagnetic and diamagnetic effect. Fluorescence lifetimes were recorded using a time correlated single photon counting setup (TCSPC technique. In order to demonstrate the generation of reactive oxygen species under light irradiation, the indirect method (applying 1,3-diphenylisobenzofuran (DPBF as chemical suppressor and the direct method (analyzing the phosphorescence decay curves of singlete oxygen at 1270 nm were employed. Compounds 1, 2 and 3 showed a monomeric behavior in all media while compound 4 presented low aggregation in DMSO, but a very pronounced aggregation behavior in THF. Steady-state fluorescence anisotropy was compared with emission spectra and complex 4 presented values beyond the expected limits. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1047 

  12. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads.

    Science.gov (United States)

    Niemi, Marja; Tkachenko, Nikolai V; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-07-31

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results in rapid ET from phthalocyanine to fullerene via an exciplex state in both polar and nonpolar solvents. Relaxation of the charge-separated (CS) state Pc(*+)-C60(*-) in a polar solvent occurs directly to the ground state in 30-70 ps. In a nonpolar solvent, roughly 20% of the molecules undergo transition from the CS state to phthalocyanine triplet state (3)Pc*-C60 before relaxation to the ground state. Formation of the CS state was confirmed with electron spin resonance measurements at low temperature in both polar and nonpolar solvent. Reaction schemes for the photoinduced ET reactions of the dyads were completed with rate constants obtained from the time-resolved absorption and emission measurements and with state energies obtained from the fluorescence, phosphorescence, and voltammetric measurements.

  13. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  14. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Bosman, Anton W.; Gelinck, Gerwin H.; Schouten, Pieter G.; Warman, John M.; Devillers, Marinus A.C.; Meijerink, Andries; Picken, Stephen J.; Sohling, Ulrich; Schouten, Arend-Jan; Nolte, Roeland J.M.

    The structure and physical properties of optically active, metal-free 2,3,9,10,16,17,23,24-octa(S-3,7-dimethyloctoxy)phthalocyanine ((S)-Pc(8,2)) are reported and compared with those of the phthalocyanine with (R,S) side chains (mixture of 43 stereoisomers). Unlike the latter compound, (S)-Pc(8,2)

  15. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    Science.gov (United States)

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  16. Synthesis of mesogenic phthalocyanine-C60 donor–acceptor dyads designed for molecular heterojunction photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Yves Henri Geerts

    2009-10-01

    Full Text Available A series of phthalocyanine-C60 dyads 2a–d was synthesized. Key steps in their synthesis are preparation of the low symmetry phthalocyanine intermediate by the statistical condensation of two phthalonitriles, and the final esterification of the fullerene derivative bearing a free COOH group. Structural characterization of the molecules in solution was performed by NMR spectroscopy, UV–vis spectroscopy and cyclic voltammetry. Preliminary studies suggest formation of liquid crystalline (LC mesophases for some of the prepared dyads. To the best of our knowledge, this is the first example of LC phthalocyanine-C60 dyads.

  17. Photorefractive IR-spectrum composites prepared from polyimide and ruthenium(II) tetra-15-crown-5-phthalocyaninate with axially coordinated triethylenediamine molecules

    International Nuclear Information System (INIS)

    Vannikov, A.V.; Grishina, A.D.; Gorbunova, Yu.G.; Enakieva, Yu.Yu.; Krivenko, T.V.; Savel'ev, V.V.; Tsivadze, A.Yu.

    2006-01-01

    Photoelectric, non-linear optical, and photorefractive properties of aromatic polyimine doped with ruthenium(II) complex with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules, (R 4 Pc)Ru(TED) 2 , where R 4 Pc 2- and TED denote 4,5,4',5',4'',5'',4''',5'''-tetrakis-(1,4,7,10,13- pentaoxatridecamethylene)phthalocyaninate ion and triethylenediamine molecule, respectively, were studied. It is established that supramolecular ensembles on the basis of the complex make an aromatic polyimide layer photoelectrically sensitive to 1064-nm Nd : YAG laser radiation, exhibit third-order susceptibility, and, consequently, impart photorefractive properties to the polymer layer at this wavelength [ru

  18. Covalentely Attached Multilayer Films Comprising Phthalocyanine and Their Photoelectron Conversion Properties

    Institute of Scientific and Technical Information of China (English)

    ZANG Mao-feng; YAO Qiao-hong; YANG Zhao-hui; HUANG Chun-hui; CAO Wei-xiao

    2004-01-01

    The photosensitive multilayer films from sulfonated metal-free, sulfonated copper-, and sulfonated nickel-phthalocyanines were fabricated with diazoresin layer by layer on a substrate via electrostatic interaction by the self-assembly technique. Under UV irradiation, the linkage nature between the layers of the film is converted from the electrostatic bonding to covalent bonding. The covalently attached multilayer films are very stable towards polar solvents and salt aqueous solutions. The photovoltaic properties of the covalently attached film can be determined by means of a traditional three-electrode photoelectrochemical cell in aqueous solutions with KCl as the supporting electrolyte. The photocurrent determination has shown that the sulfonated copper-containing phthalocyanine films possess a higher photocurrent value than sulfonated metalfree and sulfonated nickel-containing phthalocyanine films.

  19. Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques

    International Nuclear Information System (INIS)

    Saini, G S S; Singh, Sukhwinder; Kumar, Ranjan; Tripathi, S K; Kaur, Sarvpreet; Sathe, Vasant

    2009-01-01

    Thin films of zinc phthalocyanine have been deposited on KBr and glass substrates by the thermal evaporation method and characterized by the x-ray diffraction, optical, infrared and Raman techniques. The observed x-ray diffraction and infrared absorption spectra of as-deposited thin films suggest the presence of an α crystalline phase. Infrared and Raman spectra of thin films after exposure to vapours of ammonia and methanol have also been recorded. Shifts in the position of some IR and Raman bands in the spectra of exposed films have been observed. Some bands also show changes in their intensity on exposure. Increased charge on the phthalocyanine ring and out-of-plane distortion of the core due to interaction between zinc phthalocyanine and vapour molecules involving the fifth coordination site of the central metal ion may be responsible for the band shifts. Changes in the intensity of bands are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v due to doming of the core. Molecular parameters and Mulliken atomic charges of zinc phthalocyanine and its complexes with methanol and ammonia have been calculated from density functional theory. The binding energy of the complexes have also been calculated. Calculated values of the energy for different complexes suggest that axially coordinated vapour molecules form the most stable complex. Calculated Mulliken atomic charges show net charge transfer from vapour molecules to the phthalocyanine ring for the most stable complex.

  20. Functionalization of nanocrystalline diamond films with phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Christo [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reintanz, Philipp M. [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Kulisch, Wilhelm [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Degenhardt, Anna Katharina [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Weidner, Tobias [Max Planck Institute for Polymer Research, Mainz (Germany); Baio, Joe E. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR (United States); Merz, Rolf; Kopnarski, Michael [Institut für Oberflächen- und Schichtanalytik (IFOS), Kaiserslautern (Germany); Siemeling, Ulrich [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reithmaier, Johann Peter [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Popov, Cyril, E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany)

    2016-08-30

    Highlights: • Grafting of phthalocyanines on nanocrystalline diamond films with different terminations. • Pc with different central atoms and side chains synthesized and characterized. • Attachment of Pc on H- and O-terminated NCD studied by XPS and NEXAFS spectroscopy. • Orientation order of phthalocyanine molecules on NCD surface. - Abstract: Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  1. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    Science.gov (United States)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    We review recent studies of double-decker and triple-decker phthalocyanine (Pc) molecules adsorbed on surfaces in terms of the bonding configuration, electronic structure and spin state. The Pc molecule has been studied extensively in surface science. A Pc molecule can contain various metal atoms at the center, and the class of the molecule is called as metal phthalocyanine (MPc). If the center metal has a large radius, like as lanthanoid metals, it becomes difficult to incorporate the metal atom inside of the Pc ring. Pc ligands are placed so as to sandwich the metal atom, where the metal atom is placed out of the Pc plane. The molecule in this configuration is called as a multilayer-decker Pc molecule. After the finding that the double-decker Pc lanthanoid complex shows single-molecule magnet (SMM) behavior, it has attracted a large attention. This is partly due to a rising interest for the ‘molecular spintronics’, in which the freedoms of spin and charge of an electron are applied to the quantum process of information. SMMs represent a class of compounds in which a single molecule behaves as a magnet. The reported blocking temperature, below which a single SMM molecule works as an quantum magnet, has been increasing with the development in the molecular design and synthesis techniques of multiple-decker Pc complex. However, even the bulk properties of these molecules are promising for the use of electronic materials, the films of multi-decker Pc molecules is less studied than those for the MPc molecules. An intriguing structural property is expected for the multi-decker Pc molecules since the Pc planes are linked by metal atoms. This gives an additional degree of freedom to the rotational angle between the two Pc ligands, and they can make a wheel-like symmetric rotation. Due to a simple and well-defined structure of a multi-decker Pc complex, the molecule can be a model molecule for molecular machine studies. The multi-decker Pc molecules can provide

  2. Manipulating individual dichlorotin phthalocyanine molecules on Cu(100) surface at room temperature by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Li, Chao; Xiang, Feifei; Wang, Zhongping; Liu, Xiaoqing; Jiang, Danfeng; Wang, Li; Wang, Guang; Zhang, Xueao; Chen, Wei

    2014-01-01

    Single molecule manipulations have been achieved on dichlorotin phthalocyanine(SnCl 2 Pc) molecules adsorbed on Cu (100) at room temperature. Scanning tunneling microscopy observations directly demonstrate that the individual SnCl 2 Pc molecules can be moved along the [100] direction on Cu(100) surface by employing a scanning tunneling microscope tip fixed at the special position of the molecules. The orientation of the molecule can be switched between two angles of ±28° with respect to the [011] surface direction in the same way. Dependences of the probability of molecular motion on the distances between the tip and the molecules reveal that the mechanism for such manipulation of a SnCl 2 Pc molecule is dominated by the repulsive interactions between the tip and the molecules. With the assistance of this manipulation process, a prototype molecular storage array with molecular orientation as information carrier and an artificial hydrogen bonded supramolecular structure have been constructed on the surface. (paper)

  3. Photophysical properties of a novel axially substituted tetra-α-(pentyloxy) Titanium(IV) Phthalocyanine - Hematoxylin

    Science.gov (United States)

    Jiang, Yufeng; Lv, Huafei; Yu, Xinxin; Pan, Sujuan; Zhang, Tiantian; Huang, Yide; Wang, Yuhua; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2017-06-01

    Metal phthalocyanines (MPcs) are a very important class of widespread application compounds. They are not only used as dyes but also used as catalysts, data storage, electron charge carriers in photocopiers, photoconductors in chemical sensors, and photo-antenna devices in photosysthesis, photovoltaic cells. A particular application of Pcs is that it was used as a photosensitizers (PS) for treatment of certain cancer by photodynamic therapy of cancer and non-cancer diseases. However, the molecular aggregation of phthalocyanines, which is an intrinsic property of these large π-π conjugated systems, provides an efficient non-radioactive energy relaxation pathway, thereby shortening the excited state lifetimes, and reducing the photosensitizing and target efficiency. To overcome these problems, the introduction of axial ligands to phthalocyanine can prevent the formation of aggregation to some extend. In this paper, hematoxylin axially substituted tetra-α-(pentoxy) titanium (IV) phthalocyanine (TiPc(OC5H11)4-Hematoxylin) were characterized by elemental analysis, IR, 1H NMR, UV-Vis, fluorescence spectra. No obviously Q band change was observed after the hematoxylin was substituted at the peripheral position of substituted phthalocyanine ring. Because of the rigidity structure of the hematoxylin, the fluorescence intensity of hematoxylin peripheral substituted phthalocyanine decreased compared with free substituted phthalocyanines. The fluorescence lifetimes of axially substituted phthalocyanine was fitted to be 3.613 ns. This compound may be considered as a promising photosensitizer for PDT.

  4. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one.

  5. Improved syntheses of high hole mobility phthalocyanines: A case of steric assistance in the cyclo-oligomerisation of phthalonitriles

    Directory of Open Access Journals (Sweden)

    Daniel J. Tate

    2012-01-01

    Full Text Available It has been shown that the base-initiated cyclo-oligomerisation of phthalonitriles is favoured by bulky α-substituents making it possible to obtain the metal-free phthalocyanine directly and in high yield. The phthalocyanine with eight α-isoheptyl substituents gives a high time-of-flight hole mobility of 0.14 cm2·V−1·s−1 within the temperature range of the columnar hexagonal phase, that is 169–189 °C.

  6. Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011: STM studies

    Directory of Open Access Journals (Sweden)

    Piotr Olszowski

    2017-01-01

    Full Text Available Zn(IIphthalocyanine molecules (ZnPc were thermally deposited on a rutile TiO2(011 surface and on Zn(IImeso-tetraphenylporphyrin (ZnTPP wetting layers at room temperature and after elevated temperature thermal processing. The molecular homo- and heterostructures were characterized by high-resolution scanning tunneling microscopy (STM at room temperature and their geometrical arrangement and degree of ordering are compared with the previously studied copper phthalocyanine (CuPc and ZnTPP heterostructures. It was found that the central metal atom may play some role in ordering and growth of phthalocyanine/ZnTPP heterostructures, causing differences in stability of upright standing ZnPc versus CuPc molecular chains at given thermal annealing conditions.

  7. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  8. Iron phthalocyanine on Cu(111): Coverage-dependent assembly and symmetry breaking, temperature-induced homocoupling, and modification of the adsorbate-surface interaction by annealing.

    Science.gov (United States)

    Snezhkova, Olesia; Bischoff, Felix; He, Yuanqin; Wiengarten, Alissa; Chaudhary, Shilpi; Johansson, Niclas; Schulte, Karina; Knudsen, Jan; Barth, Johannes V; Seufert, Knud; Auwärter, Willi; Schnadt, Joachim

    2016-03-07

    We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.

  9. Resonance Raman spectra of phthalocyanine monolayers on different supports. A normal mode analysis of zinc phthalocyanine by means of the MNDO method

    NARCIS (Netherlands)

    Palys, Barbara J.; van den Ham, Dirk M.W.; van den Ham, D.M.W.; Briels, Willem J.; Feil, D.; Feil, Dirk

    1995-01-01

    Resonance Raman spectra of monolayers of transition metal phthalocyanines reveal specific interaction with the support. To elucidate its mechanism, Raman spectra of zinc phthalocyanine monolayers were studied. The analysis was based largely on the results of MNDO calculations. Calculated wavenumbers

  10. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads

    NARCIS (Netherlands)

    Niemi, Marja; Tkachenko, Nikolai V.; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-01-01

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C-60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results

  11. Properties of uncharged water-soluble tetra({omega}-methoxypolyethyleneoxy)phthalocyanine free base: Viable switching of the optical response by means of H{sub 3}O{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Placido [Department of Chemistry, University of Catania and INSTM UdR of Catania, Viale Andrea Doria 6, 95125 Catania (Italy); Istituto per i Processi Chimico Fisici - CNR, Viale Ferdinando Stagno D' Alcontres, 37, 98158 Messina (Italy); Lupo, Fabio; Fragala, Ignazio; Scamporrino, Emilio [Department of Chemistry, University of Catania and INSTM UdR of Catania, Viale Andrea Doria 6, 95125 Catania (Italy); Gulino, Antonino, E-mail: agulino@unict.it [Department of Chemistry, University of Catania and INSTM UdR of Catania, Viale Andrea Doria 6, 95125 Catania (Italy)

    2012-02-15

    An uncharged water-soluble tetra ({omega}-methoxypolyethyleneoxy)phthalocyanine was characterized by MALDI-TOF mass spectrometry, UV-vis and luminescence measurements. The polyether substituents render water soluble this uncharged phthalocyanine. Relevant changes are observed in emission measurements upon protonation. The phthalocyanine free base and its protonated forms can be switched alternating H{sub 3}O{sup +} and OH{sup -} ions as inputs, being the intensity of the luminescence spectra the output. Binary codes 1 or 0 can be assigned to the high luminescent phthalocyanine free base state or to the low luminescent protonated state, respectively. The read-out procedure is fast and the system is reversible. In addition, the exploiting of the luminescent properties of the present water soluble phthalocyanine could be of relevance also for biological applications (photosensitizers for the photodynamic therapy). Highlights: Black-Right-Pointing-Pointer An uncharged water soluble tetra ({omega}-methoxypolyethyleneoxy)phthalocyanine was characterized. Black-Right-Pointing-Pointer Phthalocyanine protonation changes the luminescence output. Black-Right-Pointing-Pointer The system can be switched alternating H{sub 3}O{sup +} and OH{sup -} as inputs. Black-Right-Pointing-Pointer The read-out procedure is fast and reversible. Black-Right-Pointing-Pointer Binary codes are assigned to the high and low luminescent states, respectively.

  12. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    Energy Technology Data Exchange (ETDEWEB)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (INDIA) Fax: +91-172-2783336; Tel.:+91-172-2544362 (India)

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  13. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    Science.gov (United States)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  14. Photodynamics of charge separation and recombination in solid alternating films of phthalocyanine or phthalocyanine-fullerene dyad and perylene dicarboximide

    NARCIS (Netherlands)

    Lehtivuori, Heli; Kumpulainen, Tatu; Hietala, Matti; Efimov, Alexander; Helge, Lemmetyinen; Kira, Aiko; Imahori, Hiroshi; Tkachenko, Nikolai V.

    2009-01-01

    Alternate bilayer structures of N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10- perylene dicarboximide (PDI), freebase phthalocyanines (Pc), and double-linked free-base phthalocyanine-fullerene dyad (Pc-C 60) were prepared by the Langmuir-Schäfer method and studied using a range of optical spectroscopy

  15. Photophysicochemical, calf thymus DNA binding and in vitro photocytotoxicity properties of tetra-morpholinoethoxy-substituted phthalocyanines and their water-soluble quaternized derivatives.

    Science.gov (United States)

    Koçan, Halit; Kaya, Kerem; Özçeşmeci, İbrahim; Sesalan, B Şebnem; Göksel, Meltem; Durmuş, Mahmut; Burat, Ayfer Kalkan

    2017-12-01

    In this study, morpholinoethoxy-substituted metal-free (3), zinc(II) (4) and indium(III) (5) phthalocyanines were synthesized. These phthalocyanines were converted to their water-soluble quaternized derivatives (3Q-5Q) using excess methyl iodide as a quaternization agent. All these phthalocyanines (Pcs) were characterized by elemental analysis and different spectroscopic methods such as FT-IR, 1 H NMR, UV-Vis and mass spectrometry. The photophysical and photochemical properties such as fluorescence and generation of singlet oxygen were investigated for determination of these phthalocyanines as photosensitizers in photodynamic therapy (PDT) applications. The binding properties of quaternized phthalocyanines (3Q-5Q) to calf thymus DNA (CT-DNA) were investigated by UV-Vis and fluorescence spectrophotometric methods. The quenching effect of all quaternized phthalocyanines on the fluorescence intensity of SYBR Green-DNA complex was determined. The mixtures of 3Q, 4Q or 5Q and DNA solutions were used to determine the change in T m of double helix DNA with thermal denaturation profile. In addition, thermodynamic parameters considering their aggregation in buffer solution, which shows the spontaneity of the reactions between DNA and quaternized Pcs were investigated. On the other hand, in vitro phototoxicity and cytotoxicity behavior of the quaternized water-soluble phthalocyanine photosensitizers (3Q-5Q) were tested against the cervical cancer cell line named HeLa for evaluation of their suitability for treatment of cancer by PDT method. Peripherally tetra-substituted neutral and quaternized metal-free and metallophthalocyanines (MPcs) (Zn, In) bearing morpholinoethoxy groups were prepared. The binding of quaternized compounds (3Q-5Q) to CT-DNA were examined using UV-Vis, fluorescence spectra, thermal denaturation profiles and K SV values. Besides, thermodynamic studies indicated that binding of 3Q-5Q to DNA was spontaneous. On the other hand, in vitro phototoxicity and

  16. An application of the coincidence Doppler spectroscopy for substances of chemical interest: phthalocyanine and acetylacetonate complexes

    International Nuclear Information System (INIS)

    Ito, Y.; Suzuki, T.

    2000-01-01

    Coincidence Doppler spectroscopy, which is particularly powerful when one is concerned with high momentum components of positron annihilation gamma-rays, has been applied to two different kinds of organo-metallic ligands: metal phthalocyanines and metal acetylacetonates. The energy (momentum) profiles of the annihilation gamma-rays were the same for metal phthalocyanines indicating that positron and/or positronium are not interacting with the metal ions. However, the profiles for the metal acetylacetonates evidently showed a dependence on the kind of metal ions. Discussion is made on the features of positron interaction which are different for phthalocyanines and acetylacetonates.

  17. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  18. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution

    International Nuclear Information System (INIS)

    Abbaspour, Abdolkarim; Norouz-sarvestani, Fatemeh; Mirahmadi, Ehsan

    2012-01-01

    Highlights: ► The new construction of a carbon paste electrode impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). ► The decrease overpotential and higher current value obtained in nano ZnPc and nano NiPc compared to bulky ZnPc and bulky NiPc, respectively. ► Types of the catalyst and pH of the solution affect the electro catalytic proton reduction reaction considerably. - Abstract: This paper describes the construction of a carbon paste electrode (CPE) impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). These new electrodes (nano ZnPc-CPE and nano NiPc-CPE) reveal interesting electrocatalytic behavior toward hydrogen evolution reaction (HER). Voltammetric characteristics indicated that the proposed electrodes display better electrocatalytic activity compared to their corresponding bulky modified metal phthalocyanines (MPcs) in minimizing overpotential and increasing the reduction current of HER. Electrocatalytic activities irregularly change with the pH of the solution. However by increasing the pH while nano MPcs are still active, bulky MPcs are almost inactive, and their corresponding ΔE increase by increasing the pH.

  19. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    Science.gov (United States)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  20. Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules

    NARCIS (Netherlands)

    Uhlmann, C.; Swart, I.; Repp, J.

    2013-01-01

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn–Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag

  1. Adsorption of phthalocyanines on noble metal surfaces; Adsorption von Phthalocyaninen auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Ingo

    2011-05-20

    In this thesis the adsorbate systems CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc and TiOPc/Ag(111) were investigated and characterized in great detail using complementary methods. The focus of the experiments was the determination of lateral geometric structures with spot-profile-analysis low energy electron diffraction (SPA-LEED) and scanning tunneling microscopy (STM), as well as the measurement of adsorption heights using the method of normal incidence X-ray standing waves (NIXSW). High resolution electron energy loss spectroscopy (HREELS) was used to characterize the vibronic properties of the molecule and the interface dynamical charge transfer (IDCT). The electronic structure and the charge transfer into the molecule were investigated with ultraviolet photoelectron spectroscopy (UPS). The most important results of this work are related with the interplay between adsorbate-substrate and adsorbate-adsorbate interaction of Phthalocyanines in the submonolayer regime. (orig.)

  2. Charge transport properties of metal/metal-phthalocyanine/n-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal

    2010-12-16

    In present work the charge transport properties of metal/metal-phthalocyanine/n-Si structures with low (N{sub D} = 4 x 10{sup 14} cm{sup -3}), medium (N{sub D}=1 x 10{sup 16} cm{sup -3}) and high (N{sub D}=2 x 10{sup 19} cm{sup -3}) doped n-Si as injecting electrode and the effect of air exposure of the vacuum evaporated metal-phthalocyanine film in these structures is investigated. The results obtained through temperature dependent electrical characterizations of the structures suggest that in terms of dominant conduction mechanism in the corresponding devices Schottky-type conduction mechanism dominates the charge transport in low-bias region of these devices up to 0.8 V, 0.302 V and 0.15 V in case of low, medium and high doped n-Silicon devices. For higher voltages, in each case of devices, the space-charge-limited conduction, controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices. The interface density of states at the CuPc/n-Si interface of the devices are found to be lower in case of lower work function difference at the CuPc/n-Si interface of the devices. The results also suggest that the work function difference at the CuPc/n-Si interface of these devices causes charge transfer at the interface and these phenomena results in formation of interface dipole. The width of the Schottky depletion region at the CuPc/n-Si interface of these devices is found to be higher with higher work function difference at the interface. The investigation of charge transport properties of Al/ZnPc/medium n-Si and Au/ZnPc/ medium n-Si devices suggest that the Schottky depletion region formed at the ZnPc/n-Si interface of these devices determines the charge transport in the low-bias region of both the devices. Therefore, the Schottky-type (injection limited) and the space-charge-limited (bulk limited) conduction are observed in the low and the high bias regions of these devices, respectively. The determined width of the

  3. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts

    Science.gov (United States)

    Afanasiev, Vladimir Vasilievich [Moscow, RU; Zefirov, Nikolai Serafimovich [Moscow, RU; Zalepugin, Dmitry Yurievich [Moscow, RU; Polyakov, Victor Stanislavovich [Moscow, RU; Tilkunova, Nataliya Alexandrovna [Moscow, RU; Tomilova, Larisa Godvigovna [Moscow, RU

    2009-09-08

    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  4. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sukhwinder, E-mail: ss7667@gmail.com [Department of Physics, Govt. College for Girls, Ludhiana (India); Saini, G. S. S.; Tripathi, S. K. [Department of Physics, Panjab University, Chandigarh (India)

    2016-05-06

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy.

  5. Electrical transport through a metal-molecule-metal junction; Transport electrique a travers une jonction metal-molecule-metal

    Energy Technology Data Exchange (ETDEWEB)

    Kergueris, Ch

    1998-12-17

    We investigate the electrical transport through a very few molecules connected to metallic electrodes at room temperature. First, the state of the art in molecular electronics is outlined. We present the most convincing molecular devices reported so far in the literature and the theoretical tools available to analyze the electron transport mechanism through a molecular junction. Second, we describe the use of mechanically controllable break junctions to investigate the electron transport properties through a metal-molecule-metal junction. Two kindsof molecules were adsorbed on the two facing gold electrodes, dodecane-thiol (DT) and bis-thiol-ter-thiophene ({alpha},{omega} T3), that are basically expected to behave as an insulator and as a molecular wire, respectively. In the latter case, we study the chemical reactivity of the molecule and show that {alpha},{omega} T3 is chemically adsorbed on gold electrodes. Current-voltage characteristics of the junction were observed at room temperature. The Gold-DT-Gold junction behaves as a simple metal-insulator-metal junction. On the other hand, the electron transport through a Gold-{alpha},{omega} T3-Gold junction explicitly involves the electronic structure of the molecule which gives rise to step-like features in the current-voltage characteristics. The measured zero bias conductance is interpreted using the scattering theory. At high bias, we discuss two different models: a coherent model where the electron has no time to be completely re-localized in the molecule and a sequential model where the electron is localized in the molecule during the transfer. Finally, we show that the mechanical action of decreasing the inter-electrodes spacing can be used to induce a strong modification of the current-voltage characteristics. (author)

  6. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy

    CSIR Research Space (South Africa)

    Nombona, N

    2012-02-01

    Full Text Available -damage of cancer cells. The production of reactive oxygen species (ROS) and phototoxicity of the photosensitizer were assessed. Healthy fibroblast cells and breast cancer (MCF-7) cells were treated with either free phthalocyanine or phthalocyanine bound to either...

  7. Interface properties of Fe/MgO/Cu-phthalocyanine metal-insulator-organic semiconductor structures

    International Nuclear Information System (INIS)

    Lee, Nyunjong; Bae, Yujeong; Kim, Taehee; Ito, Eisuke; Hara, Masahiko

    2014-01-01

    Hybrid interface structures consisting of organic copper-phthalocyanine (CuPc) and ferromagnetic metal Fe(001) with and without a MgO(001) cover were investigated by using surface sensitive techniques of X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. A systematic study of the energy level alignment at the interfaces was carried out. For the hybrid interfaces considered here, our results indicate that the insertion of an artificially-grown ultra-thin oxide layer MgO(001) can prevent Femi level pinning and induce a rather large interface dipole, thereby resulting in remarkable CuPc Fermi level shifts when the thickness of the CuPc film is less than 3 nm. This study provides a better understanding of spin filtering in MgO-based organic spin devices and a new way to alter the interface electronic structure of metal/organic semiconductor hybrid systems.

  8. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  9. Dynamical propagation of nanosecond pulses in Naphthalocyanines and Phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Quan, E-mail: qmiao2013@yahoo.com [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); Liang, Min; Liu, Qixin [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); Wang, Jing-Jing [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); Sun, Erping; Xu, Yan [College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong (China); College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong (China)

    2016-11-30

    Highlights: • We study the dynamical processes of nanoseconds lasers in Naphthalocyanines and Phthalocyanines. • We provide theoretical evidences of the main mechanism of optical power limiting. • The central metals play more important roles in the dynamical processes. • The main reason is the central metals enhance the spin–orbit coupling. - Abstract: Dynamical propagation and optical limiting of nanosecond pulses in peripherally substituted Naphthalocyanines (Npcs) and Phthalocyanines (Pcs) with central metals gallium and indium were theoretically studied using paraxial field and rate equations. The results demonstrated that both Npcs and Pcs have good optical limiting performances, and Npc with heavier central mental indium shows better optical limiting properities due to the stronger reverse saturable absorption, which is mainly strengthened by the larger one-photo absorption cross section of excited state and the faster intersystem crossing rate.

  10. Optical and infrared spectroscopic studies of chemical sensing by copper phthalocyanine thin films

    International Nuclear Information System (INIS)

    Singh, Sukhwinder; Tripathi, S.K.; Saini, G.S.S.

    2008-01-01

    Thin films of copper phthalocyanine have been deposited on KBr and glass substrates by thermal evaporation method and characterized by the X-ray diffraction and optical absorption techniques. The observed X-ray pattern suggests the presence of α crystalline phase of copper phthalocyanine in the as-deposited thin films. Infrared spectra of thin films on the KBr pallet before and after exposure to the vapours of ammonia and methanol have been recorded in the wavenumber region of 400-1650 cm -1 . The observed infrared bands also confirm the α crystalline phase. On exposure, change in the intensity of some bands is observed. A new band at 1385 cm -1 , forbidden under ideal D 4h point group symmetry, is also observed in the spectra of exposed thin films. These changes in the spectra are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v . Axial ligation of the vapour molecules on fifth coordination site of the metal ion is responsible for lowering of the molecular symmetry

  11. Investigation of interaction between alkoxy substituted phthalocyanines with different lengths of alkyl residue and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, Natalya Sh., E-mail: nsl@isc-ras.ru [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo (Russian Federation); Gubarev, Yury A.; Vyugin, Anatoly I. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo (Russian Federation); Koifman, Oscar I. [Research Institute of Macroheterocycles of Ivanovo State University of Chemistry and Technology, 153000 Ivanovo (Russian Federation)

    2015-10-15

    Interaction between bovine serum albumin and alkoxy substituted phthalocyanines was studied by means of electron absorption spectroscopy, fluorescence spectroscopy and viscosimetry. The binding constants and binding distance were calculated. It was found that ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 10}H{sub 21}){sub 4} prevents twisting of BSA molecule and localizes between subdomains IB and IIA in protein globule. ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 6}H{sub 13}){sub 4} and ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 8}H{sub 17}){sub 4} are located on the outer surface of the protein globule. In the case of ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 3}H{sub 7}){sub 4} it can be assumed that the phthalocyanine molecule is in the immediate vicinity of the subdomains IB and IIA. - Highlights: • Interaction between bovine serum albumin and alkoxy substituted phthalocyanines was studied by means of electron absorption spectroscopy, fluorescence spectroscopy and viscosimetry. • The binding constants and binding distance were calculated by using the Scatchard method. • Photochemical characteristics of phthalocyanines of studied phthalocyanines are defined. • Localization of phthalocyanines on the protein globule is defined.

  12. Optimized adsorption of sulfonated phthalocyanines on ZnO electrodes and their characterization in dye- sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Falgenhauer, Jane; Loewenstein, Thomas; Schlettwein, Derck [Institute of Applied Physics, Justus-Liebig-University Giessen (Germany)

    2010-07-01

    Phthalocyanines belong to the most stable industrial dyes and show some of the highest molar extinction coefficients in the visible range. ZnO is known as a wide band gap semiconductor material which can be conveniently prepared as a porous electrode from solution-based processes. Sulfonated phthalocyanines were adsorbed at such electrodeposited porous ZnO thin films to work as a photosensitizer in a dye sensitized solar cell (DSSC). The adsorption solution of the phthalocyanine was modified in its composition and by adding different detergents in different concentrations. The adsorption solutions and the sensitized ZnO films were investigated by UV/Vis spectroscopy to characterize the aggregation of the dye molecules. Most of the detergents used could minimize the aggregation of the dye molecules in the adsorption solution without hindering the adsorption of the phthalocyanine on the ZnO surface. The photoelectrochemical characteristics of the resulting test cells were determined using a standard liquid electrolyte. The efficiency of the cells did not reach the expected level and reasons for this are discussed based on film morphology, amount of adsorbed dye molecules, competition by detergent adsorption, the optical absorbance of the dyes in the film and aggregate formation.

  13. Synthesis and electrochemical and in situ spectroelectrochemical characterization of manganese, vanadyl, and cobalt phthalocyanines with 2-naphthoxy substituents

    International Nuclear Information System (INIS)

    Ozcesmeci, Ibrahim; Koca, Atif; Guel, Ahmet

    2011-01-01

    Highlights: → Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy-groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. → Incorporation of the redox active metal ions into the phthalocyanine core extends the redox capabilities of the Pc ring. → The presence of O 2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes. → Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. - Abstract: Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. The phthalocyanine compounds were characterized by elemental analyses, mass, FT-IR and UV-vis spectral data. Three intense bands in the electronic spectra clearly indicate the absorptions resulting from naphthyl groups along with the Q and B bands of the phthalocyanines. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ions, Co II and Mn III , into the phthalocyanine core extends the redox capabilities of the Pc ring including the metal-based reduction and oxidation couples of the metal. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the cobalt and manganese phthalocyanines due to the interaction between the complexes and molecular oxygen. Interaction reaction of oxygen with CoPc occurs via an 'inner sphere' chemical catalysis process. While CoPc gives the intermediates [O 2 - -Co II Pc -2 ] - and [O 2 2 -Co II Pc -2 ] 2- , MnPc forms μ-oxo MnPc species. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for possible electrochromatic applications.

  14. Sandwich-type mixed tetrapyrrole rare-earth triple-decker compounds. Effect of the coordination geometry on the single-molecule-magnet nature.

    Science.gov (United States)

    Kan, Jinglan; Wang, Hailong; Sun, Wei; Cao, Wei; Tao, Jun; Jiang, Jianzhuang

    2013-08-05

    Employment of the raise-by-one step method starting from M(TClPP)(acac) (acac = monoanion of acetylacetone) and [Pc(OPh)8]M'[Pc(OPh)8] led to the isolation and free modulation of the two rare-earth ions in the series of four mixed tetrapyrrole dysprosium sandwich complexes {(TClPP)M[Pc(OPh)8]M'[Pc(OPh)8]} [1-4; TClPP = dianion of meso-tetrakis(4-chlorophenyl)porphyrin; Pc(OPh)8 = dianion of 2,3,9,10,16,17,23,24-octa(phenoxyl)phthalocyanine; M-M' = Dy-Dy, Y-Dy, Dy-Y, and Y-Y]. Single-crystal X-ray diffraction analysis reveals different octacoordination geometries for the two metal ions in terms of the twist angle (defined as the rotation angle of one coordination square away from the eclipsed conformation with the other) between the two neighboring tetrapyrrole rings for the three dysprosium-containing isostructural triple-decker compounds, with the metal ion locating between an inner phthalocyanine ligand and an outer porphyrin ligand with a twist angle of 9.64-9.90° and the one between two phthalocyanine ligands of 25.12-25.30°. Systematic and comparative studies over the magnetic properties reveal magnetic-field-induced single-molecule magnet (SMM), SMM, and non-SMM nature for 1-3, respectively, indicating the dominant effect of the coordination geometry of the spin carrier, instead of the f-f interaction, on the magnetic properties. The present result will be helpful for the future design and synthesis of tetrapyrrole lanthanide SMMs with sandwich molecular structures.

  15. Potassium-intercalated H2Pc films : Alkali-induced electronic and geometrical modifications

    NARCIS (Netherlands)

    Nilson, K.; Ahlund, J.; Shariati, M. -N.; Schiessling, J.; Palmgren, P.; Brena, B.; Gothelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Gothelid, M.; Martensson, N.; Puglia, C.; Åhlund, J.; Göthelid, E.; Göthelid, M.; Mårtensson, N.

