WorldWideScience

Sample records for metal-dielectric plasmonic structures

  1. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  2. Plasmonic Bloch oscillations in cylindrical metal-dielectric waveguide arrays.

    Science.gov (United States)

    Shiu, Ruei-Cheng; Lan, Yung-Chiang; Chen, Chin-Min

    2010-12-01

    This study investigates plasmonic Bloch oscillations (PBOs) in cylindrical metal-dielectric waveguide arrays (MDWAs) by performing numerical simulations and theoretical analyses. Optical conformal mapping is used to transform cylindrical MDWAs into equivalent chirped structures with permittivity and permeability gradients across the waveguide arrays, which is caused by the curvature of the cylindrical waveguide. The PBOs are attributed to the transformed structure. The period of oscillation increases with the wavelength of the incident Gaussian beam. However, the amplitude of oscillation is almost independent of wavelength.

  3. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    Science.gov (United States)

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  4. Nanoscale Plasmonic Devices Based on Metal-Dielectric-Metal Stub Resonators

    Directory of Open Access Journals (Sweden)

    Yin Huang

    2012-01-01

    Full Text Available We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM stub resonators for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures consist of a MDM waveguide side-coupled to periodic arrays of MDM stub resonators. We then introduce absorption switches consisting of a MDM plasmonic waveguide side-coupled to a MDM stub resonator filled with an active material.

  5. Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial

    CERN Document Server

    Jin, Dafei

    2013-01-01

    We present an analytical study to the structure-modulated plasmonic angular momentum trapped on periodic metal-dielectric nano-wedges in the core region of a sectorial indefinite metamaterial. Employing a transfer-matrix calculation and a conformal-mapping technique, our theory is capable of dealing with realistic configurations of arbitrary sector numbers and rounded wedge tips. We demonstrate that in the deep-subwavelength regime strong electric field carrying high azimuthal variation can exist within only ten-nanometer length scale close to the structural center, and is naturally bounded by a characteristic radius of the order of hundred-nanometer away from the center. These extreme confining properties suggest that the structure under investigation may be superior to the conventional metal-dielectric waveguides or cavities in terms of nanoscale photonic manipulation.

  6. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.

    Science.gov (United States)

    Fan, Ren-Hao; Qi, Dong-Xiang; Hu, Qing; Qin, Ling; Peng, Ru-Wen; Wang, Mu

    2013-02-01

    In this work, we investigate the coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks theoretically and experimentally. We have observed three kinds of modes in these structures: the cavity mode, the propagated surface plasmon (PSP) mode and the localized surface plasmon (LSP) mode, which can enhance the optical transmission. Firstly, it is shown that the cavity mode is excited in the grating stacks. And the cavity mode has redshift if we enhance the thickness of metal layers, while it has blueshift when we increase the thickness of dielectric layers. The redshift of the cavity mode also occurs when the number of repeating layers is increased. Secondly, the PSP mode is also excited, which can be described by the effective permittivity method. It is found that the PSP modes are coupled with each other, which leads to a modified dispersion relation of surface plasmon polaritons (SPP). The theoretical analysis is in good agreement with the observed transmission enhancement in the grating stacks. And the coupling of PSPs also leads to a blueshift when the number of metal layers is increased. Thirdly, the LSP mode, generated in single metal strip, can also enhance the optical transmission of the grating stacks. Yet the transmission intensity induced by LSP decreases rapidly with increasing the number of metal layers. The investigations here may have potential applications in designing plasmonic metamaterials and subwavelength optical devices.

  7. Multiple plasmon-induced transparency effects in a multimode-cavity-coupled metal-dielectric-metal waveguide

    Science.gov (United States)

    Chen, Zhiquan; Li, Hongjian; He, Zhihui; Xu, Hui; Zheng, Mingfei; Zhao, Mingzhuo

    2017-09-01

    We numerically and theoretically investigate multiple plasmon-induced transparency (PIT) effects in a multimode-cavity-coupled metal-dielectric-metal (MDM) waveguide system. The introduced multimode coupled-radiating oscillator theory (MC-ROT) gives a clear understanding of multiple PIT effects in the proposed system. Two and three PIT peaks appear in the transmission spectra corresponding to the symmetrical and asymmetrical structures, respectively. Evolution of the PIT peaks can be effectively tuned by adjusting the geometric dimensions and asymmetry of the structure. The ultra-compact plasmonic waveguide structure may have important applications for multichannel filters, optical switches, and other devices in integrated optical circuits.

  8. Optical harmonics generation in metal/dielectric heterostructures in the presence of Tamm plasmon-polaritons

    Science.gov (United States)

    Afinogenov, B. I.; Popkova, A. A.; Bessonov, V. O.; Fedyanin, A. A.

    2016-03-01

    We have studied an influence of Tamm plasmon-polaritons (TPPs) excitation on the nonlinear-optical response of one-dimensional photonic crystal/metal structures. It was shown that in case when the fundamental radiation is in resonance with the TPP, second-harmonic generation in the sample is enhanced over two times of magnitude in comparison with a bare metal film. Using methods of nonlinear transfer matrices it was demonstrated that the third-order nonlinear response of a metal/dielectric heterostructure, when both fundamental and third-harmonic radiation are in resonance with the first- and third-order TPPs respectively, can be enhanced via two mechanisms: fundamental field localization and optical harmonic resonant tunneling. The overall enhancement of the third harmonic generation in that case can exceed three orders of magnitude in comparison with the non-resonant case.

  9. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale Invited Paper

    Institute of Scientific and Technical Information of China (English)

    Georgios Veronis; Zongfu Yu; Sukru Ekin Kocabas; David A. B. Miller; Mark L. Brongersma; Shanhui Fan

    2009-01-01

    We review some of the recent advances in the development of subwavelength plasmonic devices for ma- nipulating light at the nanoscale, drawing examples from our own work in metal-dielectric-metal (MDM) plasmonic waveguide devices. We introduce bends, splitters, and mode converters for MDM waveguides with no additional loss. We also demonstrate that optical gain provides a mechanism for on/off switch- ing in MDM plasmonie waveguides. Highly efficient compact couplers between dielectric waveguides and MDM waveguides are also introduced.

  10. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengling, E-mail: zlwang@ujs.edu.cn, E-mail: shiqiangli2013@u.northwestern.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Faculty of Science, Jiangsu University, Zhenjiang 212013 (China); Li, Shiqiang, E-mail: zlwang@ujs.edu.cn, E-mail: shiqiangli2013@u.northwestern.edu; Chang, R. P. H. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive Evanston, Illinois 60208 (United States); Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2014-07-21

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  11. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Science.gov (United States)

    Guddala, Sriram; Dwivedi, Vindesh K.; Vijaya Prakash, G.; Narayana Rao, D.

    2013-12-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm-1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  12. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram; Narayana Rao, D., E-mail: dnr.laserlab@gmail.com, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Dwivedi, Vindesh K.; Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, IIT Delhi, New Delhi 110 016 (India)

    2013-12-14

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm{sup −1}) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  13. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  14. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    CERN Document Server

    Dennis, Brian S; Haftel, Michael I; Lopez, Daniel; Blumberg, Girsh; Aksyuk, Vladimir

    2015-01-01

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits.

  15. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, B. S.; Czaplewski, David A.; Haftel, Michael I.; Lopez, Daniel; blumberg, girsh; aksyuk, vladimir

    2015-08-24

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C) 2015 Optical Society of America

  16. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    CERN Document Server

    Zhukovsky, Sergei V; Sipe, J E; Lavrinenko, Andrei V

    2014-01-01

    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized resonance pole of a reflection coefficient, and using Bloch's theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metal-dielectric, and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties, and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high-k waves and explore the range of parameters for which this is possible, confirming the prospects of using graphene for mater...

  17. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system

    Science.gov (United States)

    Wainstein, D. L.; Vakhrushev, V. O.; Kovalev, A. I.

    2017-05-01

    The multilayer Ag/(Ti34Al66)N metal-insulator-metal (MIM) heterostructures with different thicknesses of individual layers varied from several to several hundred nanometers were fabricated by DC-magnetron sputtering on the surfaces of Si single crystal wafers. The coatings structure was determined by STEM. The phase composition and crystallography of individual layers were studied by X-ray diffraction. The reflection indexes were measured in the photons energies range from 1 to 5 eV, or from 1240 to 248 nm. The spectroscopy of plasmon losses and plasmon microscopy allowed us to measure the plasmons losses characteristic energies and their surface distribution. The energies of plasmons peaks and their locations are strongly depending on Ag layers thickness in the MIM nanocomposite. The surface plasmon with energy about 4 eV was observed in the middle of 20 nm Ag layer. The plasmons were localized at the metal/dielectric interface for Ag layers 5 nm and less. The reflectance spectral profiles edges positions at long and short waves are correlated with plasmons energies and features of their spatial distribution. The MIMs based on the TiAlN/Ag can find applications as optical filters, photovoltaic energy conversion devices, etc.

  18. Light-tunable Fano resonance in metal-dielectric multilayer structures

    Science.gov (United States)

    Hayashi, S.; Nesterenko, D. V.; Rahmouni, A.; Ishitobi, H.; Inouye, Y.; Kawata, S.; Sekkat, Z.

    2016-01-01

    High-Q optical Fano resonances realized in a variety of plasmonic nanostructures and metamaterials are very much promising for the development of new potent photonic devices, such as optical sensors and switches. One of the key issues in the development is to establish ways to effectively modulate the Fano resonance by external perturbations. Dynamic tuning of the Fano resonance applying the mechanical stress and electric fields has already been demonstrated. Here, we demonstrate another way of tuning, i.e., photo-tuning of the Fano resonance. We use a simple metal-dielectric multilayer structure that exhibits a sharp Fano resonance originating from coupling between a surface plasmon polariton mode and a planar waveguide mode. Using a dielectric waveguide doped with azo dye molecules that undergo photoisomerization, we succeeded in shifting the Fano resonance thorough photo-modulation of the propagation constant of the waveguide mode. The present work demonstrates the feasibility of photo-tuning of the Fano resonance and opens a new avenue towards potential applications of the Fano resonance. PMID:27623741

  19. Characteristics of Spontaneous Emission of Polarized Atoms in Metal-Dielectric Multiple Layer Structures

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-Ming; GU Ben-Yuan; ZHOU Yun-Song

    2007-01-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure ofair-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  20. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    Science.gov (United States)

    Zhukovsky, Sergei V.; Andryieuski, Andrei; Sipe, J. E.; Lavrinenko, Andrei V.

    2014-10-01

    We theoretically investigate general existence conditions for broadband bulk large-wave-vector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized resonance pole of a reflection coefficient and using Bloch's theorem, we derive analytical expressions for the band of large-wave-vector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metal-dielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high-k waves and explore the range of parameteres for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz, and optical metamaterials.

  1. Angular and positional dependence of Purcell effect for layered metal-dielectric structures

    Science.gov (United States)

    Gubaydullin, A. R.; Mazlin, V. A.; Ivanov, K. A.; Kaliteevski, M. A.; Balocco, C.

    2016-04-01

    We study the angular dependence of the spontaneous emission enhancement of a dipole source inserted into a layered metal-dielectric metamaterial. We analyse the dependence of Purcell effect from the position of the dipole in the layered hyperbolic media. We analyse the impact of the complex structure of eigenmodes of the system operating in hyperbolic regime. We have shown that the spontaneous emission rate of the dipole emitter depends on its position, which mainly affect the interaction with Langmuir modes.

  2. Structure and optical properties of dielectric-metal-dielectric coatings

    Energy Technology Data Exchange (ETDEWEB)

    Koltun, M.M.; Faiziev, Sh.A.; Gaziev, U.Kh.

    1976-01-01

    The conditions for production of a ZnS-Ag-ZnS coating on glass are investigated, together with the influence of each of the three layers on the optical characteristics of the coating. It is shown that the lower antireflection film in a three-layer coating serves not only to reduce reflection from the glass-metal film interface, but also creates conditions for condensation of a metal layer with small structural defects to increase the conductivity of the coating and its integral reflection coefficient in the infrared region of the spectrum.

  3. Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides.

    Science.gov (United States)

    Min, Changjun; Veronis, Georgios

    2010-09-27

    We theoretically investigate the effect of fabrication-related disorders on subwavelength metal-dielectric-metal plasmonic waveguides. We use a Monte Carlo method to calculate the roughness-induced excess attenuation coefficient with respect to a smooth waveguide. For small roughness height, the excess optical power loss due to disorder is small compared to the material loss in a smooth waveguide. However, for large roughness height, the excess attenuation increases rapidly with height and the propagation length of the optical mode is severely affected. We find that the excess attenuation is mainly due to reflection from the rough surfaces. However, for small roughness correlation lengths, enhanced absorption is the dominant loss mechanism due to disorder. We also find that the disorder attenuation due to reflection is approximately maximized when the power spectral density of the disordered surfaces at the Bragg spatial frequency is maximized. Finally, we show that increasing the modal confinement or decreasing the guide wavelength, increase the attenuation due to disorder.

  4. Fabricating plasmonic components for nano-and meta-photonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus;

    2009-01-01

    Different fabrication approaches for realization of metal-dielectric structures supporting propagating and localized surface plasmons are described including fabrication of nanophotonic waveguides and plasmonic nanoantennae.......Different fabrication approaches for realization of metal-dielectric structures supporting propagating and localized surface plasmons are described including fabrication of nanophotonic waveguides and plasmonic nanoantennae....

  5. About Modeling the Excitation Conditions of Cherenkov and Diffraction Radiations in Periodic Metal-dielectric Structures

    Directory of Open Access Journals (Sweden)

    G.S. Vorobjov

    2015-06-01

    Full Text Available General procedure for modeling the excitation conditions of Cherenkov and diffraction radiations in periodic metal-dielectric structures is described. It is based on the representation of the electron beam space-charge wave in the form of a dielectric waveguide surface-wave. On the experimental facility of millimeter-wave the basic modes of excitation conditions of spatial harmonics of the Cherenkov and diffraction radiations are simulated. The method is tested by comparing the numerical analysis and experimental results on the layout of the device of the orotron type - generator of diffraction radiation.

  6. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  7. Hybrid metal-dielectric, slow wave structure with magnetic coupling and compensation

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V., E-mail: asmirnov@radiabeam.com [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); Savin, E. [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-06-01

    A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev’s disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c–0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.

  8. Investigation of optical and interfacial properties of Ag/Ta{sub 2}O{sub 5} metal dielectric multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, P., E-mail: piyali.sarkar4@gmail.com; Jena, S.; Tokas, R. B.; Thakur, S.; Sahoo, N. K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Rao, K. D.; Misal, J. S.; Prathap, C. [Optics and Thin Film Laboratory, BARC-Vizag, Autonagar, Visakhapatnam-530012 (India)

    2015-06-24

    One-dimensional periodic metal-dielectric multilayer thin film structures consisting of Ag and Ta{sub 2}O{sub 5} alternating layers are deposited on glass substrate using RF magnetron sputtering technique. The spectral property of the multilayers has been investigated using spectrophotometry technique. The optical parameters such as refractive index, extinction coefficient, band gap etc., along with film thickness as well as the interfacial layer properties which influence these properties have been probed with spectroscopic ellipsometry technique. Atomic force microscopy has been employed to characterize morphological properties of this metal-dielectric multilayer.

  9. Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure

    Science.gov (United States)

    Wu, Jun

    2016-12-01

    An infrared broadband polarization-independent metamaterial absorber is designed and investigated. It consists of a pyramidal metal-dielectric multilayered rectangle grating structure. The absorber exhibits near-unit absorption at multiple adjacent wavelengths overlapping with each other, which results in a high absorption over a wide wavelength range. The absorbance at normal incidence is higher than 90% in a wavelength range of 2321 nm-4631 nm, and the broadband absorption performance can be maintained over a large incident angle range. Furthermore, the mechanism of such broadband absorption are investigated by illustrating the electric field distributions for TE polarization and magnetic field distributions for TM polarization at the resonant wavelengths. It is believed that the conclusions can be applied for developing polarization-independent broadband absorber.

  10. Fabricating plasmonic components for nanophotonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus

    2009-01-01

    We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed.......We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed....

  11. Subwavelength Imaging in a One-Dimensional Metal-Dielectric Structure

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Yu; GU Pei-Fu; ZHANG Jin-Long; LI Yi-Yu; LIU Xu

    2007-01-01

    We analyse the dispersion relation of a one-dimensional(1D)metal-dielectric(MD)structure for H-polarized light (i.e.the magnetic field is parallel to the interfaces of the layers)and use the transfer matrix method to simulate the subwavelength image effect through the 1D-MD structure.The structure operates in the self-collimation regime,and does not involve negative refraction or amplification of evanescent waves.The Fabry-Perot Fesollance effect is studjed in order to obtain optimum parameters for maximum transmission.A resolution of λ/10 for a single point source is achieved when the thickness of the 1D-MD is about 300nm,Taking into account the actual values of the didectric constants of the metal(silver) and the dielectric(HfO2)layers,we find that a silver/HfO2 stack,with suitable parameters,has a resolution of λ/5 at visible wavelengths.

  12. Study of all-angle negative refraction of light in metal-dielectric-metal multilayered structures based on generalized formulas of reflection and refraction

    Science.gov (United States)

    Chen, Jiangwei; Liu, Jun; Xu, Weidong

    2017-09-01

    In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.

  13. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    Science.gov (United States)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  14. Extraordinary refraction and self-collimation properties of multilayer metallic-dielectric stratified structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liwei, E-mail: zlwhpu@hotmail.com [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Chen, Liang [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Zhang, Zhengren [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Wang, Wusong [Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009 (China); Zhao, Yuhuan; Song, Kechao; Kang, Chaoyang [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-01-15

    The extraordinary refraction with negative or zero refraction angle of the layered metamaterial consisting of alternating dielectric and plasmonic layers is theoretically studied. It is shown that the electromagnetic properties can be tuned by the filling factor, the permittivity of the dielectric layer and the plasma frequency of the metallic layer. At different frequency, the layered structures possess different refraction properties with positive, zero or negative refraction angle. By choosing appropriate parameters, positive-to-zero-to-negative-to positive refraction at the desired frequency can be realized. At the frequency with flat equal frequency contour, self-collimation and slow light properties are also found. Such properties can be used in the performance of negative refraction, subwavelength imaging and information propagation.

  15. Plasmonics in buried structures

    OpenAIRE

    Romero, I. T.; García de Abajo, Francisco Javier

    2009-01-01

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative los...

  16. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    Propagation of large-wavevector bulk plasmonic waves in multilayer hyperbolic metamaterials (HMMs) with two levels of structuring is theoretically studied. It is shown that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a large...

  17. Electromagnetic properties of metal-dielectric media and their applications

    Science.gov (United States)

    Animilli, Shravan Rakesh

    The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) and to serve as a test bed for enhanced bio and chemical sensing. In this context, this thesis work develops an efficient and exact numerical algorithm here referred to as Block Elimination Method (BE) which provides the unique capability of modeling extremely large scale composite materials (with up to 1 million strongly interacting metal or dielectric particles). This capability is crucial in order to study the electromagnetic response of large scale inhomogeneous (fractal) films and bulk composites at critical concentrations (percolation). The developed numerical method is used to accurately estimate parameters that describe the composite materials, including the effective conductivity and correlation length scaling exponents, as well as density of states and localization length exponents at the band center. This works reveals, for a first time, a unique de-localization mechanism that plays an important role in the excitation of charge-density waves, i.e. surface plasmons (SP), in metal-dielectric composites. It also shows that in 3D metal-dielectric percolation systems the local fields distribution function for frequencies close to the single particle plasmon resonance is log-normal which is a signature of a metal-dielectric phase transition manifested in the optical response of the

  18. Plasmonics in buried structures.

    Science.gov (United States)

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  19. Numerical modelling of a fibre reflection filter based on a metal-dielectric diffraction structure with an increased optical damage threshold

    Science.gov (United States)

    Terentyev, V. S.; Simonov, V. A.

    2016-02-01

    Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal-dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film.

  20. Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index.

    Science.gov (United States)

    Yang, Tian; Crozier, Kenneth B

    2009-01-19

    Surface plasmon waves in metal-dielectric-metal structures have been theoretically examined. Because of the existence of evanescent waves that can have comparable or smaller decay rates than the propagating waves, the sign of dispersion does not necessarily indicate the sign of effective refractive index for these structures. By using the direction of energy decay to distinguish the sign of index, we have obtained different results and insights from previous reports. We also propose an approach to increase the bandwidth and decrease the loss of negative index surface Plasmon propagation in the MDM structure, by simply changing the properties of its dielectric layer.