    2012-01-01

    X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In

  16. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules.

    Science.gov (United States)

    Geng, Hao; Zhang, Xian-Fu

    2015-03-15

    The absorption and fluorescence spectra as well as fluorescence lifetimes of tetrasulfonated zinc phthalocyanine ZnPc(SO3Na)4 were measured in the absence and presence of four rhodamine dyes, Rhodamine B (RB), Ethyl rhodamine B (ERB), Rhodamine 6G (R6G), Rhodamine 110 (R110), and Pyronine B (PYB). The ground state complexes of phthalocyanine-(Rhodamine)2 were observed which exhibit new absorption bands. The binding constants are all very large (0.86×10(5)-0.22×10(8) M(-1)), suggesting rhodamine-phthalocyanine pairs are very good combinations for efficient selfassembly. Both the fluorescence intensity and the lifetime values of ZnPc(SO3Na)4 were decreased by the presence of rhodamines. The structural effect of rhodamines on selfassembly is significant. The ground state binding and dynamic quenching capability is PYB>R6G>ERB>RB>R110. The dynamic fluorescence quenching is due to the photoinduced electron transfer (PET). The PET rate constant is very large and in the order of 10(13) M(-1) s(-1), much greater than kf and kic (in the order of 10(8) M(-1) s(-1)), which means that the PET efficiency is almost 100%. Therefore the non-covalent Pc-rhodamine is a very good pair of donor/acceptor for potential efficient solar energy conversion. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Spontaneous Adsorption of a Co-Phthalocyanine Ionic Derivative on HOPG. An In Situ EPR Study

    Czech Academy of Sciences Publication Activity Database

    Tarábek, Ján; Klusáčková, Monika; Janda, Pavel; Tarábková, Hana; Rulíšek, Lubomír; Plšek, Jan

    2014-01-01

    Roč. 118, č. 8 (2014), s. 4198-4206 ISSN 1932-7447 R&D Projects: GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : scanning tunneling microscopy * electron paramagnetic resonance * metal phthalocyanine s * copper phthalocyanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  18. Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces

    Directory of Open Access Journals (Sweden)

    Florian Rückerl

    2017-08-01

    Full Text Available Manganese phthalocyanine (MnPc is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.

  19. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  20. Realisation and study of poly-phthalocyanine thin films grafted on solid substrate

    International Nuclear Information System (INIS)

    Huc, Vincent

    1999-01-01

    The aim of this work is to develop thin films of phthalocyanines covalently grafted to solid substrates. These thin films are formed of successive monomolecular layers of macrocycles, deposited on the substrate by a 'Merrifield' sequential method. These phthalocyanines have in their centre a metallic ion (such as ruthenium) which ensures the bonding of phthalocyanines on the substrate and the assembling of monolayers consecutive together. The deposition of these monolayers is provided by a succession of two spontaneous exchange ligands reactions between the labile groups L initially bound to ruthenium and to those present on the substrate (preliminary functionalized). The repetition of these two steps allows to consider the controlled formation of phthalocyanines multilayers by self-assembling. The main substrates used are the silicon oxide and the gold. Their different characteristics have imposed the development of separate functionalization and characterization methods. The results obtained with these two substrates are separately described. A second method of construction of successive monolayers of phthalocyanines is described involving a chemical coupling between an amine function carried out by the substrate and an aldehyde function present on the ligands bound on ruthenium. (author) [fr

  1. Adsorption of Cu phthalocyanine on Pt modified Ge(001): A scanning tunneling microscopy study

    NARCIS (Netherlands)

    Saedi, A.; Berkelaar, Robin P.; Kumar, Avijit; Poelsema, Bene; Zandvliet, Henricus J.W.

    2010-01-01

    The adsorption configurations of copper phthalocyanine (CuPc) molecules on platinum-modified Ge(001) have been studied using scanning tunneling microscopy. After deposition at room temperature and cooling down to 77 K the CuPc molecules are still dynamic. However, after annealing at 550±50 K, the

  2. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  3. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Directory of Open Access Journals (Sweden)

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  4. Photophysical, Photochemical, and BQ Quenching Properties of Zinc Phthalocyanines with Fused or Interrupted Extended Conjugation

    Directory of Open Access Journals (Sweden)

    Gülşah Gümrükçü

    2014-01-01

    Full Text Available The effects of substituents and solvents on the photophysical and photochemical parameters of zinc(II phthalocyanines containing four Schiff’s base substituents attached directly and through phenyleneoxy-bridges on peripheral positions are reported. The group effects on peripheral position and the continual and intermittent conjugation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen, and fluorescence quantum yields of these compounds in dimethylsulfoxide (DMSO, dimethylformamide (DMF, and tetrahydrofurane (THF. Among the different substituents, phthalocyanines with cinnamaldimine moieties (1c and 2c have the highest singlet oxygen quantum yields (ΦΔ and those with nitro groups (1a and 2a have the highest fluorescence quantum yields in all the solvents used. The fluorescence of the substituted zinc(II phthalocyanine complexes is effectively quenched by 1,4-benzoquinone (BQ in these solvents.

  5. Low voltage operating OFETs based on solution processed metal phthalocyanines

    Czech Academy of Sciences Publication Activity Database

    Chaidogiannos, G.; Petraki, F.; Glezos, N.; Kennou, S.; Nešpůrek, Stanislav

    2009-01-01

    Roč. 96, č. 3 (2009), s. 763-767 ISSN 0947-8396 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : field-effect transistors * thin-film transistors * copper phthalocyanine Subject RIV: CG - Electrochemistry Impact factor: 1.595, year: 2009

  6. Towards the anti-fibrillogenic activity of phthalocyanines with out-of-plane ligands: correlation with self-association proneness

    Directory of Open Access Journals (Sweden)

    Kovalska V. B.

    2013-11-01

    Full Text Available Aim. The activity of five hafnium phthalocyanines containing out-of-plane ligands as inhibitors of reaction of insulin fibril formation is studied and correlation between their inhibitory properties and tendency to self-association is discussed. Methods. Fluorescence and absorption spectroscopy. Results. For the complexes with weak proneness to self-association PcHfDbm2, PcHfPyr2, and PcHfBtfa2 the values of inhibitory activity were estimated as 60–73 %. For phthalocyanines with the pronounced tendency to self-association PcHfPiromelit and PcHfCl2 the noticeably higher inhibitory activity values (about 95 % were shown. In the presence of native or fibrilar insulin the destruction of self-associates of metal complex occurs in buffer pH 7.9, Besides upon the conditions of insulin fibrillization reaction (0.1 M HCl phthalocyanines exist predominantly as monomers. Conclusions. The phthalocyanines with out-of-plane ligands with higher tendency to self-association have shown higher inhibitory activity in the insulin fibril formation comparing with the poorly aggregated metal complexes. At the same time low-order self-associates are not involved directly in the mechanism of inhibition of insulin fibrillization and the phthalocyanines bind with protein in monomeric form. Tendency of phthalocyanines to self-association in aqueous media seems to be an «indicator» of their proneness to stack with protein aromatic amino-acids and thus of anti-fibrilogenic properties.

  7. Supersonic pulsed free-jet of atoms and molecules of refractory metals: laser induced fluorescence spectroscopic studies on zirconium atoms and zirconium oxide molecules

    International Nuclear Information System (INIS)

    Nakhale, S.G.

    2004-11-01

    The experimental setup for generating supersonic pulsed free-jet containing atoms and molecules of refractory nature has been built. The technique of laser vaporization in conjunction with supersonic cooling is used to generate these species. The cooled atoms and molecules in supersonic free-jet are probed by laser induced fluorescence spectroscopy. In particular, the technique has been used to perform low-resolution laser induced fluorescence spectroscopy, limited by laser linewidth, on cold Zr atoms and ZrO molecules. The translational temperatures of ∼ 26.5 K and the rotational temperatures of ∼ 81 K have been achieved. It is possible to achieve the Doppler width of few tens of MHz allowing it to perform high-resolution spectroscopy on these atomic and molecular species. Also because of low rotational temperature of molecules the spectral congestion is greatly reduced. In general, this technique can be applied to perform spectroscopy on atoms and molecules of refractory nature. (author)

  8. Spectroscopic investigation of sulfonate phthalocyanine to probe enzyme reactions for heavy metals detection

    Energy Technology Data Exchange (ETDEWEB)

    Chaure, Shweta; Paul, Deepen; Vadagma, Pankaj [School of Engineering and Material Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ray, Asim K., E-mail: a.k.ray@qmul.ac.uk [School of Engineering and Material Science, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2010-01-15

    Optical absorption and Raman spectra of the sulfonated copper phthalocyanine (CuTsPc) layer were exploited for detection of cadmium (Cd) contaminants in water. Acetylcholine esterase was immobilized by freely suspending them in calcium alginate microbeads and this gel was then spincoated on the drop cast sulfonated copper phthalocyanine film on a glass substrate to form a bilayer. The inhibition of catalytic reaction between acetylcholine chloride and enzyme due to Cd contaminants was monitored by recording changes in spectra of drop cast CuTsPc as an indicator. The detection limit of cadmium content in water was found to be 1 ppm.

  9. Spectroscopic investigation of sulfonate phthalocyanine to probe enzyme reactions for heavy metals detection

    International Nuclear Information System (INIS)

    Chaure, Shweta; Paul, Deepen; Vadagma, Pankaj; Ray, Asim K.

    2010-01-01

    Optical absorption and Raman spectra of the sulfonated copper phthalocyanine (CuTsPc) layer were exploited for detection of cadmium (Cd) contaminants in water. Acetylcholine esterase was immobilized by freely suspending them in calcium alginate microbeads and this gel was then spincoated on the drop cast sulfonated copper phthalocyanine film on a glass substrate to form a bilayer. The inhibition of catalytic reaction between acetylcholine chloride and enzyme due to Cd contaminants was monitored by recording changes in spectra of drop cast CuTsPc as an indicator. The detection limit of cadmium content in water was found to be 1 ppm.

  10. Binary molecular layers of C-60 and copper phthalocyanine on Au(111) : Self-organized nanostructuring

    NARCIS (Netherlands)

    Stöhr, Meike; Wagner, Thorsten; Gabriel, Markus; Weyers, Bastian; Möller, Rolf

    The binary molecular system of C-60 and copper phthalocyanine(CuPc) molecules has been investigated by scanning tunneling microscopy (STM) at room temperature and at 50 K. As substrate Au(111) was chosen. When C-60 and CuPc molecules are sequentially deposited, it is found that well-ordered domains

  11. Cobalt-phthalocyanine-derived ultrafine Co{sub 3}O{sub 4} nanoparticles as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Heng-guo, E-mail: wanghengguo@cust.edu.cn; Zhu, Yanjie; Yuan, Chenpei; Li, Yanhui; Duan, Qian, E-mail: duanqian88@hotmail.com

    2017-08-31

    Highlights: • Transition-metal oxides nanoparticles are prepared by deriving from metal-phthalocyanine. • Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO nanoparticles can be prepared due to the adjustability of central metals. • This present strategy is simple, general, effective yet mass-production. • The Co{sub 3}O{sub 4} nanoparticles exhibit good lithium storage performances. - Abstract: In this work, we present a simple, general, effective yet mass-production strategy to prepare transition-metal oxides (TMOs) nanoparticles using the metal-phthalocyanine as both the precursor and the starting self-sacrificial template. As the central metals of metal-phthalocyanine are easily tunable, various TMOs nanoparticles including Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO have been successfully prepared by deriving from the corresponding metal-phthalocyanine. As a proof-of-concept demonstration of the application of such nanostructured TMOs, Co{sub 3}O{sub 4} nanoparticles were evaluated as anode materials for LIBs, which show high initial capacity (1132.9 mAh g{sup −1} at 0.05 A g{sup −1}), improved cycling stability (585.6 mAh g{sup −1} after 200 cycles at 0.05 A g{sup −1}), and good rate capability (238.1 mAh g{sup −1} at 2 A g{sup −1}) due to the unique properties of the ultrafine Co{sub 3}O{sub 4} nanoparticles. This present strategy might open new avenues for the design of a series of transition metal oxides using organometallic compounds for a range of applications.

  12. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    Science.gov (United States)

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-06-01

    Recently, Zhong et al (2015 Nano Lett. 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H2. Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background.

  13. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    International Nuclear Information System (INIS)

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-01-01

    Recently, Zhong et al (2015 Nano Lett . 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H 2 . Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background. (paper)

  14. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  15. Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors

    NARCIS (Netherlands)

    De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.

    2005-01-01

    We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches

  16. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  17. Novel zinc(II)phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties

    Science.gov (United States)

    Kantar, Cihan; Mavi, Vildan; Baltaş, Nimet; İslamoğlu, Fatih; Şaşmaz, Selami

    2016-10-01

    Azo-containing schiff bases are well known and there are many studies about their various properties in literature. However, phthalocyanines bearing azo-containing schiff bases, their spectral, analytical and biological properties are unknown. Therefore, new zinc (II) phthalocyanines bearing azo-containing schiff base were synthesized and investigated to determine pKa values, absorption, emission, enzyme inhibition and photochemical properties. Emission spectra were reported and large Stokes shift values were determined for all compounds, indicating that all molecules exhibit excited state intramolecular proton transfer. These phthalocyanines were the first examples of phthalocyanine showing excited state intramolecular proton transfer. Singlet oxygen quantum yields of zinc (II) phthalocyanines were determined. pKa values and indicator properties of all compounds were investigated by potentiometry. All compounds were assayed for inhibitory activity against bovine milk xanthine oxidase and acetylcholinesterase enzyme in vitro. Compound 2 showed the high inhibitory effect against xanthine oxidase (IC50 = 0.24 ± 0.01 μM). However, phthalocyanine compounds did not show enzyme inhibitor behavior.

  18. Single NdPc2 molecules on surfaces. Adsorption, interaction, and molecular magnetism

    International Nuclear Information System (INIS)

    Fahrendorf, Sarah

    2013-01-01

    They have huge potential for application in molecular-spin-transistors, molecular-spinvalves, and molecular quantum computing. SMMs are characterized by high spin ground states with zero-field splitting leading to high relaxation barriers and long relaxation times. A relevant class of molecules are the lanthanide double-decker phthalocyanines (LaPc 2 ) with only one metal atom sandwiched between two organic phthalocyanine (Pc) ligands. For envisaged spintronic applications it is important to understand the interaction between the molecules and the substrate and its influence on the electronic and magnetic properties. The subject of this thesis is the investigation of the adsorbed neodymium double-decker phthalocyanine (NdPc 2 ) by means of low temperature scanning tunneling microscopy and spectroscopy (STM and STS). The molecules are deposited by sublimation onto different substrates. It is observed that a large fraction of the double-decker molecules decomposes during deposition. The decomposition probability strongly depends on the chosen substrate. Therefore it is concluded that the substrate modifies the electronic structure of the molecule leading to a stabilization or destabilization of the molecular entity. Charge transfer from the surface to the molecule is identified as a potential stabilizing mechanism. The electronic and magnetic properties are investigated in detail for adsorbed NdPc 2 molecules on Cu(100). The results of the experimental study are compared to state-of-the-art density functional theory calculations performed by our colleagues from the Peter Gruenberg Institute (PGI-1) at the Forschungszentrum Juelich. Interestingly, the lower Pc ring of the molecule hybridizes intensely with the substrate leading to strong chemisorption of the molecule, while the upper Pc ring keeps its molecular type electronic states, which can be energetically shifted by an external electric field. Importantly, it is possible to get direct access to the spin

  19. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  20. Raman scattering in semiconductor structures based on monophthalocyanine and triphthalocyanine molecules incorporating erbium ions

    International Nuclear Information System (INIS)

    Belogorokhov, I. A.; Tikhonov, E. V.; Breusova, M. O.; Pushkarev, V. E.; Zoteev, A. V.; Tomilova, L. G.; Khokhlov, D. R.

    2007-01-01

    Semiconductor structures of the type of butyl-substituted erbium monophthalocyanine and triphthalocyanine are studied by Raman spectroscopy. It is shown that, when the sandwich-like structure of the molecule incorporating two complexing atoms between the ligands is considered instead of the planar molecular structure with one ligand and one metal atom, a series of lines appears in the Raman spectrum. In this series, the wave numbers of the lines represent an arithmetic progression with the arithmetical ratio ∼80 cm -1 . It is suggested that this feature is due to the larger number of organic molecules per metal atom in the triphthalocyanine complex, and the four Raman peaks at the frequencies 122, 208, 280, and 362 cm -1 are the manifestation of slight out-of-plane vibrations of the phthalocyanine ligands

  1. Synthesis of phthalocyanine doped sol-gel materials

    Science.gov (United States)

    Dunn, Bruce

    1993-01-01

    section ratio, 4, however, the tetrasulfonate groups make the dye soluble in water which greatly facilitates its incorporation into the sol-gel matrix. The nonlinear transmission of CuPc4S in a pH 2 buffer solution and in a silica xerogel were compared. It is evident that the CuPc4S preserves its optical limiting behavior in the sol-gel matrix, indicating that the fundamental excited state absorption process is essentially the same for a molecule in solution or in the solid state. Although the spectroscopic details of energy level lifetimes are unknown, the significance is that passive optical limiting has been achieved in the solid state via incorporation of a dye into an inorganic host. The only compromise occurs at the extremely high energy regime where photobleaching is observed. This is a result of the limited mobility of the dye molecules in the solid silica host relative to a liquid host. The effects of photodegradation in the xerogel are additive, whereas the solution provides a supply of fresh molecules that are free to enter the active volume between pulses.

  2. Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes

    Science.gov (United States)

    Plint, Trevor; Lessard, Benoît H.; Bender, Timothy P.

    2016-04-01

    In this study, we have assessed the potential application of group 13 and 14 metal and metalloid phthalocyanines ((X)n-MPcs) and their axially substituted derivatives as hole-transporting layers in organic light emitting diodes (OLEDs). OLEDs studied herein have the generic structure of glass/ITO/(N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) or (X)n-MPc)(50 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (80 nm), where X is an axial substituent group. OLEDs using chloro aluminum phthalocyanine (Cl-AlPc) showed good peak luminance values of 2620 ± 113 cd/m2 at 11 V. To our knowledge, Cl-AlPc has not previously been shown to work as a hole transport material (HTL) in OLEDs. Conversely, the di-chlorides of silicon, germanium, and tin phthalocyanine (Cl2-SiPc, Cl2-GePc, and Cl2-SnPc, respectively) showed poor performance compared to Cl-AlPc, having peak luminances of only 38 ± 4 cd/m2 (12 V), 23 ± 1 cd/m2 (8.5 V), and 59 ± 5 cd/m2 (13.5 V), respectively. However, by performing a simple axial substitution of the chloride groups of Cl2-SiPc with pentafluorophenoxy groups, the resulting bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) containing OLED had a peak luminance of 5141 ± 941 cd/m2 (10 V), a two order of magnitude increase over its chlorinated precursor. This material showed OLED characteristics approaching those of a baseline OLED based on the well-studied triarylamine NPB. Attempts to attach the pentafluorophenoxy axial group to both SnPc and GePc were hindered by synthetic difficulties and low thermal stability, respectively. In light of the performance improvements observed by simple axial substitution of SiPc in OLEDs, the use of axially substituted MPcs in organic electronic devices remains of continuing interest to us and potentially the field in general.

  3. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    Science.gov (United States)

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  4. Synthesis, photophysical and electrochemical properties of water–soluble phthalocyanines bearing 8-hydroxyquinoline-5-sulfonicacid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Günsel, Armağan; Kocabaş, Sibel; Bilgiçli, Ahmet T. [Department of Chemistry, Sakarya University, 54140 Esentepe, Sakarya (Turkey); Güney, Sevgi [Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kandaz, Mehmet, E-mail: mkandaz@sakarya.edu.tr [Department of Chemistry, Sakarya University, 54140 Esentepe, Sakarya (Turkey)

    2016-08-15

    We have presented in this paper, the synthesis, characterization, photophysical properties and electrochemical characterization of water soluble phthalocyanines (Pcs) bearing 8-hydroxyquinoline-5-sulfonicacid conjugates and their cationic quaternized counterpart that play important roles their application in photodynamic therapy (PDT). The periphery and non-periphery substituted phthalocyanines show high solubility and low aggregation tendency due to bulky 8-hydroxyquinoline-5-sulfonicacid steric hindrance moieties and axially bound counter chlorine anion. Singlet oxygen quantum yields, photodegradation quantum yields, photophysical properties and also the nature of the substituent and solvent effect on the photophysical and photochemical parameters of α-ZnPc and β-ZnPc are reported. In electrovalent cobalt (II) and manganese (III) compounds, metal based electron transfer reactions have been observed in addition to the common phthalocyanine ring-based electron transfer processes. The effect of point of substitution on the electrochemical properties of newly synthesized phthalocyanines substituted with 8-hydroxyquinoline-5-sulfonicacid group were evaluated.

  5. Conjugated Molecules for the Smart Filtering of Intense Radiations

    Directory of Open Access Journals (Sweden)

    Danilo Dini

    2003-04-01

    Full Text Available Abstract: The practical realization of smart optical filters, i.e. devices which change their optical transmission in a suitable way to keep a working state for a general light sensitive element , can involve the use of conjugated molecules whose light absorption properties are light- intensity dependent (nonlinear optical effect. The verification of optical limiting displayed by some particular conjugated molecules, e.g. phthalocyanines, is quite noteworthy and can be successfully exploited for the realization of such smart optical devices. In the present contribution the analysis of the relevant molecular feature of a phthalocyanine are analyzed with the aim of determining useful correlations between optical limiting performance and phthalocyanine chemical structure. In particular , the electronic nature of the substituent is considered as a key factor for the explanation of some observed optical limiting trends.

  6. Field-free orientation of molecules

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2001-01-01

    The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...... be generated after the turn-off of a state-of-the-art electromagnetic half-cycle pulse.......The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...

  7. Phthalocyanine as Sensitive Coatings for QCM Sensors-Experimental and Computational Approaches

    International Nuclear Information System (INIS)

    Erbahar, D. D.; Harbeck, M.; Guerol, I.; Musluoglu, E.; Oeztuerk, Z. Z.; Berber, S.

    2011-01-01

    Sorption of organic compounds from aqueous phase into phthalocyanines (Pc) is studied using QCM sensors and Density Functional Theory (DFT) for the first time. The focus is set on the influence of substitution type and central metal atom on the liquid sensing properties of the Pcs.

  8. Study of the electronic properties of organic molecules within a metal-molecule-metal junction

    International Nuclear Information System (INIS)

    Lambert, Mathieu

    2003-01-01

    This ph-D thesis is about electronic transport through organic molecules inserted in a metal molecule-metal junction. We describe first a simple process to prepare sub-3 nm gaps by controllable breakage (under an electrical stress) of gold wires lithographed on a SiO 2 Si substrate at low temperature (4.2 K). We show that the involved mechanism is thermally assisted electromigration. We observe that current-voltage (I-V) characteristics of resulting electrodes are stable up to ∼5 V. which gives access to the well-known Fowler-Nordheim regime in the I-V, allowing an accurate characterisation of the gap size. The average gap is found lo be between 1.5 nm in width and 2.5 eV in height. Molecules and nanoparticles have then been inserted in the junction in the case of nanoparticles for example. The resulting IV clearly shows the suppression of electrical current at low bias known as Coulomb blockade. Characteristic of single-electron tunnelling through nanometer-sized structures, finally we fabricated a single-electron tunneling device based on Au nanoparticles connected to the electrodes via terthiophene (T3) molecule. We use the silicon substrate, separated from the planar structure by a silicon oxide of 200 nm, as an electrostatic gate and observed clear current modulation with possible signature of the transport properties of the terthiophene molecules. (author) [fr

  9. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  10. Unexpected Rotamerism at the Origin of a Chessboard Supramolecular Assembly of Ruthenium Phthalocyanine.

    Science.gov (United States)

    Mattioli, Giuseppe; Larciprete, Rosanna; Alippi, Paola; Bonapasta, Aldo Amore; Filippone, Francesco; Lacovig, Paolo; Lizzit, Silvano; Paoletti, Anna Maria; Pennesi, Giovanna; Ronci, Fabio; Zanotti, Gloria; Colonna, Stefano

    2017-11-16

    We have investigated the formation and the properties of ultrathin films of ruthenium phthalocyanine (RuPc) 2 vacuum deposited on graphite by scanning tunneling microscopy and synchrotron photoemission spectroscopy measurements, interpreted in close conjunction with ab initio simulations. Thanks to its unique dimeric structure connected by a direct Ru-Ru bond, (RuPc) 2 can be found in two stable rotameric forms separated by a low-energy barrier. Such isomerism leads to a peculiar organization of the molecules in flat, horizontal layers on the graphite surface, characterized by a chessboard-like alternation of the two rotamers. Moreover, the molecules are vertically connected to form π-stacked columnar pillars of akin rotamers, compatible with the high conductivity measured in (RuPc) 2 powders. Such features yield an unprecedented supramolecular assembly of phthalocyanine films, which could open interesting perspectives toward the realization of new architectures of organic electronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single NdPc{sub 2} molecules on surfaces. Adsorption, interaction, and molecular magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Fahrendorf, Sarah

    2013-01-24

    They have huge potential for application in molecular-spin-transistors, molecular-spinvalves, and molecular quantum computing. SMMs are characterized by high spin ground states with zero-field splitting leading to high relaxation barriers and long relaxation times. A relevant class of molecules are the lanthanide double-decker phthalocyanines (LaPc{sub 2}) with only one metal atom sandwiched between two organic phthalocyanine (Pc) ligands. For envisaged spintronic applications it is important to understand the interaction between the molecules and the substrate and its influence on the electronic and magnetic properties. The subject of this thesis is the investigation of the adsorbed neodymium double-decker phthalocyanine (NdPc{sub 2}) by means of low temperature scanning tunneling microscopy and spectroscopy (STM and STS). The molecules are deposited by sublimation onto different substrates. It is observed that a large fraction of the double-decker molecules decomposes during deposition. The decomposition probability strongly depends on the chosen substrate. Therefore it is concluded that the substrate modifies the electronic structure of the molecule leading to a stabilization or destabilization of the molecular entity. Charge transfer from the surface to the molecule is identified as a potential stabilizing mechanism. The electronic and magnetic properties are investigated in detail for adsorbed NdPc{sub 2} molecules on Cu(100). The results of the experimental study are compared to state-of-the-art density functional theory calculations performed by our colleagues from the Peter Gruenberg Institute (PGI-1) at the Forschungszentrum Juelich. Interestingly, the lower Pc ring of the molecule hybridizes intensely with the substrate leading to strong chemisorption of the molecule, while the upper Pc ring keeps its molecular type electronic states, which can be energetically shifted by an external electric field. Importantly, it is possible to get direct access to the

  12. Synthesis and spectral properties of axially substituted zirconium(IV) and hafnium(IV) water soluble phthalocyanines in solutions

    International Nuclear Information System (INIS)

    Gerasymchuk, Y.S.; Volkov, S.V.; Chernii, V.Ya.; Tomachynski, L.A.; Radzki, St.

    2004-01-01

    Methods of synthesis of novel water soluble axially substituted Zr(IV) and Hf(IV) phthalocyanines with gallic, 5-sulfosalicyllic, oxalic acids, and methyl ester of gallic acid as axial ligands coordinated to the central atom metal of phthalocyanine are presented. The absorption spectra of complex solutions in various solvents were characterized. The dependence of the spectral red shift from Reichardt's empirical polarity parameter is described. The deviation from the linearity of Beer-Bouguer-Lambert law was investigated for the range of concentration 5x10 -6 to 10x10 -5 M. Fluorescent properties of axially substituted phthalocyaninato metal complexes in DMSO solutions were investigated

  13. Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: Synthesis, photochemistry and bovine serum albumin binding behavior

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Volkan; Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Department of Food Technology, Çanakkale Vocational School of Technical Sciences, Çanakkale Onsekiz Mart University, 17100 Çanakkale (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-10-15

    The new peripherally and non-peripherally tetra-1,3-bis[3-(diethylamino)phenoxy]propan-2-ol substituted zinc(II) phthalocyanine complexes (2a and 3a) and their quaternized amphiphilic derivatives (2b and 3b) have been synthesized and characterized using UV–vis, FT-IR, {sup 1}H-NMR, {sup 13}C-NMR, MS spectroscopic data and elemental analysis for the first time. The quaternized complexes (2b and 3b) show excellent solubility in water and DMSO which makes them potential photosensitizers for use in photodynamic therapy (PDT) of cancer. The photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines are investigated in dimethylsulfoxide (DMSO) for non-quaternized complexes and in DMSO, phosphate buffered solution (PBS) or PBS+triton X-100 (TX) solution for quaternized complexes. In this study, the effects of the aggregation of the molecules, quaternization, position of the substituents (peripherally or non-peripherally) and nature of the solvents (DMSO, PBS or PBS+triton X-100) on the photochemical parameters of the zinc (II) phthalocyanines are also reported. In addition, a spectroscopic investigation of the binding behavior of the quaternized zinc(II) phthalocyanine complexes to bovine serum albumin (BSA) is also presented in this work. - Highlights: • Synthesis of zinc phthalocyanines is performed. • Photophysical and photochemical properties of phthalocyanines are studied. • Photodynamic therapy studies are performed.

  14. Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: Synthesis, photochemistry and bovine serum albumin binding behavior

    International Nuclear Information System (INIS)

    Çakır, Volkan; Çakır, Dilek; Pişkin, Mehmet; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya

    2014-01-01

    The new peripherally and non-peripherally tetra-1,3-bis[3-(diethylamino)phenoxy]propan-2-ol substituted zinc(II) phthalocyanine complexes (2a and 3a) and their quaternized amphiphilic derivatives (2b and 3b) have been synthesized and characterized using UV–vis, FT-IR, 1 H-NMR, 13 C-NMR, MS spectroscopic data and elemental analysis for the first time. The quaternized complexes (2b and 3b) show excellent solubility in water and DMSO which makes them potential photosensitizers for use in photodynamic therapy (PDT) of cancer. The photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines are investigated in dimethylsulfoxide (DMSO) for non-quaternized complexes and in DMSO, phosphate buffered solution (PBS) or PBS+triton X-100 (TX) solution for quaternized complexes. In this study, the effects of the aggregation of the molecules, quaternization, position of the substituents (peripherally or non-peripherally) and nature of the solvents (DMSO, PBS or PBS+triton X-100) on the photochemical parameters of the zinc (II) phthalocyanines are also reported. In addition, a spectroscopic investigation of the binding behavior of the quaternized zinc(II) phthalocyanine complexes to bovine serum albumin (BSA) is also presented in this work. - Highlights: • Synthesis of zinc phthalocyanines is performed. • Photophysical and photochemical properties of phthalocyanines are studied. • Photodynamic therapy studies are performed

  15. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  16. Synthesis and application of trifluoroethoxy-substituted phthalocyanines and subphthalocyanines

    Directory of Open Access Journals (Sweden)

    Satoru Mori

    2017-10-01

    Full Text Available Phthalocyanines and subphthalocyanines are attracting attention as functional dyes that are applicable to organic solar cells, photodynamic therapy, organic electronic devices, and other applications. However, phthalocyanines are generally difficult to handle due to their strong ability to aggregate, so this property must be controlled for further applications of phthalocyanines. On the other hand, trifluoroethoxy-substituted phthalocyanines are known to suppress aggregation due to repulsion of the trifluoroethoxy group. Furthermore, the electronic characteristics of phthalocyanines are significantly changed by the strong electronegativity of fluorine. Therefore, it is expected that trifluoroethoxy-substituted phthalocyanines can be applied to new industrial fields. This review summarizes the synthesis and application of trifluoroethoxy-substituted phthalocyanine and subphthalocyanine derivatives.

  17. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-03-22

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  18. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    International Nuclear Information System (INIS)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-01-01

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  19. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  20. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  1. Electrical Matching at Metal/Molecule Contacts for Efficient Heterogeneous Charge Transfer.

    Science.gov (United States)

    Sato, Shino; Iwase, Shigeru; Namba, Kotaro; Ono, Tomoya; Hara, Kenji; Fukuoka, Atsushi; Uosaki, Kohei; Ikeda, Katsuyoshi

    2018-02-27

    In a metal/molecule hybrid system, unavoidable electrical mismatch exists between metal continuum states and frontier molecular orbitals. This causes energy loss in the electron conduction across the metal/molecule interface. For efficient use of energy in a metal/molecule hybrid system, it is necessary to control interfacial electronic structures. Here we demonstrate that electrical matching between a gold substrate and π-conjugated molecular wires can be obtained by using monatomic foreign metal interlayers, which can change the degree of d-π* back-donation at metal/anchor contacts. This interfacial control leads to energy level alignment between the Fermi level of the metal electrode and conduction molecular orbitals, resulting in resonant electron conduction in the metal/molecule hybrid system. When this method is applied to molecule-modified electrocatalysts, the heterogeneous electrochemical reaction rate is considerably improved with significant suppression of energy loss at the internal electron conduction.

  2. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    International Nuclear Information System (INIS)

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs

  3. Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Plint, Trevor; Lessard, Benoît H. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5 (Canada); Bender, Timothy P. [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5 (Canada); Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2016-04-14

    In this study, we have assessed the potential application of group 13 and 14 metal and metalloid phthalocyanines ((X){sub n}-MPcs) and their axially substituted derivatives as hole-transporting layers in organic light emitting diodes (OLEDs). OLEDs studied herein have the generic structure of glass/ITO/(N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) or (X){sub n}-MPc)(50 nm)/Alq{sub 3} (60 nm)/LiF (1 nm)/Al (80 nm), where X is an axial substituent group. OLEDs using chloro aluminum phthalocyanine (Cl-AlPc) showed good peak luminance values of 2620 ± 113 cd/m{sup 2} at 11 V. To our knowledge, Cl-AlPc has not previously been shown to work as a hole transport material (HTL) in OLEDs. Conversely, the di-chlorides of silicon, germanium, and tin phthalocyanine (Cl{sub 2}-SiPc, Cl{sub 2}-GePc, and Cl{sub 2}-SnPc, respectively) showed poor performance compared to Cl-AlPc, having peak luminances of only 38 ± 4 cd/m{sup 2} (12 V), 23 ± 1 cd/m{sup 2} (8.5 V), and 59 ± 5 cd/m{sup 2} (13.5 V), respectively. However, by performing a simple axial substitution of the chloride groups of Cl{sub 2}-SiPc with pentafluorophenoxy groups, the resulting bis(pentafluorophenoxy) silicon phthalocyanine (F{sub 10}-SiPc) containing OLED had a peak luminance of 5141 ± 941 cd/m{sup 2} (10 V), a two order of magnitude increase over its chlorinated precursor. This material showed OLED characteristics approaching those of a baseline OLED based on the well-studied triarylamine NPB. Attempts to attach the pentafluorophenoxy axial group to both SnPc and GePc were hindered by synthetic difficulties and low thermal stability, respectively. In light of the performance improvements observed by simple axial substitution of SiPc in OLEDs, the use of axially substituted MPcs in organic electronic devices remains of continuing interest to us and potentially the field in general.

  4. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    International Nuclear Information System (INIS)

    He Jun; Yang Chen; Xu Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin Jianhua

    2009-01-01

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4 DMBD) interacts with the increasingly harder metal ions of Cu + , Pb 2+ and Eu 3+ to form the coordination networks of Cu 6 (DMBD) 3 (en) 4 (Hen) 6 (1), Pb 2 (DMBD)(en) 2 (2) and Eu 2 (H 2 DMBD) 3 (DEF) 4 (3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination. - Graphical Abstract: Molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid was reacted with Cu + , Pb 2+ and Eu 3+ ions to explore solid state networks with the rich structural features arising from the carboxyl-thiol combination.

  5. The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes

    Directory of Open Access Journals (Sweden)

    Irina V. Martynenko

    2016-07-01

    Full Text Available The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy.

  6. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Wei-Dong [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Huang, Shu-Ping [Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069 (United States); Lee, Chun-Sing, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.