  1. Air-core microcavities and metal-dielectric filters - building blocks for optofluidic microsystems

    Science.gov (United States)

    Allen, Trevor Warren

    This thesis describes a study on two optical devices intended to be building blocks for the creation of integrated optical/microfluidic lab-on-a-chip systems. First, arrays of curved-mirror dome-shaped microcavities were fabricated by buckling self-assembly of a-Si/SiO2 multilayers. This novel technique employs controlled, stress-induced film delamination to form highly symmetric cavities with minimal roughness defects or geometrical imperfections. Measured cavity heights were in good agreement with predictions from elastic buckling theory. Also, the measured finesse (> 103) and quality factor (> 104 in the 1550-nm range) were close to reflectance-limited predictions, indicating low defects and roughness. Hermite- and Laguerre-Gaussian modes were observable, indicating a high degree of cylindrical symmetry. In the second part of the research, transmittance in periodic metal-dielectric multilayer structures was studied. Metal-dielectric stacks have many potential applications in optofluidic microsystems, including as transmission filters, superlenses, and substrates for surface plasmon sensors. In this work, we showed that potential transmittance theory provides a good method for describing the tunneling of photons through metal-dielectric stacks, for both Fabry-Perot and surface plasmon resonances. This approach explains the well-known fact that for a given thickness of metal, subdividing the metal into several thin films can increase the maximum transmittance. Conditions for admittance matching of dielectric-metal-dielectric unit cells to an external air medium were explored for Fabry-Perot based tunneling, revealing that thicker metal films require higher-index dielectrics for optimal admittance matching. It was also shown for the first time that potential transmittance theory can be used to predict the maximum possible transmittance in surface-plasmon-mediated tunneling. In a subsequent study, potential transmittance was used to derive an expression for

  2. Photothermal modification of plasmonic structures

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a method for geometrically modifying plasmonic structures on a support structure, such as for printing or recording, said method comprising changing a geometry specifically of plasmonic structures, wherein said changing the geometry is carried out by photothermally melting...

  3. High Sensitivity Transmission-Type SPR Sensor by Using Metallic-Dielectric Mixed Gratings

    Institute of Scientific and Technical Information of China (English)

    WU Bin; WANG Qing-Kang

    2008-01-01

    We theoretically investigate transmission-type SPR sensors with novel metallic-dielectric mixed gratings by rigorous coupled-wave analysis (RCWA),compared to the conventional dielectric gratings based structure.It is found that the transmittance efficiency and the full width at half-maximum (FWHM) of the transmission curve can be modulated by increasing or decreasing the metallic part.Therefore,appropriate proportion of metal part will induce enhancement factor of sensor merit.Furthermore,this novel structure will also bring enhancement of resonant angle shift,which can be explained by plasmonic interpretation based on a surface limited increase of interaction area and excitation of localized surface plasmons (LSPs).The proposed configuration has a wide range of potential applications not only as sensor but also other optical devices.

  4. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  5. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Sipe, John E.;

    2014-01-01

    and explore the range of parameteres for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz, and optical metamaterials....... of the structure by a generalized resonance pole of a reflection coefficient and using Bloch’s theorem, we derive analytical expressions for the band of large-wave-vector propagating solutions. We apply our formalism to determine the high- k band existence in two important cases: the well-known metal...

  6. Strong coupling of in-plane plasmon modes and their control

    OpenAIRE

    Kasture, Sachin; Mandal, Prasanta; Gupta, S. Dutta; Achanta, Venu Gopal

    2012-01-01

    We show anti-crossings due to strong in-plane coupling of plasmon modes in dielectric-metal-dielectric structure with top 2D dielectric pattern. Experimentally measured anti-crossing widths are compared with those calculated by coupled mode theory. It is shown that the coupling strength of the plasmon modes can be controlled by the orientation of the sample.

  7. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra......A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed...... in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  8. Design and Analysis of Multilayered Waveguide Structure With Metal-Dielectric Gratings for Sensing With Reflection Narrowband Notch Filter

    Directory of Open Access Journals (Sweden)

    Guiju ZHANG

    2015-11-01

    Full Text Available Developments in micro and nanofabrication technologies have led a variety of grating waveguide structures (GWS being proposed and implemented in optics and laser application systems. A new design of multilayered nanostructure double-grating is described for reflection notch filter. Thin metal film and dielectric film are used and designed with one-dimensional composite gratings. The results calculated by rigorous coupled-wave analysis (RCWA present that the thin metal film between substrate and grating can produce significant attenuated reflections and efficiency in a broad reflected spectral range. The behavior of such a reflection filter is evaluated for refractive index sensing, which can be applied inside the integrated waveguide structure while succeeding cycles in measurement. The filter peaks are designed and obtained in a visible range with full width half maximum (FWHM of several nanometers to less than one nanometer. The multilayered structure shows a sensitivity of refractive index of 220nm/RIU as changing the surroundings. The reflection spectra are studied under different periods, depths and duty cycles. The passive structure and its characteristics can achieve practical applications in various fields, such as optical sensing, color filtering, Raman spectroscopy and laser technology.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9625

  9. Generation of quantum entangled states in nonlinear plasmonic structures and metamaterials (Presentation Recording)

    Science.gov (United States)

    Poddubny, Alexander N.; Sukhorukov, Andrey A.

    2015-09-01

    The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, ar

  10. Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials

    CERN Document Server

    Sun, Lei; Yang, Xiaodong

    2013-01-01

    The giant optical nonlocality near the Dirac point in lossless metal-dielectric multilayer metamaterials is revealed and investigated through the analysis of the band structure of the multilayer stack in the three-dimensional omega-k space, according to the transfer-matrix method with the optical nonlocal effect. The position of the Dirac point is analytically located in the omega-k space. It is revealed that the emergence of the Dirac point is due to the degeneracy of the symmetric and the asymmetric eigenmodes of the coupled surface plasmon polaritons. The optical nonlocality induced epsilon-near-zero frequency shift for the multilayer stack compared to the effective medium is studied. Furthermore, the giant optical nonlocality around the Dirac point is explored with the iso-frequency contour analysis, while the beam splitting phenomenon at the Dirac point due to the optical nonlocal effect is also demonstrated.

  11. Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials

    Science.gov (United States)

    Poddubny, Alexander N.; Iorsh, Ivan V.; Sukhorukov, Andrey A.

    2016-09-01

    We develop a general theoretical framework of integrated paired photon-plasmon generation through spontaneous wave mixing in nonlinear plasmonic and metamaterial nanostructures, rigorously accounting for material dispersion and losses in quantum regime through the electromagnetic Green function. We identify photon-plasmon correlations in layered metal-dielectric structures with 70% internal heralding quantum efficiency, and reveal novel mechanism of broadband generation enhancement due to topological transition in hyperbolic metamaterials.

  12. Hybrid surface waves in semi-infinite metal-dielectric lattices

    CERN Document Server

    Miret, Juan J; Jaksic, Zoran; Vukovic, Slobodan; Belic, Milivoj R

    2012-01-01

    We investigate surface waves at the boundary between a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric. Spatial dispersion properties of such a nanostructure can be dramatically affected by coupling of surface plasmons polaritons at different metal-dielectric interfaces. As a consequence, the effective medium approach is not applicable in general. It is demonstrated that Dyakonov-like surface waves with hybrid polarization can propagate in an angular range substantially enlarged compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.

  13. Negative Refractive Index in Optics of Metal-Dielectric Composites

    OpenAIRE

    Kildishev, A.V.; Cai, W; Chettiar, U K; Yuan, H.-K.; Sarychev, A. K.; Drachev, V. P.; Shalaev, V. M.

    2005-01-01

    Specially designed metal-dielectric composites can have a negative refractive index in the optical range. Specifically, it is shown that arrays of single and paired nanorods can provide such negative refraction. For pairs of metal rods, a negative refractive index has been observed at 1.5 micrometer. The inverted structure of paired voids in metal films may also exhibit a negative refractive index. A similar effect can be accomplished with metal strips in which the refractive index can reach ...

  14. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances

    Science.gov (United States)

    Ferrando, Albert

    2017-01-01

    In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  15. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    -compatible materials, both passive and active plasmonic waveguide components are important. Among other proposed plasmonic waveguides and modulators, the structures where the dielectric core is sandwiched between metal plates have been shown as one of the most compact and efficient layout. Because of the tight mode...... confinement that can be achieved in metal-insulator-metal structures, they provide a base for extremely fast and efficient ultracompact plasmonic devices, including modulators, photodetectors, lasers and amplifiers. The main result of this thesis is a systematic study of various designs of plasmonic......Metal-dielectric interfaces can support the waves known as surface plasmon polaritons, which are tightly coupled to the interface and allow manipulation of light at the nanoscale. Plasmonics as a subject which studies such waves enables the merge between two major technologies: nanometer...

  16. Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon

    2012-04-13

    This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.

  17. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  18. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Science.gov (United States)

    Pandey, G. N.; Kumar, Narendra; Thapa, Khem B.; Ojha, S. P.

    2016-05-01

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  19. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection

    Science.gov (United States)

    Uddin, Shiekh Zia; Tanvir, Mukhlasur Rahman; Talukder, Muhammad Anisuzzaman

    2016-05-01

    We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.

  20. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.

    Science.gov (United States)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Chen, Yuan-hao; Cai, Zheng-jie; Zhang, Xiang-nan; Huang, Kuan

    2014-03-07

    We propose a robust multispectral transparent plasmonic structure and calculate its transparency response by using the three-dimensional finite-difference time-domain (FDTD) method. The proposed structure is composed of a continuous ultrathin metal film sandwiched by double two-dimensional (2D) hexagonal non-close-packed metal-dielectric multilayer core-shell nanoparticle arrays. The top and bottom plasmonic arrays in such a structure, respectively, act as the light input and output couplers to carry out the efficient trapping and release of light. Near-perfect multispectral optical transparency in the visible and near-infrared regions is achieved theoretically. The calculated electric field distribution patterns show that the near-perfect multispectral optical transparency mainly originates from the excitation and hybridization of shell and core plasmon modes, strong near-field coupling of dipole plasmon modes between adjacent nanoparticles as well as the excitation of surface plasmon waves of the metal film. The robust transparency bands can be efficiently tuned in a large range by varying the structural parameters and the surrounding dielectric environment. The proposed structure also shows additional merits such as a deep sub-wavelength size and fully retained electrical and mechanical properties of the natural metal. These features might provide promising applications in highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and non-linear optics.

  1. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic modes propagating along metal-dielectric interfaces. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating electromagnetic fields beyond...

  2. Quantum Plasmonics

    OpenAIRE

    Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.

    2014-01-01

    Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...

  3. Nonlinear plasmonic amplification via dissipative soliplasmons

    CERN Document Server

    Ferrando, Albert

    2016-01-01

    In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  4. Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials

    CERN Document Server

    Sun, Lei; Luk, Ting S; Yang, Xiaodong; Gao, Jie

    2015-01-01

    The optical nonlocality in symmetric metal-dielectric multilayer metamaterials is theoretically and experimentally investigated with respect to transverse-magnetic-polarized incident light. A nonlocal effective medium theory is derived from the transfer-matrix method to determine the nonlocal effective permittivity depending on both the frequency and wave vector in a symmetric metal-dielectric multilayer stack. In contrast to the local effective medium theory, our proposed nonlocal effective medium theory can accurately predict measured incident angle-dependent reflection spectra from a fabricated multilayer stack and provide nonlocal dispersion relations. Moreover, the bulk plasmon polaritons with large wave vectors supported in the multilayer stack are also investigated with the nonlocal effective medium theory through the analysis of the dispersion relation and eigenmode.

  5. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi;

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  6. Aluminum plasmonic metamaterials for structural color printing.

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  7. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  8. Enhanced plasmonic behavior of bimetallic (Ag-Au multilayered spheres

    Directory of Open Access Journals (Sweden)

    Pal Umapada

    2011-01-01

    Full Text Available Abstract In this article we study the plasmonic behavior of some stable, highly biocompatible bimetallic metal-dielectric-metal (MDM and double concentric nanoshell (DCN structures. By simply switching the material of the inner structure from Au to Ag, the intensity of their surface plasmon resonance could be increased in the optical transparency region of the human tissues up to 20 and 60 percent for the MDM and DCN, respectively, while the biocompatibility is retained. The obtained results indicate that these novel structures could be highly suitable for surface enhanced Raman scattering and photothermal cancer therapy.

  9. Plasmonic Structures for Sensing and Emitting Devices

    Science.gov (United States)

    Floris, Francesco; Fornasari, Lucia; Patrini, Maddalena; Figus, Cristiana; Mura, Andrea; Bongiovanni, Giovanni; Quochi, Francesco; Pellacani, Paola; Valsesia, Andrea; Marabelli, Franco

    2014-12-01

    We report on the study of a plasmonic nanostructure that could be adopted as platform for emitting and sensing applications. Several devices have been prepared and characterized by atomic force microscopy (AFM) and Fourier transform micro-reflectance (FT- pR) techniques. In addition, a modelling via finite-difference time-domain (FDTD) simulations have been developed in order to interpret the morphological shape and the optical response of the considered structures. Until now, remarkable performances as surface plasmon resonance (SPR) based optical sensor have been founded. Moreover, we are performing preliminary trials in order to establish a coupling between photoluminescence (PL) features of suitable emitters with respect to the plasmonic resonances.

  10. Splitting the surface wave in metal/dielectric nanostructures

    Institute of Scientific and Technical Information of China (English)

    Zhu Song; Wu Jian

    2011-01-01

    We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method.The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths,thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.

  11. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  12. Structural colors: from plasmonic to carbon nanostructures.

    Science.gov (United States)

    Xu, Ting; Shi, Haofei; Wu, Yi-Kuei; Kaplan, Alex F; Ok, Jong G; Guo, L Jay

    2011-11-18

    In addition to colorant-based pigmentation, structure is a major contributor to a material's color. In nature, structural color is often caused by the interaction of light with dielectric structures whose dimensions are on the order of visible-light wavelengths. Different optical interactions including multilayer interference, light scattering, the photonic crystal effect, and combinations thereof give rise to selective transmission or reflection of particular light wavelengths, which leads to the generation of structural color. Recent developments in nanofabrication of plasmonic and carbon nanostructures have opened another efficient way to control light properties at the subwavelength scale, including visible-light wavelength selection, which can produce structural color. In this Concept, the most relevant and representative achievements demonstrated over the last several years are presented and analyzed. These plasmonic and carbon nanostructures are believed to offer great potential for high-resolution color displays and spectral filtering applications.

  13. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... recycling effort. As an alternative to chemistry-based coloring, nano-scale structural coloring has been proposed to reduce the number of materials needed and to increase pattern resolution. Here colors are created by structural based light-matter interactions in the surface. Thereby, the sorting by color...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  14. Surface plasmon polariton amplification in metal-semiconductor structures.

    Science.gov (United States)

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V

    2011-06-20

    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  15. Hybrid metal-dielectric nanostructures for advanced light-field manipulation (Conference Presentation)

    Science.gov (United States)

    Staude, Isabelle; Guo, Rui; Rusak, Evgenia; Dominguez, Jason; Decker, Manuel; Rockstuhl, Carsten; Brener, Igal; Neshev, Dragomir N.; Pertsch, Thomas; Kivshar, Yuri S.

    2017-02-01

    All-dielectric and plasmonic nanostructures have complementary advantages regarding their capabilities for controlling light fields at the nanoscale [1]. While all-dielectric nanostructures can provide near-unity efficiency, plasmonic nanostructures are more compact and offer strong near-field enhancement. Combination of photonic nanostructures of both types offers a promising route towards compact optical elements that unify low absorption losses with small footprints, while at the same time providing a high versatility in engineering the optical response of the hybrid system towards specific functionalities. This talk aims to review our recent progress in coupling designed plasmonic nanoantennas to high-index dielectric nanostructures. Following a general analysis of coupling of plasmonic and high-refractive-index dielectric nanoresonators, various specific hybrid nanostructure designs will be discussed. For the fabrication of designed hybrid metal-dielectric nanostructures we use a two-step electron-beam lithography (EBL) procedure [2]. The first step of EBL is used in combination with reactive-ion etching to define the dielectric nanostructures. The second step of EBL is followed by evaporation of gold and a lift-off process, and serves to define the plasmonic elements. Between the two steps, a precision alignment procedure is performed in order to allow for the precise positioning of the gold nanostructures with respect to the silicon nanostructures. Using this approach, we realize and optically characterize various hybrid metal-dielectric nanostructures designed to support a range of novel functionalities, including directional emission enhancement [2] and on-chip light routing. [1] E. Rusak et al., Appl. Phys. Lett. 105, 221109 (2014). [2] R. Guo et al., ACS Photonics 3, 349-353 (2016).

  16. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  17. Structured light for focusing surface plasmon polaritons.

    Science.gov (United States)

    Hu, Z J; Tan, P S; Zhu, S W; Yuan, X-C

    2010-05-10

    We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

  18. Digital Plasmonics

    CERN Document Server

    Gjonaj, Bergin; Johnson, Patrick M; Mosk, Allard P; Kuipers, Kobus; Lagendijk, Ad

    2010-01-01

    The field of plasmonics offers a route to control light fields with metallic nanostructures through the excitation of Surface Plasmon Polaritons (SPPs). These surface waves, bound to a metal dielectric interface, tightly confine electromagnetic energy. Active control over SPPs has potential for applications in sensing, photovoltaics, quantum communication, nano circuitry, metamaterials and super-resolution microscopy. We achieve here a new level of control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases via feedback we focus SPPs at a freely pre-chosen point on the surface of a nanohole array with high resolution. Digital addressing and scanning of SPPs without mechanical motion will enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

  19. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  20. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  1. Temperature Imaging around Plasmonic Structures

    OpenAIRE

    Donner, Jon Sean

    2010-01-01

    Tesina realitzada en col.laboració amb IFCO i Cellex In the course of this work a novel microscope was constructed that is able to obtain a temperature map on the micro and nanoscale. The principle is demonstrated by presenting thermal maps of heated gold micro and nano structures. The temperature measurement is based on a uorescence polarization anisotropy measurement, and can produce a thermal image at a fast frame rate, which allows to obtain a thermal video. Being an...

  2. Long Range Surface Plasmons in Multilayer Structures

    CERN Document Server

    Delfan, Aida

    2013-01-01

    We present a new strategy, based on a Fresnel coefficient pole analysis, for designing an asymmetric multilayer structure that supports long range surface plasmons (LRSP). We find that the electric field intensity in the metal layer of a multilayer LRSP structure can be even slightly smaller than in the metal layer of the corresponding symmetric LRSP structure, minimizing absorption losses and resulting in LRSP propagation lengths up to 2mm. With a view towards biosensing applications, we also present semi-analytic expressions for a standard surface sensing parameter in arbitrary planar resonant structures, and in particular show that for an asymmetric structure consisting of a gold film deposited on a multilayer of SiO2 and TiO2 a surface sensing parameter G = 1.28(1/nm) can be achieved.

  3. Coupling of Quantum Emitters in Nanodiamonds to Plasmonic Structures

    DEFF Research Database (Denmark)

    Kumar, Shailesh

    applications such as sensing of the magnetic field. In this work, NV-centers in nanodiamond crystals smaller than 100 nm were used. For enhancing and channeling emission from the NV-centers, metallic waveguides are used in this work. In such waveguides, electromagnetic waves are guided at the interface between...... structure used for the coupling is two nanowires placed in parallel, which supports plasmonic modes in the gap between nanowires. The distribution of electromagnetic field in the plasmonic mode depends on the structure of the waveguide. The coupling between an emitter and the plasmonic mode, in turn...... a plasmonic waveguide and a dielectric waveguide made of silicon nitride suggest that the two waveguides can be coupled with a coupling loss of around 30 percent. Evanescent coupling between two plasmonic waveguides is also studied which can be useful for all integrated quantum plasmonic circuits....

  4. Controlling noise in plasmonic structures with gain

    Science.gov (United States)

    Vyshnevyy, A. A.; Fedyanin, D. Yu.

    2017-09-01

    Loss compensation by gain medium gives the possibility to exploit subwavelength confinement of light in plasmonic nanostructures and construct nanoscale plasmonic circuits. However, due to fundamentally unavoidable spontaneous emission from the gain medium, lossless waveguides suffer from strong photonic noise, which limits their practical applications. Here we demonstrate the possibility of significant decrease of the noise level while preserving physical dimensions of lossless plasmonic waveguides with gain. Our findings are aimed at extending the communication capabilities of on-chip plasmonic networks.

  5. Hyperbolic Metamaterials and Coupled Surface Plasmon Polaritons: comparative analysis

    CERN Document Server

    Li, Tengfei

    2016-01-01

    We investigate the optical properties of sub-wavelength layered metal/dielectric structures, also known as hyperbolic metamaterials (HMMs), using exact analytical Kronig Penney (KP) model. We show that hyperbolic isofrequency surfaces exist for all combinations of layer permittivities and thicknesses, and the largest Purcell enhancements (PE) of spontaneous radiation are achieved away from the nominally hyperbolic region. Detailed comparison of field distributions, dispersion curves, and Purcell factors (PF) between the HMMs and Surface Plasmon Polaritons (SPPs) guided modes in metal/dielectric waveguides demonstrates that HMMs are nothing but weakly coupled gap or slab SPPs modes. Broadband PE is not specific to the HMMs and can be easily attained in single thin metallic layers. Furthermore, large wavevectors and PE are always combined with high loss, short propagation distances and large impedances; hence PE in HMMs is essentially a direct coupling of the energy into the free electron motion in the metal, o...

  6. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  7. Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    DEFF Research Database (Denmark)

    Yahiaoui, Riad; Strikwerda, Andrew C.; Jepsen, Peter Uhd

    2016-01-01

    We have designed, fabricated, and experimentally verified a highly sensitive plasmonic sensing device in the terahertz frequency range. For a proof of concept of the sensing phenomenon, we have chosen the so-called fishnet structure based on circular hole array insensitive to the polarization...... of the incident wave. We employ the localized resonance associated with the cutoff frequency (electric plasma frequency) of the hole array to investigate its sensing capability. A thin-film overlayer deposited on the surface of the metallic apertures causes an amplitude modulation and a shift in the resonant...... frequency of the terahertz transmission. The frequency shift and the amplitude modulation were investigated as a function of the refractive index and the thickness of the overlayer for determining the sensing potential of the proposed structure. Measurements carried out using terahertz time...

  8. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Zhang, Xin; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed. Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.

  9. Planar metal-dielectric waveguides with the expanded singlemode band regime

    Directory of Open Access Journals (Sweden)

    V. G. Levandovskyy

    2012-12-01

    Full Text Available Purpose. Present work is devoted to the optimization of metal-dielectric waveguides for practical application in integrated optics. Actuality and practical importance. Such waveguides are a perspective element for creation of variety devices of integrated optics (multichannel splitters, modulators and switches, the filters radiating structures etc. in various units of integral-optical schemes. Choosing of method. It is shown, that optimization of parameters of planar metal-dielectric waveguide can be performed using the values of phase and group velocities of propagating modes on fixed frequency when solving the return scattering problem on the basis of wave equations. Conclusion. The method of return scattering problem solving that consists in restoration of differential operator from its spectral function make it possible to receive singlemode thin-film metal-dielectric waveguides having the expanded singlemode band regime and the increased cross-section sizes. For verification of results the model experiment with solving of direct problem for obtaining waveguides is executed.

  10. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Orlov, Alexey A.; Babicheva, Viktoriia E.

    2014-01-01

    We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured......) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop......, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind...

  11. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Orlov, Alexey A.; Babicheva, Viktoriia E.;

    2014-01-01

    We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured......) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop......, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind...

  12. Implementation of Plasmonics in VLSI

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2012-12-01

    Full Text Available This Paper presents the idea of Very Large Scale Integration (VLSI using Plasmonic Waveguides.Current VLSI techniques are facing challenges with respect to clock frequencies which tend to scale up, making it more difficult for the designers to distribute and maintain low clock skew between these high frequency clocks across the entire chip. Surface Plasmons are light waves that occur at a metal/dielectric interface, where a group of electrons is collectively moving back and forth. These waves are trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The decay length of SPs into the metal is two orders of magnitude smaller than the wavelength of the light in air. This feature of SPs provides the possibility of localization and the guiding of light in sub wavelength metallic structures, and it can be used to construct miniaturized optoelectronic circuits with sub wavelength components. In this paper, various methods of doing the same have been discussed some of which include DLSPPW’s, Plasmon waveguides by self-assembly, Silicon-based plasmonic waveguides etc. Hence by using Plasmonic chips, the speed, size and efficiency of microprocessor chips can be revolutionized thus bringing a whole new dimension to VLSI design.

  13. Implementation of Plasmonics in VLSI

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2012-12-01

    Full Text Available This Paper presents the idea of Very Large Scale Integration (VLSI using Plasmonic Waveguides. Current VLSI techniques are facing challenges with respect to clock frequencies which tend to scale up, making it more difficult for the designers to distribute and maintain low clock skew between these high frequency clocks across the entire chip. Surface Plasmons are light waves that occur at a metal/dielectric interface, where a group of electrons is collectively moving back and forth. These waves are trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The decay length of SPs into the metal is two orders of magnitude smaller than the wavelength of the light in air. This feature of SPs provides the possibility of localization and the guiding of light in sub wavelength metallic structures, and it can be used to construct miniaturized optoelectronic circuits with sub wavelength components. In this paper, various methods of doing the same have been discussed some of which include DLSPPW’s, Plasmon waveguides by self-assembly, Silicon-based plasmonic waveguides etc. Hence by using Plasmonic chips, the speed, size and efficiency of microprocessor chips can be revolutionized thus bringing a whole new dimension to VLSI design.

  14. Structural and plasmonic properties of gold nanocrystals

    Science.gov (United States)

    Sivapalan, Sean T.

    the nanoparticles. The nanoparticles were then tilted such that were oriented so that the electron beam was parallel to a major zone axis and the diffraction pattern recorded. We observed streaks at each Bragg reflection that changed depending on the shape of the nanoparticle. This is in contrast to the spots for the Bragg reflections observed for normal small area diffraction patterns of gold nanoparticles. The angles between the streaks were compared using vector analysis to theoretical simulated three dimensional models and showed good correlation. These studies indicate such a platform can be used to elucidate the structure of high-index gold nanoparticle shapes such as trisoctahedra. The as-synthesized gold nanoparticles had surface plasmon resonances that incrementally spanned the spectral region of 500-900 nm. The reporter molecules used all have an absorption maximum far from the excitation wavelength. This ensures that chemical resonant based effects are minimized and plasmonic electromagnetic effects dominate the observed signal enhancement. For gold nanorods, the highest SERS signal from six different aspect ratios was observed with absorption maxima blue-shifted from the laser excitation wavelength. This finding is in contrast to substrate measurements where the maximum observed signal is red-shifted from the laser excitation wavelength. A similar platform was used to compare the effects of changing the nanoparticle shape on the observed SERS enhancement. We synthesized trisoctahedral, cubic and spherical geometries with electronic absorption maxima that overlapped within 3 nm. The relative SERS enhancement with 785 nm excitation was compared to theoretical simulations using finite element analysis. The observed signal intensities correlated well to the theory, suggesting the electromagnetic fields focused towards sharp edges and corners dominated the spectral response. The final chapters of this thesis are tailored towards understanding the distance

  15. Nanoscale photonics using coupled hybrid plasmonic architectures

    Science.gov (United States)

    Lin, Charles; Su, Yiwen; Helmy, Amr S.

    2016-04-01

    Plasmonic waveguides, which support surface plasmon polaritons (SPP) propagating along metal-dielectric interfaces, offer strong field confinement and are ideal for the design of integrated nano-scale photonic devices. However, due to free-carrier absorption in the metal, the enhanced mode confinement inevitably entails an increase in the waveguide loss. This lowers the device figure-of-merit achievable with passive plasmonic components and in turn hinders the performance of active plasmonic components such as optical modulators.

  16. Physical nature of volume plasmon polaritons in hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Kidwai, Omar; Sipe, J. E.

    2013-01-01

    We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton...

  17. Morphology dependent two photon absorption in plasmonic structures and plasmonic-organic hybrids

    Science.gov (United States)

    Gambhir, Kaweri; Ray, Bhumika; Mehrotra, Ranjana; Sharma, Parag

    2017-05-01

    Two photon absorption coefficients of two distinct plasmonic structures, namely, gold nanoflowers (GNF) and gold nanopebbles (GNP) have been investigated and compared with conventional gold nanospheres (GNS). All three different nanoshapes were synthesized by changing the reaction solvent under the same experimental procedure. Further, hybrids of these plasmonic structures were prepared with an organic dye Eosin yellow (EY), to investigate the morphology effect of plasmonic structures on plasmonic-organic hybrids in terms of their linear extinction spectra and two photon absorption coefficients. The NLO investigations were conducted using 20 ps laser pulses of wavelength 532 nm as an excitation source in single beam Z-scan setup. UV/visible spectroscopy was employed for monitoring plasmon resonances and changes in linear extinction spectra. The experimental outcomes revealed two photon absorption coefficients of EY increased 120%, 32% and 39%, while 69%, 60% and 53% enhancement in the peaks of linear extinction maxima of EY has been observed, when hybridized with GNF, GNS and GNP, respectively. This boost in the optical coefficients may be attributed to dimerization of EY molecules on the surface of nanoparticles. Keeping the toxicity of EY in view, we propose that the two photon absorption coefficients of this dye and control thereof, by the addition of plasmonic structures would be helpful not only in understanding the interactions between plasmons and fluorophore, but also pave an efficient way, to reduce the operative concentration of this hazardous dye in a wide range of applications and thereby, mitigating the environmental degradation caused by its highly concentrated effluents.

  18. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    OpenAIRE

    Young Chul Jun; Igal Brener

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need...

  19. Enhancement of light emission from nanostructured In(2)O(3) via surface plasmons.

    Science.gov (United States)

    Qiu, Dongjiang; Wan, Zhengfen; Cai, Xikun; Yuan, Zijian; Hu, Lian; Zhang, Bingpo; Cai, Chunfeng; Wu, Huizhen

    2010-10-25

    We report the construction of In(2)O(3)/Ag/In(2)O(3) sandwich nanostructures and realization of effective coupling with surface plasmon (SP) modes. An enhancement of photoluminescence as large as 278-fold is achieved for the new nanostructures, while only eightfold is obtained from bilayer structures. The advancement of the nanostructures is that both the frequency of incidence photons and the in-plane wavevector of the excited SP modes along each side of the sandwiched nanometer metal layer are identical, thus the momenta mismatch between two SP modes which inevitably occurs in commonly used metal/dielectric bilayer structures is no longer a problem. The fulfillment of the cross coupling and resonance conditions of the two SP modes leads to the tremendous amplification of light emission. Such sandwich nanostructures can be readily extended to other dielectric/metal/dielectric nanomaterial combinations and identified as technologically useful for SP mediated light emitting devices.

  20. Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides

    Science.gov (United States)

    Haddouche, Issam; Cherbi, Lynda

    2017-01-01

    In this paper, we investigate Surface Plasmon Polaritons (SPPs) in the visible regime at a metal/dielectric interface within two different waveguide structures, the first is a Photonic Crystal Fiber where the Full Vector Finite Element Method (FVFEM) is used and the second is a slab waveguide where the transfer matrix method (TMM) is used. Knowing the diversities between the two methods in terms of speed, simplicity, and scope of application, computation is implemented with respect to wavelength and metal layer thickness in order to analyze and compare the performances of the two methods. Simulation results show that the TMM can be a good approximation for the FVFEM and that SPPs behave more like modes propagating in a semi infinite metal/dielectric structure as metal thickness increases from about 150 nm.

  1. Radiation-Suppressed plasmonic open resonators designed by nonmagnetic transformation optics

    Science.gov (United States)

    Xu, Hongyi; Wang, Xingjue; Yu, Tianyuan; Sun, Handong; Zhang, Baile

    2012-01-01

    How to confine light energy associated with surface plasmon polaritons (SPPs) in a physical space with minimal radiation loss whereas creating maximum interacting section with surrounding environment is of particular interest in plasmonic optics. By virtue of transformation optics, we propose a design method of forming a polygonal surface-plasmonic resonator in fully open structures by applying the nonmagnetic affine transformation optics strategy. The radiation loss can be suppressed because SPPs that propagate in the designed open structures will be deceived as if they were propagating on a flat metal/dielectric interface without radiation. Because of the nonmagnetic nature of the transformation strategy, this design can be implemented with dielectric materials available in nature. An experimentally verifiable model is subsequently proposed for future experimental demonstration. Our design may find potential applications in omnidirectional sensing, light harvesting, energy storage and plasmonic lasing. PMID:23136641

  2. Eddy Current Loss Analysis of Exterior Metal Dielectric for Electromagnetic Coupling Structure in Fuze Wireless Power Supply System%引信无线供能系统电磁耦合结构外围金属介质涡流损耗分析

    Institute of Scientific and Technical Information of China (English)

    李长生; 张合; 查冰婷

    2011-01-01

    According to the coupling structure of primary and secondary coil enwrapped by metal dielectric in fuze wireless power supply system, a mathematical model of eddy current loss in metal dielectric is established to decrease the serious eddy current loss in metal tube.The analytical expressions of eddy current loss is deduced by solving Maxwell's equations.ANSYS simulation software is used to analyze and compare the effects of magnetic shielding method and slotting method to reduce eddy current loss.Experiment and simulation results show that the exterior magnetic field can be bound in the magnetic shielding layer by enwrapping a thin permalloy layer around the primary coil,and the eddy current loss is effectively reduced.This method is better than slotting in the metal tube.%针对引信体外无线供能系统中初、次级线圈被金属介质包裹的耦合结构,为降低金属管中存在的严重涡流损耗,建立了金属介质中涡流损耗的数学模型.通过求解麦克斯韦方程组,推导了涡流损耗的解析表达式.采用ANSYS仿真软件分析、对比磁屏蔽和开槽两方案减少系统涡流损耗的效果.实验与仿真结果表明,通过在初级线圈外包裹坡莫合金薄层可将外围磁路束缚在该薄层内,从而有效减少系统涡流损耗,其效果优于金属管开槽方案.

  3. Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles

    CERN Document Server

    Liu, Wei; Miroshnichenko, Andrey E

    2016-01-01

    We investigate the scattering and absorption properties of anisotropic metal-dielectric core-shell nanoparticles. It is revealed that the radially anisotropic dielectric layer can accelerate the evanescent decay of the localized resonant surface modes, leading to Q-factor and absorption rate enhancement. Moreover, the absorption cross section can be maximized to reach the single resonance absorption limit. We further show that such artificial anisotropic cladding materials can be realized by isotropic layered structures, which may inspire many applications based on scattering and absorption of plasmonic nanoparticles.

  4. Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    CERN Document Server

    Zhukovsky, Sergei V; Babicheva, Viktoriia E; Lavrinenko, Andrei V; Sipe, J E

    2013-01-01

    We theoretically study the propagation of large-wavevector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer ("substructure") are modulated ("superstructured") on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection are shown to form within the volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance peaks of the Fabry-P\\'erot nature are shown to be present within the stop bands. More complicated superstructure geometries are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar s...

  5. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging

    Science.gov (United States)

    Zhang, Chonglei; Min, Changjun; Du, Luping; Yuan, X.-C.

    2016-05-01

    We propose an all-optical technique for plasmonic structured illumination microscopy (PSIM) with perfect optical vortex (POV). POV can improve the efficiency of the excitation of surface plasma and reduce the background noise of the excited fluorescence. The plasmonic standing wave patterns are excited by POV with fractional topological charges for accurate phase shift of {-2π/3, 0, and 2π/3}. The imaging resolution of less than 200 nm was produced. This PSIM technique is expected to be used as a wide field, super resolution imaging technique in dynamic biological imaging.

  6. Nonlinear metal-dielectric nanoantennas for light switching and routing

    CERN Document Server

    Noskov, R E; Kivshar, Yu S

    2012-01-01

    We introduce a novel hybrid metal-dielectric nanoantenna composed of dielectric (crystalline silicon) and metal (silver) nanoparticles. A high-permittivity dielectric nanoparticle allows to achieve effective light harvesting, and nonlinearity of a metal nanoparticle controls the radiation direction. We show that the radiation pattern of such a nanoantenna can be switched between the forward and backward directions by varying only the light intensity around the level of 11 MW/cm$^2$, with the characteristic switching time of 260 fs.

  7. Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Vijay K.; Hymel, Thomas M.; Lai, Ruby A.; Cui, Yi

    2017-01-03

    An optoelectronic device has a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the dielectric resonant elements and below a top surface of the resonant elements such that the dielectric resonant elements protrude through the metal film. The device may also include an anti-reflection coating. The device may further include a metal film layer on each of the dielectric resonant elements.

  8. Ultrafast studies of electron dynamics at metal-dielectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Nien-Hui [Univ. of California, Berkeley, CA (United States)

    1998-10-01

    Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy

  9. Optimization of extraordinary optical absorption in plasmonic and dielectric structures

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2013-01-01

    Extraordinary optical absorption (EOA) can be obtained by plasmonic surface structuring. However, studies that compare the performance of these plasmonic devices with similar structured dielectric devices are rarely found in the literature. In this work we show different methods to enhance the EOA...... silicon layer for certain optical wavelengths compared to metal strips. It is then demonstrated that by topology optimization it is possible to generate nonintuitive surface designs that perform even better than the simple strip designs for both silicon and metals. These results indicate that in general...... by optimizing the geometry of the surface structuring for both plasmonic and dielectric devices, and the optimized performances are compared. Two different problem types with periodic structures are considered. The first case shows that strips of silicon on a surface can increase the absorption in an underlying...

  10. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih

    2017-08-01

    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  11. Controlling light with plasmonic multilayers

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.

    2014-01-01

    Recent years have seen a new wave of interest in layered media - namely, plasmonic multilayers - in several emerging applications ranging from transparent metals to hyperbolic metamaterials. In this paper, we review the optical properties of such subwavelength metal-dielectric multilayered...... metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...

  12. Dependence of Purcell effect on fluorescence wavelength in dye molecules on metal-dielectric multilayer hyperbolic metamaterials

    Science.gov (United States)

    Tsurumachi, Noriaki; Izawa, Hayato; Tomioka, Ryo; Sakata, Tomohiro; Suzuki, Makoto; Tanaka, Yasuhiro; Shimokawa, Fusao; Nakanishi, Shunsuke

    2016-02-01

    Recently, the enhancement of spontaneous emission, i.e., broadband Purcell effect, has been achieved using hyperbolic metamaterials. Hyperbolic metamaterials, which can be realized using a metal-dielectric multilayer structure, have an extremely large optical anisotropy of permittivity in both the parallel and perpendicular directions to the propagation of light, especially when the signs of permittivities in both directions differ. In this study, we investigated the conditions for realizing the broadband Purcell effect using dye molecules with different fluorescence wavelengths. Our fabricated metal-dielectric multilayer structure exhibited hyperbolic dispersion at wavelengths beyond 500 nm. In the case of coumarin 500 whose fluorescence peak is located at 500 nm, no broadband Purcell effect was observed. However, in the case of pyridine 1 whose fluorescence peak is located at 650 nm, we observed the successfull fluorescence lifetime shortening, i.e., the broadband Purcell effect.

  13. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    Science.gov (United States)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  14. Long-range wetting transparency on top of layered metal-dielectric substrates

    Science.gov (United States)

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-06-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

  15. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...... of the surface reflectivity. Here we report the results of our experimental and theoretical investigations of waveguiding in the SPPBG structures....

  16. Surface-plasmons lasing in double-graphene-layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A. A. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Aleshkin, V. Ya. [Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Shur, M. S. [Department of Electrical, Electronics, and System Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)

    2014-01-28

    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  17. Investigation of nanogap localized field enhancement in gold plasmonic structures

    Science.gov (United States)

    Debu, Desalegn Tadesse; Bauman, Stephen; Saylor, Cameron; Novak, Eric; French, David; Herzog, Joseph

    2015-03-01

    Nanogaps between plasmonic structures allow confining the localized electric field with moreenhancements. Based on previously implemented two-step lithography process, we introducea nano-masking technique to fabricate nanostructrues and nanogaps for various geometrical patterns. This new method can fabricate gold nanostructures as well as nanogaps that are less than 10nm, below the limiting scale of lithography. Simulation from finite element method (FEM) shows strong gap dependence of optical properties and peak enhancement of these devices. The fabricated plasmonic nanostructure provides wide range of potential future application including highly sensitive optical antenna, surface enhanced Raman spectroscopy and biosensing.

  18. Plasmonic waves of a semi-infinite random nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2013-10-15

    The dispersion curves of the plasmonic waves of a semi-infinite random metal-dielectric nanocomposite, consisting of bulk metal embedded with dielectric inclusions, are presented. Two branches of p-polarized surface plasmon-polariton modes are found to exist. The possibility of experimentally observing the surface waves by attenuated total reflection is demonstrated.

  19. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    Science.gov (United States)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  20. Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations

    Directory of Open Access Journals (Sweden)

    Katyayani Seal

    2012-01-01

    Full Text Available Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metal concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.

  1. On the origin of third harmonic light from hybrid metal-dielectric nanoantennas

    Science.gov (United States)

    de Ceglia, Domenico; Vincenti, Maria Antonietta; Scalora, Michael

    2016-11-01

    Near field amplification of electric fields magnifies the nonlinear optical signals generated in the metal volume of plasmonic nanoantennas, as well as in the surrounding media. We investigate the third harmonic light emitted by a hybrid nanoantenna composed of two metallic rods separated by a small gap filled with a dielectric. Despite the large cubic nonlinear susceptibility of metals, the presence of a hot spot in the antenna’s gap may easily transform weaker dielectric nonlinearities into the dominant source of third harmonic light. This has led to diverse and sometimes opposite interpretations of the nature of the nonlinear response, which are further complicated by the limited knowledge of the intrinsic nonlinear susceptibilities of the constituent materials. Here, a quantitative description of third harmonic generation is provided as a function of the ratio between the dielectric and the metal nonlinear susceptibilities in a hybrid metal-dielectric nanoantenna. We find a spectral discriminator that allows us to determine the origin of third harmonic light unambiguously.

  2. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction

    OpenAIRE

    Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang

    2017-01-01

    We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is...

  3. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    CERN Document Server

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a sub...

  4. Study on Dielectric Function Models for Surface Plasmon Resonance Structure

    Directory of Open Access Journals (Sweden)

    Peyman Jahanshahi

    2014-01-01

    Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.