  7. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Furukawa, Ryo, E-mail: suzuki@mat.usp.ac.jp; Akiyama, Tsuyoshi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo, E-mail: suzuki@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  8. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Furukawa, Ryo; Akiyama, Tsuyoshi; Oku, Takeo

    2015-01-01

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C 61 -butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance

  9. Giant magnetoresistance through a single molecule.

    Science.gov (United States)

    Schmaus, Stefan; Bagrets, Alexei; Nahas, Yasmine; Yamada, Toyo K; Bork, Annika; Bowen, Martin; Beaurepaire, Eric; Evers, Ferdinand; Wulfhekel, Wulf

    2011-03-01

    Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.

  10. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    Science.gov (United States)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy. The original version of this article supplied to AIP Publishing contained erroneous text at the end of the abstract. "Arrhenius plots are used to find the thermal activation energy." was deleted as it does not pertain to the article. In addition, a figure citation was cited incorrectly and an equation was missing. This has been corrected in the updated version republished on 4 December 2017.

  11. Adsorption energy of iron-phthalocyanine on crystal surfaces

    International Nuclear Information System (INIS)

    Struzzi, C.; Scardamaglia, M.; Angelucci, M; Massimi, L.; Mariani, C.; Betti, G.

    2013-01-01

    The adsorption energy of iron-phthalocyanine (FePc) deposited on different crystal surfaces is studied by thermal desorption spectroscopy. A thin film of molecules has been absorbed on highly oriented pyrolytic graphite (HOPG), on graphene epitaxially grown on Ir(111), and on Au(110). Activation energies for the desorption of a molecular thin film and for the FePc single layer are determined at the three surfaces. The desorption temperature measured for the thin films is only slightly dependent on the substrate, since it is mostly dominated by molecule-molecule interactions. A definitely different desorption temperature is found at the single-layer coverage: we find an increasing desorption temperature going from HOPG, to graphene/Ir, to the Au(110) surface. The different adsorption energies of the first FePc layer in contact with the substrate surface are discussed taking into account the interaction and the growth morphology.

  12. Novel homo- and heterobinuclear ball-type phthalocyanines: synthesis and electrochemical, electrical, EPR and MCD spectral properties.

    Science.gov (United States)

    Odabaş, Zafer; Dumludağ, Fatih; Ozkaya, Ali Riza; Yamauchi, Seigo; Kobayashi, Nagao; Bekaroğlu, Ozer

    2010-09-21

    The mononuclear Fe(II) phthalocyanine 2 and ball-type homobinuclear Fe(II)-Fe(II) and Cu(II)-Cu(II) phthalocyanines, 3 and 4 respectively, were synthesized from the corresponding 4,4'-[1,1'-methylenebis-(naphthalene-2,1-diyl)]bis(oxy)diphthalonitrile 1, and then ball-type heterobinuclear Fe(II)-Cu(II) phthalocyanine 5 was synthesized from 2. The novel compounds 4 and 5 have been characterized by elemental analysis, UV/vis, IR and MALDI-TOF mass spectroscopies. Electron paramagnetic resonance and magnetic circular dichroism measurements of 3, 4 and 5 were also examined. The voltammetric measurements of the complexes showed the formation of various electrochemically stable ligand- and metal-based mixed-valence species, due to the intramolecular interactions between the two MPc units, especially in ball-type binuclear iron(II) phthalocyanine. Impedance spectroscopy and d.c. conductivity measurements of 4 and 5 were performed as a function of temperature (295-523 K) and frequency (40-10(5) Hz). While room temperature impedance spectra consist of a curved line, a transformation into a full semicircle with increasing temperature was observed for both compounds.

  13. Vibrational spectra of charge transfer complexes of lead phthalocyanine

    International Nuclear Information System (INIS)

    Oza, A.T.; Patel, S.G.; Patel, R.G.; Prajapati, S.M.; Vaidya, Rajiv

    2005-01-01

    Infrared spectra of six charge transfer complexes of lead phthalocyanine (PbPc), namely, PbPc-I 2 , PbPc-TCNQ, PbPc-DDQ, PbPc-chloranil, PbPc-TCNE and PbPc-TNF, where TCNQ=7,7,8,8-tetracyano-1,4-quinodimethane, DDQ=2,3-dichloro-5,6-dicyano-p-benzoquinone, TCNE=tetracyano-p-ethylene and TNF=2,4,5,7-tetranitro-9-fluorenone have been studied in the range of 400-4000 cm -1 . The analysis of featureless absorption is carried out for studying transition across the Peierls gap of 0.225 eV. The electronic absorption envelopes at 1500, 1100 and 3400 cm -1 are found to have Gaussian shapes and not the degenerate oscillators, as found in purely organic conductors. There is a pairing of two electrons on phthalocyanine ligand as required in Little's model, and consequently, the electronic absorption envelope is a doublet. Electronic absorption envelope is a doublet showing two peaks at 1500 and 1100 cm -1 , indicating a two-electron problem in PbPc. Metal-ligand vibrations between 400 and 700 cm -1 lead to indirect transition between the valence and conduction bands and phonon-mediated coupling between metal chains and the side chains

  14. Shock wave compression and metallization of simple molecules

    International Nuclear Information System (INIS)

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  15. Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Li Huang

    2014-03-01

    Full Text Available Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc and Zn-phthalocyanine (ZnPc on Au(111 and Ag(111 surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111 are exclusively due to Pauli pushback. On Ag(111, we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  16. Understanding the adsorption of CuPc and ZnPc on noble metal surfaces by combining quantum-mechanical modelling and photoelectron spectroscopy.

    Science.gov (United States)

    Huang, Yu Li; Wruss, Elisabeth; Egger, David A; Kera, Satoshi; Ueno, Nobuo; Saidi, Wissam A; Bucko, Tomas; Wee, Andrew T S; Zojer, Egbert

    2014-03-07

    Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc) and Zn-phthalocyanine (ZnPc) on Au(111) and Ag(111) surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW) interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111) are exclusively due to Pauli pushback. On Ag(111), we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS) experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  17. Synthesis and photophysical properties of indium(III) phthalocyanine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Özceşmeci, İbrahim, E-mail: ozcesmecii@itu.edu.tr [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gelir, Ali [Department of Physics, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gül, Ahmet [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey)

    2014-03-15

    Three chloroindium(III) phthalocyanine derivatives bearing four aromatic (naphthalene or pyrene) or aliphatic (hexylthio) groups were prepared from corresponding phthalonitrile compounds. The indium(III) phthalocyanine derivatives were characterized with elemental analyses, mass, proton nuclear magnetic resonance ({sup 1}H NMR), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopy (UV–vis) techniques. Quantum yields and the energy transfer from the substituents to phthalocyanine core were examined. No energy transfer was observed for 5. The energy transfer efficiency from pyrene units to indium phthalocyanine core was calculated as 0.27 for 6. Quantum yields of all samples were very small due to heavy atom effect of indium atom in the core. It was also observed that upon binding of pyrene and naphthalene units to indium phthalocyanine as substituents, the quantum yields of indium phthalocyanine parts of 5 and 6 decreased. -- Highlights: • Three chloroindium(III) phthalocyanines were prepared and characterized. • Aggregation properties of these compounds were investigated. • The energy transfer efficiency was examined. • Quantum yield of these systems were calculated.

  18. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  19. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  20. Fabrication and characterization of organic solar cells using metal complex of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Tomoyasu, E-mail: suzuki@mat.usp.ac.jp; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Akiyama, Tsuyoshi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo, E-mail: suzuki@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2015-02-27

    Fabrication and characterization of organic solar cells using shuttle-cock-type phthalocyanines were carried out. Photovoltaic properties of the solar cells with inverted structures were investigated by current density-voltage characteristics. Effects of phase transition between H and J aggregates on the photovoltaic and optical properties were investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed.

  1. Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor.

    Science.gov (United States)

    Zou, Dongqing; Zhao, Wenkai; Cui, Bin; Li, Dongmei; Liu, Desheng

    2018-01-17

    A theoretical investigation of the gas detection performance of manganese(ii) phthalocyanine (MnPc) molecular junctions for six different gases (NO, CO, O 2 , CO 2 , NO 2 , and NH 3 ) is executed through a non-equilibrium Green's function technique in combination with spin density functional theory. Herein, we systematically studied the adsorption structural configurations, the adsorption energy, the charge transfer, and the spin transport properties of the MnPc molecular junctions with these gas adsorbates. Remarkably, NO adsorption can achieve an off-state of the Mn spin; this may be an effective measure to switch the molecular spin. In addition, our results indicate that by measuring spin filter efficiency and the changes in total current through the molecular junctions, the CO, NO, O 2 , and NO 2 gas molecules can be detected selectively. However, the CO 2 and NH 3 gas adsorptions are difficult to be detected due to weak van der Waals interaction between these two gases and central Mn atom. Our findings provide important clues to the application of nanosensors for highly sensitive and selective based on MnPc molecular junction systems.

  2. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  3. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  4. Comparative study of electronic and magnetic properties of Pc ( = Fe, Co) molecules physisorbed on 2D MoS and graphene

    KAUST Repository

    Haldar, Soumyajyoti; Bhandary, Sumanta; Vovusha, Hakkim; Sanyal, Biplab

    2017-01-01

    In this paper, we have done a comparative study of electronic and magnetic properties of iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) molecules physisorbed on monolayer of MoS$_2$ and graphene by using density functional theory

  5. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    Science.gov (United States)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  6. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  7. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  8. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    Science.gov (United States)

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  9. Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives

    Directory of Open Access Journals (Sweden)

    S.M.T. Nunes

    2004-02-01

    Full Text Available The photophysical properties of zinc phthalocyanine (ZnPC and chloroaluminum phthalocyanine (AlPHCl incorporated into liposomes of dimyristoyl phosphatidylcholine in the presence and absence of additives such as cholesterol or cardiolipin were studied by time-resolved fluorescence, laser flash photolysis and steady-state techniques. The absorbance of the drugs changed linearly with drug concentration, at least up to 5.0 µM in homogeneous and heterogeneous media, indicating that aggregation did not occur in these media within this concentration range. The incorporation of the drugs into liposomes increases the dimerization constant by one order of magnitude (for ZnPC, 3.6 x 10(4 to 1.0 x 10(5 M-1 and for AlPHCl, 3.7 x 10(4 to 1.5 x 10(5 M-1, but this feature dose does not rule out the use of this carrier, since the incorporation of these hydrophobic drugs into liposomes permits their systemic administration. Probe location in biological membranes and predominant positions of the phthalocyanines in liposomes were inferred on the basis of their fluorescence and triplet state properties. Both phthalocyanines are preferentially distributed in the internal regions of the liposome bilayer. The additives affect the distribution of these drugs within the liposomes, a fact that controls their delivery when both are used in a biological medium, retarding their release. The addition of the additives to the liposomes increases the internalization of phthalocyanines. The interaction of the drugs with a plasma protein, bovine serum albumin, was examined quantitatively by the fluorescence technique. The results show that when the drugs were incorporated into small unilamellar liposomes, the association with albumin was enhanced when compared with organic media, a fact that should increase the selectivity of tumor targeting by these phthalocyanines (for ZnPC, 0.71 x 10(6 to 1.30 x 10(7 M-1 and for AlPHCl, 4.86 x 10(7 to 3.10 x 10(8 M-1.

  10. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  11. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE

    International Nuclear Information System (INIS)

    Socol, M.; Preda, N.; Rasoga, O.; Breazu, C.; Stavarache, I.; Stanculescu, F.; Socol, G.; Gherendi, F.; Grumezescu, V.; Popescu-Pelin, G.; Girtan, M.; Stefan, N.

    2016-01-01

    Highlights: • Organic heterostructures prepared by MAPLE having a large absorbtion domain. • Photogeneration process is evidenced in the structure with ZnPc:TPyP mixed layer. • An increase in current value is observed in the structure with MgPc:TPyP mixed layer. - Abstract: Heterostructures based on zinc phthalocyanine (ZnPc), magnesium phthalocyanine (MgPc) and 5,10,15,20-tetra(4-pyrydil)21H,23H-porphine (TPyP) were deposited on ITO flexible substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. Organic heterostructures containing (TPyP/ZnPc(MgPc)) stacked or (ZnPc(MgPc):TPyP) mixed layers were characterized by X-ray diffraction-XRD, photoluminescence-PL, UV–vis and FTIR spectroscopy. No chemical decomposition of the initial materials was observed. The investigated structures present a large spectral absorption in the visible range making them suitable for organic photovoltaics applications (OPV). Scanning electron microscopy-SEM and atomic force microscopy-AFM revealed morphologies typical for the films prepared by MAPLE. The current–voltage characteristics of the investigated structures, measured in dark and under light, present an improvement in the current value (∼3 order of magnitude larger) for the structure based on the mixed layer (Al/MgPc:TPyP/ITO) in comparison with the stacked layer (Al/MgPc//TPyP/ITO). A photogeneration process was evidenced in the case of structures Al/ZnPc:TPyP/ITO with mixed layers.

  12. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Socol, M., E-mail: cela@infim.ro [National Institute of Material Physics, 105 bis Atomistilor Street, PO Box MG-7, 077125 Bucharest-Magurele (Romania); Preda, N.; Rasoga, O. [National Institute of Material Physics, 105 bis Atomistilor Street, PO Box MG-7, 077125 Bucharest-Magurele (Romania); Breazu, C. [National Institute of Material Physics, 105 bis Atomistilor Street, PO Box MG-7, 077125 Bucharest-Magurele (Romania); University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125 Bucharest-Magurele (Romania); Stavarache, I. [National Institute of Material Physics, 105 bis Atomistilor Street, PO Box MG-7, 077125 Bucharest-Magurele (Romania); Stanculescu, F. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, PO Box MG-11, 077125 Bucharest-Magurele (Romania); Socol, G.; Gherendi, F.; Grumezescu, V.; Popescu-Pelin, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-36, 077125 Bucharest-Magurele (Romania); Girtan, M. [Laboratoire de Photonique d’Angers, Université d’Angers, 2, Bd. Lavoisier, 49045 Angers (France); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-36, 077125 Bucharest-Magurele (Romania)

    2016-06-30

    Highlights: • Organic heterostructures prepared by MAPLE having a large absorbtion domain. • Photogeneration process is evidenced in the structure with ZnPc:TPyP mixed layer. • An increase in current value is observed in the structure with MgPc:TPyP mixed layer. - Abstract: Heterostructures based on zinc phthalocyanine (ZnPc), magnesium phthalocyanine (MgPc) and 5,10,15,20-tetra(4-pyrydil)21H,23H-porphine (TPyP) were deposited on ITO flexible substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. Organic heterostructures containing (TPyP/ZnPc(MgPc)) stacked or (ZnPc(MgPc):TPyP) mixed layers were characterized by X-ray diffraction-XRD, photoluminescence-PL, UV–vis and FTIR spectroscopy. No chemical decomposition of the initial materials was observed. The investigated structures present a large spectral absorption in the visible range making them suitable for organic photovoltaics applications (OPV). Scanning electron microscopy-SEM and atomic force microscopy-AFM revealed morphologies typical for the films prepared by MAPLE. The current–voltage characteristics of the investigated structures, measured in dark and under light, present an improvement in the current value (∼3 order of magnitude larger) for the structure based on the mixed layer (Al/MgPc:TPyP/ITO) in comparison with the stacked layer (Al/MgPc//TPyP/ITO). A photogeneration process was evidenced in the case of structures Al/ZnPc:TPyP/ITO with mixed layers.

  13. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    Science.gov (United States)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  14. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces.

    Science.gov (United States)

    Ohtomo, Manabu; Sekine, Yoshiaki; Wang, Shengnan; Hibino, Hiroki; Yamamoto, Hideki

    2016-06-02

    We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol SAMs and reuse the substrate. This method will dramatically reduce the cost of graphene transfer, which will benefit industrial applications such as of graphene transparent electrodes.

  15. Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective

    Science.gov (United States)

    Ziurys, L. M.

    2010-06-01

    Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.

  16. Real-time monitoring and manipulation of single bio-molecules in free solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hung-Wing [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored

  17. The molecule-metal interface

    CERN Document Server

    Koch, Norbert; Wee, Andrew Thye Shen

    2013-01-01

    Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface.The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electroni

  18. Spins of adsorbed molecules investigated by the detection of Kondo resonance

    Science.gov (United States)

    Komeda, Tadahiro

    2014-12-01

    Surface magnetism has been one of the platforms to explore the magnetism in low dimensions. It is also a key component for the development of quantum information processes, which utilizes the spin degree of freedom. The Kondo resonance is a phenomenon that is caused by an interaction between an isolated spin and conduction electrons. First observed in the 1930s as an anomalous increase in the low-temperature resistance of metals embedded with magnetic atoms, the Kondo physics mainly studied the effects of bulk magnetic impurities in the resistivity. In the last 15 years it has undergone a revival by a scanning tunneling microscope (STM) which enables the measurement of the Kondo resonance at surfaces using an atomic scale point contact. The detection of the Kondo resonance can be a powerful tool to explore surface magnetism. In this article, I review recent studies of the surface spin of adsorbed molecules by the detection of the Kondo resonance. Researches on metal phthalocyanine (MPc) and porphyrin molecules will be examined. In addition, the Kondo resonance for double-decker lanthanoide Pc molecules will be discussed. Some of the double-decker Pc molecules show single-molecule magnet (SMM) behavior, which attracts attention as a material for electronic devices. For both classes, the ligand plays a crucial role in determining the parameters of the Kondo resonance, such as the Kondo temperature and the change of the shape from peak to Fano-dip. In addition, the spin in delocalized molecular orbital forms the Kondo resonance, which shows significant differences from the Kondo resonance formed by the metal spins. Since molecular orbital can be tuned in a flexible manner by the design of the molecule, the Kondo resonance formed by delocalized molecular orbital might expand the knowledge of this field.

  19. Dry Etching of Copper Phthalocyanine Thin Films: Effects on Morphology and Surface Stoichiometry

    Directory of Open Access Journals (Sweden)

    Michael J. Brett

    2012-08-01

    Full Text Available We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  20. An ultrafast study of Zinc Phthalocyanine in DMSO

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2010-10-01

    Full Text Available The ultrafast dynamics of Zinc Phthalocyanine was studied using trasient absorption pump probe spectroscopy. Zinc Phthalocyanine was excited (pumped) at 672nm and probed by a white light continuum. The pump-probe technique used in this study...

  1. The effect of the triblock properties on the morphologies and photophysical properties of nanoparticle loaded with carboxylic dendrimer phthalocyanine

    Science.gov (United States)

    Lv, Huafei; Chen, Zhe; Yu, Xinxin; Pan, Sujuan; Zhang, Tiantian; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-09-01

    Photodynamic therapy (PDT) is an emerging alternative treatment for various cancers and age-related macular degeneration. Phthalocyanines (Pcs) and their substituted derivatives are under intensive investigation as the second generation photosensitizers. A big challenge for the application of Pcs is poor solubility and limited accumulation in the tumor tissues, which severely reduced its PDT efficacy. Nano-delivery systems such as polymeric micelles are promising tools for increasing the solubility and improving delivery efficiency of Pcs for PDT application. In this paper, nanoparticles of amphiphilic triblock copolymer poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) were developed to encapsulate 1-2 generation carboxylic poly (benzyl aryl ether) dendrimer. The morphologies and photophysical properties of polymeric nanoparticles loaded with 1-2 generation dendritic phthalocyanines (G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m) were studied by AFM, UV/Vis and fluorescent spectroscopic method. The morphologies of self-assembled PLL-PEG-PLL aggregates exhibited concentration dependence. Its morphologies changed from cocoon-like to spheral. The diameters of G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m were in the range of 33-147 nm, increasing with the increase of the concentration of PLL-PEG-PLL. The morphologies of G2-ZnPc(COOH)16/m also changed from cocoon-like to sphere with the increase of the concentration of PLL-PEG-PLL. It was found that, the no obviously Q change was observed between the free phthalocyanines and nanoparticles. The fluorescence intensity of polymer nanoparticles were higher enhanced compared with free dendritic phthalocyanines. The dendrimer phthalocyanine loaded with poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) presented suitable physical stability, improved photophysical properties suggesting it may be considered as a promising formulation for PDT.

  2. Real-time single-molecule imaging of quantum interference.

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-03-25

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  3. Free and binary rotation of polyatomic molecules

    International Nuclear Information System (INIS)

    Konyukhov, V K

    2003-01-01

    A modification of the quantum-mechanical theory of rotation of polyatomic molecules (binary rotation) is proposed, which is based on the algebra and representations of the SO(4) group and allows the introduction of the concept of parity, as in atomic spectroscopy. It is shown that, if an asymmetric top molecule performing binary rotation finds itself in a spatially inhomogeneous electric field, its rotational levels acquire the additional energy due to the quadrupole moment. The existence of the rotational states of polyatomic molecules that cannot transfer to the free rotation state is predicted. In particular, the spin isomers of a water molecule, which corresponds to such states, can have different absolute values of the adsorption energy due to the quadrupole interaction of the molecule with a surface. The difference in the adsorption energies allows one to explain qualitatively the behaviour of the ortho- and para-molecules of water upon their adsorption on the surface of solids in accordance with experimental data. (laser applications and other topics in quantum electronics)

  4. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  5. Pinning of fullerene lowest unoccupied molecular orbital edge at the interface with standing up copper phthalocyanine

    International Nuclear Information System (INIS)

    Wang, Chenggong; Irfan, Irfan; Turinske, Alexander J.; Gao, Yongli

    2012-01-01

    The electronic structure evolution of interfaces of fullerene (C 60 ) with copper phthalocyanine (CuPc) on highly oriented pyrolitic graphite (HOPG) and on native silicon oxide has been investigated with ultra-violet photoemission spectroscopy and inverse photoemission spectroscopy. The lowest unoccupied molecular orbital edge of C 60 was found to be pinned at the interface with CuPc on SiO 2 . A substantial difference in the electron affinity of CuPc on the two substrates was observed as the orientation of CuPc is lying flat on HOPG and standing up on SiO 2 . The ionization potential and electron affinity of C 60 were not affected by the orientation of CuPc due to the spherical symmetry of C 60 molecules. We observed band bending in C 60 on the standing-up orientation of CuPc molecules, while the energy levels of C 60 on the flat lying orientation of CuPc molecules were observed to be flat. - Highlights: ► Orientation of copper phthalocyanine (CuPc) on ordered graphite and silicon oxide. ► Pinning of lowest unoccupied molecular orbital edge of C60 to the Fermi level on CuPc. ► No C60 pinning or band bending was observed on flat laying CuPc. ► Results are useful for organic photovoltaic and organic light emitting diode research.

  6. Thermosetting Phthalocyanine Polymers

    Science.gov (United States)

    Fohlen, G.; Parker, J.; Achar, B.

    1985-01-01

    Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.

  7. Tin-phthalocyanine adsorption and diffusion on Cu and Au (111) surfaces: A density functional theory study

    Science.gov (United States)

    Qin, Dan; Ge, Xu-Jin; Lü, Jing-Tao

    2018-05-01

    Through density functional theory based calculations, we study the adsorption and diffusion of tin phthalocyanine (SnPc) molecule on Au(111) and Cu(111) surfaces. SnPc has two conformers with Sn pointing to the vacuum (Sn-up) and substrate (Sn-down), respectively. The binding energies of the two conformers with different adsorption sites on the two surfaces, including top, bridge, fcc, hcp, are calculated and compared. It is found that the SnPc molecule binds stronger on Cu(111) surface, with binding energy about 1 eV larger than that on Au(111). Only the bridge and top adsorption sites are stable on Cu(111), while all the four adsorption sites are stable on Au(111), with small diffusion barriers between them. Moreover, the flipping barrier from Sn-up to Sn-down conformer is of the same magnitude on the two metal surfaces. These results are consistent with a recent experiment [Zhang, et al., Angew. Chem., 56, 11769 (2017)], which shows that conformation change from Sn-up to Sn-down on Cu(111) surface can be induced by a C60-functionalized STM tip, while similar change is difficult to realize on Au(111), due to smaller diffusion barrier on Au(111).

  8. Free energy profiles from single-molecule pulling experiments.

    Science.gov (United States)

    Hummer, Gerhard; Szabo, Attila

    2010-12-14

    Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.

  9. Electrodes Modification Based on Metal-Free Phthalocyanine: Example of Electrochemical Sensors for the Detection of Acetic Acid

    Directory of Open Access Journals (Sweden)

    Amadou L. Ndiaye

    2015-01-01

    Full Text Available Electroanalytical properties of tetra-tert-butyl phthalocyanine (PcH2-tBu modified electrodes are studied by cyclic voltammetry (CV. The modified electrodes are obtained by CV deposition techniques on gold (Au and glassy carbon (C screen-printed electrodes (SPEs and used for the electrochemical detection of acetic acid (AA. Based on the CV experiments, the electrodeposition mechanism is detailed. The modified PcH2-tBu electrodes reveal one oxidation and one reduction peak within the potential window of the working electrodes. In the presence of the analyte (acetic acid, the modified electrodes show sensitivity in the range of 10 mM to 400 mM. For the PcH2-tBu modified Au electrode, a limit of detection (LOD of 5.89 mM (based on the +0.06 V peak was obtained while for the PcH2-tBu modified C electrode a LOD of 17.76 mM (based on the +0.07 V peak was achieved. A signal decay of 17%, based on 20 experiments, is obtained when gold is used as working electrode. If carbon is used as working electrode a value of 7% is attained. A signal decay is observed after more than 50 cycles of experiments and is more pronounced when higher concentrations of acetic acid are used. A mechanism of sensing is proposed at the end.

  10. Effect of metal complexation to anti-inflammatory over the action against oxidative and free radicals: ketoprofen action

    International Nuclear Information System (INIS)

    Manente, Francine Alessandra; Mello, Lucas Rosolen de Almeida; Vellosa, Jose Carlos Rebuglio; Khalil, Omar Arafat Kdudsi; Carvalho, Claudio Teodoro de; Bannach, Gilbert

    2011-01-01

    Free radicals are highly reactive species generated in living organisms for the purpose of protection. However, in some circumstances, they are responsible for the occurrence or aggravation of tissue damage. Many anti-inflammatory drugs have a direct effect on free radicals and not radical reactive species, which contributes to its actions against inflammation. Ketoprofen is a nonsteroidal anti-inflammatory agent that generates free radicals by photo irradiation and has an important hemolytic effect with that. The complexation of metals to different drugs has been used as a strategy to improve the pharmacological action of different molecules and reduce their side effects. This paper presents the results of ketoprofen and their metallic complexes action on erythrocytes and free radicals. It was observed that the cerium enhances the scavenger properties of ketoprofen on free radicals, while copper enhances its action over non-radical oxidants. Copper also reduced the hemolytic effect presented by ketoprofen meanwhile its cerium derivative maintained it. (author)

  11. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules.

    Science.gov (United States)

    Jašíková, Lucie; Roithová, Jana

    2018-03-07

    Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The composite phthalocyanine-based Langmuir-Blodgett films: structural peculiarities and NO-sensitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, I.L.; Khatko, V.V. [Nat. Acad. of Sci., Minsk (Belarus). Phys. Tech. Inst.

    1999-10-08

    Surface pressure versus area per molecule isotherms of the Langmuir monolayers of copper tetra-tert-butyl phthalocyanine (abbreviated as CuTTBPc), arachidic acid (abbreviated as AA), and their mixtures were measured depending upon the film component ratio and ionic content of the subphase. Substantial deviations of the mixed monolayer behaviour from an ideal one, which is characteristic of fully immiscible compounds forming separate surface domains on the liquid subphase, were observed if the molar fraction of AA in mixed monolayers exceeded 50%. This abnormality in the monolayer behaviour correlated with the drastic changes in the kinetics responses to NO gas of the sensors based on the mixed Langmuir-Blodgett (LB) films. The comparison and analysis of the results obtained suggest that the gas-sensitive properties of the two-component LB films are determined by two features of their structure, namely, hole-like defects existing in the AA matrix and interlayer cavities. The corresponding structure model of the mixed films is proposed. The results obtained may be useful for understanding the gas-sensitive mechanism of the composite phthalocyanine-based LB films. (orig.)

  13. Development of Smart Phthalocyanine-based Photosensitizers for Photodynamic Therapy

    Science.gov (United States)

    Chow, Yun Sang

    Phthalocyanines are versatile functional dyes that have shown great potential in cancer theranostics, especially in photodynamic therapy (PDT). This research work aims to develop "smart" phthalocyanine-based photosensitizers for targeted PDT. This thesis describes the synthesis, spectroscopic characterization, photophysical properties, and in vitro photodynamic activities of several series of carefully designed phthalocyanine-based photosensitizers. Chapter 1 presents an overview of PDT, including its historical development, photophysical mechanisms, and biological mechanisms. Various classes of photosensitizers are introduced with emphasis putting on phthalocyanines, which exhibit ideal characteristics of photosensitizers for PDT. In recent years, several approaches have been used to develop photosensitizers with higher tumor selectivity and minimal skin photosensitivity after PDT. Activatable photosensitizers can provide a "turn on" mechanism to offer an additional control of the specificity of treatment. Photosensitizers can also work cooperatively with the tumor-targeting groups or anticancer drugs so as to achieve targeted or dual therapy, which can enhance the efficacy of PDT. The novel approaches mentioned above have been widely used and combined to form multi-functional photosensitizing agents. These novel concepts and development of PDT are discussed and illustrated with relevant examples at the end of this chapter. To minimize the prolonged skin photosensitivity, photosensitizers that can only be activated by tumor-associated stimuli have been developed. Due to the abnormal metabolism in tumor tissues, their surface usually exhibits a lower pH compared to that of the normal tissues. Also, the pH difference between the intracellular and the physiological environment provides a pH-activation mechanism. Chapter 2 presents the synthesis and spectroscopic characterization of a pH-responsive zinc(II) phthalocyanine tetramer, in which the phthalocyanine units

  14. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    International Nuclear Information System (INIS)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-01-01

    Highlights: • The reduction of N 2 O by CO molecule is investigated over Al- and Si-decorated graphene oxides (Al-/Si-GO). • The N 2 O decomposition process can take place with a negligible activation energy over both surfaces. • Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions. - Abstract: The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Al−O or Si−O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N 2 O by CO molecule. It is found that the adsorption and decomposition of N 2 O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (E ads ) and charge transfer (q CT ) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small E ads and q CT values. Therefore, at the presence of N 2 O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N 2 O molecule. Our results indicate that the N 2 O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N 2 molecule can be easily released from the surface. Then, the activated oxygen atom (O ads ) which remains over the surface reacts with the CO molecule to form the CO 2 molecule via the reaction O ads + CO → CO 2 . Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions.

  15. Immobilization of Zinc Phthalocyanines in Silicate Matrices and Investigation of Their Photobactericidal Effect on E.coli

    Directory of Open Access Journals (Sweden)

    Spas Artarsky

    2006-01-01

    Full Text Available The aim of the present investigation was to immobilize zinc phthalocyanines in a silicate matrix and to test the photobactericidal properties of the matrices so prepared toward Esherichia coli in model aqueous media. For the purpose, tetra tertiary butyl zinc phthalocyanine (TBZnPc and zinc phthalocyanine tetrasulfonic acid (ZnPcTS were used. The abilities of these two photosensitizers to generate singlet oxygen in solution were compared by following the rate of photobleaching of 1,3-diphenylisobenzofuran (DPBF at 430 nm in dimethylformamide (DMF.The results of this study show clearly that, under the conditions used here, the TBZnPc is the more effective generator of singlet oxygen; with it the DPBF was virtually completely photobleached in 4 min, while with the ZnPcTS under the same conditions, it took 12 min to reach this point. Glass conjugates with the two phthalocyanines were obtained by the sol-gel technique and were characterized by a well-defined color due to the phthalocyanine incorporated in the silicate matrix. Glasses with an intense, but inhomogeneous, green color were obtained when the tetrasulfonic derivative of the zinc phthalocyanine was used, while blue glasses of evenly distributed coloration were formed from the tetra tertiary butyl derivative.The ZnPcTS conjugate demonstrates more effective singlet oxygen evolution than is the case with the TBZnPc conjugate. These results are the opposite of those obtained for the free phthalocyanines in solution. The structural formulae of the compounds show that TBZnPc has a more pronounced hydrophobic character than the sulfonic derivative. In our view, the relative reactivities of the conjugates can be explained by the tetrasulfonic derivative being situated mainly in the surface parts of the glass matrix where the hydrophilic character is prevailing, while the tertiary butyl derivative is mainly present in the internal parts of the matrix as a result of which it is less accessible and

  16. Fabrication and characterization of tetracyanoquinodimethane/phthalocyanine solar cells

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Ohtsuki, Takahiro; Oku, Takeo; Akiyama, Tsuyoshi

    2012-01-01

    Highlights: ► Heterojunction solar cells of tetracyanoquinodimethane (TCNQ)/copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) were fabricated and characterized. ► The light-induced charge separation with charge transfer was investigated by light-induced current density and optical absorption.. ► In both solar cells of TCNQ/CuPc and TCNQ/ZnPc, the TCNQ thin film worked for strong electron-accepting layer. ► These behaviors would be originated in charge transfer of excited electron from CuPc and ZnPc to TCNQ. ► The photovoltaic mechanism was discussed by the experimental results. - Abstract: Fabrication and characterization of heterojunction solar cells of tetracyanoquinodimethane (TCNQ)/copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) were carried out. The light-induced charge separation with charge transfer was investigated by light-induced current density and optical absorption. In both cases of the TCNQ/CuPc and TCNQ/ZnPc solar cells, the TCNQ thin film worked for strong electron-accepting layer as n-type semiconductor. These behaviors would be originated in charge transfer of excited electron from CuPc and ZnPc to TCNQ. The photovoltaic mechanism was discussed on the basis of the experimental results.

  17. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, Timothy [Arizona State Univ., Tempe, AZ (United States)

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  18. Nonlinear optical properties of systems based on ruthenium(II) tetra-15-crown-5-phthalocyaninate

    International Nuclear Information System (INIS)

    Grishina, A.D.; Gorbunova, Yu.G.; Enakieva, Yu.Yu.; Krivenko, T.V.; Savel'ev, V.V.; Vannikov, A.V.; Tsivadze, A.Yu.

    2008-01-01

    The third-order nonlinear optical properties of the ruthenium (II) complex with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules (R 4 Pc)Ru(TED) 2 were analyzed by means of the z-scanning technique. A solution of (R 4 Pc)Ru(TED) 2 in tetrachloroethane was exposed to nanosecond laser pulses at a wavelength of 1064 nm. It was found that the third-order molecular polarizability of the Ru(II) complex is 4.5 x 10 -32 cm 4 /C (esu). The polarizability per molecule increases by a factor of 3.6 when the single molecule occurs in a supramolecular assembly of (R 4 Pc)Ru(TED) 2 complexes. The photoelectric and photorefractive properties at 1064 nm of polymer composites, determined by the supramolecular assemblies that exhibits optical absorption and photoelectric sensitivity in the near IR region, are reported [ru

  19. Photochemical oxygen reduction by zinc phthalocyanine and silver/gold nanoparticle incorporated silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Manas; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Azad, Uday Pratap

    2012-12-15

    Silver or gold nanoparticles are synthesized using a borohydride reduction method and are anchored simultaneously into/onto the mercaptopropyl functionalized silica. Later, zinc phthalocyanine is adsorbed onto the above materials. Thin films of these materials are prepared by coating an aqueous colloidal suspension of the respective material onto glass plates. Visible light irradiation of these films in oxygen saturated, stirred aqueous solutions effectively reduces oxygen to hydrogen peroxide. The photocatalytic reduction of oxygen is explained on the basis of the semiconducting properties of the silica films. The back electron transfer reaction is largely prevented by means of a sacrificial electron donor, triethanolamine. - Highlights: Black-Right-Pointing-Pointer Zinc phthalocyanine adsorbed silica materials were prepared. Black-Right-Pointing-Pointer Thin films of these materials photocatalytically reduce oxygen. Black-Right-Pointing-Pointer The photocatalysis is explained based on semiconductor properties of the materials. Black-Right-Pointing-Pointer Metal nanoparticles increase the photocatalytic efficiency of the materials.