  5. Guiding of Plasmons and Phonons in Complex Three Dimensional Structures

    Science.gov (United States)

    2013-01-01

    photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energy Materials and Solar Cells 37...Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices (vol 9, pg 205, 2010). Nat Mater 9, 865-865 (2010). 59 Tegart, W. J., The...108 The corresponding porosity of the inverse opal structure is 1-86%*(1-0.74)=78% 109 King, J. S., Graugnard, E. & Summers, C. J. TiO2 Inverse

  6. On the optical properties of plasmonic glasses

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Langhammer, Christoph; Apell, S. Peter

    2014-12-01

    We report on the optical properties of plasmonic glasses which are metal-dielectric composites composed of metallic inclusions in a host dielectric medium. The investigated structures are of quasi-random nature, described by the pair correlation function, featuring a minimum center-to-center distance between metallic inclusions and long range randomness. Plasmonic glasses exhibiting short-range order only may be fabricated using bottom-up, self-assembly methods and have been utilized in a number of applications such as plasmonic sensing or plasmon-enhanced solar harvesting, and may be also employed for certain non-linear applications. It is therefore important to quantify their properties. Using theoretical methods we investigate optical of 1D, 2D, and 3D structures composed of amorphous distributions of metallic spheres. It is shown, that the response of the constituent element, i.e. the single sphere localized surface plasmon resonance, is modified by the scattered fields of the other spheres in such a way that its peak position, peak amplitude, and full-width at half-maximum exhibit damped oscillations. The oscillation amplitude is set by the particle density and for the peak position may vary by up to 0.3 eV in the optical regime. Using a modified coupled dipole approach we calculate the effective (average) polarizability of plasmonic glasses and discuss their spectra as a function of the dimensionality, angle of incidence and polarization, and the minimum center-to-center distance. The analytical model is complemented and validated by T-Matrix calculations of the optical cross-sections of amorphous arrays of metallic spheres obtained using a modification of the Random Sequential Adsorption algorithm for lines, surfaces, and volumes.

  7. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    We report on experimental realization of different metal-insulator geometries that are used as plasmonic waveguides guiding electromagnetic radiation along metal-dielectric interfaces via excitation of surface plasmon polaritons (SPPs). Three configurations are considered: metal strips, symmetric...... based on metal V-grooves that offer subwavelength confinement are also considered. We focus on recent advances in manufacturing of nanostructured metal strips and metal V-grooves using combined UV, electron-beam and nanoimprint lithography....

  8. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array

    Science.gov (United States)

    Liu, Gui-qiang; Hu, Ying; Liu, Zheng-qi; Cai, Zheng-jie; Zhang, Xiang-nan; Chen, Yuan-hao; Huang, Kuan

    2014-04-01

    We propose and show multispectral optical enhanced transmission in the visible and near-infrared region in a continuous metal film coated with a two-dimensional (2D) hexagonal non-close-packed plasmonic array. The plasmonic array consists of metal/dielectric multilayer core-shell nanoparticles. The excitation of near-field plasmon resonance coupling between adjacent core-shell nanoparticles, plasmon resonance coupling between adjacent metal layers in the nanoparticle, and surface plasmon (SP) waves on the metal film are mainly responsible for the multispectral optical enhanced transmission behavior. The multispectral optical enhanced transmission response could be highly modified in the wavelength range, transparent bandwidth and transmission intensity by varying the geometry parameters including the gap distance between adjacent plasmonic nanoparticles, the size of metal core and the thickness of dielectric layer between the metal layers. In addition, the number of optical enhanced transmission bands increases with the number of metal layers in the plasmonic nanoparticle. The proposed structure shows many merits such as the deep sub-wavelength size, multispectral optical enhanced transmission bands as well as fully retained electric and mechanical properties of the natural metal. These merits may provide promising applications for highly integrated optoelectronic devices including plasmonic filters, nanoscale multiplexers, and nonlinear optics.

  10. Schrödinger plasmon-solitons in Kerr nonlinear heterostructures with magnetic manipulation.

    Science.gov (United States)

    Davydova, M D; Dodonov, D V; Kalish, A N; Belotelov, V; Zvezdin, A K

    2015-12-01

    We investigate surface plasmon-soliton (SPS) propagation in transverse magnetic field in heterostructures with Kerr nonlinearity. The nonlinear Schrödinger equation in the framework of perturbation theory has been derived for three cases: a single-interface metal/nonlinear-dielectric structure and double-interface structures of nonlinear-dielectric/metal/dielectric with either ferromagnetic or nonmagnetic dielectric. The effect of the magneto-optical nonreciprocity in the Schrödinger equation is found. The estimations show that the effect is the strongest for the double-interface structure with a magnetic substrate in the vicinity of the resonant plasmonic frequency. We have also shown that the external magnetic field modifies SPS amplitude and width.

  11. Simple Method for Large-Scale Fabrication of Plasmonic Structures

    CERN Document Server

    Makarov, Sergey V; Mukhin, Ivan S; Shishkin, Ivan I; Mozharov, Alexey M; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01

    A novel method for single-step, lithography-free, and large-scale laser writing of nanoparticle-based plasmonic structures has been developed. Changing energy of femtosecond laser pulses and thickness of irradiated gold film it is possible to vary diameter of the gold nanoparticles, while the distance between them can be varied by laser scanning parameters. This method has an advantage over the most previously demonstrated methods in its simplicity and versatility, while the quality of the structures is good enough for many applications. In particular, resonant light absorbtion/scattering and surface-enhanced Raman scattering have been demonstrated on the fabricated nanostructures.

  12. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea......, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results....

  13. Realization of Desired Plasmonic Structures via a Direct Laser Writing Technique

    Science.gov (United States)

    Tong, Quang Cong; Luong, Mai Hoang; Tran, Thi Mo; Remmel, Jacqueline; Do, Minh Thanh; Kieu, Duy Manh; Ghasemi, Rasta; Nguyen, Duc Tho; Lai, Ngoc Diep

    2016-11-01

    We present a recent investigation of fabrication of desired plasmonic structures. First, the polymeric templates were realized by a simple and low-cost fabrication technique based on direct laser writing with a continuous-wave laser source. The plasmonic structures have been then realized by two methods, namely, a combination of gold evaporation and lift-off techniques, and a combination of gold sputtering and thermal annealing techniques. Each method presents its own advantages. Numerous metallic submicro- and nano-structures have been realized, which should be very interesting for different applications, such as high-transmission bandpass filters, plasmonic data storage, and plasmonic photonic devices.

  14. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  15. Waveguiding in surface plasmon polariton band gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Østergaard, John Erland; Leosson, Kristjan

    2001-01-01

    Using near-held optical microscopy, we investigate propagation and scattering of surface plasmon polaritons (SPP's) excited in the wavelength range of 780-820 nm at nanostructured gold-film surfaces with areas of 200-nm-wide scatterers arranged in a 400-nm-period triangular lattice containing line...... defects. We observe the SPP reflection by such an area and SPP guiding along line defects at 782 nm, as well as significant deterioration of these effects is 815 nm, thereby directly demonstrating the SPP band gap effect and showing first examples of SPP channel waveguides in surface band gap structures....

  16. Nonlinear plasmonics with Kerr-like media for sensing

    Science.gov (United States)

    Crutcher, Sihon H.; Ruffin, Paul B.; Edwards, Eugene; Brantley, Christina L.

    2014-04-01

    Sensing technologies are currently needed for better maintainability, reliability, safety, and monitoring small variable changes on microscopic and nanoscale systems. Plasmonic sensor research has contributed to chemical and biological sensing needs by monitoring ultrafast temporal and spatial changes in optoelectronic systems. Nonlinear plasmonic waveguides with subwavelength confinement can further enhance the capabilities of plasmonic devices. Results in this paper highlight the derivation of the full-vector Maxwell Equations for the single metal- dielectric slot waveguide and the metal -dielectric -metal waveguide with the dielectric having a Kerr-like nonlinearity. These waveguides, typically have metallic losses that compete with nonlinearity at certain frequencies that can hinder surface plasmon wave propagation. By considering temporal and spatial beam propagation in these waveguides one expects to observe novel effects that could be used for sensing applications such as femtosecond pulse propagation with plasmon self-focusing, self-trapping, and frequency conversion with reduction in metallic losses.

  17. Broadband, Polarization-insensitive and Wide-angle Optical Absorber based on Fractal Plasmonics

    CERN Document Server

    Eshaghian, Ali; Chizari, Ata; Mehrany, Khashayar

    2016-01-01

    In this paper, a plasmonic absorber consisting of a metal-dielectric-metal stack with a top layer of Sierpinski nanocarpet is theoretically investigated. Such compact absorber depicts broadband angle-independent behavior over a wide optical wavelength range ($400-700$ nm) and a broad range of angles of light incidence ($0-80^{\\circ}$). Including several feature sizes, such fractal-like structure shows widely strong extinction ($85-99$\\%) response for either transverse electric or magnetic polarization states under normal incidence. Underlying mechanisms of absorbance due to excited surface plasmon modes as well as electric/magnetic dipole resonances are well revealed by investigating electric field, magnetic field and current distributions. The proposed absorber opens a path to realize high-performance ultrathin light trapping devices.

  18. Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement

    Science.gov (United States)

    Huang, Wei-Lun; Hsiao, Hui-Hsin; Tang, Ming-Ru; Lee, Si-Chen

    2016-08-01

    This paper presents a triple-wavelength infrared plasmonic thermal emitter using a periodic arrangement of hybrid dielectric materials within a tri-layer metal/dielectric/metal structure. The proposed arrangement makes it possible to sustain multiple resonance of localized surface plasmons (LSP), thereby providing an additional degree of freedom by which to vary the resonant wavelengths in the medium infrared region. Variations in the effective refractive index due to the different modal distribution within dielectric gratings results in multiple LSP resonances, and the resonant wavelengths can be easily tuned by altering the compositions of hybrid dielectric materials. The measured dispersion relation diagram and the finite difference time domain simulation indicated that the resonances were localized. They also indicate that the magnetic fields generated by the multiple LSP modes exhibit distribution patterns similar to that of a standing wave in the periodic arrangement of the hybrid dielectric layer, each of which presents an emission peak corresponding to a different modal order.

  19. Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs.

    Science.gov (United States)

    Baryshev, A V; Merzlikin, A M

    2014-05-10

    The Bloch surface wave resonance (SWR) was visualized with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a one-dimensional photonic crystal (PhC). An SWR peak in calculated spectra of such a plasmonic photonic crystal (PPhC) slab comprising a noble or base metal layer was demonstrated to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. The considered structure of PPhC slabs can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration. We found that, in case of PPhC slabs, gold (the key element of the surface plasmon resonance-based biosensors) can be replaced by other metals. The PPhC-based sensors can be low-cost, reusable, and robust sensors having a sensitivity surpassing that of the known optical sensors.

  20. Practical realization of deeply subwavelength multilayer metal-dielectric nanostructures based on InGaAsP (Presentation Recording)

    Science.gov (United States)

    Smalley, Joseph S. T.; Vallini, Felipe; Montoya, Sergio; Fullerton, Eric E.; Fainman, Yeshaiahu

    2015-09-01

    Using established nanofabrication techniques, we realize deeply subwavelength multilayer metal-dielectric nanostructures composed of silver and indium gallium arsenide phosphide (InGaAsP). In contrast to most, if not all, subwavelength multilayer metal-dielectric systems to date, the Bloch vector of the fabricated structure is parallel to the plane of the substrate, making it suitable for waveguide integration. InGaAsP multiple quantum wells (MQWs) are epitaxially grown on InP normal to the Bloch vector of the resulting multilayer. The associated carrier population of the MQWs allows for active control of the behavior of the nanostructure via external optical pumping. Individual layer thicknesses of 30nm are repeatedly achieved via electron-beam lithography, reactive ion etching of InGaAsP, and sputter deposition of silver. Resulting 60nm periods of the one-dimensional periodic structure are 25 times smaller than telecommunication wavelengths in vacuum. The realized multilayer nanostructures hold promise as a platform for active and tunable hyperbolic metamaterials at telecommunication frequencies.

  1. Optical properties of a nanomatch-like plasmonic structure.

    Science.gov (United States)

    Cui, Xudong; Zhang, Weihua; Erni, Daniel; Dong, Lixin

    2010-08-01

    The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

  2. Plasmonic metamaterials based on holey metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Mary, A; GarcIa-Vidal, F J [Departamento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Rodrigo, Sergio G; Martin-Moreno, L [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain)], E-mail: fj.garcia@uam.es

    2008-07-30

    In this paper we address from the fundamental point of view the links and relations between three different phenomena that emerge when metallic films are perforated with periodic arrays of holes: (i) the phenomenon of extraordinary optical transmission in single metallic layers, (ii) the appearance of surface electromagnetic modes (the so-called spoof surface plasmons) when an array of holes is drilled on the surface of a perfect electrical conductor and (iii) the negative refractive index behavior observed in double-fishnet (DF) structures in which a periodic hole array is perforated on a metal-dielectric-metal stack. By using a very simple theoretical framework, we show how the physical origin of the negative refractive index in these DF structures is due to the excitation of spoof gap surface plasmon modes that propagate within the dielectric slab. We also demonstrate that the electrical response of the DF system is mainly controlled by the cut-off frequency of the hole waveguide. Finally, we present some results for multilayered DF structures that illustrate how the negative refractive index is maintained when several DF units are stacked together.

  3. Controlling Surface-plasmon-polariton Launching with Hot Spot Cylindrical Waves in a Metallic Slit Structure

    CERN Document Server

    Yao, Wenjie; Chen, Jianjun; Gong, Qihuang

    2015-01-01

    Plasmonic nanostructures, which are used to generate surface plasmon polaritions (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  4. Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

    DEFF Research Database (Denmark)

    Thomas, Stefan; Matyssek, Christian; Hergert, Wolfram

    2015-01-01

    Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method ...... by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters....

  5. Tapered dielectric structure in metal as a wavelength-selective surface plasmon polariton focuser

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Zhao Qing; Liao Zhi-Min; Yu Da-Peng

    2009-01-01

    Symmetric tapered dielectric structures in metal have demonstrated applications such as the nanofocusing of surface plasmon polaxitons, as well as the waveguiding of V-channel polaxitons. Yet the fabrication of smooth-surfaced tapered structure remains an obstacle to most researchers. We have successfully developed a handy method to fabricate metal-sandwiched tapered nanostructures simply with electron beam lithography. Though these structures are slightly different from conventional symmetric V-shaped structures, systematic simulations show that similar functionality of surface plasmon polaxiton nanofocusing can still be achieved, When parameters are properly selected, wavelengthselective nanofocusing of surface plasmon polaritons can be obtained.

  6. Surface Plasmon Polaritons of Two-Dimensional Three-Order Dendritic Structures

    Institute of Scientific and Technical Information of China (English)

    王敏凤; 周鲁卫

    2011-01-01

    We study surface plasmon polaritons excited on two-dimensional three-order dendritic structures. Previous studies show that split ring resonators (SRRs) can be used to obtain magnetic resonance, thus sustairdng surface waves behaving like surface plasmon polaritons (SPPs). In this paper, we obtain detailed results on surface plasmon polaritons of several different grating structures and theoretically prove that this kind of structures can sustain SPPs. Besides, since dendritic structures can be fabricated by double template-assisted electrochemical deposition, it is worth noting that fabrication of SPP-based materials might be much easier.

  7. The electronic structure of free aluminum clusters: metallicity and plasmons.

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mårtensson, Nils; Björneholm, Olle

    2012-05-28

    The electronic structure of free aluminum clusters with ∼3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  8. The electronic structure of free aluminum clusters: Metallicity and plasmons

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mârtensson, Nils; Björneholm, Olle

    2012-05-01

    The electronic structure of free aluminum clusters with ˜3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  9. Probing topological protection using a designer surface plasmon structure

    Science.gov (United States)

    Gao, Fei; Gao, Zhen; Shi, Xihang; Yang, Zhaoju; Lin, Xiao; Xu, Hongyi; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Lu, Ling; Chong, Yidong; Zhang, Baile

    2016-01-01

    Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the ‘topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can break the topological protection, but do not exist in electronic topological insulators. This is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants. PMID:27197877

  10. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi;

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...... homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence...

  11. Challenges of fabricating plasmonic and photonic structures with Neon ion beam milling

    DEFF Research Database (Denmark)

    Leißner, Till; Fiutowski, Jacek; Bozhevolnyi, Sergey I.

    properties. We are currently studying the capabilities of focussed Helium and Neon ion beam milling for the fabricating of plasmonic and photonic devices. We found that Neon ion beam milling enables us to prepare plasmonic structures, such as trenches (see Fig. 1) and V-grooves without doping and alloying...... effects specific to Galium FIB. Neon FIB milling is superior to Helium FIB milling in terms of the processing speed and smaller levels of implanted ions. From our perspective it is the most promising technique for the fabrication of individual plasmonic devices with a few nanometers precision. The main...... presentation we show the current progress in Neon FIB milling of plasmonic structures. We compare different materials, in particular poly- and mono-crystalline gold as well as thin films of Titanium Nitride, which are commonly used for plasmonic applications....

  12. Ultra-broadband near perfect absorption of visible light based on one-dimensional metal-dielectric-metal grating for TM polarization

    Science.gov (United States)

    Luo, Minghui; Zhou, Yun; Chen, Linsen; Ye, Yan; Shen, Su; Wu, Shangliang

    2016-10-01

    We numerically and analytically report an ultra-broadband near perfect absorber based on one-dimensional metal-dielectric-metal grating at visible light for TM polarization. A unit cell of this design is composed of metal-dielectric-metal grating, where the bottom metallic layer and the upper metallic coating are separated from each other by the intermediate dielectric grating. The absorber exhibits an average absorption of over 90% in the range 400-700nm. Moreover, they remain very high over a wide range of incident angle up to 45°.The electromagnetic field distributions are investigated, which reveals that this broadband absorption behavior is ascribed to the combination of surface plasmon resonance and cavity resonance. Furthermore, impedance calculations were carried out to explain the absorption behavior. The ultra-broadband near-perfect angle-robust absorber can be a good candidate for many fascinating applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  13. Fabry-Perot based metal-dielectric multilayered filters and metamaterials.

    Science.gov (United States)

    Jen, Yi-Jun; Lee, Cheng-Chung; Lu, Kun-Han; Jheng, Ci-Yao; Chen, Yu-Jen

    2015-12-28

    The traditional three-layered metal-dielectric-metal Fabry-Perot filter is developed as a new metal-dielectric multilayered band-pass filter. Our design method allows metal and dielectric films to be alternatively arranged to achieve a narrow and high transmission peak and the peak height remains unchanged for any number of metal films arranged in the multilayer. Furthermore, the equivalent refractive index of a subwavelength metal-dielectric multilayer could be negative real at the passband of the filter and such metamaterial exhibits stronger figure of merit than a previous result. By choosing a material with high refractive index as the dielectric film, such metamaterial exhibits a pass band that depends weakly on the angle of incidence.

  14. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.

    Science.gov (United States)

    Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V

    2015-11-06

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  15. Enhanced surface plasmon polariton propagation induced by active dielectrics

    OpenAIRE

    Athanasopoulos, C.; Mattheakis, M.; Tsironis, G. P.

    2013-01-01

    We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL multiphysics software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a root in the imaginary part of the propagation constant leading to infinite propagation of the surface pl...

  16. Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip

    Science.gov (United States)

    Bhave, Gauri; Lee, Youngkyu; Chen, Peng; Zhang, John X. J.

    2015-09-01

    We present the design and integration of a two-dimensional (2D) plasmonic nanogratings structure on the electrode of colloidal quantum dot-based light-emitting diodes (QDLEDs) as a compact light source towards arrayed on-chip imaging of tumor cells. Colloidal quantum dots (QDs) were used as the emission layer due to their unique capabilities, including multicolor emission, narrow bandwidth, tunable emission wavelengths, and compatibility with silicon fabrication. The nanograting, based on a metal-dielectric-metal plasmonic waveguide, aims to enhance the light intensity through the resonant reflection of surface plasmon (SP) waves. The key parameters of plasmonic nanogratings, including periodicity, slit width, and thicknesses of the metal and dielectric layers, were designed to tailor the frequency bandgap such that it matches the wavelength of operation. We fabricated QDLEDs with the integrated nanogratings and demonstrated an increase in electroluminescence intensity, measured along the direction perpendicular to the metal electrode. We found an increase of 34.72% in QDLED electroluminescence intensity from the area of the pattern and an increase of 32.63% from the photoluminescence of QDs deposited on a metal surface. We performed ex vivo transmission-mode microscopy to evaluate the nucleus-cytoplasm ratios of MDA-MB 231 cultured breast cancer cells using QDLEDs as the light source. We showed wavelength dependent imaging of different cell components and imaging of cells at higher magnification using enhanced emission from QDLEDs with integrated plasmonic nanogratings.

  17. Coupling of Surface Plasmons and Semiconductor Nanocrystals for Nanophotonics Applications

    Science.gov (United States)

    Jayanti, Sriharsha V.