  20. Influencing the bonding and assembly of a multiterminal molecule on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Maya; Doessel, Kerrin; Fink, Karin; Fuhr, Olaf [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Schramm, Alexandrina; Stroh, Christophe [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); Mayor, Marcel [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); University of Basel, Department of Chemistry, CH-4056 Basel (Switzerland); Loehneysen, Hilbert von [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Physics Institute and Institute for Solid State Physics, D-76049 Karlsruhe (Germany)

    2011-07-01

    The bond of a molecule to a metallic electrode is known to have a crucial influence on the molecular conductance. As electronic functionalities are integrated into molecules or several subunits are connected to a three-dimensional multiterminal molecule, it is not obvious that a ''well-known'' chemical linker group will lead to the bonding configuration known from simpler molecules. We investigated a series of tripodal molecules on metal surfaces by STM. The chemical linker groups and the complex connecting the three wire-units are varied. We find that the position of molecules on the surface is governed by a subtle balance of intermolecular and molecule-surface interactions, partly in strong contrast to expectations. This emphasizes the need to characterize the nature of molecule-electrode contacts along with the investigation of the electronic conductance.

  1. Thin film formation at the air-water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Teran, Jose, E-mail: jcampos@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Garza, Cristina [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico); Beltran, Hiram I. [Departamento de Ciencias Naturales, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Castillo, Rolando [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico)

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin{sup IV} phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir-Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of {pi}-{pi}, {sigma}-{pi} and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  2. Thin film formation at the air–water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    International Nuclear Information System (INIS)

    Campos-Terán, José; Garza, Cristina; Beltrán, Hiram I.; Castillo, Rolando

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin IV phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir–Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of π–π, σ–π and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  3. Phthalocyanines as sensitizers for photodynamic water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, N.; Slivka, L.; Kaliya, O.; Lukyanets, E.; Negrimovsky, V.; Vorozhtsov, G. [Organic Intermediates and Dyes Inst., Moscow (Russian Federation); Nedachin, E.; Artemova, T.; Ivanova, L.; Lavrova, D. [A.N. Sysin Research Inst. of Human Ecology and Environmental Health of Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2003-07-01

    New octapyridiniomethyl-substituted phthalocyanines of Al and Zn have been synthesized. These octacationic complexes are readily soluble in water, show monomeric behavior and sensitize formation of singlet oxygen efficiently. They are of high photodynamic potential in killing both Gram-negative and Gram-positive bacteria in contrast to negatively charged sulfonated derivatives, which are substantially less effective, particularly towards coliform bacteria in natural or sewage water. The present study confirms that cationic phthalocyanines represent a class of photosensitizing agents with an efficient antibacterial activity. (orig.)

  4. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    Science.gov (United States)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  5. Theory of the reaction dynamics of small molecules on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Bret [Univ. of Massachusetts, Amherst, MA (United States)

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  6. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Science.gov (United States)

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    function of temperature and frequency. Furthermore, in order to explain these data, we present a model describing the electrical conduction through DNA molecule: DNA is a classical semiconductor with charges, dipoles and ions that result in creation of localized energy-states (LESs) in the extended bands and in the energy gap of the DNA molecule. This model explains clearly the mechanism of charge transfer mechanism in the DNA, and it sheds light on why the charge transfer through the DNA can lead to insulating, semiconducting, or metallic behavior on the same time. The model considers charges on DNA, in the extended bands, either could be free to move under electric field or localized in potential wells/hills. Localization of charges in DNA is an intrinsic structural-property of this solitaire molecule. At all temperatures, the expected increase in thermal-induced charge is attributed to the delocalization of holes (or/and electrons) in potential hills (or/and potential wells) which accurately accounts for the total electric and dielectric behavior through DNA molecule. We succeeded to fit the experimental data to the proposed model with reasonable magnitudes of potential hills/wells that are in the energy range from 0.068 eV.

  7. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents

    International Nuclear Information System (INIS)

    Aktaş, Ayşe; Pişkin, Mehmet; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya

    2014-01-01

    In this study, the synthesis of phthalonitrile derivatives bearing fluoro-functionalized groups and their peripherally-tetra substituted zinc phthalocyanine complexes were reported. The phthalonitrile derivatives 2a–5a were prepared by nucleophilic substitution of 4-nitrophthalonitrile with 2-[3-(trifluoromethyl)phenoxy]ethanol, 2-{2-[3-(trifluoromethyl) phenoxy]ethoxy}ethanol, 2-(2,3,5,6-tetrafluorophenoxy)ethanol, 2-[2-(2,3,5,6-tetrafluorophenoxy)ethoxy]ethanol, respectively. Zinc phthalocyanines bearing fluoro-functionalized groups (2b–5b) were obtained from the corresponding phthalonitrile derivatives. The newly synthesized phthalocyanines displayed good solubility in organic solvents such as chloroform (CHCl 3 ), dichloromethane (DCM), tetrahydrofuran (THF), toluene, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). On the other hand, the singlet oxygen, photodegradation, fluorescence quantum yields and fluorescence lifetime of these complexes were determined in DMSO. The effects of the substitution with fluoro-functionalized groups on these parameters were also compared. -- Highlights: • Synthesis of peripherally substituted zinc phthalocyanines. • Photophysical and photochemical properties in DMSO for phthalocyanines. • Photodynamic therapy studies

  8. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents

    Energy Technology Data Exchange (ETDEWEB)

    Aktaş, Ayşe [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadikoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-01-15

    In this study, the synthesis of phthalonitrile derivatives bearing fluoro-functionalized groups and their peripherally-tetra substituted zinc phthalocyanine complexes were reported. The phthalonitrile derivatives 2a–5a were prepared by nucleophilic substitution of 4-nitrophthalonitrile with 2-[3-(trifluoromethyl)phenoxy]ethanol, 2-{2-[3-(trifluoromethyl) phenoxy]ethoxy}ethanol, 2-(2,3,5,6-tetrafluorophenoxy)ethanol, 2-[2-(2,3,5,6-tetrafluorophenoxy)ethoxy]ethanol, respectively. Zinc phthalocyanines bearing fluoro-functionalized groups (2b–5b) were obtained from the corresponding phthalonitrile derivatives. The newly synthesized phthalocyanines displayed good solubility in organic solvents such as chloroform (CHCl{sub 3}), dichloromethane (DCM), tetrahydrofuran (THF), toluene, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). On the other hand, the singlet oxygen, photodegradation, fluorescence quantum yields and fluorescence lifetime of these complexes were determined in DMSO. The effects of the substitution with fluoro-functionalized groups on these parameters were also compared. -- Highlights: • Synthesis of peripherally substituted zinc phthalocyanines. • Photophysical and photochemical properties in DMSO for phthalocyanines. • Photodynamic therapy studies.

  9. Phase-coherent electron transport through metallic atomic-sized contacts and organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, F.

    2007-02-02

    This work is concerned with the theoretical description of systems at the nanoscale, in particular the electric current through atomic-sized metallic contacts and organic molecules. In the first part, the characteristic peak structure in conductance histograms of different metals is analyzed within a tight-binding model. In the second part, an ab-initio method for quantum transport is developed and applied to single-atom and single-molecule contacts. (orig.)

  10. Dust and molecules in extra-galactic planetary nebulae

    Science.gov (United States)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  11. Layer-by-layer assembled highly absorbing hundred-layer films containing a phthalocyanine dye: Fabrication and photosensibilization by thermal treatment

    International Nuclear Information System (INIS)

    Sergeeva, Alena S.; Volkova, Elena K.; Bratashov, Daniil N.; Shishkin, Mikhail I.; Atkin, Vsevolod S.; Markin, Aleksey V.; Skaptsov, Aleksandr A.; Volodkin, Dmitry V.; Gorin, Dmitry A.

    2015-01-01

    Highly absorbing hundred-layer films based on poly(diallyldimethylammonium chloride) (PDADMAC) of various molecular weights and on sulfonated copper phthalocyanine (CuPcTs) were prepared using layer-by-layer assembly. The multilayer films grew linearly up to 54 bilayers, indicating that the same amount of CuPcTs was adsorbed at each deposition step. This amount, however, was dependent on the molecular weight of PDADMAC in the range 100-500 kDa: the higher the molecular weight, the more CuPcTs molecules were adsorbed. This can be explained by the larger surface charge number density specific to longer polymer chains. Domains of pure PDADMAC and of the PDADMAC/CuPcTs complex were formed in the films during the assembly. Uniform distribution of CuPcTs over the films could be achieved by thermal treatment, leading to an α → β phase transition in phthalocyanine at 300 °C. Annealing caused changes in the film absorbance spectra, resulting in a 30-nm red shift of the peak maxima and in a strong (up to 62%) decrease in optical density. Thermogravimetric analysis revealed thermodegradation of PDADMAC during annealing above 270 °C, giving rise to micrometer-sized cracks within the films, as evidenced by scanning electron microscopy. - Highlights: • The films exhibit the linear dependence of the adsorption on the bilayer number varied from 2 until 54. • Polyelectrolyte of the highest MW shows the maximal adsorption of copper phthalocyanine molecules. • Annealing of the films causes a red-shift of the maxima in the absorbance spectra. • Cracks and micropores emerged in the multilayer films during the annealing

  12. Free molecule flow analysis of the interaction of skimming hardware components and background gas with free jets

    International Nuclear Information System (INIS)

    Raghuraman, P.; Bossel, U.

    1974-01-01

    Under conditions typical for the extraction of nozzle beams from free jets the rarefied flow pattern in the expansion chamber containing skimming hardware components and background gas is studied using a free molecule solution to the Boltzmann equation

  13. Photoinduced electron transfer between the dendritic zinc phthalocyanines and anthraquinone

    Science.gov (United States)

    Chen, Kuizhi; Wen, Junri; Liu, Jiangsheng; Chen, Zhenzhen; Pan, Sujuan; Huang, Zheng; Peng, Yiru

    2015-03-01

    The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.

  14. Photoelectric characteristics of lead phthalocyanine/titanium oxide structures

    CERN Document Server

    Ray, A K; Hodgson, S N B

    2003-01-01

    A study has been carried out into the conduction, charge transfer/electron injection and photovoltaic conversion properties of TiO sub 2 -lead phthalocyanine (PbPc) heterojunctions. The results indicate that although the heterojunction area, and hence overall conversion efficiency, was low for the planar device structures used in the investigation, electron injection and effective charge separation across the dye-TiO sub 2 interface was achieved, with open circuit voltages in the region of 0.3 V. The conversion efficiency was found to be a function of the thickness of the phthalocyanine layer, increasing by a factor of more than 30 times as the thickness of the dye layer was reduced from 500 to 100 nm. The results suggest that under appropriate deposition conditions, to ensure effective coating of the inorganic phase, such phthalocyanine dyes may offer potential for use in dye sensitized photovoltaic cells.

  15. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    International Nuclear Information System (INIS)

    Lee, Sang Uck

    2013-01-01

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry

  16. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  17. Phthalocyanine doping to improve critical current densities in MgB2 tapes

    International Nuclear Information System (INIS)

    Zhang Xianping; Ma Yanwei; Wang Dongliang; Gao Zhaoshun; Wang Lei; Qi Yanpeng; Awaji, Satoshi; Watanabe, Kazuo; Mossang, Eric

    2009-01-01

    Phthalocyanine-doped MgB 2 tapes were prepared by the in situ powder-in-tube method. The relationships between the critical current properties, crystallinity and microstructure were studied as a function of the phthalocyanine doping level. It is found that both H irr and H c2 were improved when MgB 2 samples were doped with phthalocyanine, which are mainly attributed to the effective carbon substitution and enhanced flux pinning strength caused by very fine grain sizes. Furthermore, compared to pure samples, the MgO content remained almost unchanged in all doped tapes, which is very beneficial to having better grain connectivity in MgB 2 . Significantly improved J c was obtained in the phthalocyanine-doped MgB 2 tapes, especially under high magnetic fields.

  18. Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles

    International Nuclear Information System (INIS)

    Jin Ling; Chen Dajun

    2012-01-01

    Highlights: ► Dye-sensitized solar cells sensitized by zinc octacarboxylic phthalocyanine. ► Attapulgite nanoparticles have been used to suppress phthalocyanine aggregation. ► Adding attapulgite improves the photovoltaic performance of the dye-sensitized solar cells. - Abstract: Attapulgite nanoparticles were used to improve photovoltaic performance of phthalocyanine-sensitized solar cells. The effects of attapulgite on the devices were investigated in details. Adding of attapulgite into TiO 2 electrodes not only reduced the adsorption of zinc octacarboxylic phthalocyanine but also prevented phthalocyanine aggregation effect, which greatly improved photovoltaic performance of the dye-sensitized solar cell. The solar cell with 10 mg attapulgite nanoparticles dispersed in the dye solution exhibited nearly three times larger photoelectric conversion efficiency under simulated AM 1.5 G irradiation (100 mW cm −2 ) when compared to the pure dye, which was further characterized by the electrochemical impedance spectroscopy (EIS). The EIS studies showed that attapulgite decreased the charge-transfer resistances at the TiO 2 /dye/electrolyte interface, which can promote electron transport.

  19. Molecules in the cold environment of a supersonic free-jet beam: from spectroscopy of neutral-neutral interactions to a test of Bell's inequality

    International Nuclear Information System (INIS)

    Koperski, J; Fry, E S

    2006-01-01

    The supersonic free-jet expansion technique has been used in different fields of research in physics, physical chemistry and chemistry to study vibrational and rotational molecular structures in ground and excited electronic energy states as well as in cold chemistry to study chemical reactions in a unique environment. The supersonic beam technique, as a widely used method in laser spectroscopy of molecules, exploits a source of monokinetic, rotationally and vibrationally cold molecules, that are very weakly bound in their ground electronic states (van der Waals molecules). In experiments at Jagiellonian University the supersonic free-jet beam serves as a source of ground-state van der Waals objects in studies of neutral-neutral interactions between group 12 metal (M = Zn, Cd, Hg) and noble gas (NG) atoms. Recently, the method has been applied as a source of entangled 199 Hg atom pairs in order to test Bell's inequality in an experiment at Texas A and M University

  20. Photochemical and Photophysical Properties of Phthalocyanines Modified with Optically Active Alcohols

    Directory of Open Access Journals (Sweden)

    Aline A. Ramos

    2015-07-01

    Full Text Available Three phthalocyanine derivatives were synthesized and characterized: one modified with a racemic mixture of 1-(4-bromophenylethanol and two other macrocycles modified with each one of the enantioenriched isomers (R-1-(4-bromophenylethanol and (S-1-(4-bromophenylethanol. The compounds were characterized by 1H-NMR spectroscopy, mass spectrometry, UV-Vis absorption, and excitation and emission spectra. Additionally, partition coefficient values and the quantum yield of the generation of oxygen reactive species were determined. Interestingly, the phthalocyanine containing a (R-1-(4-bromophenylethoxy moiety showed higher quantum yield of reactive oxygen species generation than other compounds under the same conditions. In addition, the obtained fluorescence microscopy and cell viability results have shown that these phthalocyanines have different interactions with mammary MCF-7 cells. Therefore, our results indicate that the photochemical and biological properties of phthalocyanines with chiral ligands should be evaluated separately for each enantiomeric species.

  1. Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine

    DEFF Research Database (Denmark)

    Vazquez, Hector; Jelinek, P.; Brandbyge, Mads

    2009-01-01

    A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange...... and correlation in a many-body Hamiltonian, and it leads to easy-to-evaluate corrections to the DFT eigenvalues. Self-interaction is largely corrected, so that the modified energy levels do not suffer from spurious crossings, as often encountered for CuPc in DFT, and they remedy the standard underestimation...... or semiempirical functionals for molecular levels, it can be easily applied to any local-orbital DFT approach, improving on several important limitations of standard DFT methods....

  2. Observing single molecule chemical reactions on metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Emory, S. R. (Steven R.); Ambrose, W. Patrick; Goodwin, P. M. (Peter M); Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  3. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  4. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    range of applications.1 Presently, these molecules are of particular interest in non-linear optics, as liquid crystals, as Langmuir - Blodgett films, for...cathode material in non-aqueous liquid electrolyte medium Since Li2Pc is a mixed ionic and electronic conductor, and some metal phthalocyanines are...14. ABSTRACT Dilithium phthalocyanine (Li2Pc) possesses mixed electronic- ionic conductivity due to overlap of - orbitals (electronic

  5. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule\\'s motion and its interaction with the resonator, the MC approach is by far the most accurate modeling approach for the modeling of squeeze-film damping in the free-molecule regime. The accuracy of this approach is demonstrated on several cases in which either analytical solutions or experimental measurements are available. It has been found that unlike the case when resonators oscillate in an unbounded domain, squeeze film damping is very sensitive to the mode shape, which implies that some of the existing modeling approaches based on rigid-resonator assumption may not be accurate when applied to model resonators oscillating at their deformed shape. ©2010 IEEE.

  6. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  7. Metal-Free Approaches to Sterically-Hindered Bonds

    Science.gov (United States)

    Dunham, Veronica Vin-yi

    Developing methods to perform cross coupling reactions by means of catalysis is highly desirable in chemistry. Many industries in today's society, such as the petroleum, agriculture, pharmaceutical, electronics, and polymer industry, use catalysis to some extent whether it is to make molecules that offer crop protection or toward the synthesis of the active ingredient of a medication. It is noteworthy that over 90% of chemicals are made through catalytic processes and that the catalyst market reached $17 billion in 2014, which demonstrates the demand for such methods. While transition metal catalysts have advantages such as low catalyst loading, broad reactivity, and that they have been well studied, some disadvantages are that they can be relatively expensive and sometimes air sensitive which can make them challenging to use. Organocatalysis, specifically noncovalent catalysis operating through hydrogen bond donating interactions, offers an environmentally-friendly alternative to transition metal catalysis. Our lab utilizes organocatalysis as a strategy to synthesize challenging, sterically-hindered bonds. Nitrimines have been identified as powerful coupling partners for the sustainable construction of new sterically congested carbon-carbon and carbon-heteroatom bonds. Using urea catalysis, a metal-free method to synthesize previously inaccessible enamines has been developed. Conventional routes to synthesize enamines as important building blocks toward target molecules generally require Lewis/Bronsted acids or expensive transition metals; however, these methods are often unsuccessful when stericallyhindered substrates are used. To address this synthetic challenge, it was hypothesized that hydrogen bonding interactions between a urea organocatalyst and nitrimine would generate a reactive species suited for the effective carbon-nitrogen coupling with amines to give the desired enamine products. This reaction provides high yields (up to 99%) of enamines using a

  8. Charge Transport in Metal-Molecule-Metal Junctions Probed by Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyunwook

    2013-01-01

    We have demonstrated a proof of intrinsic charge transport properties in alkanedithiol molecular junctions using a multiprobe approach combining a variety of transport techniques. The temperature-independent I(V) behavior and the correct exponential decay of conductance with respect to molecular length shows that the dominant charge transport mechanism is off-resonant tunneling. Length-dependent TVS measurements for the saturated alkane-dithiol series indicate that we did indeed probe a molecular system with CAFM. These results can provide stringent criteria to establish a valid molecular transport junction via a probabilistic measurement technique. In this study, we report a study of charge transport in alkanedithiol SAMs formed in metal-molecule-metal junctions using CAFM in combination with a variety of molecular transport techniques including temperature-and length-variable transport measurements and transition voltage spectroscopy. The main goal of this study is to probe the intrinsic transport properties of component molecules using CAFM, but not parasitic or defect-related effects

  9. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,; Wenjing Ye,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule's motion and its interaction

  10. Capacitance measurements and AC conductivity of Nickel Phthalocyanine films

    International Nuclear Information System (INIS)

    Darwish, S.

    2005-01-01

    A C dark Current measurements of nickel phthalocyanine thin films using ohmic gold electrodes are investigated in the frequency range 30-10 Hz and within the temperature range 295-385 K. The A C conductivity as D Ac is found to vary as within the index s < 1, indicating a dominant hopping process at low temperatures. From the temperature dependence of A C conductivity, free carrier conduction with mean activation energy of 0.31 eV is observed at higher temperatures. Capacitance and loss tangent are found to be decreased with increasing frequency and increase with increasing temperature. Such characteristics are found to be in good qualitative agreement with existing equivalent circuit model assuming ohmic contacts

  11. Phthalocyanines in batteries and supercapacitors

    CSIR Research Space (South Africa)

    Oni, J

    2012-08-01

    Full Text Available of their lower cost. This review article looks through a very narrow window of the applications of phthalocyanines in batteries and supercapacitors as a means of improving the qualities such as cycle property, energy density, capacity, open circuit voltage, etc...

  12. The effect of NO2 on spectroscopic and structural properties of evaporated ruthenium phthalocyanine dimer

    International Nuclear Information System (INIS)

    Alagna, Lucilla; Capobianchi, Aldo; Paoletti, Anna Maria; Pennesi, Giovanna; Rossi, Gentilina; Casaletto, Maria Pia; Generosi, Amanda; Paci, Barbara; Albertini, Valerio Rossi

    2006-01-01

    The chemical interaction between NO 2 gas and dimeric ruthenium phthalocyanine (RuPc) 2 (Pc = phthalocyanine ligand) films has been investigated by different techniques: UV-Visible spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Extended X-ray Absorption Fine Structure (EXAFS). The optical spectra in the Q band region (700-500 nm) registered 'in situ' enabled to follow the evolution of the process in real time indicating that a two steps reaction, showing two clear isosbestic points, occurs. The first phase was essentially characterised by: (a) the rapid disappearance of the 608 and 420 nm shoulders; (b) the intensity decrease of the main absorption peak and (c) the appearance of a new adsorption band centred around 510 nm. In the second step the remarkable feature is a further lowering of the main peak with the simultaneous decrease of the new 510 nm absorption. These spectral changes suggested that a chemical reaction occurred between NO 2 and ruthenium phthalocyanine with the formation of a radical species due to the macrocycle oxidation. The kinetics indicates that the adsorption of gas by the evaporated (RuPc) 2 film is a complex process involving more than one independent mechanism. XPS and EXAFS spectra collected before and after gas exposure showed that the central metals (Ru) were also involved in the oxidation process. The reversibility of the process has been also tested by treating the films at different temperatures, the original optical spectrum being not completely recovered

  13. Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array

    Directory of Open Access Journals (Sweden)

    Yoshiki Osaka

    2015-01-01

    Full Text Available We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz. Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.

  14. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    Science.gov (United States)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  15. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichienberger, D.L.

    1990-10-01

    This quarter has witnessed further progress both in our experimental methods of photoelectron spectroscopy and in our understanding the fundamental relationships between ionization energies and the chemistry of transition metal species. Progress continues on the new gas phase photoelectron spectrometer that combine improved capabilities for HeI/HeII UPS, XPS, and Auger investigations of organometallic molecules. Several measurements have been accomplished this year that were not possible previously. We have published the formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies, and applied the relationships to homonuclear and heteronuclear diatomic molecules, multiple bonds, and metal-ligand bonds. Studies of C-H bond activation have continued with examination of different degrees of Si-H bond addition to metals. the electronic effects of intermolecular interactions have been observed by comparing the ionizations of metal complexes in the gas phase with the ionizations of monolayer solid organometallic films prepared in ultra-high vacuum. The orientations of the molecules have been determined by scanning tunneling microscopy. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene. Studies of the following complexes are described : Fe, Os, Nb, Mo, Rh, Re, Al, and Mn. 19 refs

  16. Localization Study of Co-Phthalocyanines in Cells by Raman Micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S.Y.; Arzhantsev, S.Y.; Chikishev, A.Y.; Chikishev, A.Y.; Koroteev, N.I.; Greve, Jan; Otto, Cornelis; Sijtsema, N.M.

    1999-01-01

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  17. Localization study of Co-phthalocyanines in cells by Raman micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S Y; Chikishev, A Y; Koroteev, N I; Greve, J; Otto, C; Sijtsema, N M

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  18. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    International Nuclear Information System (INIS)

    Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng

    2014-01-01

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  19. Decolorization Treatment of Copper Phthalocyanine Textile Dye Wastewater by Electrochemical Methods

    Directory of Open Access Journals (Sweden)

    K. Dermentzis

    2013-01-01

    Full Text Available Electrochemical decolorization and degradation treatment of aqueous copper phthalocyanine reactive dye solutions was comparatively studied by electrocoagulation, electrooxidation and electro-Fenton processes. In the electrocoagulation process with aluminum electrodes the colored aqueous solutions of initial pH 6.4 containing 50 mg L-1 copper phthalocyanine and 6 g L-1 NaCl were treated at applied current densities of 2.5 and 5 mA cm-2. Fast and 100% decolorization was achieved in 4 and 2 minutes of electroprocessing respectively. The indirect electrooxidation process was conducted in acidic electrolyte solutions containing 50 mg L-1 copper phthalocyanine and 6 g L-1 NaCl with Ti/Pt and graphite plate electrodes at the applied current density of 10 mA cm-2. Even after 90 minutes of electrolysis time the dye remained by 23 and 18.8 % respectively undegradable. By the direct and indirect electrooxidation with the same amount of Na2SO4 electrolyte and added H2O2 respectively and using the same electrodes, the copper phthalocyanine dye was not or was only barely degraded respectively. In the electro-Fenton process with Fe electrodes and added amounts of H2O2 at pH 3 and an applied current density of 5 mA/cm2 complete degradation of copper phthalocyanine occurred in 15 minutes.

  20. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    Science.gov (United States)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  1. Hole Mobility of Molecular β-Copper Phthalocyanine Crystal

    International Nuclear Information System (INIS)

    Pengmanayol, S.; Osotchan, T.; Suewattana, M.; Ingadapa, N.; Girdpun, J.

    2011-01-01

    A Monte Carlo approach is used to estimate hole mobilities in molecular β-copper phthalocyanine (CuPc) crystal for different applied electric field directions. Due to the crystal symmetry, the twelve neighboring molecules in the three-dimensional crystal are selected in the hopping rate calculation. Density functional theory is employed to derive the molecular interaction between the central and neighboring molecules for various applied electric fields. The derived molecular hopping rate is applied to 80 × 80 × 80 lattice sites under periodic boundary conditions. In order to achieve accurate statistics, each calculation includes 6561 particles with more than 10000 hopping steps under an applied electric field of 0.5–3.5 MV/cm. The results indicate that the molecular hopping strongly depends on the molecular orientation and neighboring sites related to the applied electric field direction. The estimated carrier mobility can be described by the percentage occupation in each neighboring site and the obtained hole mobility value is in the same range of the measured values of single crystal CuPc. The calculated mobility for applied electric field along the c crystal axis exhibits the highest values while the mobility along the b axis has the smallest value. (condensed matter: structure, mechanical and thermal properties)

  2. Recent Studies in Phthalocyanine Chemistry.

    Science.gov (United States)

    1986-07-01

    desulfurisation ) etc. Many of the uses cited In the preceding sentence involve a redox process in which two or more electrons are exchanged per reaction...phthalocyanine as a catalyst for desulfurisation of residues, effluents etc 144]. Acknowledgmnts We ars Indebted to the Natural Sciences and Engineering

  3. Quinoline-substituted Zinc(II) phthalocyanine for the dual detection of ferric and zinc ions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ankush [Lyallpur Khalsa College of Engineering, Jalandhar (India); Kim, A Rong [Dong-A University, Busan (Korea, Republic of); Kim, Kyung Sub; Na, Kun [The Catholic University, Seoul (Korea, Republic of); Choi, Myung Seok [Konkuk University, Seoul (Korea, Republic of); Park, Jong S. [Pusan National University, Busan (Korea, Republic of)

    2015-09-15

    Here we present the synthesis and properties of quinoline-substituted zinc(II) phthalocyanine, Zn[Pc(O-QN){sub 4} ]. Zn[Pc(O-QN){sub 4} ] can function as a highly selective chemosensor against Fe{sup 3+} and Zn{sup 2+} ions, exhibiting efficient fluorescence quenching and enhancement, respectively. Various characterization techniques were employed to investigate the intermolecular interactions of Zn[Pc(O-QN){sub 4} ] with metal ions. A double-electron exchange and a forbidden photoinduced electron transfer behavior in Zn[Pc(O-QN){sub 4} ] were attributed to such opposite responses. Furthermore, by taking advantage of selectivity, we successfully employed Zn[Pc(O-QN)-4 ] to stain and record confocal fluorescence microscopy images of Chang liver cells in the presence of metal ions.

  4. Physical and photophysical properties of mixed double- and triple-decker sandwiches of porphyrins and phthalocyanines

    International Nuclear Information System (INIS)

    Salabert, Isabelle

    1995-01-01

    The study of electron transfer and charge recombination processes in various oligomers of porphyrins and phthalocyanines is reported. Our objective is to determine the nature of processes which compete with electron transfer in such Systems. The first part of this thesis is devoted to the study of mixed double- and triple-decker sandwich compounds of porphyrins and phthalocyanines of cerium and praseodymium. The charge transfer reaction and geminated recombination from excited complexes in solution and in sublimated film are investigated by time-resolved absorption spectroscopy with femtosecond time scale resolution. These results show the influence of the magnetic nature of the metal ion and of the relative position of the chromophores in the complex on the photophysical processes. The physical and photophysical properties of complexes formed by pairing in solution porphyrins and porphyrazines bearing oppositely charged substituent are reported in the second part. The formation of mixed aggregates of high order (2 to 5) is observed and their nature are spectrally characterized. The photoproducts issued from these complexes are extremely stable. (author) [fr

  5. Interface properties of organic molecules on metal surfaces; Grenzflaecheneigenschaften organischer Molekuele auf Metalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Karacuban, Hatice

    2010-01-28

    In this work, the growth of the archetype molecules CuPc and PTCDA was investigated on Cu(111). PTCDA was also studied on NaCl/Cu(111). The main experiments were carried out with a scanning tunneling microscope. Structural analysis of CuPc on Cu (111) is only possible at low temperatures, since at room temperature the molecules exhibit a high surface mobility. For the investigation of these structures and especially to enable scanning tunneling spectroscopy, a low-temperature scanning tunneling microscope was developed. Using this home built STM the experiments could be carried out at about 10 K. After the adsorption of CuPc on Cu (111) a substrate-induced symmetry reduction of the molecules can be observed in scanning tunneling microscopy. When the occupied states of the molecules are imaged, a switching between two distinct levels is found. These modifications are determined by the adsorption geometry of the molecules. Based on high resolution STM data, an on-top adsorption geometry of the CuPc-molecules on Cu (111)-substrate can be deducted. At low temperatures, two new superstructures of PTCDA on Cu(111) are observed. The molecules within these superstructures are tilted with respect to the substrate. Intermolecular interactions may be the crucial factor for the realignment of the molecules. If PTCDA molecules are adsorbed on a NaCl/Cu (111) substrate, at room temperature, also two new superstructures on the copper substrate were found. They indicate the formation of a metall-organic-complex. On top of the NaCl layer the molecules exclusively grow at polar NaCl step edges. This is an indication for electrostatic interaction between the PTCDA molecules and the NaCl layer. When the molecule density is further increased, a Vollmer-Weber growth sets in. If both molecules PTCDA and CuPc are present on the sample at the same time, local spectroscopy provides information on the metal-organic interface in direct comparison. The STS-results of CuPc/PTCDA on Cu (111

  6. Film formation of non-planar phthalocyanines on copper(i) iodide

    OpenAIRE

    Ramadan, A. J.; Fearn, S.; Jones, T. S. (Tim S.); Heutz, S.; Rochford, L. A. (Luke A.)

    2016-01-01

    Structural templating is frequently used in organic photovoltaic devices to control the properties of the functional layers and therefore improve efficiencies. Modification of the substrate temperatures has also been shown to impact the structure and morphology of phthalocyanine thin films. Here we combine templating by copper iodide and high substrate temperature growth and study its effect on the structure and morphology of two different non-planar phthalocyanines, chloroaluminium (ClAlPc) ...

  7. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  8. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as

  9. Synthesis, spectral and photophysical properties of novel phthalocyanines bearing bulky phenantroxy moiety

    International Nuclear Information System (INIS)

    Erdogmuş, Ali; Lütfi Ugur, Ahmet; Memişoglu, Abdussamed; Erden, İbrahim

    2013-01-01

    The synthesis, characterization, spectral and photophysical properties of soluble 9-Phenanthroxy substituted oxo-titanium (IV), zinc, magnesium and nickel phthalocyanines (1a, 1b, 1c and 1d) are reported for the first time. The new compounds have been characterized by elemental analysis, FT-IR, 1 H–NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for spectral, fluorescence properties and fluorescence quantum yields of these compounds in dimethylsulfoxide (DMSO) and toluene. All phthalocyanine complexes (1a to 1d) exhibited excellent solubility in organic solvents such as dichloromethane, chloroform, THF, toluene, DMF and DMSO. - Highlights: ► New metallophthalocyanines (1a–1d) were synthesized. ► These new phthalocyanine derivatives show the enhanced solubility in organic solvents. ► The spectral and photophysical properties of TiO(IV), zinc (II) and Mg(II) phthalocyanine (1a–1c) are investigated in DMSO and toluene. ► Ground state electronic absorption and fluorescence spectra.

  10. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.

    Science.gov (United States)

    Korobenko, A; Milner, V

    2016-05-06

    We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

  11. Photochemical activation and reactivity of polynuclear transition metal complex molecules. Final report

    International Nuclear Information System (INIS)

    Endicott, J.F.; Lintvedt, R.L.

    1982-06-01

    Several bi- and trinuclear metal complexes containing ligands from β-polyketonates have been synthesized and characterized including homo- and hetero-polynuclear complexes. New synthetic approaches to the preparation of heterobi- and trinuclear complexes have been developed that allow the preparation of a large number of molecules containing heavy-metal ions such as Pd 2+ or UO 2 2+ and a first-row transition-metal ion. The electrochemical properties of these complexes have been investigated and many exhibit the ability to transfer two electrons at very nearly the same potential. Photochemical studies on binuclear Cu(II) and Ni(II) showed that these compounds yielded reduced metal species and decomposition upon irradiation. Luminescence of hetero-complexes of uranyl polyketonates is observed at 77 0 K with the UO 2 2+ moiety functioning as an isolated chromophore in which emission is observed only on direct excitation of UO 2 2+ and energy transfer to lower states in the molecule is not observed

  12. Transition metal chemistry of hydroxy(–OH)-rich molecules ...

    Indian Academy of Sciences (India)

    Administrator

    Appropriately designed hydroxy(–OH) containing Schiff's base and Mannich base molecules have been recently found to be important for development of the coordination chemistry of a number of metal ions in the biomimetic chemistry of metalloenzymes. In this context, our group has studied the coordination role of these ...

  13. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    Science.gov (United States)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  14. Soluble substituted phthalocyanines for OFET applications

    Czech Academy of Sciences Publication Activity Database

    Chaidogiannos, G.; Petraki, F.; Glezos, N.; Kennou, S.; Nešpůrek, Stanislav

    2008-01-01

    Roč. 152, - (2008), s. 105-108 ISSN 0921-5107. [International Workshop on Nanosciences and Nanotechnologies. Thessaloniki, 16.08.2007-18.07.2007] Institutional research plan: CEZ:AV0Z40500505 Keywords : organic electronic transistors * phthalocyanines Subject RIV: CD - Macromolecular Chemistry

  15. JSME: a free molecule editor in JavaScript.

    Science.gov (United States)

    Bienfait, Bruno; Ertl, Peter

    2013-01-01

    A molecule editor, i.e. a program facilitating graphical input and interactive editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. Today, when a web browser has become the universal scientific user interface, a tool to edit molecules directly within the web browser is essential. One of the most popular tools for molecular structure input on the web is the JME applet. Since its release nearly 15 years ago, however the web environment has changed and Java applets are facing increasing implementation hurdles due to their maintenance and support requirements, as well as security issues. This prompted us to update the JME editor and port it to a modern Internet programming language - JavaScript. The actual molecule editing Java code of the JME editor was translated into JavaScript with help of the Google Web Toolkit compiler and a custom library that emulates a subset of the GUI features of the Java runtime environment. In this process, the editor was enhanced by additional functionalities including a substituent menu, copy/paste, drag and drop and undo/redo capabilities and an integrated help. In addition to desktop computers, the editor supports molecule editing on touch devices, including iPhone, iPad and Android phones and tablets. In analogy to JME the new editor is named JSME. This new molecule editor is compact, easy to use and easy to incorporate into web pages. A free molecule editor written in JavaScript was developed and is released under the terms of permissive BSD license. The editor is compatible with JME, has practically the same user interface as well as the web application programming interface. The JSME editor is available for download from the project web page http://peter-ertl.com/jsme/

  16. Anchoring of organic molecules to a metal surface: HtBDC on Cu(110)

    DEFF Research Database (Denmark)

    Schunack, M.; Petersen, L.; Kuhnle, A.

    2001-01-01

    The interaction of largish molecules with metal surfaces has been studied by combining the imaging and manipulation capabilities of the scanning tunneling microscope (STM). At the atomic scale, the STM results directly reveal that the adsorption of a largish organic molecule can induce...