    The goal of this thesis is to engineer the interaction between surface plasmons and semiconductor nanocrystals for nanophotonic applications. Plasmonic metals support surface plasmon polaritons, hybrid photon and electron waves that propagate along a metal-dielectric interface. Unlike photons, surface plasmons can be confined in sub-diffraction geometries. This has two important consequences: 1) optical devices can be designed at the nanoscale, and 2) the high density of electromagnetic fields allows study of enhanced light-matter interactions. Surface plasmons have been exploited to demonstrate components of optoelectronic circuits, optical antennas, surface enhanced spectroscopy, enhanced fluorescence from fluorophores, and nanolasers. Despite the advances, surface plasmon losses limit their propagation lengths to tens of micrometers in the visible wavelengths, hindering many applications. Recently, the template-stripping approach was shown to fabricate metal films that exhibit larger grains and smoother surface, reducing the grain boundary and roughness scattering. To further improve the plasmonic properties, we investigate the importance of deposition conditions in the template-stripping approach. We provide insight and recipes to enhance the plasmonic performance of the most commonly used metals in the ultraviolet, visible, and near-infrared. We also explore the potential of low temperatures to improve the performance of metal films, where the electron-electron and electron-phonon scattering should be reduced. This sets a limit on the minimum loss metals can exhibit. Using this knowledge, we study the optical properties of quantum-confined semiconductor nanocrystals near metal structures. Semiconductor nanocrystals have many attractive characteristics that make them suitable for solid-state lighting and solar cells among others. Specifically, CdSe nanocrystals have been heavily studied for their large absorption and emission cross-sections, size dependent

  18. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...

  19. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  20. Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Kneipp, Harald;

    2013-01-01

    Large metal nanostructures with subnanometer interparticle separations (gaps) can provide extremely high local fields and are of particular interest in surface enhanced spectroscopy, as well as for basic understanding of plasmonics. In this experimental electron energy loss study, we monitor the ...

  1. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Science.gov (United States)

    Lumdee, Chatdanai; Kik, Pieter G.

    2016-06-01

    The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  2. Enhancement of electron hot spot relaxation in photoexcited plasmonic structures by thermal diffusion

    CERN Document Server

    Spitzer, F; Belotelov, V I; Vondran, J; Akimov, I A; Kasture, S; Achanta, V G; Yakovlev, D R; Bayer, M

    2016-01-01

    We demonstrate that in confined plasmonic metal structures subject to ultra-fast laser excitation electron thermal diffusion can provide relaxation faster than the energy transfer to the lattice. This relaxation occurs due to excitation of nanometer-sized hot spots in the confined structure and the sensitivity of its optical parameters to the perturbation in these regions. Both factors become essential when the plasmonic resonance condition is met for both excitation and detection. A pump-probe experiment on plasmonic gold lattices shows sub-picosecond relaxation with the characteristic times well-described by a two-temperature model. The results suggest that dynamical optical response in plasmonic structures can be tuned by selection of the structural geometry as well as the choice of wavelength and polarization of the excitation and detection light.

  3. Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

    Science.gov (United States)

    Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail

    2016-07-01

    In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.

  4. Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens

    DEFF Research Database (Denmark)

    Thoreson, Mark D.; Nielsen, Rasmus Bundgaard; West, Paul R.;

    2011-01-01

    We have studied the ability of a lamellar near-field superlens to transfer an enhanced electromagnetic field to the far side of the lens. In this work, we have experimentally and numerically investigated superlensing in the visible range. By using the resonant hot-spot field enhancements from opt...

  5. Optical studies of multilayer dielectric-metal-dielectric coatings as applied to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Demichelis, F.; Minetti-Mezzetti, E.; Perotto, V.

    1982-09-01

    A study of antireflection coatings for solar cells which provide maximum transmittance in the range of the spectral response of the cell and maximum reflectance in the IR portion of the spectrum of normally incident radiation is reported. Dielectric-metal-dielectric filters with a relatively low number of dielectric layers are designed as coatings for silicon and GaAs solar cells.

  6. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  7. Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission

    Science.gov (United States)

    2013-04-01

    Red, Green, Blue, Yellow, Magenta, Cyan) averaged CIE Delta-E 2000 = 16.6-19.3 after a white balance and color matrix correction is applied to the...insertion loss and also metal-insulator-metal waveguides; iii) developed a full format CMOS image sensor with plasmonic color filters; iv) explored... color filters and demonstration of imaging. v. Design of a plasMOStor plasmonic switching device, with low insertion loss, implemented in CMOS Si

  8. Quantitative coupled-mode model for a metal-dielectric-metal waveguide with a side-coupled cavity.

    Science.gov (United States)

    Zhong, Ying; Zhou, Hongkun; Liu, Haitao

    2014-10-01

    The Fabry-Perot model is proposed to analyze the wavelength-selective transmission behaviors of the metal-dielectric-metal waveguide with a rectangular side-coupled cavity. The guided modes propagating in the waveguide and the cavity are extracted by the aperiodic Fourier modal method (a-FMM). The scattering coefficients that appeared in the model are calculated by the a-FMM and the normal-mode theory. The applications of such structure in the wavelength-selective filter and the refractive index sensor are also discussed. Our model is shown to accurately predict the fully vectorial data and thus can provide reliable and quantitative analysis of this kind of device.

  9. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  10. Plasmonic properties and applications of metallic nanostructures

    Science.gov (United States)

    Zhen, Yurong

    Plasmonic properties and the related novel applications are studied on various types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure, the motion of free electrons in a metal-film with nanoscale thickness is confined in its normal dimension and free in the other two. Describing the free-electron motion at metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation of such motions and is well known. When further perforated with periodic array of holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate the coupling between free-space photon and SPP. We applied this concept to achieve a plasmonic perfect absorber. The experimentally observed reflection dip splitting is qualitatively explained by a perturbation theory based on the above concept. If confined in 2D, the nanostructures become nanowires that intrigue a broad range of research interests. We performed various studies on the resonance and propagation of metal nanowires with different materials, cross-sectional shapes and form factors, in passive or active medium, in support of corresponding experimental works. Finite- Difference Time-Domain (FDTD) simulations show that simulated results agrees well with experiments and makes fundamental mode analysis possible. Confined in 3D, the electron motions in a single metal nanoparticle (NP) leads to localized surface plasmon resonance (LSPR) that enables another novel and important application: plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the excited plasmon will decay into heat in the particle and will heat up the surrounding liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP to liquid will undergo an explosive process and make a vapor envelop: nanobubble. We characterized the size, pressure and temperature of the nanobubble by a simple model relying on Mie calculations and continuous medium assumption. A

  11. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  12. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction

    Science.gov (United States)

    Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang

    2017-02-01

    We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is observed. We show that the ultracompact graphene-based system can produce sub-diffraction-limited images with the resolution significant smaller than the wavelength of the incident terahertz wave. Moreover, by adjusting the Fermi energy of the graphene, the imaging performance of the proposed system can remain almost invariant for different frequencies. Our results may find applications in diverse fields such as subwavelength spatial light manipulation, biological imaging, and so forth.

  13. Tunable plasmon lensing in graphene-based structure exhibiting negative refraction

    Science.gov (United States)

    Zhong, Shifeng; Lu, Yanxin; Li, Chao; Xu, Haixia; Shi, Fenghua; Chen, Yihang

    2017-01-01

    We propose a novel method to achieve tunable plasmon focusing in graphene/photonic-crystal hybrid structure exhibiting all-angle negative refraction at terahertz frequencies. A two-dimensional photonic crystal composed of a square lattice of dielectric rods is constructed on the substrate of a graphene sheet to provide the hyperbolic dispersion relations of the graphene plasmon, giving rise to the all-angle plasmonic negative refraction. Plasmon lensing induced from the negative refraction is observed. We show that the ultracompact graphene-based system can produce sub-diffraction-limited images with the resolution significant smaller than the wavelength of the incident terahertz wave. Moreover, by adjusting the Fermi energy of the graphene, the imaging performance of the proposed system can remain almost invariant for different frequencies. Our results may find applications in diverse fields such as subwavelength spatial light manipulation, biological imaging, and so forth. PMID:28150750

  14. Plasmonic waveguides with hyperbolic multilayer cladding

    CERN Document Server

    Babicheva, Viktoriia E; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2014-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

  15. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  16. Imaging and controlling plasmonic interference fields at buried interfaces

    Science.gov (United States)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  17. 3D plasmonic nanostar structures for recyclable SERS applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea;

    2015-01-01

    Nanofabrication of metallic nanostructures/nanoparticles enables the detection of analyte molecules at ultra-low concentrations with the aid of plasmon induced hot-spots. The high fabrication cost and large fabrication time of nanostructures limit their usage in practical applications. Here we pr...

  18. Bend loss in surface plasmon polariton band-gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan

    2001-01-01

    Using near-field optical microscopy, we investigate propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-830 nm at a corrugated gold-film surface with areas of 200-nm-wide and 45-nm-high scatterers arranged in a 410-nm-period triangular lattice containing line...

  19. Collective phenomena in photonic, plasmonic and hybrid structures.

    Science.gov (United States)

    Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A

    2011-10-24

    Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America

  20. A method for reduction of propagation loss of surface plasmons. Experimental demonstration of the loss reduction for Fe/MgO/AlGaAs plasmonic structure integrated with AlGaAs/GaAs optical waveguide

    CERN Document Server

    Zayets, V; Ando, K; Yuasa, S

    2015-01-01

    A method for the substantial reduction of propagation loss of surface plasmons was proposed and experimentally demonstrated. The method is based on the fact that the propagation loss of the surface plasmons depends significantly on the optical confinement of the plasmon. A plasmonic structure, which contains a metal and two dielectric layers of different refractive indexes, is proposed in order to optimize optical confinement and to reduce propagation loss of the surface plasmons. A low propagation loss of 0.17 dB/um for a surface plasmon in a Fe/MgO/AlGaAs plasmonic structure was achieved. A good coupling efficiency of 2.2 dB/facet between a surface plasmon in Fe/MgO/AlGaAs and a waveguide mode in AlGaAs/GaAs optical waveguide was demonstrated.

  1. Effects of intermediate plasmonic structures on the performance of ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2017-02-01

    Although solar cells can meet the increasing demand for energy of modern world, their usage is not as widespread as expected because of their high production cost and low efficiency. Thin-film and ultra-thin-film solar cells with single and multiple active layers are being investigated to reduce cost. Additionally, multiple active layers of different energy bandgaps are used in tandem in order to absorb the solar spectra more efficiently. However, the efficiency of ultra-thin-film tandem solar cells may suffer significantly mainly because of low photon absorption and current mismatch between active layers. In this work, we study the effects of intermediate plasmonic structures on the performance of ultra-thin-film tandem solar cells. We consider three structures| each with a top amorphous silicon layer and a bottom micro-crystalline silicon layer, and an intermediate plasmonic layer between them. The intermediate layer is either a metal layer with periodic holes or periodic metal strips or periodic metal nano-clusters. Using a finite difference time domain technique for incident AM 1.5 solar spectra, we show that these intermediate layers help to excite different plasmonic and photonic modes for different light polarizations, and thereby, increase the absorption of light significantly. We find that the short-circuit current density increases by 12%, 6%, and 9% when the intermediate plasmonic structure is a metal hole-array, strips, and nano-clusters, respectively, from that of a structure that does not have the intermediate plasmonic layer.

  2. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  3. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  4. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  5. Landau damping of surface plasmons in metal nanostructures

    CERN Document Server

    Shahbazyan, Tigran V

    2016-01-01

    We develop a quantum-mechanical theory for Landau damping of surface plasmons in metal nanostructures larger that the characteristic length for nonlocal effects. We show that the electron surface scattering, which facilitates plasmon decay in small nanostructures, can be incorporated into the metal dielectric function on par with phonon and impurity scattering. The derived surface scattering rate is determined by the plasmon local field polarization relative to the metal surface, and is highly sensitive to the system geometry. We illustrate our model by providing analytical results for surface scattering rate in some common shape nanostructures.

  6. Efficient Thermal-Light Interconversions Based on Optical Topological Transition in the Metal-Dielectric Multilayered Metamaterials.

    Science.gov (United States)

    Zhou, Jing; Chen, Xi; Guo, L Jay

    2016-04-20

    Metal-dielectric multilayered metamaterials are proposed to work as wideband spectral-selective emitters/absorbers due to the topological change in isofrequency contour around the epsilon-near-zero point. By setting the transition at the border between the visible and IR ranges, the metal-dielectric multilayered metamaterials become good absorbers/emitters for visible light and good reflectors for IR light, which are desirable for efficient thermal-light interconversions.

  7. Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling.

    Science.gov (United States)

    Taubert, Richard; Dregely, Daniel; Stroucken, Tineke; Christ, Andre; Giessen, Harald

    2012-02-21

    Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or excitonic systems, the coupling efficiency of the particle plasmons utilized here is several orders of magnitude larger and widely tunable by changing the size and geometry of the plasmonic nanowires. We are thus able to explore the regime where the coupling distance is even limited by the large radiative decay rate of the oscillators. This Bragg-stacked coupling scheme will open a new route for future plasmonic applications such as far-field coupling to quantum emitters without quenching, plasmonic cavity structures and plasmonic distributed gain schemes for spasers.

  8. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Science.gov (United States)

    Gurevich, E. L.; Gurevich, S. V.

    2014-05-01

    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  9. Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, E.L., E-mail: gurevich@lat.rub.de [Chair of Applied Laser Technology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Gurevich, S.V., E-mail: gurevics@uni-muenster.de [Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Straße 9, 48149 Münster (Germany)

    2014-05-01

    In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation of surface plasmons contradicts the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.

  10. Actively tunable plasmonic lens for subwavelength imaging at different wavelengths

    CERN Document Server

    Zeng, Beibei; Luo, Xiangang

    2011-01-01

    A type of tunable plasmonic lens with nanoslits is proposed for subwavelength imaging in the far field at different wavelengths. The nanoslits array in the plasmonic lens, which have constant depths but varying widths, could generate desired optical phase retardations based on the particular propagation property of the Surface Plasmon Polaritons (SPPs) in the metal-dielectric-metal (MDM) slit waveguides. We theoretically and numerically demonstrate the tunability of a single plasmonic lens for subwavelength imaging (full width at half maximum, 0.37 ~0.47) by adjusting the surrounding dielectric fluid, thereby realizing the compact in-plane tunable plasmonic lens. This work provides a novel approach for developing integrative tunable plasmonic lens for a variety of lab-on-chip applications.

  11. Magnetic Response of Metal-Dielectric Composite at Short Wavelength

    CERN Document Server

    Tang, Jianwei

    2010-01-01

    We propose a new type of split-ring resonator, of which the ring is made of high index dielectric material (e.g. SiC), while metal fills the gap. Such a new magnetic metamaterial is able to operate at short wavelength including the green, blue, violet range and part of ultraviolet range. For ease of fabrication, we also proposed a new type of cut-wire pair structure based on our new type of split-ring resonator.

  12. Extension of standard transfer-matrix method for three-wave mixing for plasmonic structures

    Science.gov (United States)

    Loot, A.; Hizhnyakov, V.

    2017-03-01

    Fast and accurate modeling of three-wave mixing processes in arbitrary stratified medium has significant practical and scientific importance. Several attempts to generalize transfer-matrix method (TMM) for nonlinear interactions have been made; however, none suits for easy-to-use modeling of plasmonic structures which requires oblique angle of incidence, p-polarization and minimal approximations. In this work, an easy-to-use extension to standard TMM is proposed. The proposed method is used to study the strength of unconventional plasmonic enhancement of second harmonic generation.

  13. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  14. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  15. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments

    CERN Document Server

    Koay, Natalie; Kay, Theresa M; Nerger, Bryan A; Miles-Rossouw, Malaika; Shirman, Tanya; Vu, Thy L; England, Grant; Phillips, Katherine R; Utech, Stefanie; Vogel, Nicolas; Kolle, Mathias; Aizenberg, Joanna

    2014-01-01

    We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the later case. By manipulating the surface chemistry of these photonic bricks, which ...

  16. A comprehensive study for the plasmonic thin-film solar cell with periodic structure.

    Science.gov (United States)

    Sha, Wei E I; Choy, Wallace C H; Chew, Weng Cho

    2010-03-15

    A comprehensive study of the plasmonic thin-film solar cell with the periodic strip structure is presented in this paper. The finite-difference frequency-domain method is employed to discretize the inhomogeneous wave function for modeling the solar cell. In particular, the hybrid absorbing boundary condition and the one-sided difference scheme are adopted. The parameter extraction methods for the zeroth-order reflectance and the absorbed power density are also discussed, which is important for testing and optimizing the solar cell design. For the numerical results, the physics of the absorption peaks of the amorphous silicon thin-film solar cell are explained by electromagnetic theory; these peaks correspond to the waveguide mode, Floquet mode, surface plasmon resonance, and the constructively interference between adjacent metal strips. The work is therefore important for the theoretical study and optimized design of the plasmonic thin-film solar cell.

  17. Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures

    Science.gov (United States)

    Muravjov, A. V.; Veksler, D. B.; Hu, X.; Gaska, R.; Pala, N.; Saxena, H.; Peale, R. E.; Shur, M. S.

    2009-05-01

    Pronounced resonant absorption and frequency dispersion associated with an excitation of collective 2D plasmons have been observed in terahertz (0.5-4THz) transmission spectra of grating-gate 2D electron gas AlGaN/GaN HEMT (high electron mobility transistor) structures at cryogenic temperatures. The resonance frequencies correspond to plasmons with wavevectors equal to the reciprocal-lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. The resonances are tunable by changing the applied gate voltage, which controls 2D electron gas concentration in the channel. The effect can be used for resonant detection of terahertz radiation and for "on-chip" terahertz spectroscopy.

  18. Frequency-dependent optical steering from subwavelength plasmonic structures.

    Science.gov (United States)

    Djalalian-Assl, A; Gómez, D E; Roberts, A; Davis, T J

    2012-10-15

    We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

  19. Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation.

    Science.gov (United States)

    Personick, Michelle L; Langille, Mark R; Zhang, Jian; Wu, Jinsong; Li, Shuyou; Mirkin, Chad A

    2013-06-10

    The plasmon-mediated synthesis of silver nanoparticles is a versatile synthetic method which leverages the localized surface plasmon resonance (LSPR) of nanoscale silver to generate particles with non-spherical shapes and control over dimensions. Herein, a method is reported for controlling the twinning structure of silver nanoparticles, and consequently their shape, via the plasmon-mediated synthesis, solely by varying the excitation wavelength between 400, 450, and 500 nm, which modulates the rate of Ag⁺ reduction. Shorter, higher energy excitation wavelengths lead to faster rates of reaction, which in turn yield structures containing a greater number of twin boundaries. With this method, silver cubes can be synthesized using 450 nm excitation, which represents the first time this shape has been realized by a plasmon-mediated synthetic approach. In addition, these cubes contain an unusual twinning structure composed of two intersecting twin boundaries or multiple parallel twin boundaries. With respect to their twinning structure, these cubes fall between planar-twinned and multiply twinned nanoparticles, which are synthesized using 500 and 400 nm excitation, respectively.

  20. Slow and fast light in metal/dielectric composites with passive and active host matrices

    Energy Technology Data Exchange (ETDEWEB)

    Mal' nev, V.N., E-mail: vadimmalnev@yahoo.com; Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com

    2013-10-01

    The optical properties of metal/dielectric composites (metal with dielectric core and pure metal inclusions) in passive and active host matrices are studied. It is shown that the real and imaginary parts of the refractive index of the composites with metal covered inclusions have two maxima at two resonant frequencies. Both types of composites show strong anomalous dispersion of the real part of refractive index. The active host matrices can considerably reduce the absorption and provide the conditions for the propagation of weakly damping light waves at the resonant frequencies. The weakly spreading wave packets of light with negative group velocity can be experimentally observed in these composites.

  1. The radiation-induced galvanic effect at a metal-dielectric interface

    Science.gov (United States)

    Zaitsev, V. I.; Barykov, I. A.; Kartashov, A. V.; Terent'ev, O. V.; Rodionov, N. B.

    2016-11-01

    The effect observed upon interaction between the electromagnetic radiation with quantum energy of 25-1000 eV and a dielectric with metal coating is investigated. The radiation source was a megampere Z-pinch. Measurements performed on optical glass samples showed that radiation with a power of 106 W/cm2 in the electric circuit switching on the metalized dielectric induces the current. It is shown that the observed galvanic effect originates from the generation of hot electrons in the dielectric.

  2. Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.

    Science.gov (United States)

    Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W

    2004-09-17

    We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.

  3. Optical and terahertz energy concentration on the nanoscale in plasmonics

    Science.gov (United States)

    Rusina, Anastasia

    We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R0 ≈ lambda0 ≈ 300 microm to the unprecedented final size of R = 100--250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These

  4. Engineered/tailored nanoporous gold structures for infrared plasmonics

    Science.gov (United States)

    Garoli, Denis; Calandrini, Eugenio; Cattarin, Sandro; Barison, Simona; Zilio, Pierfrancesco; Bozzola, Angelo; Toma, Andrea; De Angelis, Francesco

    2015-08-01

    Nanoporous gold is a very promising and novel material platform for mid-infrared and THz plasmonics. Nanoporous gold can be formed by dealloying of Au-Ag alloys, previously grown by means of Ag-Au co-sputtering. The optical response is completely determined by the nanostructural film features, that depends on the initial alloy composition and on the preparation procedure. The behavior of the material in mid-infrared and its peculiar morphology with a very high surface/volume ratio can be applied for nanostructure fabrication, such for example nanoantennas. Here we report the design and fabrication of nanoporous antennas engineered to support resonances in the 1500-1700 cm-1 range where them can be exploited, for example, in the detection of protein conformational states. This novel paradigm points toward the development of a new class of efficient and high-selective biosensors.