  17. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  18. Analysis of functional organic molecules at noble metal surfaces by means of vibrational spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Leyssner, Felix

    2011-10-24

    The goal of this work is to optimize the efficiency of photoinduced molecular switching processes on surfaces via controlled variations of the adsorption and electronic properties of the switch. We investigated the influence of external stimuli, i.e. photons and thermal activation, on surface bound molecular switches undergoing trans/cis-isomerizations and ring-opening/closing-reactions, respectively. High resolution electron energy loss spectroscopy (HREELS) and sum-frequency generation (SFG) spectroscopy have been used as the main tools to investigate the adsorption behavior and the molecular switching properties. Two basic concepts of coupling the molecular switch to the surface have been studied: (i) physisorbed or weakly chemisorbed systems deposited on noble metal surfaces under UHV conditions and (ii) molecular switches bound covalently via anchor groups. In the HREELS study following concept (i), we investigated the adsorption geometry and isomerization behavior of various molecular switches on metal substrates which are able to undergo a photoinduced trans/cis-isomerization in solution. We investigated three isoelectronic molecules on Au where we systematically changed the photochemically active group from the diazo-group in an azobenzene-derivative (on Cu(111)) to the imine-group, and the vinylene-group, respectively. Finding the photoisomerization quenched for all systems we observed considerable differences in their thermal isomerization behavior. Comparable we find the photoinduced ring-opening/closing-reaction of spiropyran quenched on Au(111) but a thermally induced ring-opening reaction resulting in the open form being strongly stabilized by the metal. SFG spectroscopy is employed to investigate the reversible, photoinduced trans/cis-isomerization of an azobenzene-functionalized self-assembled monolayer (SAM) on gold using a tripodal linker system. In consequence of the decoupling provided by the tripodal linker, the switching behavior of the

  19. Synthesis of Ruthenium(III Phthalocyanine with Di-axial Bromo Ligands - A Promising Molecular Conductor with Giant Negative Magnetoresistance

    Directory of Open Access Journals (Sweden)

    Mario A.V. Gamboa

    2015-01-01

    Full Text Available The electron transport of Phthalocyanines (Pc with central metal and di-axial ligands (such as FeIII(PcL2; where L = CN, Cl, Br originates from its intermolecular Pc π-π orbital overlap while its giant negative magnetoresistance (GNMR arises from its intramolecular Pc-π(HOMO and Fe-d (s=1/2 interaction. However, the π-d interaction tends to localize itinerant electrons resulting in the decrease in the conductivity of the FeIII(PcL2 series compared to the non-magnetic CoIII(PcL2 where π-d interaction is absent. More so, the axial ligand field energy of the FeIII(PcL2 system is found to have the ability to proportionally modulate the π-d interaction. In reference thereof, theoretical calculations point that isostructural RuIII(PcBr2 would provide the best balance of π-d orbital energy interplay. That is, RuIII(PcBr2 is expected to be a molecule with high electrical conductivity and GNMR which would make it an ideal magnetic molecular conductor. This paper reports on the synthesis of RuIII(PcBr2.

  20. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sohaimi, Bander Roshadan [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Aljuhani, Ateyatallah; Al-Raqa, Shaya Y. [Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 344, Al-Madinah Al Munawwrah (Saudi Arabia); Durmuş, Mahmut, E-mail: durmus@gtu.edu.tr [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey)

    2016-05-15

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as {sup 1}H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  1. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties

    International Nuclear Information System (INIS)

    Al-Sohaimi, Bander Roshadan; Pişkin, Mehmet; Aljuhani, Ateyatallah; Al-Raqa, Shaya Y.; Durmuş, Mahmut

    2016-01-01

    The symmetrical zinc(II) phthalocyanines conjugated with 9,10-dioctyl-6,7-dimethoxy-2,3-dioxytriptycene or 9,10-diundecyl-6,7-dimethoxy-2,3-dioxytriptycene moieties were synthesized in this study. These novel phthalocyanines were characterized by standard characterization techniques such as 1 H-NMR, FT-IR, UV–vis, Mass and Elemental Analysis. All these phthalocyanines showed highly solubility and formed non-aggregated monomeric species in most of the organic solvents. Their photochemical properties such as singlet oxygen, and photodegradation quantum yields, and photophysical properties including fluorescence quantum yields and lifetimes were investigated in toluene. The fluorescence quenching behavior of the studied zinc(II) phthalocyanines by the addition of 1,4-benzoquinone were also described in toluene.

  2. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    Science.gov (United States)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  3. Sandwich-cell-type bulk-heterojunction organic solar cells utilizing liquid crystalline phthalocyanine

    Science.gov (United States)

    Nakata, Yuya; Usui, Toshiki; Nishikawa, Yuki; Nekelson, Fabien; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Sandwich-cell-type bulk-heterojunction organic solar cells utilizing the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), have been fabricated and their photovoltaic properties have been studied. The short-circuit current (J SC) and power conversion efficiency (PCE) depended on the blend ratio of donor and acceptor molecules, and the maximum performance, such as J SC of 3.4 mA/cm2 and PCE of 0.67%, was demonstrated, when the blend ratio of the acceptor was 10 mol %. The photovoltaic properties were discussed by taking the relationship between the column axis direction of C6PcH2 and the carrier mobility in the active layer into consideration.

  4. Realization and utilization of a harmonic light scattering experiment to select new molecules with great optical nonlinearity

    International Nuclear Information System (INIS)

    Dhenaut, Christophe

    1995-01-01

    Conception of new organic materials for nonlinear optics is generally driven by a molecular engineering approach. The usual technique for determining the quadratic hyper polarizability of designed molecules is the electric field induced second harmonic (EFISH) experiment. However this technique is limited to neutral molecules with a permanent dipole moment. We have realized an harmonic light scattering (HLS) experiment which allow the measurement of any kind of molecules, polar or non polar, neutral or ionic. Using this technique we have been able to demonstrate experimentally the validity of the octupole concept (molecules without dipole moment) which has been proposed recently. We have studied molecules corresponding to various octupolar geometries. Nonlinearities are found to be comparable to those of the best dipolar compounds. We have also investigated other molecular families with different symmetry such as polyenes, sub-phthalocyanines and phthalocyanines by EFISH and HLS techniques. We have confronted results obtained by the two experiments. It appears that these results are not easy to compare, the tensorial components accessible by each experiment being different. The two experiments seems complementary. HLS experiments allow the observation of a quadratic hyper polarizability for centrosymmetric molecules. This surprising observation could be explained by the contribution of a vibration al part to the hyper polarizability measured by HLS (but not present in EFISH). Interpretation of this dynamic process is still in progress. (author) [fr

  5. Confined Catalysis in the g-C3N4/Pt(111) Interface: Feasible Molecule Intercalation, Tunable Molecule-Metal Interaction, and Enhanced Reaction Activity of CO Oxidation.

    Science.gov (United States)

    Wang, Shujiao; Feng, Yingxin; Yu, Ming'an; Wan, Qiang; Lin, Sen

    2017-09-27

    The deposition of a two-dimensional (2D) atomic nanosheet on a metal surface has been considered as a new route for tuning the molecule-metal interaction and surface reactivity in terms of the confinement effect. In this work, we use first-principles calculations to systematically explore a novel nanospace constructed by placing a 2D graphitic carbon nitride (g-C 3 N 4 ) nanosheet over a Pt(111) surface. The confined catalytic activity in this nanospace is investigated using CO oxidation as a model reaction. With the inherent triangular pores in the g-C 3 N 4 overlayer being taken advantage of, molecules such as CO and O 2 can diffuse to adsorb on the Pt(111) surface underneath the g-C 3 N 4 overlayer. Moreover, the mechanism of intercalation is also elucidated, and the results reveal that the energy barrier depends mainly on the properties of the molecule and the channel. Importantly, the molecule-catalyst interaction can be tuned by the g-C 3 N 4 overlayer, considerably reducing the adsorption energy of CO on Pt(111) and leading to enhanced reactivity in CO oxidation. This work will provide important insight for constructing a promising nanoreactor in which the following is observed: The molecule intercalation is facile; the molecule-metal interaction is efficiently tuned; the metal-catalyzed reaction is promoted.

  6. Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Minh, David D. L.; Adib, Artur B.

    2008-05-01

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  7. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  8. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    International Nuclear Information System (INIS)

    Çakır, Dilek; Göl, Cem; Çakır, Volkan; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya; Kantekin, Halit

    2015-01-01

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, 1 H NMR, 13 C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies

  9. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  10. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongqin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Pan, Sujuan; Ma, Dongdong; He, Dandan; Wang, Yuhua [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China); Xie, Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China)

    2016-11-15

    A novel series of light-harvesting dendrimer zinc-phthalocyanines chromophores labeled-single-wall carbon nanotubes (SWNTs) nanoparticles, in which 0–2 generations dendrimer zinc phthalocyanines covalently linked with SWNTs using either ethylenediamine or hexamethylenediamine as the space linkers were prepared. The structures and morphologies of these nanoconjugates were comprehensively characterized by Raman spectroscopy, transmission electron microscopy and thermal gravimetric analysis methods. Their photophysical properties were investigated by fluorescence and time-resolved spectroscopic methods. The photoinduced intramolecular electron transfer occurred from phthalocyanines (donors) to SWNTs (acceptors). Besides, the electron transfer exchange rates and exchange efficacies between the dendritic phthalocyanines and single-wall carbon nanotubes increased as the length of spacer linker decreased, or as the dendritic generation increased. Cyclic voltammetry (CV) method further confirmed thermodynamics possibility of the electron transfer from phthalocyanines to single-wall carbon nanotubes. These new nanoconjugates are fundamentally important due to the synergy effects of both carbon nanotubes and dendrimer phthalocyanines, which may find potential applications in the fields of drug delivery, biological labeling, or others.

  11. Effect of thickness and temperature of copper phthalocyanine films on their properties

    Directory of Open Access Journals (Sweden)

    Alieva Kh. S.

    2012-06-01

    Full Text Available The research has shown that copper phthalocyanine films, having a set of unique properties, can be successfully used as gas-sensitive coating of resistive structures. The thickness of the film, in contrast to its temperature, is not the determining factor for high sensitivity. Low operating temperature of structures with copper phthalocyanine films allows to exploit them in economy mode.

  12. Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces

    KAUST Repository

    Souza, A. M.

    2013-10-07

    We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface, based on constrained density functional theory and local exchange and correlation functionals. The method, applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution of the image charge induced on the metal surface. We systematically study the energies for charge transfer from the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies compare perfectly with those obtained with a classical electrostatic model having the image plane located at the same position. The methodology outlined here can be applied to study any metal/organic interface in the weak coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.

  13. Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces

    KAUST Repository

    Souza, A. M.; Rungger, I.; Pemmaraju, C. D.; Schwingenschlö gl, Udo; Sanvito, S.

    2013-01-01

    We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface, based on constrained density functional theory and local exchange and correlation functionals. The method, applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution of the image charge induced on the metal surface. We systematically study the energies for charge transfer from the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies compare perfectly with those obtained with a classical electrostatic model having the image plane located at the same position. The methodology outlined here can be applied to study any metal/organic interface in the weak coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.

  14. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    International Nuclear Information System (INIS)

    Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Li, Linsen; Hu, Ping; Chen, Song; Huang, Mingdong

    2014-01-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys) 5 ) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys) 5 shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys) 5 in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys) 5 toward bacteria. These findings suggest ZnPc-(Lys) 5 is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys) 5 is a potent photosensitizer for treatment of infectious diseases

  15. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuo, E-mail: zchen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Shanyong; Chen, Jincan [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Linsen [Department of Biochemistry, Shenyang Medical College, Shenyang, Liaoning 110034 (China); Hu, Ping; Chen, Song [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Mingdong, E-mail: mhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-08-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys){sub 5}) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys){sub 5} shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys){sub 5} in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys){sub 5} toward bacteria. These findings suggest ZnPc-(Lys){sub 5} is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys){sub 5} is a potent photosensitizer for treatment of infectious diseases.

  16. Spinterface between tris(8-hydroxyquinoline)metal(III) molecules and magnetic surfaces: a first-principles study

    Science.gov (United States)

    Jiang, W.; Wang, Jingying; Dougherty, Daniel; Liu, Feng; Feng Liu Team; Daniel Dougherty Team

    Using first-principles calculations, we have systematically investigated the hybridization between tris(8-hydroxyquinoline)metal(III) (Mq3, M = Fe, Cr, Al) molecules and magnetic substrates (Co and Cr). Mq3 with different central metal elements but the same organic framework has dramatically different interaction with different magnetic substrates, which affect the interface state significantly. AFM coupling was observed between magnetic Mq3 molecules and ferromagnetic (Co) as well as antiferromagnetic (Cr) substrate, manifested with a superexchange and direct exchange interaction, respectively. Such strong magnetic interfacial coupling may open a gap around the Fermi level and significantly change interface transport properties. Nonmagnetic Alq3 molecule was found to enhance the interface spin polarization due to hybridization between the lowest unoccupied molecular orbitals (LUMO) of Alq3 and metallic surface state. These findings will help better understand spinterface and shed new light on future application of Mq3 molecules in spintronics devices. This work was support by NSF-MRSEC (DMR-1121252) and DOE-BES (DE-FG02-04ER46148).

  17. Metal-organic and supramolecular architectures based on mechanically interlocked molecules

    Science.gov (United States)

    Fernando, Isurika Rosini

    The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized

  18. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  19. Sulphonated metal phthalocyanine complexes as redox indicators in micro titrations with cerium(IV) sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, H S; Achar, B N [Mysore Univ. (India). Dept. of Chemistry

    1980-01-01

    Tetrasodium salts of copper(II) 4,4', 4'', 4'''-tetrasulphophthalocyanine 2-hydrate, nickel(II) 4,4', 4'', 4'''-tetrasulphophthalocyanine, nickel(II) 3,3', 3'', 3'''-tetrasulphophthalocyanine and cobalt(II) 4,4', 4'', 4'''-tetrasulphophthalocyanine 2-hydrate, and copper phthalocyanine trisulphonic acid are prepared in pure state. The molar absorptivity and formal redox potentials of the complexes are determined. The complexes are proposed as sensitive redox indicators in the micro determination of iron(II), arsenic(III), molybdenum(V), uranium(IV) and hydroquinone with 0.001-0.0005N cerium(IV) sulphate in sulphuric, hydrochloric and acetic acid media. They give sharp colour change from light turquoise blue to pale purple colour at the equivalence point. They have advantages over a few existing redox indicators.

  20. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  1. Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mthethwa, Thandekile; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za

    2015-01-15

    Gold nanoparticles (spheres, rods and bipyramids) were synthesized. The nanocrystals were characterized by UV–visible spectrometry, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The as prepared gold nanoparticles were then conjugated to a quaternized 2,(3)-tetra [2-(dimethylamino) ethanethio] substituted Al(OH) phthalocyanine (complex 1). The conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields and lifetimes. Conversely, an increase in the singlet oxygen quantum yields was observed for the conjugated complex 1 in the presence of AuNPs. - Highlights: • Gold nanoparticles (spheres, rods and bipyramids) were synthesized. • Gold nanoparticles were then conjugated to a quaternized ClAl phthalocyanine. • Conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields. • An increase in the singlet oxygen quantum yields was observed for the phthalocyanine in the presence of nanoparticles.

  2. Study of molecule-metal interfaces by means of the normal incidence X-ray standing wave technique

    International Nuclear Information System (INIS)

    Mercurio, Giuseppe

    2012-01-01

    Functional surfaces based on monolayers of organic molecules are currently subject of an intense research effort due to their applications in molecular electronics, sensing and catalysis. Because of the strong dependence of organic based devices on the local properties of the molecule-metal interface, a direct investigation of the interface chemistry is of paramount importance. In this context, the bonding distance, measured by means of the normal incidence X-ray standing wave technique (NIXSW), provides a direct access to the molecule-metal interactions. At the same time, NIXSW adsorption heights are used to benchmark different density functional theory (DFT) schemes and determine the ones with predictive power for similar systems. This work investigates the geometric and chemical properties of different molecule/metal interfaces, relevant to molecular electronics and functional surfaces applications, primarily by means of the NIXSW technique. All NIXSW data are analyzed with the newly developed open source program Torricelli, which is thoroughly documented in the thesis. In order to elucidate the role played by the substrate within molecule/metal interfaces, the prototype organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) is explored on the Ag(110) surface. The molecule results more distorted and at smaller bonding distances on the more reactive Ag(110) surface, in comparison with the Ag(100), the Ag(111) and Au(111) substrates. This conclusion follows from the detailed molecular adsorption geometry obtained from the differential analysis of nonequivalent carbon and oxygen species (including a careful error analysis). Subsequently, the chemisorptive PTCDA/Ag(110) interaction is tuned by the co-deposition of an external alkali metal, namely K. As a consequence, the functional groups of PTCDA unbind from the surface, which, in turn, undergoes major reconstruction. In fact, the resulting nanopatterned surface consists of alternated up and down

  3. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.

    Science.gov (United States)

    Wang, Aijian; Ye, Jun; Humphrey, Mark G; Zhang, Chi

    2018-04-01

    In recent years, there has been a rapid growth in studies of the optoelectronic properties of graphene, carbon nanotubes (CNTs), and their derivatives. The chemical functionalization of graphene and CNTs is a key requirement for the development of this field, but it remains a significant challenge. The focus here is on recent advances in constructing nanohybrids of graphene or CNTs covalently linked to porphyrins or phthalocyanines, as well as their application in nonlinear optics. Following a summary of the syntheses of nanohybrids constructed from graphene or CNTs and porphyrins or phthalocyanines, explicit intraconjugate electronic interactions between photoexcited porphyrins/phthalocyanines and graphene/CNTs are introduced classified by energy transfer, electron transfer, and charge transfer, and their optoelectronic applications are also highlighted. The major current challenges for the development of covalently linked nanohybrids of porphyrins or phthalocyanines and carbon nanostructures are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  5. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1 H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  6. Soluble phthalocyanines - new materials for optoelectronics

    Czech Academy of Sciences Publication Activity Database

    Biler, M.; Zhivkov, I.; Rakušan, J.; Karásková, M.; Pochekailov, S.; Wang, G.; Nešpůrek, Stanislav

    2005-01-01

    Roč. 7, č. 3 (2005), s. 1365-1370 ISSN 1454-4164 R&D Projects: GA MPO FT-TA/036; GA MŠk ME 700 Institutional research plan: CEZ:AV0Z40500505 Keywords : phthalocyanine * poly[3,4-(ethylenedioxy)thiophene] * electrical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  7. Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika [Department of Physics, Panjab University Chandigarh-160014, Chandigarh (India); Singh, Sukhwinder [Department of Physics, Govt. College for Girls, Ludhiana-141008, Ludhiana (India)

    2016-05-23

    The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.

  8. Unsymmetrical extended π-conjugated zinc phthalocyanine for ...

    Indian Academy of Sciences (India)

    Administrator

    mental compatibility compared to the ruthenium dyes. 2–6 ... for the development of efficient light-to-energy con- version devices. .... solution and compared to that of the phthalocyanine adsorbed onto 2 μm .... of dark current. 25. In this study ...

  9. Tuning CNT Properties for Metal-Free Environmental Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Raquel P. Rocha

    2016-06-01

    Full Text Available The application of carbon nanotubes (CNTs as metal-free catalysts is a novel approach for heterogeneous liquid phase catalytic systems. Textural and chemical modifications by liquid/gas phase or mechanical treatments, as well as solid state reactions, were successfully applied to obtain carbon nanotubes with different surface functionalities. Oxygen, nitrogen, and sulfur are the most common heteroatoms introduced on the carbon surface. This short-review highlights different routes used to develop metal-free carbon nanotube catalysts with enhanced properties for Advanced Oxidation Processes.

  10. Comparative study of electronic and magnetic properties of Pc ( = Fe, Co) molecules physisorbed on 2D MoS and graphene

    KAUST Repository

    Haldar, Soumyajyoti

    2017-09-13

    In this paper, we have done a comparative study of electronic and magnetic properties of iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) molecules physisorbed on monolayer of MoS$_2$ and graphene by using density functional theory. Various different types of physisorption sites have been considered for both surfaces. Our calculations reveal that the $M$Pc molecules prefer the S-top position on MoS$_2$. However, on graphene, FePc molecule prefers the bridge position while CoPc molecule prefers the top position. The $M$Pc molecules are physisorbed strongly on the MoS$_2$ surface than the graphene ($\\\\sim$ 2.5 eV higher physisorption energy). Analysis of magnetic properties indicates the presence of strong spin dipole moment opposite to the spin moment and hence a huge reduction of effective spin moment can be observed. Our calculations of magnetic anisotropy energies using both variational approach and $2^{nd}$ order perturbation approach indicate no significant changes after physisorption. In case of FePc, an out-of-plane easy axis and in case of CoPc, an in-plane easy axis can be seen. Calculations of work function indicate a reduction of MoS$_2$ work function $\\\\sim$ 1 eV due to physisorption of $M$Pc molecules while it does not change significantly in case of graphene.

  11. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  12. Chemical wiring and soldering toward all-molecule electronic circuitry.

    Science.gov (United States)

    Okawa, Yuji; Mandal, Swapan K; Hu, Chunping; Tateyama, Yoshitaka; Goedecker, Stefan; Tsukamoto, Shigeru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2011-06-01

    Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed. © 2011 American Chemical Society

  13. Ambipolar carrier transport properties and molecular packing structure of octahexyl-substituted copper phthalocyanine

    Science.gov (United States)

    Watanabe, Ken; Watanabe, Koichi; Tohnai, Norimitsu; Itani, Hiromichi; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-04-01

    The charge carrier mobility of a solution-processable low-molecular-weight organic semiconductor material, i.e., 1,4,8,11,15,18,22,25-octahexylphthalocyanine copper complex (C6PcCu), was investigated by the time-of-flight technique. The anomalous ambipolar carrier mobility was discussed from the viewpoint of the molecular packing structure, which was clarified by single-crystal X-ray structure analysis. In the comparison between the molecular packing structures of C6PcCu and its metal-free-type homologue, it was found that the difference in carrier mobility originates from the rotation of the molecule, which is caused by the steric hindrance due to the introduction of a center metal and the interpenetration of the nonperipheral alkyl chains.

  14. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    Science.gov (United States)

    Chen, Kuizhi; Pan, Sujuan; Zhuang, Xuemei; Lv, Hafei; Que, Shoulin; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-07-01

    1-2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G n -DSiPc(CN)4 n , (G n = n-generation dendrimer, n = 1-2)) were synthesized. Their structures were characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Polymeric nanoparticles (G n -DSiPc(CN)4 n /m) were formed through encapsulating G n -DSiPc(CN)4 n into three monomethoxyl poly(ethylene glycol)-poly(ɛ-caprolactone) diblock copolymers (MPEG-PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G n -DSiPc(CN)4 n and G n -DSiPc(CN)4 n /m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G n -DSiPc(CN)4 n /m were lower than the corresponding free dendrimer phthalocyanines. G n -DSiPc(CN)4 n encapsulated into MPEG-PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG2000-PCL2000 micelles was about 70 nm, which decreased when loaded with G n -DSiPc(CN)4 n .

  15. A macromodel for squeeze-film air damping in the free-molecule regime

    KAUST Repository

    Hong, Gang; Ye, Wenjing

    2010-01-01

    A three-dimensional Monte Carlo(MC) simulation approach is developed for the accurate prediction of the squeeze-film air damping on microresonators in the free-molecule gas regime. Based on the MC simulations and the analytical traveling

  16. Sulphonated Phthalocyanines as Effective Oxidation Photocatalysts

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Drobek, M.; Strašák, Tomáš; Krýsa, J.; Karásková, M.; Rakušak, J.

    2008-01-01

    Roč. 272, 1-2 (2008), s. 213-219 ISSN 1381-1169 R&D Projects: GA ČR(CZ) GD203/03/H140; GA AV ČR(CZ) KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : phthalocyanines * 4-Chlorophenol * photocatalysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.814, year: 2008

  17. The Synthesis And Characterization Of Wolfram Phthalocyanine For The Target Material Of High Specific Activity Radioisotope Wolfram - 188 (188W)

    International Nuclear Information System (INIS)

    Setiawan, Duyeh

    2000-01-01

    The application of 188 Re radioisotope separation on aluminia column through elution solution has increased significantly since the last two decades. The 188 Re radioisotope has been done fram 188 Re beta-decay through a neutron capture radiation on wolfram -186 target. In trhe column separation, high specific activity of 188 W radioisotope is required to get sufficient activity in small quality 188 W radioisotope has been carried out in this research. Wolfram-phthalocyanine compound was prepared by refluxing a mixture of wolfram trioxyde, (WO 3 ) and phthalonitrile, (C 8 H 4 N 2 ) at 250 o C for two hours. The synthesis of wolfram phthalocyanine is 70% purity yield, the product are green crystals, have a 193,0-193,8 o C melting points, and has a molecular formula C 3 2H 1 6 N8 WO 2 . The infra red spectrum of wolfram-phthalocyanine was the absorption band at 964,3 cm - 1 was due to the vibration of W=O bond of the wolfram dioxy-phthalocyanine. The x-ray diffraction of the wolfram dioxy-phthalocyanine was similar with molybdenum dioxy-phthalocyanine compound. This fact showed that the product was wolfram dioxy-phthalocyanine

  18. Electronic and magnetic coupling of iron and copper phthalocyanine to ferromagnetic Co(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane [Department of Physics, University of Kaiserslautern, Erwin Schroedinger Str. 56, D-67663 Kaiserslautern (Germany); Ali, Ehesan; Oppeneer, Peter [Department of Physics and Materials Science, Box 530, Uppsala University, S-75121 Uppsala (Sweden)

    2009-07-01

    Metallo-phthalocyanines are organic semiconductors which show in certain cases promising magnetic properties, advertising them for use in organic spintronics. Here, copper (CuPc) and iron phthalocyanine (FePc) were grown on ultra thin layers of Co(100) substrates with well known highly spin-polarized electron injection capability. Photoelectron spectroscopy (XPS) reveals different interactions between the pyrolytic nitrogen atoms and the cobalt surface for the two phthalocyanines. The analysis of the different multiplet structures appearing for the nitrogen core levels in the submonolayer regime and UPS investigations of the valence band electronic structure of the Co dominated region near the Fermi level indicates a particularly electronic coupling and a rehybridisation of the molecular orbitals with the cobalt orbitals. In order to clarify the influence of the two different central atoms on the electronic- and subsequently the magnetic coupling to the Co substrate, theoretical calculations using the GGA and GGA+U methodologies on a structure of Fe/Cu-phthalocyanine adsorbed on a 3-layered cobalt surface were performed indicating a ferromagnetic coupling between FePc and Co.

  19. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.

    Science.gov (United States)

    Martins, Silvia A; Sousa, Sergio F

    2013-06-05

    The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.

  20. Revival structures of linear molecules in a field-free alignment condition as probed by high-order harmonic generation

    International Nuclear Information System (INIS)

    Lee, G. H.; Kim, H. T.; Park, J. Y.; Nam, C. H.; Kim, T. K.; Lee, J. H.; Ihee, H.

    2006-01-01

    Revival structures (rotational coherence) of three linear molecules (N 2 , O 2 , and CO 2 ) in a field free alignment condition have been investigated using high-order harmonic generation. The harmonic yields of these molecules were measured in a pump-probe manner by using a weak femtosecond (fs) laser pulse for field-free alignment of molecules and another intense fs laser pulse for harmonic generation. The harmonic intensities from 23rd to 29th order with respect to the time delay between the pump and the probe pulses showed revival structures in the condition of a field-free alignment of molecules. While the revival structure of a N 2 molecule had one-fourth the period of the full revival time and different degrees of modulation among different fractional revival times, the revival structures of O 2 and CO 2 molecules showed one-eighth the periods of the full revival time and similar degrees of modulation among all fractional revival times. The revival structures could be interpreted in terms of the nature of the highest occupied molecular orbital and the total nuclear spin.

  1. Conduction mechanism in assemblies of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Mueller, K.-H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally electron transport through thin films of gold nanoparticles which are linked by alkanedithiol molecules of different chain lengths. We find that conduction between neighbouring nanoparticles takes place by electron tunnelling along weakly conducting organic linker molecules. Using a tight binding model for the alkanedithiol molecules to describe the tunnelling process we predict the conductivity to decrease exponentially with the length of the molecules. During tunnelling the electron has to overcome a charging energy due to the electron-hole interaction between tunnelling electrons and the corresponding holes left behind on the donor nanoparticle. Experimentally we find that large applied voltages cause nonlinear I-V characteristics and that the temperature dependence of the conductivity does not show Arrhenius behaviour but instead is of the form exp[-(E o /kT) 1/2 ]. Using percolation theory for a network of metal nanoparticles separated by barriers we show that strong disorder caused by variations in nanoparticle size and linker length as well as randomly trapped electric charges on the linker molecules can well explain our experimental data

  2. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  3. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA

    Science.gov (United States)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra

    2013-11-01

    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  4. Fundamental properties of molecules on surfaces. Molecular switching and interaction of magnetic molecules with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hatter, Nino

    2016-12-14

    In this thesis, we investigate individual molecular switches and metal-organic complexes on surfaces with scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. One focus addresses the switching ability and mechanism of diarylethene on Ag(111). The other focus lies on resolving and tuning magnetic interactions of individual molecules with superconductors. 4,4'-(4,4'-(perfluorocyclopent-1-ene-1,2-diyl)bis (5-methylthiophene-4,2-diyl)dip yridine (PDTE) is a prototypical photochromic switch. We can induce a structural change of individual PDTE molecules on Ag(111) with the STM tip. This change is accompanied by a reduction of the energy gap between the occupied and unoccupied molecular orbitals. Density functional theory (DFT) calculations reveal that the induced switching corresponds to a ring-closing reaction from an open isomer in a flat adsorption configuration to a ring-closed isomer with its methyl groups in a cis configuration. The final product is thermodynamically stabilized by strong dispersion interactions with the surface. A linear dependence of the switching threshold with the tip-sample distance with a minimal threshold of 1.4 V is found, which we assign to a combination of an electric-field induced process and a tunneling-electron contribution. DFT calculations suggest a large activation barrier for a ring-closing reaction from the open flat configuration into the closed cis configuration. The interaction of magnetic molecules with superconductors is studied on manganese phthalocyanine (MnPc) adsorbed on Pb(111). We find triplets of Shiba states inside the superconducting gap. Different adsorption sites of MnPc provide a large variety of exchange coupling strengths, which lead to a collective energy shift of the Shiba triplets. We can assign the splitting of the Shiba states to be an effect of magnetic anisotropy in the system. A quantum phase transition from a ''Kondo screened'' to a ''free

  5. Electronic structure of CoPc adsorbed on Ag(100): Evidence for molecule-substrate interaction mediated by Co 3d orbitals

    Czech Academy of Sciences Publication Activity Database

    Salomon, E.; Amsalem, P.; Marom, N.; Vondráček, Martin; Kronik, L.; Koch, N.; Angot, T.

    2013-01-01

    Roč. 87, č. 7 (2013), "075407-1"-"075407-9" ISSN 1098-0121 R&D Projects: GA MŠk(CZ) LG12003 Institutional support: RVO:68378271 Keywords : cobalt-phthalocyanine * molecule-substrate interaction * photoemission spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  6. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    Science.gov (United States)

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  7. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  8. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-01-01

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the 2 Σ + ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  9. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.

    Science.gov (United States)

    Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu

    2018-05-31

    Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  11. Electrochemistry and spectroelectrochemistry of tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine, Lu2Pc4 and dimeric lutetium(III) phthalocyanine, Lu2Pc2(OAc)2

    International Nuclear Information System (INIS)

    Koca, Atif; Ceyhan, Tanju; Erbil, Mehmet K.; Ozkaya, Ali Riza; Bekaroglu, Ozer

    2007-01-01

    In this study, electrochemical, electrochromic and spectroelectrochemical properties of a tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine (Lu 2 Pc 4 2) were investigated explicitly as compared with a tert-butylcalix[4]arene bridged dimeric lutetium(III) phthalocyanine [Lu 2 Pc 2 (OAc) 2 1]. Distinctive differences between electrochemical and electrochromic properties of 1 and 2 were detected. Moreover, the properties of 1 and 2 were compared with previously reported S 4 (CH 2 ) 4 bridged Lu 2 Pc 2 (OAc) 2 and Lu 2 Pc 4 . The calixarene bridged phthalocyanine (Pc) compounds, 1 and 2 showed well-defined electrochromic behaviour with green-blue and blue-purple colour transitions. The enhanced electrochromic properties of 2, as compared to 1, were attributed to its double-decker structure, probably allowing the formation of suitable ion channels for the counter ion movement in the solid film

  12. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    Science.gov (United States)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  13. Synthesis, Spectroscopic and DFT Characterization of 4â-(4-tert ...

    African Journals Online (AJOL)

    In this work the synthesis, spectral characterization and non-linear optical properties of metal-free .... following literature methods23–26 The advantage of this method ..... Synthesis of phthalocyanine conjugates with gold nanoparticles and.

  14. Photodissociation from a manifold of rovibrational states and free-free absorption by a diatomic molecule

    International Nuclear Information System (INIS)

    Lebedev, V S; Presnyakov, L P

    2002-01-01

    An analytical approach for the description of photoabsorption by a gas or plasma medium containing atomic and molecular components in thermodynamic equilibrium is developed. Continuous absorption of radiation is due to the photodissociation of a diatomic molecule from a manifold of excited rovibrational states and free-free transitions between the two electronic terms of a quasimolecule temporarily formed during a collision of atomic particles. The formulae are obtained for individual photodissociation cross sections from a given rovibrational state and for the Boltzmann-averaged cross section. Particular attention is paid to the derivation of a general analytical expression for the total absorption coefficient including the integral contribution of bound-free and free-free radiative transitions. The consideration is based on the theory of nonadiabatic transitions combined with the approximation of a quasicontinuum for rovibrational states. The theory is applied to the investigation of photoabsorption by the H 2 + ion in the IR, visible and UV spectral regions. It is shown that our results are in good agreement with available ab initio quantal calculations of photodissociation cross sections and with semiclassical calculations of absorption coefficients. Special attention is paid to the investigation of the relative contributions of the H 2 + and H - ions to the total absorption in a wide range of wavelengths and temperatures

  15. Possibility of a ferromagnetic and conducting metal-organic network

    Science.gov (United States)

    Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik

    2018-05-01

    In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.

  16. The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells

    International Nuclear Information System (INIS)

    Nouri, Esmaiel; Wang, Yu-Long; Chen, Qian; Xu, Jia-Ju; Dracopoulos, Vassilios; Sygellou, Lamprini; Xu, Zong-Xiang; Mohammadi, Mohammad Reza; Lianos, Panagiotis

    2016-01-01

    Highlights: • Soluble n-butyl substituted copper phthalocyanine. • Mixture with spiro-OMeTAD and employment in perovskite solar cells. • Impressive improvement of perovskite solar cell efficiency. • n-Butyl derivative gives better results than tert-butyl derivative - Abstract: Perovskite solar cells have been constructed under ambient conditions by using 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) mixed with a small quantity of soluble tetra-n-butyl substituted copper phthalocyanine as hole transporting material. The introduction of the phthalocyanine derivative resulted in an impressive increase of cell efficiency, which changed from 10.4% in the absence to 15.4% in the presence of phthalocyanine. This effect is related to the creation of deep traps in the hole transporting phase which block back-travelling electrons as well as to the improvement of the structural quality of the spiro-OMeTAD film in the presence of phthalocyanine. Both functionalities decrease shunt paths within the hole transporting phase resulting in increasing the fill factor and the open-circuit voltage of the cell.

  17. Study of the In2O3 molecule in the free state and in the crystal

    Science.gov (United States)

    Kaplan, Ilya G.; Miranda, Ulises; Trakhtenberg, Leonid I.

    2018-03-01

    The nanomaterials based on the In2O3 molecule are widely used as catalysts and sensors among other applications. In the present study, we discuss the possibility of using nanoclusters of In2O3 as molecular photomotors. A comparative analysis of the electronic structure of the In2O3 molecule in the free state and in the crystal is performed. For the free In2O3 molecule the geometry of its lowest structures, V-shape and linear, was optimised at the CCSD(T) level, which is the most precise computational method applied up to date to study In2O3. Using experimental crystallographic data, we determined the geometry of In2O3 in the crystal. It has a zigzag, not symmetric structure and possesses a dipole moment with magnitude slightly smaller than that of the V-structure of the free molecule (the linear structure due to its symmetry has no dipole moment). According to the Natural Atomic population analysis, the chemical structure of the linear In2O3 can be represented as O = In-O-In = O; the V-shaped molecule has the similar double- and single-bond structure. The construction of nanoclusters from ´bricksʼ of In2O3 with geometry extracted from crystal (or nanoclusters extracted directly from crystal) and their use as photo-driven molecular motors are discussed.

  18. Bonding and vibrational dynamics of a large π-conjugated molecule on a metal surface

    International Nuclear Information System (INIS)

    Temirov, R; Soubatch, S; Lassise, A; Tautz, F S

    2008-01-01

    The interplay between the substrate bonding of a large π-conjugated semiconductor molecule and the dynamical properties of the metal-organic interface is studied, employing the prototypical PTCDA/Ag(111) monolayer as an example. Both the coupling of molecular vibrations to the electron-hole-pair continuum of the metal surface and the inelastic scattering of tunnelling electrons by the molecular vibrations on their passage through the molecule are considered. The results of both types of experiment are consistent with the findings of measurements which probe the geometric and electronic structure of the adsorbate-substrate complex directly; generally speaking, they can be understood in the framework of standard theories for the electron-vibron coupling. While the experiments reported here in fact provide additional qualitative insights into the substrate bonding of our π-conjugated model molecule, their detailed quantitative understanding would require a full calculation of the dynamical interface properties, which is currently not available

  19. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    International Nuclear Information System (INIS)

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-01-01

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ B distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV

  20. Ambipolar organic heterojunction transistors with various p-type semiconductors

    International Nuclear Information System (INIS)

    Shi Jianwu; Wang Haibo; Song De; Tian Hongkun; Geng Yanhou; Yan Donghang

    2008-01-01

    Ambipolar transport has been realized in organic heterojunction transistors with metal phthalocyanines, phenanthrene-based conjugated oligomers as the first semiconductors and copper-hexadecafluoro-phthalocyanine as the second semiconductor. The electron and hole mobilities of ambipolar devices with rod-like molecules were comparable to the corresponding single component devices, while the carrier mobility of ambipolar devices with disk-like molecules was much lower than the corresponding single component devices. The much difference of their device performance was attributed to the roughness of the first semiconductor films, which was original from their distinct growth habits. The flat and continuous films for the first semiconductors layer can lead to a smooth heterojunction interface, and obtained a high device performance for ambipolar organic heterojunction transistors

  1. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Active and passive control of zinc phthalocyanine photodynamics

    NARCIS (Netherlands)

    Sharma, Divya; Huijser, Jannetje Maria; Savolainen, Janne; Steen, Gerrit Willem; Herek, Jennifer Lynn

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of

  3. CW substrate-free metal-cavity surface microemitters at 300 K

    International Nuclear Information System (INIS)

    Lu, Chien-Yao; Chang, Shu-Wei; Chuang, Shun Lien; Germann, Tim D; Pohl, Udo W; Bimberg, Dieter

    2011-01-01

    In this paper substrate-free metal-cavity surface microemitters are demonstrated. The optical cavity is formed by a metal reflector, metal-surrounded sidewall and n-doped distributed-Bragg reflector, which provides optical feedback and carrier injection. We describe a simple design principle with the modal properties modified by geometry and metal-insulator cladding. Both resonant cavity light-emitting diodes (1.85 µm diameter and 0.6 µm height) and lasers (2.0 µm diameter and 2.5 µm height) are successfully fabricated and characterized. These two types of devices operate at room temperature under continuous-wave (CW) operation. Since the devices are substrate-free, they can be bonded to any substrates. From the threshold currents of the lasers, we obtain a high characteristic temperature of 425 K in the range of 10–27 °C. We also discuss a general approach to improve the diffraction from small-aperture devices

  4. Kinetic of the Intracellular Incorporation of New Phthalocyanines Synthesized in mexico and Its Potential as Photosensibilizers in the Photodynamic Therapy

    International Nuclear Information System (INIS)

    Aragon-Aguilar, Hector; Ramon-Gallegos, Eva; Arenas-Huertero, Francisco Jesus; Contreras-Ramos, Alejandra; Cruz-Orea, Alfredo; Sosa-Sanchez, Jose Luis; Garcia Miranda, Maribel

    2008-01-01

    The search of more specific and efficient photosensitizer in low oxygen tensions is a need in the Photodynamic Therapy (PDT). Phthalocyanines have demonstrated to have the above mentioned activity. The aim of this work was to determine the efficiency of PDT using two phthalocyanines synthesized in Mexico to eliminate melanoma cells. B16F0 melanoma mouse cells were exposed to concentrations from 8.95x10 -5 to 0.733 m/mL of F16VoPc and F16NbPcC13 during 24h, afterwards cellular mortality was measured. One kinetic was realized to determine the intracellular incorporation of phthalocyanines by confocal microscopy at 1, 2, 4, 8, 16 and 24 h of exposition. The PDT was applied exposing the cells to innocuous concentration (that does not provoke cellular death with out irradiation) and irradiating with an argon laser at 100 J/cm 2 . For each phthalocyanine a control group was used; one group was not treated neither with light nor with phthalocyanine, the other group it was only irradiated. 24 h after treatment the citotoxicity was measured by Alamar blue assay. The innocuous concentration found for the phthalocyanines F16VoPc and F16NbPcC13 were 4.58x10-2 and 2.29xl0 -2 mg/mL, respectively. The time of maximum intracellular accumulation for both phthalocyanines was 24 h. Only the F16VoPc had anticancerous activity and induced 31.7% of cellular death. The PDT might offer a potential alternative to the treatment of this cancer when is used the phthalocyanine F16VoPc

  5. Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films

    Directory of Open Access Journals (Sweden)

    David Klar

    2013-05-01

    Full Text Available The magnetic and electronic properties of single-molecule magnets are studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We study the magnetic coupling of ultrathin Co and Ni films that are epitaxially grown onto a Cu(100 substrate, to an in situ deposited submonolayer of TbPc2 molecules. Because of the element specificity of the X-ray absorption spectroscopy we are able to individually determine the field dependence of the magnetization of the Tb ions and the Ni or Co film. On both substrates the TbPc2 molecules couple antiferromagnetically to the ferromagnetic films, which is possibly due to a superexchange interaction via the phthalocyanine ligand that contacts the magnetic surface.

  6. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    Science.gov (United States)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  7. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    Science.gov (United States)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  8. Toward control of the metal-organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of pi-conjugated molecules on noble metals.

    Science.gov (United States)

    Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc

    2007-04-01

    Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.

  9. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    Science.gov (United States)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-11-01

    The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Alsbnd O or Sisbnd O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N2O by CO molecule. It is found that the adsorption and decomposition of N2O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (Eads) and charge transfer (qCT) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small Eads and qCT values. Therefore, at the presence of N2O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N2O molecule. Our results indicate that the N2O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N2 molecule can be easily released from the surface. Then, the activated oxygen atom (Oads) which remains over the surface reacts with the CO molecule to form the CO2 molecule via the reaction Oads + CO → CO2. Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N2O molecule at ambient conditions.

  10. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Science.gov (United States)

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  11. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Haytham Elzien Alamin [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey); University of Khartoum, Department of Chemistry, Faculty of Science, P.O. Box 321, Khartoum, 11115 (Sudan); Pişkin, Mehmet [Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Department of Food Technology, Çanakkale 17100 (Turkey); Altun, Selçuk [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze, Kocaeli 41400 (Turkey); Odabaş, Zafer, E-mail: zodabas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul 34722 (Turkey)

    2016-05-15

    The synthesis of highly soluble and non-aggregated peripherally/non-peripherally Zn and In(OAc) phthalocyanines was achieved by 3-/ and 4-(2-phenylphenoxy)phthalonitrile as starting materials. The novel compounds were characterized by elemental analyses, FT-IR, {sup 1}H-NMR (for phthalonitriles), UV–vis and MALDI-TOF mass (for Pcs) spectroscopic techniques. Additionally, photophysical, photochemical and spectral properties of the phthalocyanines were reported. Especially, the indium(OAc) phthalocyanines showed good singlet oxygen quantum yields in DMSO and they can be appropriate candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

  12. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units

    International Nuclear Information System (INIS)

    Ali, Haytham Elzien Alamin; Pişkin, Mehmet; Altun, Selçuk; Durmuş, Mahmut; Odabaş, Zafer

    2016-01-01

    The synthesis of highly soluble and non-aggregated peripherally/non-peripherally Zn and In(OAc) phthalocyanines was achieved by 3-/ and 4-(2-phenylphenoxy)phthalonitrile as starting materials. The novel compounds were characterized by elemental analyses, FT-IR, 1 H-NMR (for phthalonitriles), UV–vis and MALDI-TOF mass (for Pcs) spectroscopic techniques. Additionally, photophysical, photochemical and spectral properties of the phthalocyanines were reported. Especially, the indium(OAc) phthalocyanines showed good singlet oxygen quantum yields in DMSO and they can be appropriate candidates as Type II photosensitizers in photodynamic therapy (PDT) applications.

  13. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2016-05-07

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  14. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    International Nuclear Information System (INIS)

    Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B.

    2016-01-01

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO 2 -MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO 2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  15. Molecular dynamics simulations of H2 adsorption in tetramethyl ammonium lithium phthalocyanine crystalline structures.

    Science.gov (United States)

    Lamonte, Kevin; Gómez Gualdrón, Diego A; Cabrales-Navarro, Fredy A; Scanlon, Lawrence G; Sandi, Giselle; Feld, William; Balbuena, Perla B

    2008-12-11

    Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H2 molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes.

  16. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-12-01

    Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  17. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage/disadvantage...

  18. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  19. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea; Ruocco, G.

    2011-01-01

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  20. Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology.

    Science.gov (United States)

    Vasilchenko, Sergey Yu; Volkova, Anna I; Ryabova, Anastasiya V; Loschenov, Victor B; Konov, Vitaly I; Mamedov, Adil A; Kuzmin, Sergey G; Lukyanets, Evgeniy A

    2010-06-01

    This paper deals with the possibility of application of aluminum phthalocyanine (AlPc) nanoparticles in clinical practice. AlPc fluoresces in the molecular form but in the form of nanoparticles it does not. Separation of molecules from an AlPc nanoparticle and therefore the appearance of fluorescence occurs under the effect of a number of biochemo-physical factors. Owing to this feature the application of AlPc nanoparticles followed by the measurement of fluorescence spectra is proposed as a diagnostics method. It was shown that after AlPc nanoparticle application on a tooth surface the fluorescence intensity in the enamel microdamage area is 2-3 times higher than that in the normal enamel area. The appearance of fluorescence after application of AlPc nanoparticles on skin autografts testifies to the presence of inflammation. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Frenkel-Charge-Transfer exciton intermixing theory for molecular crystals with two isolated Frenkel exciton states.

    Science.gov (United States)

    Bondarev, Igor; Popescu, Adrian

    We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).

  2. Probing the Influence of the Conjugated Structure and Halogen Atoms of Poly-Iron-Phthalocyanine on the Oxygen Reduction Reaction by X-ray Absorption Spectroscopy and Density Functional Theory

    International Nuclear Information System (INIS)

    Peng, Yingxiang; Cui, Lufang; Yang, Shifeng; Fu, Jingjing; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia; Xia, Dingguo

    2015-01-01

    Metal-phthalocyanine (MPc) macrocyclic catalysts have been perceived as promising alternatives to Pt and Pt-based catalysts for the oxygen reduction reaction (ORR). However, the effect of different MPc molecular structures on the ORR has rarely been reported in depth. Herein, iron-phthalocyanine polymers (poly-FePcs) and multi-walled carbon nanotubes (MWCNTs) composites with different structures were synthesized using microwave method. The relationship between their molecular structure and electrocatalytic activity was fully revealed by density functional theory (DFT) and X-ray fine absorption spectroscopy (XAFS). DFT calculations revealed that the introduction of halogen atoms can increase the ion potential (IP) and the dioxo-binding energy () of the poly-FePcs. Meanwhile, their conjugated structure not only facilitates electronic transmission, but also significantly increases . XAFS analysis indicated that the poly-FePc/MWCNTs composites had a square planar structure and a smaller of phthalocyanine ring (Fe-N 4 structure) skeleton structure radius when a larger conjugated structure or introduced halogen atoms was present. The experimental results suggest that the these changes in properties arising from the different structures of the MPc macrocyclic compounds led to a huge effect on their ORR electrochemical activities, and provide a guide to obtaining promising electrochemical catalysts

  3. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    International Nuclear Information System (INIS)

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-01-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO) 5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO) 5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO) 5 ] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO) 5 ] n clusters have been estimated.

  4. Renormalization of Molecular Quasiparticle Levels at Metal-Molecule Interfaces: Trends across Binding Regimes

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Rubio, Angel

    2009-01-01

    a microscopic model of the metal-molecule interface, we illustrate the basic features of this renormalization mechanism through systematic GW, Hartree-Fock, and Kohn-Sham calculations for the molecular energy levels as function of the model parameters. We identify two different polarization mechanisms: (i...

  5. Buckminsterfullerenes: a non-metal system for nitrogen fixation.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Saito, Makoto; Uemura, Sakae; Takekuma, Shin-Ichi; Takekuma, Hideko; Yoshida, Zen-Ichi

    2004-03-18

    In all nitrogen-fixation processes known so far--including the industrial Haber-Bosch process, biological fixation by nitrogenase enzymes and previously described homogeneous synthetic systems--the direct transformation of the stable, inert dinitrogen molecule (N2) into ammonia (NH3) relies on the powerful redox properties of metals. Here we show that nitrogen fixation can also be achieved by using a non-metallic buckminsterfullerene (C60) molecule, in the form of a water-soluble C60:gamma-cyclodextrin (1:2) complex, and light under nitrogen at atmospheric pressure. This metal-free system efficiently fixes nitrogen under mild conditions by making use of the redox properties of the fullerene derivative.

  6. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  7. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    -molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  8. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Directory of Open Access Journals (Sweden)

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  9. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.; Nazir, S.; Schwingenschlö gl, Udo

    2013-01-01

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  10. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.

    2013-04-23

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  11. Al(III), Pd(II), and Zn(II) phthalocyanines for inactivation of dental pathogen Aggregatibacter actinomycetemcomitans as planktonic and biofilm-cultures

    Science.gov (United States)

    Kussovski, V.; Mantareva, V.; Angelov, I.; Avramov, L.; Popova, E.; Dimitrov, S.

    2012-06-01

    The Gram-negative, oral bacterium Aggregatibacter actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. The new periodontal disease treatments are emergence in order to prevent infection progression. Antimicrobial photodynamic therapy (a-PDT) can be a useful tool for this purpose. It involves the use of light of specific wavelength to activate a nontoxic photosensitizing agent in the presence of oxygen for eradication of target cells, and appears effective in photoinactivation of microorganisms. The phthalocyanine metal complexes of Pd(II)- (PdPcC) and Al(III)- (AlPc1) were evaluated as photodynamic sensitizers towards a dental pathogen A. actinomycetemcomitans in comparison to the known methylpyridyloxy-substituted Zn(II) phthalocyanine (ZnPcMe). The planktonic and biofilm-cultivated species of A. actinomycetemcomitans were treated. The photophysical results showed intensive and far-red absorbance with high tendency of aggregation for Pd(II)-phthalocyanine. The dark toxicities of both photosensitizers were negligible at concentrations used (bacteria was full photoinactivation after a-PDT with ZnPcMe. In case of the newly studied complexes, the effect was lower for PdPcC (4 log) as well as for AlPc1 (1.5-2 log). As it is known the bacterial biofilms were more resistant to a-PDT, which was confirmed for A. actinomycetemcomitans biofilms with 3 log reductions of viable cells after treatment with ZnPcMe and approximately 1 log reduction of biofilms after PdPcC and AlPc1. The initial results suggest that a-PDT can be useful for effective inactivation of dental pathogen A. actinomycetemcomitans.

  12. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuizhi [Fujian Normal University, College of Materials Science & Engineering, Fujian Provincial Key Laboratory of Polymer Materials (China); Pan, Sujuan [Fujian Normal University, College of Chemistry & Engineering (China); Zhuang, Xuemei [Fuzhou No.2 Hospital (China); Lv, Hafei; Que, Shoulin [Fujian Normal University, College of Chemistry & Engineering (China); Xie, Shusen; Yang, Hongqin, E-mail: hqyang@fjnu.edu.cn [Fujian Normal University, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Engineering (China)

    2016-07-15

    1–2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G{sub n}-DSiPc(CN){sub 4n}, (G{sub n} = n-generation dendrimer, n = 1–2)) were synthesized. Their structures were characterized by elemental analysis, IR, {sup 1}H NMR, and ESI-MS. Polymeric nanoparticles (G{sub n}-DSiPc(CN){sub 4n}/m) were formed through encapsulating G{sub n}-DSiPc(CN){sub 4n} into three monomethoxyl poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers (MPEG–PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G{sub n}-DSiPc(CN){sub 4n} and G{sub n}-DSiPc(CN){sub 4n}/m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G{sub n}-DSiPc(CN){sub 4n}/m were lower than the corresponding free dendrimer phthalocyanines. G{sub n}-DSiPc(CN){sub 4n} encapsulated into MPEG–PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG{sub 2000}–PCL{sub 2000} micelles was about 70 nm, which decreased when loaded with G{sub n}-DSiPc(CN){sub 4n}.Graphical abstract .

  13. Alternative route to metal halide free ionic liquids

    International Nuclear Information System (INIS)

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    An alternative synthetic route to metal halide free ionic liquids using trialkyloxonium salt is proposed. Utility of this synthetic route has been demonstrated by preparing 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid through the reaction between 1-methylimidazole and triethyloxonium tetra-fluoroborate in anhydrous ether. (author)

  14. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  15. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  16. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.

    Science.gov (United States)

    Kaneko, Satoshi; Takahashi, Ryoji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-04-12

    The formation process and atomic structures were investigated for single pyrazine molecular junctions sandwiched by three different Au, Ag, and Cu electrodes using a mechanically controllable break junction technique in ultrahigh vacuum conditions at 300 K. We demonstrated that the formation process of the single-molecule junction crucially depended on the choice of the metal electrodes. While single-molecule junction showing two distinct conductance states were found for the Au electrodes, only the single conductance state was evident for the Ag electrodes, and there was no junction formation for the Cu electrodes. These results suggested that metal-molecule interaction dominates the formation process and probability of the single-molecule junction. In addition to the metal-molecule interaction, temperature affected the formation process of the single-molecule junction. The single pyrazine molecular junction formed between Au electrodes exhibited significant temperature dependence where the junction-formation probability was about 8% at 300 K, while there was no junction-formation at 100 K. Instead of the junction formation, an Au atomic wire was formed at the low temperature. This study provides insight into the tuning of the junction-forming process for single-molecule junctions, which is needed to construct device structures on a single molecule scale.

  17. Systematic study on intermolecular valence-band dispersion in molecular crystalline films

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2015-01-01

    Highlights: • Intermolecular valence-band dispersion of crystalline films of phthalocyanines. • Intermolecular transfer integral versus lattice constant. • Site-specific intermolecular interaction and resultant valence-band dispersion. • Band narrowing effect induced by elevated temperature. - Abstract: Functionalities of organic semiconductors are governed not only by individual properties of constituent molecules but also by solid-state electronic states near the Fermi level such as frontier molecular orbitals, depending on weak intermolecular interactions in various conformations. The individual molecular property has been widely investigated in detail; on the other hand, the weak intermolecular interaction is difficult to investigate precisely due to the presence of the structural and thermal energy broadenings in organic solids. Here we show quite small but essential intermolecular valence band dispersions and their temperature dependence of sub-0.1-eV scale in crystalline films of metal phthalocyanines (H_2Pc, ZnPc, CoPc, MnPc, and F_1_6ZnPc) by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The observed bands show intermolecular and site dependent dispersion widths, phases, and periodicities, for different chemical substitution of terminal groups and central metals in the phthalocyanine molecule. The precise and systematic band-dispersion measurement would be a credible approach toward the comprehensive understanding of intermolecular interactions and resultant charge transport properties as well as their tuning by substituents in organic molecular systems.

  18. Metal-free indoline dye sensitized solar cells based on nanocrystalline Zn{sub 2}SnO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lihua [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); Jiang, Lilong; Wei, Mingding [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2010-02-15

    Zn{sub 2}SnO{sub 4} nanocrystals were synthesized and first used as the electrode materials for the metal-free indoline dyes sensitized solar cells (DSSCs). The highest efficiency of 3.08% was achieved for a D131 DSSC. This might be attributed to the fact that the D131 dye has a greater positive oxidation potential, which can lead to rapid dye regeneration, avoiding the geminate charge recombination between oxidized dye molecules and injected electrons in the Zn{sub 2}SnO{sub 4} film. The efficiency can be improved significantly using a mixture solution of D131 and N719 dyes for which an efficiency of 3.6% was obtained. (author)

  19. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Stern, Stephan

    2013-12-01

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  20. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  1. Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material

    Science.gov (United States)

    Liu, Zhiyong; Sun, Bo; Liu, Xingyue; Han, Jinghui; Ye, Haibo; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2018-06-01

    Metal halide perovskite solar cells (PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr3 as light absorber, accompanied by using Cu-phthalocyanine (CuPc) as hole transport material (HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.[Figure not available: see fulltext.

  2. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.; Fleet, Luke R.; Burgess, Claire H.; McLachlan, Martyn A.

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  3. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.

    2014-11-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  4. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  5. Giant Magnetoresistance in Carbon Nanotubes with Single-Molecule Magnets TbPc2.

    Science.gov (United States)

    Krainov, Igor V; Klier, Janina; Dmitriev, Alexander P; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang; Gornyi, Igor V

    2017-07-25

    We present experimental results and a theoretical model for the gate-controlled spin-valve effect in carbon nanotubes with side-attached single-molecule magnets TbPc 2 (Terbium(III) bis-phthalocyanine). These structures show a giant magnetoresistance up to 1000% in experiments on single-wall nanotubes that are tunnel-coupled to the leads. The proposed theoretical model combines the spin-dependent Fano effect with Coulomb blockade and predicts a spin-spin interaction between the TbPc 2 molecules, mediated by conducting electrons via the charging effect. This gate-tuned interaction is responsible for the stable magnetic ordering of the inner spins of the molecules in the absence of magnetic field. In the case of antiferromagnetic arrangement, electrons with either spin experience the scattering by the molecules, which results in blocking the linear transport. In strong magnetic fields, the Zeeman energy exceeds the effective antiferromagnetic coupling and one species of electrons is not scattered by molecules, which leads to a much lower total resistance at the resonant values of gate voltage, and hence to a supramolecular spin-valve effect.

  6. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  7. Half-metallicity in 2D organometallic honeycomb frameworks

    International Nuclear Information System (INIS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-01-01

    Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)

  8. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor

    International Nuclear Information System (INIS)

    Cui, Lili; Pu, Tao; Liu, Ying; He, Xingquan

    2013-01-01

    Graphical abstract: A novel nitrite sensor was prepared by using LBL technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The nitrite sensor shows super stability for consecutive CV testing and rather low detection limit. -- Abstract: In this paper, a novel graphene/cobalt phthalocyanine composite film was prepared by layer-by-layer (LBL) technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The surface morphology of graphene/cobalt phthalocyanine composite film was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). It is found that graphene/cobalt phthalocyanine composite film modified GCE exhibits good catalytic activity toward the oxidation of nitrite. The oxidation current barely decreases in consecutive CV test. Furthermore, the modified GCE shows long-term stability after 70 days. The super good stability can be attributed to the immobilization and dispersion of electroactive cobalt phthalocyanine by graphene, and using A-GCE as substrate which can enhance the interaction force between GCE and electroactive cobalt phthalocyanine. The nitrite sensor shows rather low detection limit of 0.084 μM at a signal-to-noise ratio = 3 (S/N = 3)

  9. Characterization of titanyl phthalocyanine (TiOPc) thin films by microscopic and spectroscopic method

    Science.gov (United States)

    Skonieczny, R.; Makowiecki, J.; Bursa, B.; Krzykowski, A.; Szybowicz, M.

    2018-02-01

    The titanyl phthalocyanine (TiOPc) thin film deposited on glass, silicon and gold substrate have been studied using Raman spectroscopy, atomic force microscopy (AFM), absorption and profilometry measurements. The TiOPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The Raman spectra have been recorded using micro Raman system equipped with a confocal microscope. Using surface Raman mapping techni que with polarized Raman spectra the polymorphic forms of the TiOPc thin films distribution have been obtained. The AFM height and phase image were examined in order to find surface features and morphology of the thin films. Additionally to compare experimental results, structure optimization and vibrational spectra calculation of single TiOPc molecule were performed using DFT calculations. The received results showed that the parameters like polymorphic form, grain size, roughness of the surface in TiOPc thin films can well characterize the obtained organic thin films structures in terms of their use in optoelectronics and photovoltaics devices.

  10. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang, E-mail: luwy@zstu.edu.cn; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing, E-mail: wxchen@zstu.edu.cn

    2016-11-05

    Highlights: • A facile synthetic strategy to prepare visible-light responsive electrospun nanofibers. • Self-floating nanofiber photocatalyts for the effective utilization of solar. • Possible degradation pathway of RhB and CBZ under visible light and solar irradiation. • Present a method for removing highly hazardous contaminants. - Abstract: The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C{sub 3}N{sub 4}/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C{sub 3}N{sub 4}/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C{sub 3}N{sub 4}/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules.

  11. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    Science.gov (United States)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  12. Core excitation and de-excitation spectroscopies of free atoms and molecules

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2006-01-01

    This article provides a review of the current status of core excitation and de-excitation spectroscopy studies of free atoms molecules using a high-resolution soft X-ray monochromator and a high-resolution electron energy analyzer, installed in the soft X-ray photochemistry beam line at SPring-8. Experimental results are discussed for 1s excitation of Ne, O 1s excitation of CO and H 2 O, and F 1s excitation of CF 4 . (author)

  13. Photosensitive heterostructures made of sulfonamide zinc phthalocyanine and organic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Lutsyk, P.; Vertsimakha, Ya.; Nešpůrek, Stanislav; Pomaz, I.

    2011-01-01

    Roč. 535, - (2011), s. 18-29 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterostructure * reversal of sign in photovoltage spectra * sulphonamide-substituted phthalocyanine Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.580, year: 2011

  14. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.

  15. Crystal structures of bis(phenoxysilicon phthalocyanines: increasing π–π interactions, solubility and disorder and no halogen bonding observed

    Directory of Open Access Journals (Sweden)

    Benoît H. Lessard

    2016-07-01

    Full Text Available We report the syntheses and characterization of three solution-processable phenoxy silicon phthalocyanines (SiPcs, namely bis(3-methylphenoxy(phthalocyaninesilicon [(3MP2-SiPc], C46H30N8O2Si, bis(2-sec-butylphenoxy(phthalocyaninesilicon [(2secBP2-SiPc], C44H24I2N8O2Si, and bis(3-iodophenoxy(phthalocyaninesilicon [(3IP2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π–π interactions between the aromatic SiPc cores were studied. It was determined that (3MP2-SiPc has similar interactions to previously reported bis(3,4,5-trifluorophenoxysilicon phthalocyanines [(345 F2-SiPc] with significant π–π interactions between the SiPc groups. (3IP2-SiPc and (2secBP2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these molecules was increased by the addition of phenoxy groups while maintaining π–π interactions between the aromatic SiPc groups. The solubility of (2secBP2-SiPc was significantly higher than other bis-phenoxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure.

  16. Effect of iodine doping of phthalocyanine on the photocurrent generation in a phthalocyanine/C_<60> heterojunction

    OpenAIRE

    Mizuta, Shinsei; Iyota, Masatoshi; Tanaka, Senku; Hiromitsu, Ichiro

    2012-01-01

    Photocurrent generation in an indium?tin oxide (ITO)/iodine-doped Ni-phthalocyanine (NiPc-I_x)/C_/In/Al heterojunction device with x~1 was studied. By keeping the device in air after preparation, the device slowly reached a stationary state in which the sign of the photocurrent is opposite to that of a non-doped ITO/NiPc/C_/In/Al device although the rectification direction for the dark current is the same. By a simulation of incident photon-to-current conversion efficiency spectra and a measu...

  17. Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine

    KAUST Repository

    Kim, Inho; Haverinen, Hanna M.; Li, Jian; Jabbour, Ghassan E.

    2010-01-01

    We demonstrate an enhancement in the power conversion efficiency (PCE) of p-i-n type organic solar cells consisting of zinc phthalocyanine (ZnPc) and fullerene (C60) using a p-layer of palladium phthalocyanine (PdPc). Solar cells employing three

  18. Equilibrium distributions of free charged particles and molecules in systems with non-plane boundaries

    International Nuclear Information System (INIS)

    Usenko, A.S.

    1995-01-01

    The equilibrium space-inhomogeneous distributions of free and pair bound charged particles are calculated in the dipole approximation for the plasma-molecular cylinder and sphere. It is shown that the space and orientational distributions of charged particles and molecules in these systems are similar to those in the cases of plasma-molecular system restricted by one or two parallel planes. The influence of the parameters of outer medium and a plasma-molecular system on the space and orientational distributions of charged particles and molecules is studied in detail

  19. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Xu, Zong-Xiang, E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, P. R. China, 518055 (China); Yan, Yan; Roy, V. A. L., E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (Hong Kong)

    2015-10-15

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  20. Tetra-methyl substituted copper (II phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2015-10-01

    Full Text Available We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  1. Structural and magnetic characterization of copper sulfonated phthalocyanine grafted onto treated polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Kolska, Z. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Orendac, M.; Cizmar, E. [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Sajdl, P. [Department of Power Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Svorcik, V. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic)

    2016-08-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Monolayer of copper phthalocyanine was achieved. • ESR proved that CuPc coated PE surface exhibits magnetic properties. • The studied structures may have potential application in spintronics and data storage. - Abstract: This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with {sup b}CuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.

  2. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.

    Science.gov (United States)

    Pesavento, Maria; Alberti, Giancarla; Biesuz, Raffaela

    2009-01-12

    Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species. The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination. Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.

  3. A free-piston Stirling cryocooler using metal diaphragms

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-12-01

    A novel concept for a free-piston Stirling cryocooler has been proposed. The concept uses a pair of metal diaphragms to seal and suspend the displacer of a free-piston Stirling cryocooler. The diaphragms allow the displacer to move without rubbing or moving seals, potentially resulting in a long-life mechanism. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicates the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. Sage predicted the macroscopic behaviour of the prototype well but did not provide sufficient insights to improve performance significantly. This paper presents details of the development, modelling and testing of the proof-of-concept prototype and a second, improved prototype.

  4. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  5. Electrochemistry and spectroelectrochemistry of tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine, Lu{sub 2}Pc{sub 4} and dimeric lutetium(III) phthalocyanine, Lu{sub 2}Pc{sub 2}(OAc){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Chemical Engineering Department, Engineering Faculty, Marmara University, TR34722 Goeztepe, Istanbul (Turkey); Ceyhan, Tanju; Erbil, Mehmet K. [Department of Biochemistry, Division of Organic Chemistry, Guelhane Medical Academy (GATA), Ankara (Turkey); Ozkaya, Ali Riza [Department of Chemistry, Marmara University, TR34722 Goeztepe, Istanbul (Turkey)], E-mail: aliozkaya@marmara.edu.tr; Bekaroglu, Ozer [Department of Chemistry, Technical University of Istanbul, TR34469 Maslak, Istanbul (Turkey)], E-mail: obek@itu.edu.tr

    2007-11-09

    In this study, electrochemical, electrochromic and spectroelectrochemical properties of a tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine (Lu{sub 2}Pc{sub 4}2) were investigated explicitly as compared with a tert-butylcalix[4]arene bridged dimeric lutetium(III) phthalocyanine [Lu{sub 2}Pc{sub 2}(OAc){sub 2}1]. Distinctive differences between electrochemical and electrochromic properties of 1 and 2 were detected. Moreover, the properties of 1 and 2 were compared with previously reported S{sub 4}(CH{sub 2}){sub 4} bridged Lu{sub 2}Pc{sub 2}(OAc){sub 2} and Lu{sub 2}Pc{sub 4}. The calixarene bridged phthalocyanine (Pc) compounds, 1 and 2 showed well-defined electrochromic behaviour with green-blue and blue-purple colour transitions. The enhanced electrochromic properties of 2, as compared to 1, were attributed to its double-decker structure, probably allowing the formation of suitable ion channels for the counter ion movement in the solid film.

  6. Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M. [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal); Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal, F-63177 Aubiere cedex (France); Calvete, M.J.F.; Goncalves, N.P.F.; Burrows, H.D. [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal); Sarakha, M. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal, F-63177 Aubiere cedex (France); Fernandes, A.; Ribeiro, M.F. [Instituto para a Biotecnologia e Bioengenharia, Centro para a Engenharia Biologica e Quimica, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Azenha, M.E., E-mail: meazenha@ci.uc.pt [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal); Pereira, M.M., E-mail: mmpereira@qui.uc.pt [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Complete immobilization of zinc(II) phthalocyanines accomplished in Al-MCM-41. Black-Right-Pointing-Pointer Efficient photodegradation of model pesticides achieved using 365 nm irradiation. Black-Right-Pointing-Pointer Sodium azide experiments showed the involvement of singlet oxygen ({sup 1}O{sub 2}). - Abstract: In the present study the authors investigated a set of three new zinc(II) phthalocyanines (zinc(II) tetranitrophthalocyanine (ZnTNPc), zinc(II) tetra(phenyloxy)phthalocyanine (ZnTPhOPc) and the tetraiodide salt of zinc(II)tetra(N,N,N-trimethylaminoethyloxy) phthalocyaninate (ZnTTMAEOPcI)) immobilized into Al-MCM-41 prepared via ship-in-a-bottle methodology. The samples were fully characterized by diffuse reflectance-UV-vis spectroscopy (DRS-UV-vis), luminescence, thermogravimetric analysis (TG/DSC), N{sub 2} adsorption techniques and elemental analysis. A comparative study was made on the photocatalytic performance upon irradiation within the wavelength range 320-460 nm of these three systems in the degradation of pesticides fenamiphos and pentachlorophenol. ZnTNPc-Al-MCM-41 and ZnTTMAEOPcI-Al-MCM-41 were found to be the most active systems, with the best performance observed with the immobilized cationic phthalocyanine, ZnTTMAEOPcI-Al-MCM-41. This system showed high activity even after three photocatalytic cycles. LC-MS product characterization and mechanistic studies indicate that singlet oxygen ({sup 1}O{sub 2}), produced by excitation of these immobilized photosensitizers, is a key intermediate in the photocatalytic degradation of both pesticides.

  7. Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides

    International Nuclear Information System (INIS)

    Silva, M.; Calvete, M.J.F.; Gonçalves, N.P.F.; Burrows, H.D.; Sarakha, M.; Fernandes, A.; Ribeiro, M.F.; Azenha, M.E.; Pereira, M.M.

    2012-01-01

    Highlights: ► Complete immobilization of zinc(II) phthalocyanines accomplished in Al-MCM-41. ► Efficient photodegradation of model pesticides achieved using 365 nm irradiation. ► Sodium azide experiments showed the involvement of singlet oxygen ( 1 O 2 ). - Abstract: In the present study the authors investigated a set of three new zinc(II) phthalocyanines (zinc(II) tetranitrophthalocyanine (ZnTNPc), zinc(II) tetra(phenyloxy)phthalocyanine (ZnTPhOPc) and the tetraiodide salt of zinc(II)tetra(N,N,N-trimethylaminoethyloxy) phthalocyaninate (ZnTTMAEOPcI)) immobilized into Al-MCM-41 prepared via ship-in-a-bottle methodology. The samples were fully characterized by diffuse reflectance-UV–vis spectroscopy (DRS-UV–vis), luminescence, thermogravimetric analysis (TG/DSC), N 2 adsorption techniques and elemental analysis. A comparative study was made on the photocatalytic performance upon irradiation within the wavelength range 320–460 nm of these three systems in the degradation of pesticides fenamiphos and pentachlorophenol. ZnTNPc-Al-MCM-41 and ZnTTMAEOPcI-Al-MCM-41 were found to be the most active systems, with the best performance observed with the immobilized cationic phthalocyanine, ZnTTMAEOPcI-Al-MCM-41. This system showed high activity even after three photocatalytic cycles. LC–MS product characterization and mechanistic studies indicate that singlet oxygen ( 1 O 2 ), produced by excitation of these immobilized photosensitizers, is a key intermediate in the photocatalytic degradation of both pesticides.