  5. Nonlocal extensions of the electromagnetic response of plasmonic and metamaterial structures

    Science.gov (United States)

    Shvonski, Alexander J.; Kong, Jiantao; Kempa, Krzysztof

    2017-01-01

    Nonlocal effects, requiring wave-vector- (q -) dependent dielectric response functions, are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation is the simplest and most often used model but with limited applicability to problems involving surface plasmons. We show here that the d -function formalism, exact to first order in q , is a powerful and simple-to-use alternative, which allows for exact nonlocal extensions of local calculation schemes, e.g., finite-difference time-domain methods, without code changes. It is also extendable to order q2, and we demonstrate this by comparing with various earlier ab initio calculations and experiments as well as by performing our own random-phase-approximation calculations (valid for all q ) of the surface-plasmon dispersions for simple metals with various electron-gas densities. Finally we show that this hydrodynamic-extended d -function formalism can also be applied to arbitrary plasmonic/metamaterial structures as long as the nonflat interfaces can be modeled as effective media films.

  6. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry

    Energy Technology Data Exchange (ETDEWEB)

    Awal, M. A.; Ahmed, Zabir [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh); Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh); Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States)

    2015-02-14

    We show that a silicon thin-film photovoltaic structure with silicon strips on the top and grooves on the silver back contact layer can absorb incident solar energy over a broad spectral range. The silicon strips on the top scatter the incident light and significantly help couple to the photonic modes in the smaller wavelength range. The grooves on the silver back contact layer both scatter the incident light and help couple to the photonic modes and resonant surface plasmon polaritons. We find an increase of ∼46% in total integrated solar absorption in the proposed strip-loaded structure compared to that in a planar thin film structure of same dimensions. The proposed structure offers simpler fabrication compared to similar plasmonic-inspired designs.

  7. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry

    Science.gov (United States)

    Awal, M. A.; Ahmed, Zabir; Talukder, Muhammad Anisuzzaman

    2015-02-01

    We show that a silicon thin-film photovoltaic structure with silicon strips on the top and grooves on the silver back contact layer can absorb incident solar energy over a broad spectral range. The silicon strips on the top scatter the incident light and significantly help couple to the photonic modes in the smaller wavelength range. The grooves on the silver back contact layer both scatter the incident light and help couple to the photonic modes and resonant surface plasmon polaritons. We find an increase of ˜46% in total integrated solar absorption in the proposed strip-loaded structure compared to that in a planar thin film structure of same dimensions. The proposed structure offers simpler fabrication compared to similar plasmonic-inspired designs.

  8. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    Science.gov (United States)

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  9. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of); Tung, Nguyen Thanh [KU Leuven, Leuven (Belgium); Tung, Bui Son; Lam, Vu Dinh [Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2014-07-15

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  10. Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects.

    Science.gov (United States)

    Zhai, Wu-Chao; Qiao, Tie-Zhu; Cai, Dong-Jin; Wang, Wen-Jie; Chen, Jing-Dong; Chen, Zhi-Hui; Liu, Shao-Ding

    2016-11-28

    Third-harmonic generation with metallic or dielectric nanoparticles often suffer from, respectively, small modal volumes and weak near-field enhancements. This study propose and demonstrate that a metallic/dielectric hybrid nanostructure composed of a silver double rectangular nanoring and a silicon square nanoplate can be used to overcome these obstacles for enhanced third-harmonic generation. It is shown that the nonradiative anapole mode of the Si plate can be used as a localized source to excite the dark subradiant octupole mode of the Ag ring, and the mode hybridization leads to the formation of an antibonding and a bonding subradiant collective mode, thereby forming anticrossing double Fano resonances. With the strong coupling between individual particles and the effectively suppressed radiative losses of the Fano resonances, several strong hot spots are generated around the Ag ring due to the excitation of the octupole mode, and electromagnetic fields within the Si plate are also strongly amplified, making it possible to confine more incident energy inside the dielectric nanoparticle. Calculation results reveal that the confined energy inside the Si plate and the Ag ring for the hybrid structures can be about, respectively, more than three times and four orders stronger than that of the corresponding isolated nanoparticles, which makes the designed hybrid nanostructure a promising platform for enhanced third-harmonic generation.

  11. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland;

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference ph...

  12. Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers

    Science.gov (United States)

    Jeong, Minyoung; Freedman, Justin P.; Liang, Hongliang Joe; Chow, Cheng-Ming; Sokalski, Vincent M.; Bain, James A.; Malen, Jonathan A.

    2016-01-01

    We show that the use of subnanometer adhesion layers significantly enhances the thermal interface conductance at metal-dielectric interfaces. A metal-dielectric interface between Au and sapphire (Al2O3) is considered using Cu (low optical loss) and Cr (high optical loss) as adhesion layers. To enable high throughput measurements, each adhesion layer is deposited as a wedge such that a continuous range of thicknesses could be sampled. Our measurements of thermal interface conductance at the metal-Al2O3 interface made using frequency-domain thermoreflectance show that a 1-nm-thick adhesion layer of Cu or Cr is sufficient to enhance the thermal interface conductance by more than a factor of 2 or 4, respectively, relative to the pure Au/Al2O3 interface. The enhancement agrees with the diffuse-mismatch-model-based predictions of accumulated thermal conductance versus adhesion-layer thickness assuming that it contributes phonons with wavelengths less than its thickness, while those with longer wavelengths transmit directly from the Au.

  13. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  14. Existence conditions for bulk large-wavevector waves in metal-dielectric and graphene-dielectric multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in arbitrary subwavelength periodic multilayers structures. Treating the elementary excitation in the unit cell......-dielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high-k waves...... and explore the range of parameters, where this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The suggested formalism is applicable to a large variety of structures, such as continuous or structured microwave, terahertz (THz) and optical metamaterials...

  15. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath

    2011-05-25

    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.

  16. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    Science.gov (United States)

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers.

  17. Plasmon-gating photoluminescence in graphene/GeSi quantum dots hybrid structures

    Science.gov (United States)

    Chen, Yulu; Wu, Qiong; Ma, Yingjie; Liu, Tao; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Xu, Fei; Lu, Jianping; Jiang, Zuimin

    2015-01-01

    The ability to control light-matter interaction is central to several potential applications in lasing, sensing, and communication. Graphene plasmons provide a way of strongly enhancing the interaction and realizing ultrathin optoelectronic devices. Here, we find that photoluminescence (PL) intensities of the graphene/GeSi quantum dots hybrid structures are saturated and quenched under positive and negative voltages at the excitation of 325 nm, respectively. A mechanism called plasmon-gating effect is proposed to reveal the PL dependence of the hybrid structures on the external electric field. On the contrary, the PL intensities at the excitation of 405 and 795 nm of the hybrid structures are quenched due to the charge transfer by tuning the Fermi level of graphene or the blocking of the excitons recombination by excitons separation effect. The results also provide an evidence for the charge transfer mechanism. The plasmon gating effect on the PL provides a new way to control the optical properties of graphene/QD hybrid structures. PMID:26631498

  18. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  19. Ultimate limit of field confinement by surface plasmon polaritons

    CERN Document Server

    Khurgin, Jacob B

    2014-01-01

    We show that electric field confinement in surface plasmon polaritons propagating at the metal/dielectric interfaces enhances the loss due to Landau damping and which effectively limits the degree of confinement itself. We prove that Landau damping and associated with it surface collision damping follow directly from Lindhard formula for the dielectric constant of free electron gas Furthermore, we demonstrate that even if all the conventional loss mechanisms, caused by phonons, electron-electron, and interface roughness scattering, were eliminated, the maximum attainable degree of confinement and the loss accompanying it would not change significantly compared to the best existing plasmonic materials, such as silver.

  20. Finite-width plasmonic waveguides with hyperbolic multilayer cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-04-20

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

  1. Structure and Plasmonic Properties of Thin PMMA Layers with Ion-Synthesized Ag Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir; Hanif, Muhammad; Mackova, Anna;

    2015-01-01

    Silver nanoparticles are synthesized in polymethylmethacrylate (PMMA) by 30 keV Ag+ ion implantation with high fluences. The implantation is accompanied by structural and compositional evolution of the polymer as well as sputtering. The latter causes towering of the shallow nucleated Ag nanoparti......Silver nanoparticles are synthesized in polymethylmethacrylate (PMMA) by 30 keV Ag+ ion implantation with high fluences. The implantation is accompanied by structural and compositional evolution of the polymer as well as sputtering. The latter causes towering of the shallow nucleated Ag...... nanoparticles above the surface. The synthesized nanoparticles can be split into two groups: (i) located at the surface and (ii) fully embedded in the shallow layer. These two groups provide corresponding spectral bands related to localized surface plasmon resonance. The bands demonstrate considerable intensity...... making the synthesized composites promising for plasmonic applications....

  2. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    Science.gov (United States)

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  3. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    Science.gov (United States)

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  4. Coalescence and anti-coalescence of surface plasmons on a lossy beamsplitter

    CERN Document Server

    Vest, Benjamin; Devaux, Éloïse; Ebbesen, Thomas W; Baron, Alexandre; Rousseau, Emmanuel; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasma waves are collective oscillations of electrons that propagate along a metal-dielectric interface. In the last ten years, several groups have reproduced fundamental quantum optics experiments with surface plasmons. Observation of single-plasmon states, waveparticle duality, preservation of entanglement of photons in plasmon-assisted transmission, and more recently, two-plasmon interference have been reported. While losses are detrimental for the observation of squeezed states, they can be seen as a new degree of freedom in the design of plasmonic devices, thus revealing new quantum interference scenarios. Here we report the observation of two-plasmon quantum interference between two freely-propagating, non-guided SPPs interfering on lossy plasmonic beamsplitters. As discussed in the article "Quantum optics of lossy beam splitters" by Barnett et al. (Phys. Rev. A 57, 2134 (1998)) , the presence of losses (scattering or absorption) relaxes constraints on the reflection and transmission factors of ...

  5. SPP-associated dual left-handed bands and field enhancement in metal-dielectric-metal metamaterial perforated by asymmetric cross hole arrays.

    Science.gov (United States)

    Ding, P; Liang, E J; Hu, W Q; Zhou, Q; Zhang, L; Yuan, Y X; Xue, Q Z

    2009-02-16

    Dual-band left-handed transmissions in the near infrared frequencies through the metal-dielectric-metal metamaterial perforated with an array of asymmetric cross holes are demonstrated. It is shown that the left-handed bands originate from the SPP-associated magnetic response excited by different polarized light and their frequencies can be tuned by the arm's length or width of the cross-gaps. The structures are further optimized at 1.064 microm laser light excitation for elucidating the mechanism and possible application in surface enhanced Raman spectroscopy in sandwiched architectures. This study provides valuable information for the design of compact optical devices with dual left-handed bands in a single structure and may also pave the way toward stable and reproducible substrate design for surface enhanced Raman spectroscopy.

  6. Sensing characteristics of plasmonic structure based on transferring process of polystyrene nano-beads

    Science.gov (United States)

    Kim, Doo Gun; Hwang, Jeongwoo; Kim, Seon Hoon; Ki, Hyun Chul; Kim, Tae Un; Shin, Jae Cheol; Jeong, Dae-Cheol; Jeon, Seungwon; Kim, Hong-Seung; Choi, Young-Wan

    2016-04-01

    We analyzed and demonstrated the double layered metallic nano-structures using polystyrene lift-off process on the conventional surface plasmon resonance (SPR) sensor to enhance the sensitivity of an SPR surface. The double layered plasmonic structures are optimized using the three-dimensional finite-difference time-domain method for the width, thickness, and period of the polystyrene beads. The thickness of the metal film and the metallic nano-hole is 20 and 20 nm in the 305 nm wide nano-hole size, respectively. The double layered metallic nano-structures are fabricated with monolayer polystyrene beads of chloromethyl latex 4% w/v 0.4 μm. The sensitivities of the conventional SPR sensor and the double layered plasmonic sensor are obtained to 42.2 and 60 degree/RIU, respectively. The SPR devices are also applied to the lead ion sensor. The resonance shifts of SPR sensors with and without a poly(vinyl chloride) membrane are 1328 RU and 788 RU from 10-5 M to 10-2 M concentration, respectively.

  7. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    Science.gov (United States)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  8. Tunable plasmon resonance in the nanobars and split ring resonator(SRR) composite structure

    Science.gov (United States)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang; Chen, Qiao

    2016-10-01

    We have proposed a multi-band metamaterials composed of bars and planer SRR. There are three sharp peaks in the transmission spectra in the visible and near-infrared region, we find that the transmission spectra are highly tunable as the coupling and geometric parameters modifying, especially the third peak in the near-infrared region. When the gap distance between the two nanobar g1<14 nm, the original first peak will split, a new dip and peak will exist, which is results from the high-order plasmon resonance. When introducing asymmetry to the planer SRR, a new sharp peak accompany with a new sharp dip exists in the original second peak, which is originated from the strong electric field resonance. We also find that the proposed structures with sensing sensitivity of ~467 nm/RIU, which can be used for plasmonic sensor.

  9. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Pingping Qiu

    2016-09-01

    Full Text Available In this paper, one-dimensional (1D and two-dimensional (2D graphene-based plasmonic photonic crystals (PhCs are proposed. The band structures and density of states (DOS have been numerically investigated. Photonic band gaps (PBGs are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  10. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-01-01

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  11. Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures.

    Science.gov (United States)

    Wang, Peng; Huang, Baibiao; Lou, Zaizhu; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying; Zheng, Zhaoke; Wang, Xiaoning

    2010-01-11

    By means of a simple ion-exchange process (using different precursors) and a light-induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self-assembled structures-including microrods, irregular balls, and hollow spheres-have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV-visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible-light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.

  12. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate that multiple high-order spoof localized surface plasmons (spoof-LSPs) modes can be supported on a complementary metallic spiral structure, which were absent in the previously reported spoof-LSPs modes. Through exact numerical simulations and near-field imaging experiments, we directly observe these high-order spoof-LSPs modes at microwave frequencies. We also show that these higher-order spoof-LSPs modes exhibit larger frequency shifts caused by the local environmental refractive index change than the previously reported low-order spoof-LSPs modes. Hence the complementary MSS may find potential applications as plasmonic sensor in the microwave and terahertz frequencies. PMID:27079658

  13. Transverse Magneto-Optical Kerr Effect in Active Magneto-Plasmonic Structures

    CERN Document Server

    Borovkova, Olga; Belotelov, Vladimir

    2016-01-01

    We propose a novel method to enhance the transverse magneto-optical Kerr effect (TMOKE) in the magneto-plasmonic (MP) nanostructures by means of the active dielectric layer. We report the theoretical analysis of the magnetoplasmonic structure with a ferromagnetic dielectric doped with rear-earth ions (Nd3+) as the example of a gain layer. The enhancement takes place near the surface plasmon polariton (SPP) resonances of the nanostructures. The stimulated emission of the dopants in the field of SPP wave partially compensates its losses. It is shown that due to a decrease of SPP damping a Q-factor of the MP resonance increases and the TMOKE is increased in comparison with the passive nanostructure.

  14. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams

    Science.gov (United States)

    Ugarte, Daniel; Ducati, Caterina

    2016-05-01

    We have theoretically studied how the azimuthal phase structure of an electron vortex beam excites surface plasmons on metal particles of different geometries as observed in electron energy loss spectroscopy (EELS). We have developed a semiclassical approximation combining a ring-shaped beam and the dielectric formalism. Our results indicate that for the case of total orbital angular momentum transfer, we can manipulate surface plasmon multipole excitation and even attain an enhancement factor of several orders of magnitude. Since electron vortex beams interact with particles mostly through effects due to azimuthal symmetry, i.e., in the plane perpendicular to the electron beam, anisotropy information (longitudinal and transversal) of the sample may be derived in EELS studies by comparing nonvortex and vortex beam measurements.

  15. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.

    Science.gov (United States)

    Oh, Jeong-Wook; Lim, Dong-Kwon; Kim, Gyeong-Hwan; Suh, Yung Doug; Nam, Jwa-Min

    2014-10-08

    The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.

  16. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    Science.gov (United States)

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-03-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers.

  17. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    Science.gov (United States)

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-01-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383

  18. Two-mode model for metal-dielectric guided-mode resonance filters.

    Science.gov (United States)

    Tuambilangana, Christelle; Pardo, Fabrice; Sakat, Emilie; Bouchon, Patrick; Pelouard, Jean-Luc; Haïdar, Riad

    2015-12-14

    Symmetric metal-dielectric guided-mode resonators (GMR) can operate as infrared band-pass filters, thanks to high-transmission resonant peaks and good rejection ratio. Starting from matrix formalism, we show that the behavior of the system can be described by a two-mode model. This model reduces to a scalar formula and the GMR is described as the combination of two independent Fabry-Perot resonators. The formalism has then been applied to the case of asymmetric GMR, in order to restore the properties of the symmetric system. This result allows designing GMR-on-substrate as efficient as free-standing systems, the same high transmission maximum value and high quality factor being conserved.

  19. Synthesis and investigation of random metal-dielectric as microwave metamaterials

    Science.gov (United States)

    Khorshidi, Zahra; Bahari, Ali

    2016-08-01

    Metal-dielectric nanocomposites made of Ag nanorods embedded in Co0.05Ti0.95O2 were investigated. The effect of Ag contents on dielectric and magnetic responses of nanocomposites was studied. The results show that above the percolation threshold, the nanocomposite has metal-like behavior with negative permittivity. Moreover, the combined contributions of the magnetic resonance of ferrimagnetic Co0.05Ti0.95O2 particles and the diamagnetic response of the current loops (made of random Ag nanorod networks) bring about negative permeability in high frequency. These results indicate that the CTO-Ag 30% sample is a promising candidate for the double-negative materials.

  20. Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites.

    Science.gov (United States)

    Zhao, Bin; Gao, Lei

    2009-11-23

    The temperature-dependent Goos-Hänchen shift (GHS) for an electromagnetic wave reflected from a metal/dielectric composite material is investigated. With the stationary-phase method, we theoretically show that the effect of the temperature on GHS is significant near the Brewster angle for the dielectric composites and at the grazing angle for the metallic composites. For dielectric composites, the lateral shift can be negative as well as positive. And GHS may become much negative, much positive, and nonmonotonic variation with increasing the temperature under different conditions. Moreover, through the suitable adjustment of the temperature, one may realize the reversal of the GHS. To support the above results, numerical simulations for Gaussian incident beams based on the momentum method and COMSOL Multiphysics software are provided, and reasonable agreement between the theoretical results and numerical simulations is found.

  1. Local Field Distribution Function and High Order Field Moments for metal-dielectric composites.

    Science.gov (United States)

    Genov, Dentcho A.; Sarychev, Andrey K.; Shalaev, Vladimir M.

    2001-11-01

    In a span of two decades the physics of nonlinear optics saw vast improvement in our understanding of optical properties for various inhomogeneous mediums. One such medium is the metal-dielectric composite, where the metal inclusions have a surface coverage fraction of p, while the rest (1-p) is assumed to represent the dielectric host. The computations carried out by using different theoretical models and the experimental data show existence of giant local electric and magnetic field fluctuations. In this presentation we will introduce a new developed 2D model that determines exactly the Local Field Distribution Function (LFDF) and all other relevant parameters of the film. The LFDF for small filling factors will be shown to transform from lognormal distribution into a single-dipole distribution function. We also will confirm the predictions of the scaling theory for the high field moments, which have a power law dependence on the loss factor.

  2. Existence conditions for bulk large-wavevector waves in metal-dielectric and graphene-dielectric multilayer hyperbolic metamaterials

    Science.gov (United States)

    Zhukovsky, Sergei V.; Andryieuski, Andrei; Lavrinenko, Andrei V.; Sipe, J. E.

    2014-05-01

    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in arbitrary subwavelength periodic multilayers structures. Treating the elementary excitation in the unit cell of the structure as a generalized resonance pole of reflection coefficient and using Bloch's theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metaldielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectricmultilayers tend to support high-k waves and explore the range of parameters, where this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The suggested formalism is applicable to a large variety of structures, such as continuous or structured microwave, terahertz (THz) and optical metamaterials, optical waveguide arrays, 2D plasmonic and acoustic metamaterials.

  3. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matched layer absorbing boundary condition.Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing.Based on the relationship,the refractive index of the material can be obtained from the detection of one of the resonant wavelengths.The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10-6,giving the wavelength resolution of 0.01 nm.It could be applied to highly-resolution biological sensing.%A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matcted layer absorbing boundary conditition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolutio of refractive index of the nanometeric plasmonic sensor can reach as high as 1O-6, giving the wavelength resolution of 0.01 nm. It could be applied to highly- resolution biological sensing.

  4. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-11-12

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.

  5. Engineering the Propagation of High-k Bulk Plasmonic Waves in Multilayer Hyperbolic Metamaterials by Multiscale Structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, John E.

    and feature exotic physical effects such as broadband singularity in the photonic density of states. It was shown that these photonic states are mainly populated by propagating high-k bulk plasmons, stemming from hybridization of short-range surface plasmon polaritons (SRSPPs) supported by individual metallic...... enhancement of spontaneous emission or blackbody radiation. In addition, the proposed structures can be employed to investigate other aspects of light-matter interaction in unusual environments....