  8. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  9. Preparation of carbon-free TEM microgrids by metal sputtering

    International Nuclear Information System (INIS)

    Janbroers, S.; Kruijff, T.R. de; Xu, Q.; Kooyman, P.J.; Zandbergen, H.W.

    2009-01-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  10. Preparation of carbon-free TEM microgrids by metal sputtering.

    Science.gov (United States)

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  11. TiO2 Photocatalyzed Oxidation of Free and Complex Metallic Cyanides.

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, J. E.; Esteghamatdarsthad, B.; Renteria, J.

    2006-07-01

    The TiO2 photo catalyzed oxidation of free cyanide and transition metal cyanide complexes often found in industrial mining wastes were studied. The photoreactor system used was a UV illuminated and stirred tank with suspended particles of TiO2. After to determine the optimization parameters such as light intensity, concentration of complex and free cyanides, in ideal conditions, the effect of the presence of different type of anions was also studied. The model substances chosen were potassium cyanide and cyanides complexes of Iron, Cobalt and Copper in a strong alkaline solution (pH = 11.0 - 12.0). The experimental results indicate that in the case of the hexaferricyanide complex Fe(CN)6 3, the reaction occur in two steps. The first step is the breakdown of the metal-cyanide bond (photo-dissociation) forming free cyanide (CN-) and Fe3+ ions. The second step is the photo-oxidation of the free cyanides formed before. The ions Fe3+ and OH- present in the alkaline solution, precipitate as iron hydroxide Fe(OH)3. During the photo-dissociation step of the iron complex, free CN- ions produced reaches a maximum concentration before it is eliminated by photo-oxidation. The free cyanide produced from the hexaferricyanide complex disappears rapidly at a velocity of 64.6 + - 5.0 ?M/min. This rate of photo-oxidation is comparable with the experiments using just alkaline solutions of potassium cyanide ('free cyanides'). In contrast, in alkaline solutions of cyanide complexes of Cu and Co the rate of photo-oxidation was substantially reduced (6.17+ - 0.80 ?M/min and 0.04 + - 0.010 ?M/min, respectively) and do not show any initial increase of free cyanides in the suspension. The slower rate of photo-oxidation suggests the formation of very stable hydroxyl-cyanide polymeric metallic complexes in the reaction mix. The photo-oxidation pathway of the nitrogen oxide products was also investigated and found that the final product consists mainly of nitrate ions. (Author)

  12. Reactive oxygen species produced by irradiation of some phthalocyanine derivatives

    Czech Academy of Sciences Publication Activity Database

    Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, Stanislav

    2010-01-01

    Roč. 210, č. 1 (2010), s. 82-88 ISSN 1010-6030 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : singlet oxygen * photosensitizer * phthalocyanine Subject RIV: CG - Electrochemistry Impact factor: 2.243, year: 2010

  13. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorp...

  14. Selfassembly of α,ω-dithiols on surfaces and metal dithiol heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hamoudi, Hicham [Qatar Environment and Energy Research Institute QEERI, Qatar Foundation, 5825 Doha (Qatar); Esaulov, Vladimir A. [Institut des Sciences Moleculaires d' Orsay, UMR 8214, CNRS-Universite Paris Sud, Universite Paris Saclay, Batiment 351, 91405 Orsay (France)

    2016-04-15

    α,ω-Dithiols present an interesting case of molecules with two reactive terminal -SH groups (HS-R-SH) that allow their use as binders between different metallic entities. They have thus been used in molecular electronics conduction measurements, in ''nanogap'' electrodes of interest in plasmonics, as building blocks of more complex structures such as metal intercalated superlattices and in the formation of metalized organic thin films, including doped graphene type films. There exist however many problems, because the molecules may end up in undesirable configurations with both thiol terminals bound to the same metal particle/substrate or link with other molecules to produce ''multi-molecule'' or ''multilayer'' structures. This report discusses various key questions on dithiol linking with metal surfaces and the quest of protocols of making problem free dithiol metal structures. It then describes the use of dithiols and their SAMs to produce various metal organic heterostructures useful for molecular electronics and formation of doped metalized organic thin films. We discuss the build up of these structures by self assembly and lithography, their chemical composition and functional properties. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Base-oxidant promoted metal-free N-demethylation of arylamines

    Indian Academy of Sciences (India)

    A metal-free oxidative N-demethylation of arylamines with triethylamine as a base and tert-butyl hydroperoxide (TBHP) as oxidant is reported in this paper. The reaction is general, practical, inexpensive, non-toxic, and the method followed is environmentally benign, with moderate to good yields.

  16. Synthesis and spectral properties of europium phthalocyanine complexes

    International Nuclear Information System (INIS)

    Maksimova, K.N.; Bazyakina, N.L.; Kutyreva, V.V.; Suvorova, O.N.; Domrachev, G.A.

    2008-01-01

    Synthesis of europium monophthalocyanic complexes with thenoyltrifluroacetonate (tta) and ferrocenoyltrifluoroacetate (fta) ligands has been considered. Spectral characteristics of complexes PcEu(tta)(ttaH) and PcEu(fta)(ftaH) (Pc - phthalocyanine ligand) have been investigated. One of β-diketonate ligand is proposed to bind with europium ion covalently, and the second ligand saturates coordination sphere of europium due to donor-acceptor binding [ru

  17. Electronic and gas sensing properties of soluble phthalocyanines

    Czech Academy of Sciences Publication Activity Database

    Pochekaylov, Sergey; Rais, David; Nešpůrek, Stanislav; Rakušan, J.; Karásková, M.

    2009-01-01

    Roč. 27, č. 3 (2009), s. 781-795 ISSN 0137-1339. [International Conference on Electtrical and Related Properties of Organic Solids /11./. Wroclaw, 13.07.2008-17.07.2008] R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : substituted phthalocyanine * nitrogen dioxide sensor * optical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.384, year: 2009

  18. Application of nanophotosensitizers (aluminum phthalocyanine nanoparticles) for early diagnosis and prevention of inflammatory diseases

    Science.gov (United States)

    Kuznetsova, J. O.; Makarov, V. I.

    2016-08-01

    This paper deals with a possibility of new types of photosensitizers application - Aluminum Phthalocyanine nanoparticles (nAlPc) in clinical practice for diagnosis, prevention and therapy of inflammatory diseases in dentistry and traumatology. It was detected that the aluminum phthalocyanine (AlPc) fluoresces in the nanoparticle form in the presence of pathologic microflora or inflammation process. It will make possible to detect the local accumulation of pathological microflora on the enamel surface and also for diagnostics and treatment of inflammatory diseases. Experimental studies of interaction of NP-AlPc with tooth enamel and with biological joint tissue at arthrosis are presented.

  19. Application of nanophotosensitizers (aluminum phthalocyanine nanoparticles) for early diagnosis and prevention of inflammatory diseases

    International Nuclear Information System (INIS)

    Kuznetsova, J O; Makarov, V I

    2016-01-01

    This paper deals with a possibility of new types of photosensitizers application - Aluminum Phthalocyanine nanoparticles (nAlPc) in clinical practice for diagnosis, prevention and therapy of inflammatory diseases in dentistry and traumatology. It was detected that the aluminum phthalocyanine (AlPc) fluoresces in the nanoparticle form in the presence of pathologic microflora or inflammation process. It will make possible to detect the local accumulation of pathological microflora on the enamel surface and also for diagnostics and treatment of inflammatory diseases. Experimental studies of interaction of NP-AlPc with tooth enamel and with biological joint tissue at arthrosis are presented. (paper)

  20. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    International Nuclear Information System (INIS)

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  2. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  3. Phase and Texture of Solution-Processed Copper Phthalocyanine Thin Films Investigated by Two-Dimensional Grazing Incidence X-Ray Diffraction

    Directory of Open Access Journals (Sweden)

    Lulu Deng

    2011-07-01

    Full Text Available The phase and texture of a newly developed solution-processed copper phthalocyanine (CuPc thin film have been investigated by two-dimensional grazing incidence X-ray diffraction. The results show that it has β phase crystalline structure, with crystallinity greater than 80%. The average size of the crystallites is found to be about 24 nm. There are two different arrangements of crystallites, with one dominating the diffraction pattern. Both of them have preferred orientation along the thin film normal. Based on the similarities to the vacuum deposited CuPc thin films, the new solution processing method is verified to offer a good alternative to vacuum process, for the fabrication of low cost small molecule based organic photovoltaics.

  4. Formation of Negative Metal Ions in a Field-Free Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E

    1969-02-15

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of {sup 3}He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10{sup -13} cm{sup 3}/s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He{sup +}{sub 2} may therefore be dissociative. A difference in recombination behaviour between {sup 3}He and {sup 4}He at high pressures may therefore exist considering results from previous work on {sup 4}He.

  5. Formation of Negative Metal Ions in a Field-Free Plasma

    International Nuclear Information System (INIS)

    Larsson, E.

    1969-02-01

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of 3 He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10 -13 cm 3 /s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He + 2 may therefore be dissociative. A difference in recombination behaviour between 3 He and 4 He at high pressures may therefore exist considering results from previous work on 4 He

  6. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  7. Preparation of carbon-free TEM microgrids by metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Janbroers, S., E-mail: stephan.janbroers@albemarle.com [Albemarle Catalysts B.V., Nieuwendammerkade 1-3, 1030 BE, Amsterdam (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruijff, T.R. de; Xu, Q. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kooyman, P.J. [DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL, Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2009-08-15

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  8. A new face of phenalenyl-based radicals in the transition metal-free C-H arylation of heteroarenes at room temperature: trapping the radical initiator via C-C σ-bond formation.

    Science.gov (United States)

    Ahmed, Jasimuddin; P, Sreejyothi; Vijaykumar, Gonela; Jose, Anex; Raj, Manthan; Mandal, Swadhin K

    2017-11-01

    The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.

  9. Effect of metal complexation to anti-inflammatory over the action against oxidative and free radicals: ketoprofen action; Efeito da complexacao de metais aos antiinflamatorios na acao contra agentes oxidativos e radicais livres: acao do cetoprofeno

    Energy Technology Data Exchange (ETDEWEB)

    Manente, Francine Alessandra; Mello, Lucas Rosolen de Almeida; Vellosa, Jose Carlos Rebuglio [UEPG, Universidade Estadual de Ponta Grossa, Departamento de Analises Clinicas eToxicologicas, Ponta Grossa, PR (Brazil); Khalil, Omar Arafat Kdudsi [IFG, Instituto Federal de Goias, Campus de Formosa, Formosa - GO (Brazil); Carvalho, Claudio Teodoro de [UFGD, Universidade Federal da Grande Dourados, Faculdade de Ciencias Exatas e Tecnologias, Dourados-MS (Brazil); Bannach, Gilbert [UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Ciencias de Bauru, Bauru, SP (Brazil)

    2011-07-01

    Free radicals are highly reactive species generated in living organisms for the purpose of protection. However, in some circumstances, they are responsible for the occurrence or aggravation of tissue damage. Many anti-inflammatory drugs have a direct effect on free radicals and not radical reactive species, which contributes to its actions against inflammation. Ketoprofen is a nonsteroidal anti-inflammatory agent that generates free radicals by photo irradiation and has an important hemolytic effect with that. The complexation of metals to different drugs has been used as a strategy to improve the pharmacological action of different molecules and reduce their side effects. This paper presents the results of ketoprofen and their metallic complexes action on erythrocytes and free radicals. It was observed that the cerium enhances the scavenger properties of ketoprofen on free radicals, while copper enhances its action over non-radical oxidants. Copper also reduced the hemolytic effect presented by ketoprofen meanwhile its cerium derivative maintained it. (author)

  10. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication.

    Science.gov (United States)

    Song, Hyun Jae; Son, Minhyeok; Park, Chibeom; Lim, Hyunseob; Levendorf, Mark P; Tsen, Adam W; Park, Jiwoong; Choi, Hee Cheul

    2012-05-21

    Metal catalyst-free growth of large scale single layer graphene film on a sapphire substrate by a chemical vapor deposition (CVD) process at 950 °C is demonstrated. A top-gated graphene field effect transistor (FET) device is successfully fabricated without any transfer process. The detailed growth process is investigated by the atomic force microscopy (AFM) studies.

  11. Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes

    Science.gov (United States)

    Meunier, Vincent; Kalinin, Sergei V.; Sumpter, Bobby G.

    2007-02-01

    We propose a novel class of nonvolatile memory elements based on the modification of the transport properties of a conducting carbon nanotube by the presence of an encapsulated molecule. The guest molecule has two stable orientational positions relative to the nanotube that correspond to conducting and nonconducting states. The mechanism, governed by a local gating effect of the molecule on the electronic properties of the nanotube host, is studied using density functional theory. The mechanisms of reversible reading and writing of information are illustrated with a F4TCNQ molecule encapsulated inside a metallic carbon nanotube. Our results suggest that this new type of nonvolatile memory element is robust, fatigue-free, and can operate at room temperature.

  12. Enhanced Charge Separation Efficiency in Pyridine-Anchored Phthalocyanine-Sensitized Solar Cells by Linker Elongation.

    Science.gov (United States)

    Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi

    2015-11-01

    A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen molecules adsorption on (100) plane of the 3d metal oxides of the first transition period

    International Nuclear Information System (INIS)

    Tsybulev, P.N.; Pinchuk, A.M.; Parkhomenko, N.V.

    1992-01-01

    New parameters for the calculation of clusters with participation of atoms of the first transition series of metals from Ti to Cu are suggested. Binding energy of H 2 molecule and M 9 O 9 clusters was calculated and it is shown that oxides of Ti, V and Cr form a bond with H 2 molecule mainly at the expence of interaction with 3d-orbitals

  14. Toward Additive-Free Small-Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics

    KAUST Repository

    Abdelsamie, Maged

    2015-09-29

    The ease with which small-molecule donors crystallize during solution processing is directly linked to the need for solvent additives. Donor molecules that get trapped in disordered (H1) or liquid crystalline (T1) mesophases require additive processing to promote crystallization, phase separation, and efficient light harvesting. A donor material (X2) that crystallizes directly from solution yields additive-free solar cells with an efficiency of 7.6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.

    Science.gov (United States)

    Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong

    2017-09-15

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Theoretical studies on the possible sensitizers of DSSC: Nanocomposites of graphene quantum dot hybrid phthalocyanine/tetrabenzoporphyrin/tetrabenzotriazaporphyrins/cis-tetrabenzodiazaporphyrins/tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles

    Science.gov (United States)

    Gao, Feng; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2018-04-01

    The feasibility of nanocomposites of cir-coronene graphene quantum dot (GQD) with phthalocyanine, tetrabenzoporphyrin, tetrabenzotriazaporphyrins, cis-tetrabenzodiazaporphyrins, tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles as a sensitizer of dye-sensitized solar cells (DSSC) are investigated. Based on the first principles density functional theory (DFT), the geometrical structures of the separate GQD and 10 macrocycles, and their hybridized nanocomposites are fully optimized. The energy stabilities of the obtained structures are confirmed by harmonic frequency analysis. The optical absorptions of the optimized structures are calculated with time-dependent DFT. The feasibility of the nanocomposites as the sensitizer of DSSC is examined by the charge spatial separation, the electron transfer, the molecular orbital energy levels of the nanocomposites and the electrolyte, and the conduction band minimum of TiO2 electrode. The results demonstrate that all the nanocomposites have enhanced absorptions in the visible light range, and their molecular orbital energies satisfy the requirement of sensitizers. However, only two of the ten considered nanocomposites demonstrate significantly charge spatial separation. The GQD-Cu-TBP is identified as the most favorable candidate sensitizer of DSSC by the most enhanced in optical absorption, obvious charge spatial separation, suitable LUMO energy levels and driving force for electron transfer, and low recombination rate of electron and hole.

  17. Side chain polysiloxanes with phthalocyanine moieties

    Directory of Open Access Journals (Sweden)

    T. Ganicz

    2012-05-01

    Full Text Available Side chain polysiloxane with 5-(pentyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine moieties is synthesized by hydrosilylation reaction. The phase behavior and thermooptical properties of the polysiloxane and starting 2-(pent-4-enyloxy-3-methyloxy-9,10,16,17,23,24-hexakis(octenyloxyphthalocyanine is examined by POM (Polarizing optical microscopy, TOA (thermooptical analysis, DSC (differential scanning calorimetry, AFM (atomic force microscopy and SAXS (small angle X-ray scattering studies. The effect of the attachment of phthalocyanine to polysiloxane chains over phase transitions and phase morphology is discussed in details.

  18. Effect of iodine doping of phthalocyanine on the photocurrent generation in a phthalocyanine/C{sub 60} heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Shinsei; Iyota, Masatoshi; Tanaka, Senku; Hiromitsu, Ichiro, E-mail: hiromitu@riko.shimane-u.ac.jp

    2012-06-30

    Photocurrent generation in an indium-tin oxide (ITO)/iodine-doped Ni-phthalocyanine (NiPc-I{sub x})/C{sub 60}/In/Al heterojunction device with x {approx} 1 was studied. By keeping the device in air after preparation, the device slowly reached a stationary state in which the sign of the photocurrent is opposite to that of a non-doped ITO/NiPc/C{sub 60}/In/Al device although the rectification direction for the dark current is the same. By a simulation of incident photon-to-current conversion efficiency spectra and a measurement of internal electric field by electroabsorption spectroscopy, it was elucidated that, in the doped device, the band bending near the phthalocyanine/C{sub 60} interface is absent and the photocurrent is generated by a weak Schottky barrier at the C{sub 60}/In interface. It is also shown that the C{sub 60} film encapsulates the doped iodine into the NiPc-I{sub x} layer to stabilize the doping level and prevent the reaction of iodine with In. - Highlights: Black-Right-Pointing-Pointer The C{sub 60} film deposited on a NiPc-I{sub x} film encapsulates the doped iodine. Black-Right-Pointing-Pointer An iodine-doped device generates a photocurrent of inverted direction. Black-Right-Pointing-Pointer The internal electric field is also inverted. Black-Right-Pointing-Pointer The activity of photocurrent generation at the heterojunction is quenched. Black-Right-Pointing-Pointer Photocurrent is generated at the C{sub 60}/In interface.

  19. The Gellyfish: an in-situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems

    Science.gov (United States)

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure because of their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated a...

  20. Reagent-Free Electrophoretic Synthesis of Few-Atom-Thick Metal Oxide Nanosheets

    DEFF Research Database (Denmark)

    Hou, Chengyi; Zhang, Minwei; Zhang, Lili

    2017-01-01

    Engineering traditional materials into the new form of atomic and free-standing two-dimensional structures is of both fundamental interest and practical significance, but it is in general facing challenges especially for metal oxide semiconductors. We herein report an ultragreen method for the cost......-effective and fast preparation of atomic metal oxide nanosheets that can be further transformed into nanofilms. The method combines top-down building block synthesis and bottom-up electrophoretic assembly in water under ambient conditions, using only bulk metal and Milli-Q water without involving any additional...

  1. Adsorption behavior of sulfur-containing amino acid molecule on transition metal surface studied by S K-edge NEXAFS

    International Nuclear Information System (INIS)

    Yagi, S.; Matsumura, K.; Nakano, Y.; Ikenaga, E.; Sardar, S.A.; Syed, J.A.; Soda, K.; Hashimoto, E.; Tanaka, K.; Taniguchi, M.

    2003-01-01

    Adsorption behavior of a sulfur-containing amino acid L-cysteine molecule on transition metal surface have been investigated by S K-edge near-edge X-ray absorption fine structure. The L-cysteine molecule for first adsorption layer was found to dissociate on polycrystalline nickel surface, whereas molecularly adsorbed on copper surface at room temperature. Most of the L-cysteine molecules have been dissociated on nickel surface in annealing condition up to 353 K. On the other hand, the L-cysteine molecule did not dissociate on copper surface and the elongation of the S-C bonding occurred at 353 K

  2. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  3. The complex nature of phthalocyanine/gold interfaces

    International Nuclear Information System (INIS)

    Lindner, Susi; Treske, Uwe; Knupfer, Martin

    2013-01-01

    We compare the electronic properties of the interface between Au(1 0 0) and cobalt phthalocyanine (CoPc), fluorinated F 16 CoPc as well as CuPc using X-ray photoemission spectroscopy and valence band ultra-violet photoemission spectroscopy. Our results show that in addition to the formation of an interface dipole at the interfaces of CoPc and F 16 CoPc to gold, there is a local charge transfer to the central Co ion, which as a result is reduced to Co(I).

  4. Laser deposition of sulfonated phthalocyanines for gas sensors

    Czech Academy of Sciences Publication Activity Database

    Fitl, Přemysl; Vrňata, M.; Kopecký, D.; Vlček, J.; Škodová, J.; Bulíř, Jiří; Novotný, Michal; Pokorný, Petr

    2014-01-01

    Roč. 302, MAY (2014), s. 37-41 ISSN 0169-4332. [European-Materials-Research-Society Symposium on Laser Material Interactions for Micro- and Nano- Applications /5./. Strasbourg, 27.05.2013-31.05.2013] R&D Projects: GA ČR(CZ) GAP108/11/1298 Institutional support: RVO:68378271 Keywords : Matrix Assisted Pulsed Laser Evaporation * substituted phthalocyanine s * gas sensors * impedance measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  5. Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation.

    Science.gov (United States)

    de Oliveira, Kleber T; de Assis, Francisco F; Ribeiro, Anderson O; Neri, Claudio R; Fernandes, Adjaci U; Baptista, Mauricio S; Lopes, Norberto P; Serra, Osvaldo A; Iamamoto, Yassuko

    2009-10-16

    Syntheses of two water-soluble phthalocyanines (Pc) containing 5-aminolevulinic acid (ALA) linked to the core structure are described. These compounds were prepared by using original functionalizations, and they present remarkable structural and photophysical features, indicating that they could be applied to photodynamic therapy (PDT).

  6. Degradation of natural toxins by phthalocyanines-example of cyanobacterial toxin, microcystin

    Czech Academy of Sciences Publication Activity Database

    Jančula, D.; Blahová, L.; Karásková, M.; Maršálek, Blahoslav

    2010-01-01

    Roč. 62, č. 2 (2010), s. 273-278 ISSN 0273-1223 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : microcystin * phthalocyanine * singled oxygen Subject RIV: EF - Botanics Impact factor: 1.056, year: 2010

  7. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Bonaventure Gustavo

    2009-11-01

    Full Text Available Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA and small polar molecules (e.g., jasmonic acid (JA, salicylic acid (SA containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the

  8. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  9. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  10. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmentally Friendly Phthalocyanine Catalysts for Water Decontamination - Non Photocatalytic Systems

    Czech Academy of Sciences Publication Activity Database

    Klusoň, Petr; Drobek, M.; Zsigmond, A.; Baranyi, J.; Bata, P.; Zárubová, Š.; Kalaji, A.

    2009-01-01

    Roč. 91, 3-4 (2009), s. 605-609 ISSN 0926-3373 R&D Projects: GA ČR GD203/03/H140; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : phthalocyanines * phenol * chlorophenols Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.252, year: 2009

  12. Covalent Functionalization of Carbon Nanotube by Tetrasubtituted Amino Manganese Phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    Zheng Long YANG; Hong Zheng CHEN; Lei CAO; Han Yin LI; Mang WANG

    2004-01-01

    The multiwall carbon nanotube (MWCNT) bonded to 2, 9, 16, 23-tetraamino manganese phthalocyanine (TAMnPc) was obtained by covalent functionalization, and its chemical structure was characterized by TEM. The photoconductivity of single-layered photoreceptors, where MWCNT bonded by TAMnPc (MWCNT-b-TAMnPc) served as the charge generation material (CGM), was also studied.

  13. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    Science.gov (United States)

    Jafri, S. Hassan M.; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  14. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  15. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  16. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  17. Optical spectra of phthalocyanines and related compounds a guide for beginners

    CERN Document Server

    Isago, Hiroaki

    2015-01-01

    This book displays how optical (absorption, emission, and magnetic circular dichroism) spectra of phthalocyanines and related macrocyclic dyes can be varied from their prototypical ones depending on conditions. As these compounds can be involved in colorful chemistry (which might be driven by impurities in solvents), their spectra behave like the sea-god Proteus in their mutability. Therefore, those who have been engaged with phthalocyanines for the first time, including even educated professional researchers and engineers, may have been embarrassed by the deceptive behavior of their compounds and could have, in the worst cases, given up their projects. This book is aimed not merely at reviewing the optical spectra, but also at helping such people, particularly beginners, to figure them out by showing some examples of their prototypical spectra and their variations in several situations. For the purpose of better understanding, the book also provides an introduction to their theoretical backgrounds as graphic...

  18. Type II photoinitiator substituted zinc phthalocyanine: Synthesis, photophysical and photopolymerization studies

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Sibel Eken [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey); Temel, Gokhan [Department of Polymer Engineering, Yalova University, 77100 Yalova (Turkey); Balta, Demet Karaca [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey); Arsu, Nergis, E-mail: narsu@yildiz.edu.tr [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey); Şener, M. Kasım, E-mail: mkasimsener@gmail.com [Department of Chemistry, Yıldız Technical University, 34210 Davutpaşa, İstanbul (Turkey)

    2013-04-15

    The novel 4-(9-oxo-9 H-thioxanthen-2yloxy) phthalonitrile (TX-Pht) and its peripherally tetra substituted zinc phthalocyanine complex (TX-ZnPc) have been prepared and characterized by spectroscopic and elemental analysis techniques. Photoinitiated polymerization of methyl methacrylate (MMA) with TX-ZnPc has been investigated in the presence and absence of a co-initiator. Fluorescence and phosphorescence measurements have been also performed to determine the photophysical properties. Low fluorescence quantum yield (Φ{sub F}=0.08) compared to the unsubstituted ZnPc has been found. This allows initiator to undergo intersystem crossing into the triplet state and the lowest triplet state possesses π-π{sup ⁎} configuration. Highlights: ► Zinc phthalocyanine (ZnPc), peripherally functionalized with photoactive thioxanthone (TX) groups was synthesized. ► The photophysical and photochemical properties of resulting photoinitiator were studied in DMF. ► Photoinitiated polymerization of MMA with TX-ZnPc was investigated in the presence and absence of co-initiator.

  19. Metal-Free N-Arylation of Secondary Amides at Room Temperature

    OpenAIRE

    Tinnis, Fredrik; Stridfeldt, Elin; Lundberg, Helena; Adolfsson, Hans; Olofsson, Berit

    2015-01-01

    The arylation of secondary acyclic amides has been achieved with diaryliodonium salts under mild and metal-free conditions. The methodology has a wide scope, allows synthesis of tertiary amides with highly congested aryl moieties, and avoids the regioselectivity problems observed in reactions with (diacetoxyiodo)benzene.

  20. Solid-liquid interface free energies of pure bcc metals and B2 phases

    Science.gov (United States)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  1. Investigation of metal coatings for the free electron laser

    International Nuclear Information System (INIS)

    Scott, M.L.; Arendt, P.N.; Springer, R.W.; Cordi, R.C.; McCreary, W.J.

    1985-01-01

    We are investigating the deposition and characteristics of metal coatings for use in environments such as the Free Electron Laser where the radiation resistance of metal coatings could prove to be of great benefit. We have concentrated our initial efforts on silver laminate coatings due to the high reflectance of silver at 1 micron wavelength. Our initial laminate coatings have utilized thin layers of titanium oxide to break up the columnar structure of the silver during electron-beam deposition on fused silica substrates. Our initial results on equal coating thickness samples indicate an improvement in damage threshold that ranges from 1.07 to 1.71 at 351 nm

  2. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  3. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  4. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts

    Directory of Open Access Journals (Sweden)

    Celia Garcia-Hernandez

    2015-11-01

    Full Text Available An array of electrochemical quartz crystal electrodes (EQCM modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo. The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately.

  5. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Wong, P.C. [Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan (China); Chang, S.F. [Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Tsai, P.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Jang, J.S.C., E-mail: jscjang@ncu.edu.tw [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2017-06-01

    Safety and reliability are crucial issues for medical instruments and implants. In the past few decays, bulk metallic glasses (BMGs) have drawn attentions due to their superior mechanical properties, good corrosion resistance, antibacterial and good biocompatibility. However, most Zr-based and Ti-based BMGs contain Ni as an important element which is prone to human allergy problem. In this study, the Ni-free Ti-based and Zr-based BMGs, Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14}, and Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8}, were selected for systematical evaluation of their biocompatibility. Several biocompatibility tests, co-cultural with L929 murine fibroblast cell line, were carried out on these two BMGs, as well as the comparison samples of Ti6Al4V and pure Cu. The results in terms of cellular adhesion, cytotoxicity, and metallic ion release affection reveal that the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG and Ti6Al4V exhibit the optimum biocompatibility; cells still being attached on the petri dish with good adhesion and exhibiting the spindle shape after direct contact test. Furthermore, the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG showed very low Cu ion release level, in agreement with the MTT results. Based on the current findings, it is believed that Ni-free Ti-based BMG can act as an ideal candidate for medical implant. - Highlight: • Ni-free bulk metallic glass is promising material for medical implants. • Ni-free Ti-based BMG presents similar cellular adhesion as Ti6Al4V. • Ni-free Ti-based BMG shows less cytotoxicity, and metallic ion release than Ti6Al4V.

  6. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor

    Directory of Open Access Journals (Sweden)

    Carlos J. Lucio-Ortiz

    2013-09-01

    Full Text Available Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD, scanning electronic microscope (SEM, and N2 physisorption isotherms were also determined. The Ni/Al2O3 sample reveled agglomerated (1 μm of nanoparticles of Ni (30–80 nm however, NiO particles were also identified, probably for the low temperature during the H2 reduction treatment (350 °C, the Cu/Al2O3 sample presented agglomerates (1–1.5 μm of nanoparticles (70–150 nm, but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH3ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption.

  7. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    International Nuclear Information System (INIS)

    Cortez, Luis; Berrios, Cristhian; Yanez, Mauricio; Cardenas-Jiron, Gloria I.

    2009-01-01

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  8. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Luis [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Berrios, Cristhian [Laboratorio de Electrocatalisis, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Yanez, Mauricio [Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Casilla-160 C, Concepcion (Chile); Cardenas-Jiron, Gloria I., E-mail: gloria.cardenas@usach.cl [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile)

    2009-11-26

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  9. Antimicrobial photodisinfection with Zn(II) phthalocyanine adsorbed on TiO2 upon UVA and red irradiation

    Science.gov (United States)

    Mantareva, Vanya; Eneva, Ivelina; Kussovski, Vesselin; Borisova, Ekaterina; Angelov, Ivan

    2015-01-01

    The light exposure on a daily basis has been well accepted as a competitive method for decontamination of wastewater. The catalytic properties of TiO2 offer a great potential to reduce the transmission of pathogens in the environment. Although the titanium dioxide shows high activity against pathogens, its general usage in water cleaning is limited due to the insufficient excitation natural light (about 3% of the solar spectrum). A hydrophobic dodecylpyridyloxy Zn(II)-phthalocyanine with four peripheral hydrocarbon chains of C12 (ZnPcDo) was immobilized on a photocatalyst TiO2 anatase (P25). The resulted greenish colored nanoparticles of phthalocyanine were characterized by the means of absorption, fluorescence and infrared spectroscopy. The laser scanning confocal fluorescence microscopy was used to visualize the phthalocyanine dye by the red fluorescence emission (650 - 740 nm). The intensive Q-band in the far red visible spectral region (~ 690 nm) suggested a monomeric state of phthalocyanine on TiO2 nanoparticles. Two pathogenic bacterial strains (methicillin-resistant Staphylococcus aureus - MRSA and Salmonella enteritidis) associated with wastewater were photoinactivated with the suspension of the particles. The effective photoinactivation was observed with 1 g.L-1 TiO2 anatase at irradiation with UVA 364 nm as with UVA 364 nm and LED 643 nm. The gram-negative Salmonella enteritidis was fully photoinactivated with ZnPcDo-TiO2 and TiO2 alone at UVA 346 nm and at irradiation with two light sources (364 nm + 643 nm). The proposed conjugate appears as an useful composite material for antibacterial disinfection.

  10. Phthalocyanine identification in paintings by reflectance spectroscopy. A laboratory and in situ study

    Science.gov (United States)

    Poldi, G.; Caglio, S.

    2013-06-01

    The importance of identifying pigments using non invasive (n.i.) analyses has gained increasing importance in the field of spectroscopy applied to art conservation and art studies. Among the large set of pigments synthesized and marketed during 20th century, surely phthalocyanine blue and green pigments occupy an important role in the field of painting (including restoration) and printing, thanks to their characteristics like brightness and fastness. This research focused on the most used phthalocyanine blue (PB15:1 and PB15:3) and green pigments (PG7), and on the possibility to identify these organic compounds using a methodology like reflectance spectroscopy in the UV, visible and near IR range (UV-vis-NIR RS), performed easily through portable instruments. Laboratory tests and three examples carried out on real paintings are discussed.

  11. Metal-free TEMPO-promoted C(sp³)-H amination to afford multisubstituted benzimidazoles.

    Science.gov (United States)

    Xue, Ding; Long, Ya-Qiu

    2014-05-16

    An efficient TEMPO-air/cat. TEMPO-O2 oxidative protocol was developed to synthesize multisubstituted or fused tetracyclic benzimidazoles via a metal-free oxidative C-N coupling between the sp(3) C-H and free N-H of readily available N(1)-benzyl/alkyl-1,2-phenylenediamines.

  12. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    Science.gov (United States)

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  13. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  14. Isotope-selective high-order interferometry with large organic molecules in free fall

    Science.gov (United States)

    Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus

    2018-03-01

    Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.

  15. Sodium doping in copper-phthalocyanine/C60 heterojunction for organic photovoltaic applications

    International Nuclear Information System (INIS)

    Chen, Hui-Ju; Wu, Hsuan-Ta; Hung, Kuang-Teng; Fu, Sheng-Wen; Shih, Chuan-Feng

    2013-01-01

    Sodium was incorporating at the copper-phthalocyanine (CuPc)/C 60 interface in CuPc/C 60 -based small-molecular solar cells to enhance their power conversion efficiency. C 60 was deposited on slightly sodium-doped CuPc. Post-annealing improved the cell properties. Post-annealing doubled the conversion efficiency of the least sodium-doped devices (75 °C, 40 min). The electron/hole mobility ratio gradually approached unity as the annealing time increased, indicating that a reduction in the space charge accumulation was the main cause of the increase of the short-circuit current. The mechanism of enhancement of carrier transport by annealing was investigated by making capacitance–voltage measurements and performing corresponding depth-profile analyses. - Highlights: • Incorporate Na at copper-phthalocyanine/C 60 interface • Annealing importantly improved the cell efficiency of Na-doped devices. • Change in the carrier mobility and concentration was investigated

  16. Facile synthesis of pegylated zinc(II) phthalocyanines via transesterification and their in vitro photodynamic activities.

    Science.gov (United States)

    Bai, Ming; Lo, Pui-Chi; Ye, Jing; Wu, Chi; Fong, Wing-Ping; Ng, Dennis K P

    2011-10-21

    Treatment of 4,5-bis[4-(methoxycarbonyl)phenoxy]phthalonitrile and 4,5-bis[3,5-bis(methoxycarbonyl)phenoxy]phthalonitrile with an excess of 1,3-diiminoisoindoline in the presence of Zn(OAc)(2)·2H(2)O and 1,8-diazabicyclo[5.4.0]undec-7-ene in triethylene glycol monomethyl ether or polyethylene glycol monomethyl ether (with an average molecular weight of 550) led to "3 + 1" mixed cyclisation and transesterification in one pot, affording the corresponding di-β-substituted zinc(II) phthalocyanines in 7-23% yield. As shown by absorption spectroscopy, these compounds were essentially non-aggregated in N,N-dimethylformamide and could generate singlet oxygen effectively. The singlet oxygen quantum yields (Φ(Δ) = 0.53-0.57) were comparable with that of the unsubstituted zinc(II) phthalocyanine (Φ(Δ) = 0.56). These compounds in Cremophor EL emulsions also exhibited photocytotoxicity against HT29 human colorectal adenocarcinoma and HepG2 human hepatocarcinoma cells with IC(50) values in the range of 0.25-3.72 μM. The analogue with four triethylene glycol chains was the most potent photosensitiser and localised preferentially in the mitochondria of HT29 cells. The bis(polyethylene glycol)-counterpart could form surfactant-free nanoparticles both in water and in the culture medium. The hydrodynamic radii, as determined by dynamic laser light scattering, ranged from 6.3 to 79.8 nm depending on the preparation methods and conditions. The photocytotoxicity of these nanoparticles (IC(50) = 0.43-0.56 μM) was comparable with that of the Cremophor EL-formulated system (IC(50) = 0.34 μM).