  6. Basics of quantum plasmonics

    Science.gov (United States)

    Hieu Nguyen, Van; Nguyen, Bich Ha

    2015-01-01

    The present work is a topical review of the theoretical research on the quantum theory of plasmons and plasmon-photon interaction. The plasmons are defined as the quanta of the quantized plasmonic field. The corresponding classical plasmonic field was constructed on the basis of the study of collective oscillations of the electron gas in the solid. The electron-electron Coulomb interaction is taken into account. The explicit forms of the plasmon-photon interaction Lagrangian in canonical quantum mechanics and the plasmon-photon interaction action functional in the functional integral approach are derived. They all show that the interaction processes are nonlocal ones. The physical origin of the nonlocality is the complex structure of plasmons as composite quasiparticles: they cannot be considered as point particles, as was assumed in all phenomenological theories.

  7. Functionalization of plasmonic metamaterials utilizing metal-organic framework thin films

    Science.gov (United States)

    Jakšić, Zoran; Popović, Zora; Djerdj, Igor; Jaćimović, Željko K.; Radulović, Katarina

    2012-05-01

    We considered theoretically and experimentally a strategy to functionalize plasmonic metamaterials utilizing either a metal-organic framework (MOF) or inorganic-organic hybrids for application in adsorption-based gas sensing. MOFs are one-dimensional (1D), 2D or 3D crystalline compounds that simultaneously contain metal ions or ion clusters and organic moieties, forming thus porous networks ensuring an increased effective surface for adsorption. Metamaterials can enhance plasmonic sensor performance through metal-dielectric nanocompositing that simultaneously tailors the electromagnetic response and boosts adsorption of the targeted analyte through the use of nanopores. To perform functionalization, it is necessary to integrate one or several layers of MOF nanocrystals with the metamaterial scaffold. The simplest approach is to use dip or drop coating or the layer-by-layer technique. The scaffolds that we considered included freestanding, ultrathin membranes and sandwich structures with nanoaperture arrays. For this investigation, we used a non-aqueous sol-gel route to synthesize vanadium oxyanthracene carboxylate, a novel material with 1D crystal structure. Our results suggest that preferential concentration of analyte within the MOF pores may ensure improved adsorption and thus sensor sensitivity enhancement. Also, one may increase selectivity by introducing nanoparticle fillers or by utilizing other functionalizing materials such as catalysts or ligands.

  8. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.

    Science.gov (United States)

    Miller, Molly M; Lazarides, Anne A

    2005-11-24

    Electrodynamic simulations of gold nanoparticle spectra were used to investigate the sensitivity of localized surface plasmon band position to the refractive index, n, of the medium for nanoparticles of various shapes and nanoshells of various structures. Among single-component nanoparticles less than 130 nm in size, sensitivities of dipole resonance positions to bulk refractive index are found to depend only upon the wavelength of the resonance and the dielectric properties of the metal and the medium. Among particle plasmons that peak in the frequency range where the real part of the metal dielectric function varies linearly with wavelength and the imaginary part is small and slowly varying, the sensitivity of the peak wavelength, lambda, to refractive index, n, is found to be a linearly increasing function of lambda, regardless of the structural features of the particle that determine lambda. Quasistatic theory is used to derive an analytical expression for the refractive index sensitivity of small particle plasmon peaks. Through this analysis, the dependence of sensitivity on band position is found to be determined by the wavelength dependence of the real part, epsilon', of the particle dielectric function, and the sensitivity results are found to extend to all particles with resonance conditions of the form, epsilon' = -2chin(2), where chi is a function of geometric parameters and other constants. The sensitivity results observed using accurate computational methods for dipolar plasmon bands of gold nanodisks, nanorods, and hollow nanoshells extend, therefore, to particles of other shapes (such as hexagonal and chopped tetrahedral), composed of other metals, and to higher-order modes. The bulk refractive index sensitivity yielded by the theory serves as an upper bound to sensitivities of nanoparticles on dielectric substrates and sensitivities of nanoparticles to local refractive index changes, such as those associated with biomolecule sensing.

  9. Plasmon resonance optical tuning based on photosensitive composite structures

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Mortensen, N. Asger

    2014-01-01

    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam...... modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam....

  10. Surface dispersion engineering for subwavelength plasmonic components on-a-chip

    Science.gov (United States)

    Gan, Qiaoqiang

    Surface Plasmon Polaritons (SPP) are surface modes that propagate at metal-dielectric interfaces and constitute an electromagnetic field coupled to oscillations of the conduction electrons at the metal surface. The fields associated with the SPP are enhanced at the surface and decay exponentially into the media on either side of the interface. Recently, it was proposed that plasmonic structures and devices operating in the optical domain offer advantages for applications such as on-chip integration of optical circuits, data storages, and bio-sensing. By varying the surface nanotopology, the optical properties of SPPs can be tailored via so-called Surface Dispersion Engineering. This thesis is largely focused on the development of plasmonic components on a chip using surface dispersion engineering technology, including systematic investigations on (1) coupling, (2) waveguiding, (3) manipulation and (4) application of engineered SPP modes. More specifically, in Chapter 2, novel SPP coupling mechanisms will be investigated. Compared with the bulky conventional SPR coupling mechanism, nanopatterns are employed as miniaturized plasmonic surface wave couplers to couple the light to SPP modes. In Chapter 3, nanopatterned metallic surface are employed for waveguiding. By properly designing the geometric parameters of the structures, surface bandgaps can be created to realize a novel bidirectional surface wave splitter. In Chapter 4, the slow-light properties of SPP modes supported by the nanopatterned surfaces will be investigated. Using a graded grating structure, multi-wavelengths could be slow down and trapped at different positions along the metal surface, which is so called "rainbow" trapping effect. In Chapter 5, the structures investigated in the previous chapters are combined to design a novel plasmonic sensing architecture, e.g. vertical plasmonic Mach-Zehnder Interferometer. Such a novel integrated biosensing platform is promising for miniaturized, low cost

  11. Core-Shell Structured Dielectric-Metal Circular Nanodisk Antenna: Gap Plasmon Assisted Magnetic Toroid-like Cavity Modes

    CERN Document Server

    Zhang, Qiang; Zhang, Xiao Ming; Han, Dezhuan; Gao, Lei

    2014-01-01

    Plasmonic nanoantennas, the properties of which are essentially determined by their resonance modes, are of interest both fundamentally and for various applications. Antennas with various shapes, geometries and compositions have been demonstrated, each possessing unique properties and potential applications. Here, we propose the use of a sidewall coating as an additional degree of freedom to manipulate plasmonic gap cavity modes in strongly coupled metallic nanodisks. It is demonstrated that for a dielectric middle layer with a thickness of a few tens of nanometers and a sidewall plasmonic coating of more than ten nanometers, the usual optical magnetic resonance modes are eliminated, and only magnetic toroid-like modes are sustainable in the infrared and visible regime. All of these deep-subwavelength modes can be interpreted as an interference effect from the gap surface plasmon polaritons. Our results will be useful in nanoantenna design, high-Q cavity sensing, structured light-beam generation, and photon e...

  12. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2015-10-01

    Full Text Available Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.

  13. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    Science.gov (United States)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  14. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities

    Science.gov (United States)

    Heng, Hang; Wang, Rong

    2017-01-01

    Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103- 104-fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C (C=1-R min), which can reach 99% by optimizing the structure's geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.

  15. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor

    OpenAIRE

    Wu, Dong; Liu, Yumin; Li, Ruifang; Chen, Lei; Ma, Rui; Liu, Chang; Ye, Han

    2016-01-01

    We propose and numerically investigate a novel perfect ultra-narrow band absorber based on a metal-dielectric-metal-dielectric-metal periodic structure working at near-infrared region, which consists of a dielectric layer sandwiched by a metallic nanobar array and a thin gold film over a dielectric layer supported by a metallic film. The absorption efficiency and ultra-narrow band of the absorber are about 98 % and 0.5 nm, respectively. The high absorption is contributed to localized surface ...

  16. Neighboring Interactions in a Periodic Plasmonic Material for Solar-Thermal Energy Conversion

    CERN Document Server

    Musho, Terence D; Coppens, Zackary J

    2015-01-01

    A periodic plasmonic meta-material was studied using finite-difference time domain (FDTD) method to investigate the influence of neighboring particles on the near unity optical absorptivity. The meta-material was constructed as a silver nanoparticle (20-90nm) situated above an alumina (Al$_2$O$_3$) dielectric environment. A full parametric sweep of the particle width and the dielectric thickness was conducted. Computational results identified several resonances between the metal-dielectric and metal-air that have potential to broadening the response through stacked geometry. A significant coupled resonance between the metal-dielectric resonance and a cavity resonance between particles was capture as a function of dielectric thickness. This coupled resonance was not evident below dielectric thicknesses of 40nm and above cavity widths of 20nm. Additionally, a noticeable propagating surface plasmon polariton resonance was predicted when the particle width was half the unit cell length.

  17. Plasmonic tooth-multilayer structure with high enhancement field for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Li-Chung; Wang, Zhiyu; Clark, J. Kenji; Ho, Ya-Lun; Delaunay, Jean-Jacques

    2017-03-01

    The significant enhancement seen in surface-enhanced Raman scattering (SERS) heavily relies on the ability of plasmonic structures to strongly confine light. Current techniques used to fabricate plasmonic nanostructures have been limited in their reproducibility for bottom-up techniques or their feature size for top-down techniques. Here, we propose a tooth multilayer structure that can be fabricated by using physical vapor deposition and selective wet etching, achieving extremely small feature sizes and high reproducibility. A multilayer structure composed of two alternating materials whose thicknesses can be controlled accurately in the nanometer range is deposited on a flat substrate using ion-beam sputtering. Subsequent selective wet etching is used to form nanogaps in one of the materials constituting the multilayer, with the depth of the nanogaps being controlled by the wet etching time. Combining both techniques can allow the nanogap dimensions to be controlled at sub 10 nm length scale, thus achieving a tooth multilayer structure with high enhancement and tunability of the resonance mode over a broad range, ideal for SERS applications.

  18. Replication of patterned thin-film structures for use in plasmonics and metamaterials

    Science.gov (United States)

    Norris, David J; Han, Sang Eon; Bhan, Aditya; Nagpal, Prashant; Lindquist, Nathan Charles; Oh, Sang-Hyun

    2015-02-03

    The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.

  19. Reverse design of a bull's eye structure based on the plasmonic far-field pattern.

    Science.gov (United States)

    Yamada, Akira; Terakawa, Mitsuhiro

    2013-09-09

    We present a novel concept on designing a bull's eye structure for a single-wavelength optical source. The plasmonic far-field around a subwavelength aperture on a thin gold film is calculated by finite-difference time-domain method. Based on the annular field intensity distribution on the film surface, we present a method for determining a fairly optimal first groove radius and a periodicity of the grooves that show enhanced transmission. By additionally fine-tuning groove width and groove depth, we have achieved a transmission factor of 9.74. Our novel method has high potential in applications such as silicon infrared sensors.

  20. Plasmonic Route to Reconfigurable Polarization Optics

    CERN Document Server

    Li, L; Tang, X M; Wang, S M; Wang, Q J; Zhu, S N

    2014-01-01

    Surface plasmon polariton (SPP) as a bounded mode on a metal/dielectric interface intrinsically has a definite transverse magnetic (TM) polarization that usually lacks further manipulations. However, the in-plane longitudinal components of SPP field can produce versatile polarization states when two orthogonal propagating SPP interfere with each other. Here, we demonstrated a plasmonic polarization router by designing appropriate nanohole arrays that can selectively scatter the interfered SPP fields to desired light beams. It is well proved that our device is able to reconfigure a certain input polarization to all kinds of states with respect to a scattered light. Accompanied with a composite phase modulation by diffractions, multiple focusing beams with different polarization states are simultaneously achieved, promising the possibility in polarization multiplexing and related signal processing. Our design offers a new route for achieving full control of the optical polarizations as well as the optical spin-...

  1. Plasmon-supported emission of entangled photons and zero-point energy

    OpenAIRE

    Hizhnyakov, Vladimir

    2013-01-01

    Emission of pairs of photons in the interface metal-dielectric under the laser excitation arising due to the time-dependent perturbation of the zero-point fluctuations of the electromagnetic field by photons of the laser is considered. The enhancement of this emission by surface plasmons may be used for getting polarization-entangled photons. A possibility to compensate the energy of the zero-point fluctuations of bosons by other fluctuations with negative energy is discussed.

  2. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate...... structures. Using a self-consistent description based on the Green's function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects in these structures...

  3. Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

    Institute of Scientific and Technical Information of China (English)

    黄伟其; 黄忠梅; 苗信建; 刘世荣; 秦朝建

    2015-01-01

    The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower.

  4. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  5. Efficient multiband absorber based on 1D periodic metal-dielectric photonic crystals with a reflective substrate

    CERN Document Server

    Cui, Yanxia; He, Yingran; Hao, Yuying; Lin, Yinyue; Tian, Ximin; Xu, Ju; Ji, Ting; He, Sailing; Fang, Nicholas X

    2013-01-01

    We propose an efficient multiband absorber comprising a truncated one-dimensional periodic metal-dielectric photonic crystal and a reflective substrate. The reflective substrate is actually an optically thick metallic film. Such a planar device is easier to fabricate compared with the absorbers with complicated shapes. For a 4-unit cell device, all of the four absorption peaks can be optimized with efficiencies higher than 95%. Moreover, those absorption peaks are insensitive to both polarization and incident angle. The influences of the geometrical parameters along with the refractive index of the dielectric on the device performance are discussed as well. Furthermore, it is found that the number of absorption peaks within each photonic band exactly corresponds to the number of the unit cells because the truncated photonic crystal lattices have the function of selecting resonant modes. It is also displayed that the total absorption efficiency gradually increases when there are more metal-dielectric unit cell...

  6. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.

    Science.gov (United States)

    Li, Lifeng

    2012-04-01

    I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.

  7. Recent Progress on Plasmon-Enhanced Fluorescence

    Science.gov (United States)

    Dong, Jun; Zhang, Zhenglong; Zheng, Hairong; Sun, Mentao

    2015-12-01

    The optically generated collective electron density waves on metal-dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle's surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

  8. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    Science.gov (United States)

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than ‑10 dB within the ‑3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  9. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    Science.gov (United States)

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  10. Backside configured surface plasmonic enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Guiru; Lu, Xuejun, E-mail: xuejun-lu@uml.edu [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Vaillancourt, Jarrod [Applied NanoFemto Technologies, LLC, 181 Stedman St. 2, Lowell, MA 01851 (United States)

    2014-03-31

    In this work, we fabricated, measured and compared the quantum dots infrared photodetector enhancement by the top- and backside- configured plasmonic structures. The backside configured plasmonic structure can provide much higher device performance enhancement. Furthermore, the excitation of the surface plasmonic waves by the top- and backside- configured plasmonic structures was analyzed. Detailed simulation results of the electric field at different wavelength from top illumination and backside illumination were provided. The stronger electric field from the backside illumination attributed to the higher enhancement.

  11. Analysis of Bragg gratings for long-range surface plasmon polaritons using the bidirectional beam propagation method based on scattering operators

    Science.gov (United States)

    Zhang, Hua; Mu, Jianwei; Huang, Wei-Ping

    2007-09-01

    For realization of highly integrated optical circuits, various metallic nanostructures supporting the propagation of surface plasmon polaritons have been extensively studied experimentally and theoretically in recent years. This paper reports on the development of a numerically stable and accurate finite-difference-based bidirectional beam propagation method (FD-BiBPM) for analyzing piecewise z-invariant plasmonic structures. Our method is developed based on the scattering operators. The adoption of complex coefficient rational approximations to the square root operator allows to correctly model the propagation of evanescent modes excited at discontinuity interfaces. In view of the large index contrast at metal-dielectric interfaces, a fourth-order accurate finite difference formulation for discretization is incorporated to the present method and its fine treatment of these interfaces guarantees accuracy. By using the present method, the reflection and transmission spectra of the Bragg gratings consisting of a thin metal film embedded in dielectric medium and an array of equidistant metal ridges on each side of the film are calculated. The good agreement of our results with the previously reported simulations illustrates the potential of the newly developed FD-BiBPM for the analysis of longrange surface plasmon polariton (LRSPP) waves guided along the described Bragg gratings.

  12. Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays.

    Science.gov (United States)

    Kodali, Anil K; Llora, Xavier; Bhargava, Rohit

    2010-08-03

    An outstanding challenge in biomedical sciences is to devise a palette of molecular probes that can enable simultaneous and quantitative imaging of tens to hundreds of species down to ultralow concentrations. Addressing this need using surface-enhanced Raman scattering-based probes is potentially possible. Here, we theorize a rational design and optimization strategy to obtain reproducible probes using nanospheres with alternating metal and reporter-filled dielectric layers. The isolation of reporter molecules from metal surfaces suppresses chemical enhancement, and consequently signal enhancements are determined by electromagnetic effects alone. This strategy synergistically couples interstitial surface plasmons and permits the use of almost any molecule as a reporter by eliminating the need for surface attachment. Genetic algorithms are employed to optimize the layer dimensions to provide controllable enhancements exceeding 11 orders of magnitude and of single molecule sensitivity for nonresonant and resonant reporters, respectively. The strategy also provides several other opportunities, including a facile route to tuning the response of these structures to be spectrally flat and localization of the enhancement within a specific volume inside or outside the probe. The spectrally uniform enhancement for multiple excitation wavelengths and for different shifts enables generalized probes, whereas enhancement tuning permits a large dynamic range by suppression of enhancements from outside the probe. Combined, these theoretical calculations open the door for a set of reproducible and robust probes with controlled sensitivity for molecular sensing over a concentration range of over 20 orders of magnitude.

  13. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-Fermi-wavelength limit

    CERN Document Server

    Schnitzer, Ory; Maier, Stefan A; Craster, Richard V

    2016-01-01

    Surface-plasmon resonances of metallic nanostructures blueshift owing to the nonlocal response of the metal's electron gas. The Fermi wavelength, characterising the nonlocal effect, is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained nonlocal description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary shaped nanometallic structures is then developed. The effect of nonlocality is not always a perturbation and we present a detailed analysis of the "bonding" modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalisation of those predicted assuming a local metal permittivity.

  15. Avoided Crossing Patterns and Spectral Gaps of Surface Plasmon Modes in Gold Nano-Structures

    CERN Document Server

    Kolomenskii, Alexandre; Hembd, Jeshurun; Kolomenski, Andrei; Noel, John; Teizer, Winfried; Schuessler, Hans

    2010-01-01

    The transmission of ultrashort (7 fs) broadband laser pulses through periodic gold nano-structures is studied. The distribution of the transmitted light intensity over wavelength and angle shows an efficient coupling of the incident p-polarized light to two counter-propagating surface plasmon (SP) modes. As a result of the mode interaction, the avoided crossing patterns exhibit energy and momentum gaps, which depend on the configuration of the nano-structure and the wavelength. Variations of the widths of the SP resonances and an abrupt change of the mode interaction in the vicinity of the avoided crossing region are observed. These features are explained by the model of two coupled modes and a coupling change due to switching from the high frequency dark mode to the low frequency bright mode for increasing wavelength of the excitation light. PACS numbers: 73.20.Mf, 42.70.Qs, 42.25.-p,

  16. Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure.

    Science.gov (United States)

    Higgins, L J; Karanikolas, V D; Marocico, C A; Bell, A P; Sadler, T C; Parbrook, P J; Bradley, A L

    2015-01-26

    An array of Ag nanoboxes fabricated by helium-ion lithography is used to demonstrate plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. The nonradiative energy transfer, from an InGaN/GaN quantum well to CdSe/ZnS nanocrystal quantum dots embedded in an ~80 nm layer of PMMA, is investigated over a range of carrier densities within the quantum well. The plasmon-enhanced energy transfer efficiency is found to be independent of the carrier density, with an efficiency of 25% reported. The dependence on carrier density is observed to be the same as for conventional nonradiative energy transfer. The plasmon-coupled energy transfer enhances the QD emission by 58%. However, due to photoluminescence quenching effects an overall increase in the QD emission of 16% is observed.

  17. Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip

    DEFF Research Database (Denmark)

    Giannoulis, G.; Kalavrouziotis, D.; Apostolopoulos, D.;

    2012-01-01

    We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power...

  18. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    Science.gov (United States)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  19. Low-loss waveguiding and detecting structure for surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail: fukuhara@photon.ee.tut.ac.jp; Aihara, T. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan); JSPS Research Fellow, Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda, Tokyo 102-8472 (Japan); Ota, M.; Sakai, H.; Ishii, Y.; Fukuda, M. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan)

    2014-02-24

    A simple and low-loss metal/semiconductor surface plasmon polariton (SPP) device consisting of a SPP waveguide and a detector is studied theoretically and experimentally. We demonstrate a simple diffraction structure (a metal grating) where the SPP couples from the waveguide to the detector. The SPP can propagate without large losses at the air/Au interface, and this interface was used for SPP waveguiding. To convert the SPP into an electric signal using internal photoemission, the propagating SPP is coupled into the Au/Si interface by the diffraction structure. The propagation direction of the coupled SPP at the Au/Si interface depends on the slit pitch of the diffraction structure, and the direction can be controlled by adjusting the pitch. The slit pitch is also modeled using a diffraction grating equation, and the results show good agreement with those of simulations using the finite-difference time-domain method. When diffraction structures consisting of a multi-slit structure and a disk array are placed at the end of the waveguide, SPP coupling into the Au/Si interface is also observed. The photocurrents detected at the Au/Si interface are much larger when compared with that detected for the device without the diffraction structure (26 times for the multi-slit structure and 10 times for the disk array). From the polarization angle dependence of the detected photocurrent, we also confirmed that the photocurrent was caused by the SPP propagating at the air/Au interface.