  17. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  18. Relevance of the Interaction between the M-Phthalocyanines and Carbon Nanotubes in the Electroactivity toward ORR.

    Science.gov (United States)

    González-Gaitán, Carolina; Ruiz-Rosas, Ramiro; Morallón, Emilia; Cazorla-Amorós, Diego

    2017-10-31

    In this work, the influence of the interaction between the iron and cobalt-phthalocyanines (FePc and CoPc) and carbon nanotubes (CNTs) used as support in the electroactivity toward oxygen reduction reaction (ORR) in alkaline media has been investigated. A series of thermal treatments were performed on these materials in order to modify the interaction between the CNTs and the phthalocyanines. The FePc-based catalysts showed the highest activity, with comparable performance to the state-of-the-art Pt-Vulcan catalyst. A heat treatment at 400 °C improved the activity of FePc-based catalysts, while the use of higher temperatures or oxidative atmosphere rendered the decomposition of the macrocyclic compound and consequently the loss of the electrochemical activity of the complex. CoPc-based catalysts performance was negatively affected for all of the tested treatments. Thermogravimetric analyses demonstrated that the FePc was stabilized when loaded onto CNTs, while CoPc did not show such a feature, pointing to a better interaction of the FePc instead of the CoPc. Interestingly, electrochemical measurements demonstrated an improvement of the electron transfer rate in thermally treated FePc-based catalysts. They also allowed us to assess that only 15% of the iron in the catalyst was available for direct electron transfer. This is the same iron amount that remains on the catalyst after a strong acid washing with concentrated HCl (ca. 0.3 wt %), which is enough to deliver a comparable ORR activity. Durability tests confirmed that the catalysts deactivation occurs at a slower rate in those catalysts where FePc is strongly attached to the CNT surface. Thus, the highest ORR activity seems to be provided by those FePc molecules that are strongly attached to the CNT surface, pointing out the relevance of the interaction between the support and the FePc in these catalysts.

  19. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  20. Optical-limiting response of rare-earth metallo-phthalocyanine-doped copolymer matrix

    NARCIS (Netherlands)

    Aneeshkumar, B.N.; Gopinath, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.; Radhakrishnan, P.; Thomas, J.

    2003-01-01

    The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, Eu(Pc)2, and LaPc) doped in a copolymer matrix of poly(Me methacrylate) and Me-2-cyanoacrylate were studied for the 1st time to the authors' knowledge. The optical-limiting response is

  1. Annealing assisted structural and surface morphological changes in Langmuir–Blodgett films of nickel octabutoxy phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Shilpa Harish, T.; Viswanath, P., E-mail: viswanath@cnsms.res.in

    2016-01-01

    We report our studies on thin films of metallo-phthalocyanine (MPc), Nickel(II)1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (NiPc(OBu){sub 8}) transferred in a well defined thermodynamic state over a self assembled monolayer (octadecyl trichlorosilane)/SiO{sub 2}/Si substrate using the Langmuir–Blodgett (LB) method. The films are characterized using differential scanning calorimetry (DSC), grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM) techniques. DSC studies on powdered samples in the bulk indicate enantiotropic solid–solid phase transition. GIXD studies on the as-deposited LB film show a Bragg peak indicating crystallinity of the thin film. Annealing (373 K) results in reduction of lattice spacing (1.21 Å) signifying changes in molecular packing within the unit cell. At this stage, an additional Bragg peak is observed which grows at the expense of the former one and they coexist between 373 K and 423 K. A discontinuity in lattice spacing from 20.73 to 15.12 Å with annealing indicates clearly a structural change of the underlying crystalline lattice. Correspondingly, the surface morphology images obtained using AFM show, with annealing, a transformation from spherical granular morphology to elongated, flat crystallites suggesting asymmetric growth process. Statistical parameters of the grain extracted from the AFM images show that the size, fractal dimension and circularity are affected by annealing. Based on these studies, we infer the structural and surface morphological changes of the meta-stable phase (Form I) to the stable phase (Form II) in annealed LB films of phthalocyanine. - Highlights: • Langmuir–Blodgett (LB) films of phthalocyanine subjected to thermal annealing. • Structural transformation and coexistence of polymorphs in LB films • Surface morphology changes from nanoscale grains to elongated crystallites. • Reduction of fractal dimension and circularity index reveals asymmetric growth.

  2. Preparation of nano-biomaterials with Leptolyngbia foveolarum and heavy metal biosorption by free and immobilized algal cells

    International Nuclear Information System (INIS)

    Toncheva-Panova, T.; Pouneva, I.; Sholeva, M.; Chernev, G.

    2010-01-01

    Using the sol-gel procedure nano-biomaterials with incorporation of Leptolyngbia foveolarum in the silica matrix were manufactured. The immobilization of algal cells was confirmed with Scanning Electron Microscopy (SEM) investigations and photos. Observation of nano-biomaterials with Atomic Force Microscopy (AFM) shows nanostructure with well-defined nanounits and their aggregates. The potential of the Antarctic isolate L. foveolarum for sorption of Cu 2+ and Cd 2+ was studied by incubation of free algal cells and those immobilized in nano-biomaterials in the salts solutions of the two heavy metals. The rest of the heavy metal was determined with inductively coupled plasma atomic emission spectrometer (ICP-AES). It was established that the heavy metal biosorption capacity demonstrated by the free Leptolyngbia cells was retained after their incorporation in the nano-matrices. Free cells as well as embedded in silica nano-matrix sequestered the two heavy metals with greater affinity for copper. The highest binding capacity, 76% of the initial Cu 2+ concentration possessed nano-biomaterials with incorporated vegetative L. foveolarum cells, compared to 68% of free cells. For cadmium the degree of biosorption was lower - 35% by free cells and 30.2% by those incorporated in the biocer. (authors)

  3. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  5. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    Science.gov (United States)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  6. Single molecule conductance

    NARCIS (Netherlands)

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and

  7. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  8. Integrated Microanalytical System for Simultaneous Voltammetric Measurements of Free Metal Ion Concentrations in Natural Waters

    OpenAIRE

    Noël, Stéphane; Tercier-Waeber, Mary-Lou; Lin, Lin; Buffle, Jacques; Guenat, Olivier; Koudelka-Hep, Milena

    2007-01-01

    A complexing gel integrated microelectrode (CGIME) for direct measurements of free metal ion concentrations in natural waters has been developed. It is prepared by the successive deposition of microlayers of a chelating resin, an antifouling agarose gel and Hg on a 100-interconnected Ir-based microelectrode array. The trace metals of interest are in a first step accumulated on the chelating resin in proportion to their free ion concentration in solution, then released in acidic solution and d...

  9. Melting decontamination and free release of metal waste at Studsvik RadWaste Co. in Sweden

    International Nuclear Information System (INIS)

    Kawatsuma, Shinji; Ishikawa, Keiji; Matsubara, Tatsuo; Donomae, Yasushi; Imagawa, Yasuhiro

    2006-01-01

    The Studsvik RadWaste Co. in Sweden was visited on August 29, 2005 by members of radioactive waste and decommissioning subgroup of central safety task force in old Japan Nuclear Cycle Development Institute as 'Overseas investigation'. The visit afforded us the chance to survey melting and decontaminating of metallic waste in this company and the status of free release. Domestic and foreign radioactive metallic waste is accepted in this company after 1987, and the majority of the decontaminated waste have been released freely. In the background of the big effort of this company and the strong leadership of the regulator (SSI: Swedish radiation protection Authority), prosperous operation was able to have been achieved. This survey was done based on 'Free release of radioactive metallic waste in Europe: the free release experience for 17 years at Studsvik RadWaste Co. in Sweden' by Dr. J. Lorenzen. (author)

  10. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  11. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  12. Synergetic Enhancement of the Photocatalytic Activity of TiO2 with Visible Light by Sensitization Using a Novel Push-Pull Zinc Phthalocyanine

    Directory of Open Access Journals (Sweden)

    A. Luna-Flores

    2017-01-01

    Full Text Available A new one-pot synthesis of a novel A3B-type asymmetric zinc phthalocyanine (AZnPc was developed. The phthalocyanine complex was characterized unambiguously and used to prepare a TiO2 hybrid photocatalyst to enhance its photocatalytic activity in the visible range. Different compositions of the phthalocyanine dye were tested in order to find the optimum amount of sensitizer to get the highest activity during the photocatalytic tests. The hybrid photocatalyst was characterized by UV-Vis diffuse reflectance (DRS and Fourier transform infrared spectroscopy (FT-IR and its photocatalytic activity was compared with that of the individual components considering the effects of sensitization on their efficiency to degrade Rhodamine B as a model reaction. A synergic improvement of the photocatalytic activity for the hybrid system was explained in terms of an improved electron injection from the photo-activated phthalocyanine to the TiO2. Considering the structural features of the phthalocyanine sensitizer and their effect on aggregation, some mechanistic aspects of its binding to TiO2 are suggested to account for the photocatalytic activity enhancement. Finally, the inhibitory effect on the sprouting of chia seeds (Salvia hispanica was evaluated in order to test the toxicity of the water effluent obtained after the photodegradation process. According to our growth inhibition assays, it was found that the Rh-B degradation by-products do not lead to an acute toxicity.

  13. Influence of iodine on the electrical and photoelectrical properties of zinc phthalocyanine thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D. [Jodhpur Univ. (India). Dept. of Physics; Sangodkar, S.G. [Jodhpur Univ. (India). Dept. of Physics; Roy, M.S. [Camouflage Division, Defence Laboratory, Jodhpur (Raj.) (India)

    1996-11-01

    The electrical and photovoltaic properties of the zinc phthalocyanine (ZnPc) and I{sub 2} doped ZnPc thin films, sandwiched between indium tin oxide (ITO) and Al electrodes, were investigated. Doping with iodine brings adequate changes in the characteristics of the device. The devices constitute a metal-insulator-semiconductor (MIS) structure, in which depletion layer is formed in ZnPc, near Al-Al{sub 2}O{sub 3}/ZnPc. The depletion layer width and potential barrier height decrease with I{sub 2} doping. The charge transport phenomenon at higher voltage range appears to be space charge limited conduction (SCLC), in the presence of the discrete trapping level. The position of Fermi level shifts toward the valence band edge, which indicates that I{sub 2} doping increases the P-type conductivity. Various electrical and photovoltaic parameters were determined from the J-V and C-V analysis. The influence of the I{sub 2} doping has been discussed in detail. (orig.)

  14. Electrode redox reactions with polarizable molecules

    Science.gov (United States)

    Matyushov, Dmitry V.

    2018-04-01

    A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

  15. A Metal-Free Regioselective Multicomponent Approach for the Synthesis of Free Radical Scavenging Pyrimido-Fused Indazoles and Their Fluorescence Studies

    Directory of Open Access Journals (Sweden)

    Jeyakannu Palaniraja

    2016-11-01

    Full Text Available This study deals with a new and efficient metal-free regioselective synthesis of pyrimido-fused indazoles with nitrogen ring junction motifs. We have developed a metal-free domino type reaction between 3-aminoindazole, aryl aldehydes and aceotophenones in the presence of KOH/DMF that leads to pyrimido[1,2-b]indazole analogues. Response Surface Methodology (RSM coupled with a Box-Behnken design (BBD were utilized for exploring the effect of base used (A, temperature of reaction (B and (C, reaction time. This approach can allow access to a variety of pyrimidoindazole fluorophores and related compounds. The compound N,N-dimethyl-4-(2-phenylpyrimido[1,2-b]indazol-4-ylaniline (4e displays the maximum fluorescence intensity at 518 nm and shows a fluorescence quantum yield of 0.068. The synthesized pyramido-fused indazoles have been evaluated for their free radical scavenging activity and compound 4f showed good antioxidant activity.

  16. Preparation of new phthalocyanine complexes of some rare-earth elements

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi; Higashi, Teruaki; Mori, Masayasu

    1982-01-01

    The reaction of tris(1,3-diphenyl-1,3-propanedionato) complexes of heavier rare-earth elements, M 3+ (dbm) 3 and lithium phthalocyaninato (2-), Li 2 (pc) gave two types of new stable phthalocyanine complexes, [M 3+ (pc)(dbm)(dbmH)] and [M 3+ (pc)(dbm)] depending on the solvents used for the preparation. The structure of both types of complexes are tentatively proposed. (author)

  17. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  18. Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation.

    Science.gov (United States)

    Arokiyanathan, Agnes Lincy; Lakshmipathi, Senthilkumar

    2017-11-18

    A computational study of metal difluorides (MF 2 ; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca-F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn-Teller effect in nonlinear MF 2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO 2 with ScF 2 (Scc3 geometry) and TiF 2 (Tic2 geometry) caused CO 2 to shift from its usual linear geometry to a bent geometry (η 2 (C=O) binding mode), while it retained its linear geometry (η 1 (O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H 2 O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO 2 . Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO 2 capture under moist conditions. Graphical abstract Interaction of metal difluorides with carbon dioxide and water.

  19. High-power spallation target using a heavy liquid metal free surface flow

    International Nuclear Information System (INIS)

    Litfin, K.; Fetzer, J.R.; Batta, A.; Class, A.G.; Wetzel, Th.

    2015-01-01

    A prototype of a heavy liquid metal free surface target as proposed for the multi-purpose hybrid research reactor for high-tech applications in Mol, Belgium, has been set up and experimentally investigated at the Karlsruhe Liquid Metal Laboratory. A stable operation was demonstrated in a wide range of operating conditions and the surface shape was detected and compared with numerical pre-calculations employing Star-CD. Results show a very good agreement of experiment and numerical predictions which is an essential input for other windowless target designs like the META:LIC target for the European Spallation Source. (author)

  20. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  1. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    Science.gov (United States)

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  2. Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

    Science.gov (United States)

    Yadav, Shivesh; Rodríguez-Fernández, Carlos; de Lima, Mauricio M.; Cantarero, Andres; Dhar, Subhabrata

    2015-12-01

    Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [ 10 1 ¯ 0 ] direction. Interestingly, the average wire diameter has been found to decrease with the increase in III/V ratio. It has also been observed that in these samples, defect related broad luminescence features, which are often present in GaN, are completely suppressed. At all temperatures, photoluminescence spectrum is found to be dominated only by a band edge feature, which comprises of free and bound excitonic transitions. Our study furthermore reveals that the bound excitonic feature is associated with excitons trapped in certain deep level defects, which result from the deficiency of nitrogen during growth. This transition has a strong coupling with the localized vibrational modes of the defects.

  3. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    Science.gov (United States)

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  4. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  5. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu [Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093 (United States); Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-28

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases when the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.

  6. Impact of the Anchoring Ligand on Electron Injection and Recombination Dynamics at the Interface of Novel Asymmetric Push-Pull Zinc Phthalocyanines and TiO2

    NARCIS (Netherlands)

    Sharma, Divya; Steen, Gerrit Willem; Korterik, Jeroen P.; Garcia-Iglesias, M.; Vazquez, P; Torres, T.; Herek, Jennifer Lynn; Huijser, Jannetje Maria

    2013-01-01

    Phthalocyanines are promising photosensitizers for dye-sensitized solar cells (DSSCs). A parameter that has been problematic for a long time involves electron injection (EI) into the TiO2. The development of push-pull phthalocyanines shows great potential to improve the ratio of EI to back electron

  7. In search of the main properties of phthalocyanines participating in toxicity against cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Jančula, Daniel; Maršálek, Blahoslav; Novotná, Zlatica; Černý, J.; Karásková, M.; Rakušan, J.

    2009-01-01

    Roč. 77, č. 11 (2009), s. 1520-1525 ISSN 0045-6535 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : phthalocyanine s * cyanobycteria * toxicity Subject RIV: EF - Botanics Impact factor: 3.253, year: 2009

  8. Effect of mixed-sulfonated aluminium phthalocyanine on human skin fibroblasts for photodynamic therapy

    CSIR Research Space (South Africa)

    Ndhundhuma, IM

    2008-08-01

    Full Text Available of the study was to evaluate the effect of mixed-sulfonated aluminium phthalocyanine (AlPcSmix) used as photosensitizers for PDT, determined by changes in cell morphology and cell viability of human skin fibroblasts (WS1). Methods. Cells incubated with 5, 10...

  9. Comparison of chemical changes during photooxidation of polypropylene film and filament containing phthalocyanine pigment

    International Nuclear Information System (INIS)

    Ahmadi, Z.; Haghighat Kish, M.; Kotak, R.; Katbab, A. A.

    2008-01-01

    Photooxidation as an important process, which significantly affects the service life of the polypropylene products, has been the subject of much theoretical and experimental study. Pigments used often change the light stabilities of polypropylene. Out-door applications of pigmented polypropylene are now increasingly developed in products such as artificial grass. The aim of this work is to examine the effect of photo-oxidation on the structure of isotactic polypropylene (iPP) in film and filament forms, where phthalocyanine pigment is used. For production of films and filaments, iPP granules with MFI 25 g/10 min were used, with and without phthalocyanine pigment. Samples were exposed to xenon lamp for various time lengths. The extent of the changes in chemical and structural parameters was examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and wide angle x-ray diffraction. The results show that carbonyl and hydroperoxide indices increase during the exposure to the radiation. The changes in melting points of the samples were not significant after irradiation process. The effects of phthalocyanine pigment in the photooxidation of film and filament were different. Crystalline fractions of the non-pigmented filament samples decreased during the irradiation time while increased in film samples. Build up of hydroperoxide and carbonyl group in filament was higher than in film samples; that could be due to the differences in structural parameters. Crystallinity variations during photooxidation are related to the nucleation effect of the pigment, chemical crystallization and phase transformation

  10. Comparison of Chemical Changes During Photooxidation of Polypropylene Film and Filament Containing Phthalocyanine Pigment

    Directory of Open Access Journals (Sweden)

    Z. Ahmadi

    2008-02-01

    Full Text Available Photooxidation as an important process, which significantly affects the service life of the polypropylene products, has been the subject of much theoretical and experimental study. Pigments used often change the light stabilities of polypropylene. Out-door applications of pigmented polypr-opylene are now increasingly developed in products such as artificial grass. The aim of this work is to examine the effect of photo-oxidation on the structure of isotactic polypropylene (iPP in film and filament forms, where phthalocyanine pigment is used. For production of films and filaments, iPP granules with MFI 25 g/10min were used, with and without phthalocyanine pigment. Samples were exposed to xenon lamp for various time lengths. The extent of the changes in chemical and structural parameters was examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and wide angle x-ray diffraction. The results show that carbonyl and hydroperoxide indices increase during the exposure to the radiation. The changes in melting points of the samples were not significant after irradiation process. The effects of phthalocyanine pigment in the photooxidation of filmand filament were different. Crystalline fractions of the non-pigmented filament samples decreased during the irradiation time while increased in film samples. Build up of hydroperoxide and carbonyl group in filament was higher than in film samples; that could be due to the differences in structural parameters. Crystallinity variations during photooxidation are related to the nucleation effect of the pigment, chemical crystallization and phase transformation.

  11. Monte Carlo calculations of the free-molecule drag on chains of uniform spheres

    International Nuclear Information System (INIS)

    Dahneke, B.; Chan, P.

    1980-01-01

    Monte Carlo calculations of the free-molecule drag on straight chains of uniform spheres are presented. The drag on a long chain is expressed in terms of the drag on a basic chain unit (two hemispheres touching at their poles) multiplied by the number of spheres in the chain. Since there is no interaction between the basic chain units, it is argued that the results also apply as a good approximation to the drag on kinked and branched chains covering a broad range of geometries. Experimental data are cited which support this claim

  12. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Leth, Henriette Astrup

    2011-01-01

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation...... of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O2 is studied as an example, and good...

  13. Permanent antistatic phthalocyanine/epoxy nanocomposites – Influence of crosslinking agent, solvent and processing temperature

    NARCIS (Netherlands)

    Yuan, M.; Brokken-Zijp, J.C.M.; With, de G.

    2010-01-01

    Cross-linked epoxy matrices containing small amounts of semi-conductive phthalocyanine (Phthalcon) nanoparticles were prepared using different crosslinking agents and processing temperatures. A starting mixture containing an optimum dispersion of these nanoparticles and with an almost equal and

  14. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    Science.gov (United States)

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  15. Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Bensalah-Ledoux, A.; Guy, S.; Fitl, P.; Vrňata, M.; Lančok, Ján; Moine, B.

    2014-01-01

    Roč. 117, č. 1 (2014), 377-381 ISSN 0947-8396 R&D Projects: GA ČR(CZ) GAP108/11/1298 Grant - others:AVČR(CZ) M100101271 Institutional support: RVO:68378271 Keywords : optical properties * zinc phthalocyanine * laser deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  16. Photodynamic effects of 31 different phthalocyanines on a human keratinocyte cell line

    Czech Academy of Sciences Publication Activity Database

    Jančula, Daniel; Maršálek, Blahoslav; Babica, Pavel

    2013-01-01

    Roč. 93, č. 6 (2013), s. 870-874 ISSN 0045-6535 R&D Projects: GA TA ČR TA01010356 Grant - others:European Commission(XE) FP/2007-2013 no.2SGA2858 Institutional support: RVO:67985939 Keywords : phthalocyanine s * photodynamics * toxicity Subject RIV: EF - Botanics Impact factor: 3.499, year: 2013

  17. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    Science.gov (United States)

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  18. Complexation of Polyelectrolytes with Hydrophobic Drug Molecules in Salt-Free Solution: Theory and Simulations.

    Science.gov (United States)

    Lei, Qun-Li; Hadinoto, Kunn; Ni, Ran

    2017-04-18

    The delivery and dissolution of poorly soluble drugs is challenging in the pharmaceutical industry. One way to significantly improve the delivery efficiency is to incorporate these hydrophobic small molecules into a colloidal polyelectrolyes(PE)-drug complex in their ionized states. Despite its huge application value, the general mechanism of PE collapse and complex formation in this system has not been well understood. In this work, by combining a mean-field theory with extensive molecular simulations, we unveil the phase behaviors of the system under dilute and salt-free conditions. We find that the complexation is a first-order-like phase transition triggered by the hydrophobic attraction between the drug molecules. Importantly, the valence ratio between the drug molecule and PE monomer plays a crucial role in determining the stability and morphology of the complex. Moreover, the sign of the zeta potential and the net charge of the complex are found to be inverted as the hydrophobicity of the drug molecules increases. Both theory and simulation indicate that the complexation point and complex morphology and the electrostatic properties of the complex have a weak dependence on chain length. Finally, the dynamics aspect of PE-drug complexation is also explored, and it is found that the complex can be trapped into a nonequilibrium glasslike state when the hydropobicity of the drug molecule is too strong. Our work gives a clear physical picture behind the PE-drug complexation phenomenon and provides guidelines to fabricate the colloidal PE-drug complex with the desired physical characteristics.

  19. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min

    2016-10-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  20. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min; Wen, Yuelu; Li, Huifang; Fu, Yejuan; Wang, Qinghao

    2016-01-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Zhang, Wei [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Kai, Wu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN (United States); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2014-02-15

    Highlights: ► A Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10}) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG was ZrO{sub 2} with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG were well below the critical concentrations that cause negative biological effects. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG surface showed an attached cell number similar

  2. Photodynamic therapy: anti-tumour potentialities of bis (tri π-hexyl-siloxy) silicon phthalocyanine against malignant achromic M6 melanocytes. EPR study of the photo-toxic mechanism

    International Nuclear Information System (INIS)

    Decreau, R.; Viola, A.; Julliard, M.; Hadjur, Ch.; Richard, M.J.; Favier, A.; Jeunet, A.

    1997-01-01

    Photodynamic therapy of cancerous cells is a technique relying upon the irradiation of tumorous cells after selective incorporation of a photo-sensitizer. The bis (tri n-hexyl-siloxy) silicon phthalocyanine is a second generation photo-sensitizer. Anti-cancerous potentialities of this molecule have been evaluated against the melanotic M6 cell line. Results have evidenced a high phototoxicity at low concentration and no dark toxicity under the same conditions. EPR studies on the photochemical pathways involved in phototoxicity processes have been realised in solvent and model membranes (liposomes). Results provide evidences for the production of singlet oxygen ( 1 O 2 ) as well as superoxide (O 2 0- ) and hydroxyl radical ( 0 OH). (authors)

  3. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  4. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; Silva, André Romero da

    2013-01-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8–7.5 μmol/L), incubation time (1–2 h), and laser power (10–100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm 2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc

  5. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Carlos Augusto Zanoni [Federal Institute of Espirito Santo (Brazil); Madeira, Klesia Pirola [Federal University of Espirito Santo, Biotechnology Program/RENORBIO, Health Sciences Center (Brazil); Rettori, Daniel [Federal University of Sao Paulo, Department of Exact Sciences and Earth (Brazil); Baratti, Mariana Ozello [University of Campinas, Department of Cellular Biology (Brazil); Rangel, Leticia Batista Azevedo [Federal University of Espirito Santo, Department of Pharmaceutical Sciences (Brazil); Razzo, Daniel [University of Campinas, Department of Physical Chemistry, Institute of Chemistry (Brazil); Silva, Andre Romero da, E-mail: aromero@ifes.edu.br [Federal Institute of Espirito Santo (Brazil)

    2013-09-15

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 {mu}mol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 {+-} 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm{sup 2} and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 {+-} 3 % while for free InPc was 60 {+-} 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  6. Electronic structure of metal phthalocyanines on Ag (100)

    OpenAIRE

    Krull, Cornelius

    2012-01-01

    El uso de moléculas orgánicas en dispositivos tecnológicos ofrece una serie de ventajas: su tamaño (~nm), su capacidad de auto ensamblan dando lugar a la formación de estructuras funcionales, y la posibilidad de adaptar sus propiedades electrónicas y magnéticas a través de los métodos de síntesis molecular. Sin embargo, la implementación de dispositivos orgánicos depende fundamentalmente de la comprensión entre la interacción de las moléculas y los electrodos de metal, así como las interaccio...

  7. Sodium doping in copper-phthalocyanine/C{sub 60} heterojunction for organic photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui-Ju; Wu, Hsuan-Ta; Hung, Kuang-Teng; Fu, Sheng-Wen [Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (China); Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 70101, Taiwan (China)

    2013-10-01

    Sodium was incorporating at the copper-phthalocyanine (CuPc)/C{sub 60} interface in CuPc/C{sub 60}-based small-molecular solar cells to enhance their power conversion efficiency. C{sub 60} was deposited on slightly sodium-doped CuPc. Post-annealing improved the cell properties. Post-annealing doubled the conversion efficiency of the least sodium-doped devices (75 °C, 40 min). The electron/hole mobility ratio gradually approached unity as the annealing time increased, indicating that a reduction in the space charge accumulation was the main cause of the increase of the short-circuit current. The mechanism of enhancement of carrier transport by annealing was investigated by making capacitance–voltage measurements and performing corresponding depth-profile analyses. - Highlights: • Incorporate Na at copper-phthalocyanine/C{sub 60} interface • Annealing importantly improved the cell efficiency of Na-doped devices. • Change in the carrier mobility and concentration was investigated.

  8. Environmentally friendly inhibition of pathogenic bacteria and algae propagation due phthalocyanine agents

    International Nuclear Information System (INIS)

    Rihova Ambrozova, J.; Bezdekova, E.; Louckova, E.; Nekovarova, J.

    2007-01-01

    From 2004, in the laboratory of The Institute of Chemical Technology in Prague is being solved the project FT-TA/034 'Environmentally friendly inhibition of pathogenic bacteria and algae propagation in the circulatory cooling systems of nuclear power stations and in other similar technological facilities' to determine effects of phthalocyanine agents. The project bearer is VUOS, Inc. in Rybitvi (Research Institute for Organic Synthesis Inc.), where are the new phthalocyanines synthesized. The aimed goal of the research is environmentally friendly liquidation of bacteria and algae by means of photodynamic generated singlet oxygen through impact of solar radiation in the circulation cooling waters of various technical and technological systems. The principle of the problem outlined is the applying of phthalocyanine agents on samples of pure bacterial, anabaenas and algae cultures to estimate the inhibition effect on the organism exposed. In the course of solution, it is assumed that in such way conducted inhibition of bacteria, anabaenas and algae as well of their proliferation would replace routinely used bactericidal and algicidal preparations, which demand permanent dosing into circulating waters or perhaps from time to time an application of shocking doses. The particular algicidal and bactericidal agents represents in this case in situ emerging singlet oxygen, that is harmless to water biocenoses and whose presence in the water is no reason to ban the outflow of waters treated in such a way into water streams. The goal should be also a direct estimation of the effect those agents on cooling waters samples e. g. from the nuclear power plant systems. The purpose of the tests performance is also elimination of filamentous green algae, emerging in the systems cooling towers. The applied preparations are not toxic and do not burden the living environment, they contain no substances interacting with surface materials of structures in the circulatory cooling circuit

  9. Polycylcic carbon molecules with zigzag edges as sources of defects in graphene on a metal

    Science.gov (United States)

    Artaud, Alexandre; Magaud, Laurence; Ratter, Kitti; Guisset, Valérie; David, Philippe; Gilles, Bruno; Coraux, Johann; Chapelier, Claude

    Unlike the armchair edge, the zigzag edge of graphene breaks the equivalence of its two constituting carbon sub-lattices. Uncompensated magnetic moments are thus expected for such edges. For the same reason, dense polycyclic molecules (PCMs) terminated by zigzag edges are predicted to host net magnetic moments. Unfortunately, their synthesis is challenging. One approach relies on the pyrolysis of hydrocarbons, catalyzed by a transition metal. Here we investigate this little-explored approach, and put in evidence the formation of a series of highly symmetric zigzag edge PCMs onto Re (0001), among which phenalene, coronene and sumanene. We also address the relationship between the preparation of such molecules and graphene, which both form following hydrocarbon pyrolysis. We establish that the PCMs are unexpected obstacles towards high quality graphene.

  10. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  11. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    Science.gov (United States)

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351

  12. Molecular models of zinc phthalocyanines: semi-empirical molecular orbital computations and physicochemical properties studied by molecular mechanics simulations

    International Nuclear Information System (INIS)

    Gantchev, Tsvetan G.; van Lier, Johan E.; Hunting, Darel J.

    2005-01-01

    To build 3D-molecular models of Zinc-phthalocyanines (ZnPc) and to study their diverse chemical and photosensitization properties, we performed quantum mechanical molecular orbital (MO) semi-empirical (AM1) computations of the ground, excited singlet and triplet states as well as free radical (ionic) species. RHF and UHF (open shell) geometry optimizations led to near-perfect symmetrical ZnPc. Predicted ionization potentials (IP), electron affinities (EA) and lowest electronic transitions of ZnPc are in good agreement with the published experimental and theoretical data. The computation-derived D 4h /D 2h -symmetry 3D-structures of ground and excited states and free radicals of ZnPc, together with the frontier orbital energies and Mulliken electron population analysis enabled us to build robust molecular models. These models were used to predict important chemical-reactivity entities such as global electronegativity (χ), hardness (η) and local softness based on Fukui-functions analysis. Examples of molecular mechanics (MM) applications of the 3D-molecular models are presented as approaches to evaluate solvation free energy (ΔG 0 ) solv and to estimate ground- and excited- state oxidation/reduction potentials as well as intermolecular interactions and stability of ground and excited state dimers (exciplexes) and radical ion-pairs

  13. Energy transfer and electron transfer in dimers and polymers of porphyrin and phthalocyanines: from the liquid phase to Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Lipskier, Jean-Francois

    1991-01-01

    The understanding of phenomena of photo-induced transfer of energy and of electron between chromophores belonging to a same supra-molecular entity is necessary for the design and fabrication of molecule devices performing the conversion of a light signal into electric signal or chemical potential. As porphyrin oligomers and phthalocyanine oligomers are examples of interest for the systematic study of parameters governing these processes, the first part of this research thesis addresses the study of dimers and trimers bound by covalent bridges. The second part addresses the study of physical-chemical properties of complexes bound by the Van der Waals interaction as well as by the Coulomb attraction. An extension to Langmuir-Blodgett films is proposed, and the properties of complexes organised in thin films according to this methodology are compared with those of their homologues in solution [fr

  14. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  15. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  16. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A

    Energy Technology Data Exchange (ETDEWEB)

    Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.; Antonyuk, Svetlana V.; Narayana, Narendra; Taylor, Alexander B.; Schuermann, Jonathan P.; Holloway, Stephen P.; Hasnain, S.Samar; Hart, P. John; (Texas-HSC); (Liverpool)

    2010-07-19

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.

  17. Direct construction of diverse metallophthalocyanines by manifold substrates in a deep eutectic solvent

    Science.gov (United States)

    Shaabani, Ahmad; Hooshmand, Seyyed Emad; Afshari, Ronak; Shaabani, Shabnam; Ghasemi, Vahid; Atharnezhad, Mojtaba; Akbari, Masoud

    2018-02-01

    Direct access to a wide range of metal-free phthalocyanines and metallophthalocyanines in deep eutectic solvents (DESs), is reported. Substituted and unsubstituted phthalocyanines of Mn, Fe, Co, Ni, Cu, Zn, Pd, In, and Pt with various raw materials such as phthalonitriles, phthalimides, phthalic anhydrides and phthalic acids are successfully prepared in the DES based on choline chloride and urea in a very short reaction time with appropriate yields. It has been shown that DES as a green and rapidly degraded reaction medium in the environment plays a triple role as a solvent, organocatalyst, and reactant in this process. Moreover, the DES system could be separated and reused in four consecutive reaction runs with no considerable loss in catalytic activity.

  18. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Leonardo B. de [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900 (Brazil); Primo, Fernando L. [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Nanophoton Company, SUPERA Innovation and Technology Park, Av. Doutora Nadir de Aguiar, 1805, Universidade de São Paulo, Ribeirão Preto, P 14056-680 (Brazil); Pinto, Marcelo R. [Departamento de Química, Laboratório de Enzimologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Morais, Paulo C. [Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); and others

    2015-04-15

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10{sup 13} or 1.50×10{sup 13} particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10{sup 13} or 1.50×10{sup 13} magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression.

  19. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    International Nuclear Information System (INIS)

    Paula, Leonardo B. de; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.

    2015-01-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10 13 or 1.50×10 13 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10 13 or 1.50×10 13 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression

  20. Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study

    International Nuclear Information System (INIS)

    Chen, Xin; Xu, Lei; Liu, Lin-Lin; Zhao, Lu-Si; Chen, Chun-Ping; Zhang, Yong; Wang, Xiao-Chun

    2017-01-01

    Highlights: • Formaldehyde molecule (H_2CO) is a common environmental pollutant with strong toxicity. • Total 36 different initial configurations of H_2CO molecule adsorbing onto three types of substrates have been investigated. • The Ti-doped graphene has the enough binding energy, significant changes in electronic structure, and reasonable short recovery time 10"−"3 s. • The Ti-doped graphene is a promising candidate for detecting formaldehyde gas. - Abstract: The adsorption of H_2CO molecule on pristine and transition metal (Ti and V) doped graphene samples were investigated via a first-principles approach based on density functional theory. The most stable adsorption geometry, energy and charge transfer of H_2CO molecule on pristine and doped graphene are discussed respectively. We have found that Ti and V dopant atoms can significantly enhance the interaction between H_2CO molecule and graphene. The calculated net electron transfers, electronic density difference images and densities of states give the evidence that the H_2CO molecules stay on Ti (or V) – doped graphene by chemisorption. After H_2CO adsorption, there are significant changes in electronic structure near the Fermi level, for both two systems of Ti and V doped graphene. This indicates distinct changes of electron transport properties. We have also found that H_2CO molecule has a larger absorption energy on V-doped graphene (1.939 eV) compared with Ti-doped graphene (1.120 eV). It is shown that the Ti-doped graphene has enough binding energy, adequate changes in electronic structure and reasonable short recovery time 10"−"3 s, making it a promising candidate for detecting formaldehyde gas.