  20. Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

    DEFF Research Database (Denmark)

    Sánchez-García, Laura; Tserkezis, Christos; Ramírez, Mariola O

    2016-01-01

    We demonstrate a 60–fold enhancement of the second harmonic generation (SHG) response at the nanoscale in a hybrid metal-dielectric system. By using complex silver nanostructures photochemically deposited on the polar surface of a ferroelectric crystal, we tune the plasmonic resonances from...... the visible to the near-infrared (NIR) spectral region, matching either the SH or the fundamental frequency. In both cases the SHG signal at the metal-dielectric interface is enhanced, although with substantially different enhancement values: around 5 times when the plasmonic resonance is at the SH frequency...... or up to 60 times when it matches the fundamental NIR radiation. The results are consistent with the more spatially-extended near-field response of complex metallic nanostructures and can be well explained by taking into account the quadratic character of the SHG process. The work points out...

  1. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  2. Probing the limits of topological protection in a designer surface plasmon structure

    CERN Document Server

    Gao, Fei; Shi, Xihang; Yang, Zhaoju; Lin, Xiao; Joannopoulos, John D; Soljacic, Marin; Chen, Hongsheng; Lu, Ling; Chong, Yidong; Zhang, Baile

    2015-01-01

    Topological photonic states are a novel class of electromagnetic modes that are immune to scattering from imperfections. This phenomenon has been demonstrated experimentally, including recently in an array of coupled on-chip ring resonators at communication wavelengths. However, the topological protection in such time-reversal-invariant photonic systems is not absolute, but applies only to certain classes of defects, and these limits have not been probed. Here, we report on the realization of similar topological states in a designer surface plasmon platform consisting of metallic sub-wavelength structures. Using this tunable platform, we are able to characterize in detail the field distributions of the topological edge states, and their level of robustness against a variety of defect classes, including those that can break the topological protection. This is also the first experimental realization of anomalous Floquet topological edge states, which cannot be predicted by the usual Chern number topological inv...

  3. Plasmonic structure integrated single-photon detector configurations to improve absorptance and polarization contrast

    CERN Document Server

    Csete, Maria; Szenes, Andras; Szalai, Aniko; Szabo, Gabor

    2014-01-01

    Configurations capable of maximizing both absorptance and polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs) consisting of p=264 nm and P=792 nm periodic niobium-nitride (NbN) patterns on silica substrate. Global NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (gamma=90 azimuthal angle) and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nano-cavity-gratings with different profiles, which is promoted by coupling between localized modes in quarter wavelength MIM nano-cavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations...

  4. Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Jian

    2009-01-01

    Full Text Available Abstract Transverse surface plasmon resonances (SPR in Au–Ag and Ag–Au core–shell structure nanowires have been investigated by means of quasi-static theory. There are two kinds of SPR bands resulting from the outer surface of wall metal and the interface between core and wall metals, respectively. The SPR corresponding to the interface, which is similar to that of alloy particle, decreases and shifts obviously with increasing the wall thickness. However, the SPR corresponding to the outer surface, which is similar to that of pure metal particle, increases and shifts slightly with increasing the wall thickness. A mechanism based on oscillatory surface electrons under coulombic attraction is developed to illuminate the shift fashion of SPR from bimetallic core–shell interface. The net charges and extra coulombic force in metallic wall affect the SPR energy and the shift fashion.

  5. Theoretical realization of dynamically tunable double plasmonically induced transparency in a graphene-based waveguide structure

    Science.gov (United States)

    Zhang, Zhengren; Fan, Yuancheng; Long, Yang; Yin, Pengfei

    2017-10-01

    A graphene-based waveguide coupled with radiative and subradiant graphene ribbon resonators is proposed to represent the four-level energy diagram in conventional atomic systems and demonstrate a new realization of dynamically tunable double plasmonically induced transparency (DPIT). The radiative resonator is achieved with the help of direct coupling from the graphene waveguide while indirect coupling is relied for the subradiant resonator. By combining the numerical simulation results and the dressed theory, the physical mechanism behind the DPIT is presented in detail. The DPIT phenomenon is derived from the mode splitting caused by the phase-coupled effects. By controlling the Fermi energy level of graphene ribbon, the double transparency windows can be dynamically tuned. The proposed structure may find its application in optical communication or other novel terahertz integrated optical circuits and devices.

  6. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  7. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Placzek-Popko, E., E-mail: ewa.popko@pwr.edu.pl; Gwozdz, K.; Gumienny, Z.; Zielony, E.; Jacak, W. [Faculty of Fundamental Problems of Technology, Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Department of Mathematics and Natural Sciences College of Science, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw (Poland); Chang, Liann-Be [Department of Electronic Engineering and Green Technology Research Center, Chang-Gung University, Taoyuan, Taiwan (China)

    2015-05-21

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5–10 nm, 20-30 nm, and 50–60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm{sup −1} and 561 cm{sup −1}. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20–30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  8. Photonic and plasmonic structures for enhancing efficiency of thin film silicon solar cells

    Science.gov (United States)

    Pattnaik, Sambit

    Crystalline silicon solar cells use high cost processing techniques as well as thick materials that are ˜ 200µm thick to convert solar energy into electricity. From a cost viewpoint, it is highly advantageous to use thin film solar cells which are generally made in the range of 0.1-3µm in thickness. Due to this low thickness, the quantity of material is greatly reduced and so is the number and complexity of steps involved to complete a device, thereby allowing a continuous processing capability improving the throughput and hence greatly decreasing the cost. This also leads to faster payback time for the end user of the photovoltaic panel. In addition, due to the low thickness and the possibility of deposition on flexible foils, the photovoltaic (PV) modules can be flexible. Such flexible PV modules are well suited for building-integrated applications and for portable, foldable, PV power products. For economical applications of solar cells, high efficiency is an important consideration. Since Si is an indirect bandgap material, a thin film of Si needs efficient light trapping to achieve high optical absorption. The previous work in this field has been mostly based on randomly textured back reflectors. In this work, we have used a novel approach, a periodic photonic and plasmonic structure, to optimize current density of the devices by absorbing longer wavelengths without hampering other properties. The two dimensional diffraction effect generated by a periodic structure with the plasmonic light concentration achieved by silver cones to efficiently propagate light in the plane at the back surface of a solar cell, achieves a significant increase in optical absorption. Using such structures, we achieved a 50%+ increase in short circuit current in a nano-crystalline (nc-Si) solar cell relative to stainless steel. In addition to nc-Si solar cells on stainless steel, we have also used the periodic photonic structure to enhance optical absorption in amorphous cells and

  9. Plasmonic nanofluids enhanced solar thermal transfer liquid

    Science.gov (United States)

    Rahman, Md. Mahfuzur; Younes, Hammad; Ni, George; Lu, Jin You; Raza, Aikifa; Zhang, Tie Jun; Fang, Nicholas Xuanlai; Ghaferi, Amal Al

    2017-06-01

    Plasmonic nanostructures suspended in a liquid are known to offer enhanced absorption of light and improved photo-thermal efficiency comparing with conventional solar absorbers. This approach localizes high temperatures to the interior of the liquid through efficient trapping of incoming light via scattering and absorption mechanisms. Theoretical studies show that Ag exhibits the highest efficiency of plasmonic excitations, and the plasmonic absorption band can be shifted to cover the visible wavelength ranges by loading the Ag NPs onto silica core. In this work, silica-core decorated with Ag NPs are synthesized through the chemical reduction method and their morphological and optical properties are characterized using transmission electron microscope (TEM) and UV-Vis-NIR spectrophotometer. The characterization results show the potentials of light absorbing plasmonic metal-dielectric nanoparticles suspended in water for producing steam at high efficiencies upon solar illumination. The experimental work suggests that the vapor generation efficiency can be as high as 63.82% at solar concentrations of 10 suns for the concentration of 0.5 wt% of palsmonic nanofluid.

  10. Enhanced Transmission and Giant Faraday Effect in Magnetic Metal-Dielectric Photonic Structures

    CERN Document Server

    Smith, Kyle; Bodyfelt, Joshua D; Vitebskiy, Ilya; Chabanov, Andrey A

    2012-01-01

    Due to their large electric conductivity, stand-alone metallic films are highly reflective at microwave frequencies. For this reason, it is nearly impossible to observe Faraday rotation in ferromagnetic metal layers, even in films just tens of nanometers thick. Here, we show using numerical simulations that a stack of cobalt nano-layers interlaced between dielectric layers can become highly transmissive and display a large Faraday rotation in a finite frequency band. A 45-degree Faraday rotation can be achieved with metallic ferromagnetic layers as thin as tens of nanometers.

  11. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    Science.gov (United States)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub

  12. Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure

    Science.gov (United States)

    Kaibiao, Zhang; Hong, Zhang; Xinlu, Cheng

    2016-03-01

    The graphene/hexagonal boron-nitride (h-BN) hybrid structure has emerged to extend the performance of graphene-based devices. Here, we investigate the tunable plasmon in one-dimensional h-BN/graphene/h-BN quantum-well structures. The analysis of optical response and field enhancement demonstrates that these systems exhibit a distinct quantum confinement effect for the collective oscillations. The intensity and frequency of the plasmon can be controlled by the barrier width and electrical doping. Moreover, the electron doping and the hole doping lead to very different results due to the asymmetric energy band. This graphene/h-BN hybrid structure may pave the way for future optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217) and the Scientific Research Fund of Sichuan University of Science and Engineering, China (Grant No. 2014PY07).

  13. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure

    Science.gov (United States)

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-01

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.

  14. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure.

    Science.gov (United States)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-21

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.

  15. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.

    Science.gov (United States)

    Choi, Minjung; Kang, Gumin; Shin, Dongheok; Barange, Nilesh; Lee, Chang-Won; Ko, Doo-Hyun; Kim, Kyoungsik

    2016-05-25

    Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal-dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer-reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half-maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.

  16. Hybrid metal-dielectric ring resonators for homogenizable optical metamaterials with strong magnetic response at short wavelengths down to the ultraviolet range.

    Science.gov (United States)

    Tang, Jianwei; He, Sailing

    2013-10-07

    We derive an analytical LC model from Maxwell's equations for the magnetic resonance of subwavelength ring resonators. Using the LC model, we revisit the scaling of split-ring resonators. Inspired by the LC model, we propose a hybrid metal-dielectric ring resonator mainly composed of high index dielectric material (e.g., TiO₂) with some gaps filled with metal (e.g., Ag). The saturation frequency of magnetic response for the hybrid metal-dielectric ring resonator is much higher (up to the ultraviolet range) than that for split-ring resonators, and can be controlled by the metal fraction in the ring. The hybrid metal-dielectric ring resonator can also overcome the homogenization problem of all-dielectric magnetic resonators, and therefore can form homogenizable magnetic metamaterials at short wavelengths down to the ultraviolet range.

  17. Femtosecond Snapshots of quantum mechanics at work in plasmonic nano-structures

    Science.gov (United States)

    Carbone, Fabrizio

    Ultrafast Transmission Electron Microscopy enabled a new technique (Photon-Induced Near Field Electron Microscopy, PINEM), capable of controlling electromagnetic fields confined on the surface of nanostructures and image their properties with nm-resolution in direct space and fs resolution in time. In this presentation, we will show some recent results where the standing wave formed by the plasmonic field confined on the surface of one silver nano-wire was imaged together with its energy exchange with the imaging electrons. In these results, both the interference and the quantization of the plasmonic near field could be imaged simultaneously, revealing both a quantum and a classical aspect of the electromagnetic field in one snapshot. The implications of these results will be discussed, and we will also present new ideas and methodologies to go beyond such an experiment and image the interaction between single electrons and single plasmons. We will also show that shaping the electron density in a thin film via light pulses is possible by taking advantage of the plasmon-plasmon interference and the ability of light polarization to control the excitation of different plasmonic field geometries in ad hoc designed nanostructures. Movies of the propagation of plasmons will also be presented, providing insights into their speed, propagation losses and the effect of confinment. This work was supported by an ERC Grant USED.

  18. Polarization independent and tunable plasmonic structure for mimicking electromagnetically induced transparency in the reflectance spectrum

    Science.gov (United States)

    Guo, B. S.; Loo, Y. L.; Ong, C. K.

    2017-10-01

    This paper proposes a plasmonic metamaterial that is able to mimic electromagnetically induced transparency in the reflectance spectrum within the GHz frequency range. Each meta-atom consists of a cross-slot structure as the bright resonator positioned on one side of the FR-4 substrate, and four spiral structures as the dark resonator located on the opposite side. Free space experimental results demonstrate that at normal incidence of plane wave, the metamaterial possesses the properties of tunability and polarization independence. In addition, based on simulation results the metamaterial also possesses slow wave property, with group refractive index of 56; and refractive-index-based sensing capability, with figure of merit of 6.1. In the strong coupling configuration, the plasma frequency and coupling constant of the metamaterial were calculated to be approximately 5.4 × 1010 rad s-1 and 9.8 × 109 rad s-1 respectively. While the respective damping constants of the bright resonator and dark resonator were calculated to be approximately 4.6 × 1010 rad s-1 and 1.9 × 1010 rad s-1.

  19. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  20. Molecular Plasmonics

    Science.gov (United States)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  1. Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Sha, Wei E I; Ho, Ho-Pui; Choy, Wallace C H

    2015-10-28

    We demonstrate that the silver nanoplate-based macroscopically periodic (macro-periodic) and microscopically random (micro-random) structure has a broadband near-field enhancement as compared to conventional silver gratings. The specific field enhancement in a wide spectral range (from UV to near-infrared) originates from the abundance of localized surface-plasmonic (LSP) modes in the microscopically random distributed silver nanoplates and propagating Bloch-plasmonic (PBP) modes from the macroscopically periodic pattern. The characterization of polarization dependent spectral absorption, surface-enhanced Raman spectroscopy (SERS), as well as theoretical simulation was conducted to comprehensively understand the features of the broadband spectrum and highly concentrated near-field. The reported macro-periodic and micro-random structure may offer a new route for the design of plasmonic systems for photonic and optoelectronic applications.

  2. Ultrafast electron-phonon coupling at the metal-dielectric interface

    Science.gov (United States)

    Yao, Qiaomu

    The pump-probe technique is an ultrafast spectroscopy method of detecting the dynamics of energy carriers such as electrons, phonons, and holes with transient thermal reflectance measurement. A laser beam is divided into a pump beam and probe beam with different wavelength or polarization and time delay. According to the transient reflectance result, this method could be applied to investigate the interaction between electron-phonon and electron-electron coupling with a high temporal resolution on the order of 10 femtoseconds. Energy transfer of photo-excited electrons in a metal film to the dielectric substrate at the metal-dielectric interface is important for understanding the ultrafast heat transfer process across the two materials. Many researches have been conducted in finding this energy transfer process in different materials. In this thesis, by measuring the transient reflectance variation, the two-temperature model (TTM) is used to analyze the interface metal electron and dielectric substrate coupling. In order to relate temperature to the reflectance change, a temperature and wavelength dependent Drude-Lorentz model was developed which represents the temperature dependent dielectric constant and can be used to calculate reflectance variation. Ultrafast pump-and-probe interband transition measurements on Au-Si samples were carried out, where the probe photon energy was chosen to be close to the interband transition threshold (ITT) of gold to minimize the influence of non-equilibrium or non-thermalized electrons on the optical response, and to increase the signal to noise ratio for reflectance change. In the experiment, different pump fluences have been used to test the transient reflectance variation on Au-Si samples of different thicknesses. The pump wavelength is taken as 800 nm while the probe wavelength is taken as 490 nm. A thick gold of 1000 nm thickness has been used to determine the electron-phonon coupling strength represented by a constant G 0

  3. Tension induced surface plasmon-polaritons at graphene-based structure

    Science.gov (United States)

    Khalandi, G.; Namdar, A.; Entezar, S. Roshan

    2017-02-01

    Dispersion properties and field distributions of TM (or p-polarized) surface plasmon-polaritons have been investigated in the system that a strained graphene sheet cladded by two dielectrics. The outcomes show that graphene TM surface plasmon-polaritons are bound confined modes, and the field components penetrate into the dielectric layers in the rang that is very smaller than the wavelength in the free space. At low photon energies, when the tension is along the zigzag (armchair) direction and parallel (perpendicular) to the tangential electric field, the wavelength, propagation length and penetration depth of TM surface plasmon-polaritons increase (decrease) with increasing the strain. Changing the angle between the tension direction and tangential electric field at cases with the constant strain, cause to existence of TM surface plasmon-polaritons in the wider range of frequency.

  4. Optical Isolator Utilizing Surface Plasmons

    Directory of Open Access Journals (Sweden)

    Shinji Yuasa

    2012-05-01

    Full Text Available Feasibility of usage of surface plasmons in a new design of an integrated optical isolator has been studied. In the case of surface plasmons propagating at a boundary between a transition metal and a double-layer dielectric, there is a significant difference of optical loss for surface plasmons propagating in opposite directions. Utilizing this structure, it is feasible to fabricate a competitive plasmonic isolator, which benefits from a broad wavelength operational bandwidth and a good technological compatibility for integration into the Photonic Integrated Circuits (PIC. The linear dispersion relation was derived for plasmons propagating in a multilayer magneto-optical slab.

  5. Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system

    Science.gov (United States)

    Chen, Zhiquan; Li, Hongjian; Li, Boxun; He, Zhihui; Xu, Hui; Zheng, Mingfei; Zhao, Mingzhuo

    2016-10-01

    A nanoscale plasmonic filter based on a single-stub coupled metal-dielectric-metal waveguide system is investigated theoretically and numerically. A tunable wide band-stop can be achieved by loading a metal bar into the stub. The band-stop originates from the direct coupling between the resonance modes. The bandwidth and the center wavelength of the band-stop can be tuned by changing the parameters of the metal bar. Compared with previously reported filters, the plasmonic system has the advantages of easy fabrication and compactness. Our results indicate that the proposed system has potential to be utilized in integrated optical circuits and tunable filters.

  6. Plasmonic Structure Integrated Single-Photon Detector Configurations to Improve Absorptance and Polarization Contrast

    Directory of Open Access Journals (Sweden)

    Mária Csete

    2015-02-01

    Full Text Available Configurations capable of maximizing both the absorption component of system detection efficiency and the achievable polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs consisting of p = 264 nm and P = 792 nm periodic niobium nitride (NbN patterns on silica substrate. Global effective NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (γ = 90°/0° azimuthal angle and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nanocavity gratings with different profiles, which is promoted by coupling between localized modes in quarter-wavelength metal-insulator-metal nanocavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations exist.

  7. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  8. A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Qing; GU Ying; HU Xiao-Yong; GONG Qi-Huang

    2011-01-01

    @@ We theoretically investigate the hybrid plasmonic modes of cylindrical nanocables with gold nanocore and two dielectric nanolayers(SiO2 and BN).By solving a complete set of Maxwell's equations,the propagation constants and effective radii depending on geometrical parameters are numerically calculated.By declining a trade-off between propagation length and light confinement,high quality hybrid modes which can travel a long range of 120-200λ with a subwavelength effective radius are obtained at the optical wavelength.These modes in one-dimensional cylindrical waveguides should have potential applications in nanoscale optical device designs.%We theoretically investigate the hybrid plasmonic modes of cylindrical nanocables with gold nanocore and two dielectric nanolayers (Si02 and BN).By solving a complete set of Maxwell's equations, the propagation constants and effective radii depending on geometrical parameters are numerically calculated.By declining a trade-off between propagation length and light confinement, high quality hybrid modes which can travel a long range of 120-200λ with a subwavelength effective radius are obtained at the optical wavelength.These modes in one-dimensional cylindrical waveguides should have potential applications in nanoscale optical device designs.

  9. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

    Directory of Open Access Journals (Sweden)

    Eduardo Aluicio-Sarduy

    2016-10-01

    Full Text Available An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index. These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

  10. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials.

    Science.gov (United States)

    Min, Changjun; Wang, Pei; Chen, Chunchong; Deng, Yan; Lu, Yonghua; Ming, Hai; Ning, Tingyin; Zhou, Yueliang; Yang, Guozhen

    2008-04-15

    All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.

  11. High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles.

    Science.gov (United States)

    Huang, Tao; Cao, Wei; Elsayed-Ali, Hani E; Xu, Xiao-Hong Nancy

    2012-01-21

    Electron beam lithography (EBL) has become a popular means to prepare a wide variety of nano-arrays for numerous studies and applications, including photonics and sensors. Their fabrications and characterizations are costly and time consuming, underscoring the importance of developing effective tools to rapidly study their physicochemical stabilities and properties over time. In this study, we characterized EBL-fabricated single silver nanoparticle (Ag NP) arrays over their 12-week exposure to ambient conditions using SEM/EDS, AFM and dark-field optical microscopy and spectroscopy (DFOMS). We found that chemical compositions, structural morphologies and plasmonic optical properties of single NPs altered drastically over the exposure. Single cuboid and triangular-prism Ag NPs degraded at rates of (0.74 ± 0.02) and (0.66 ± 0.02) per week, and their localized surface plasmon resonance (LSPR) spectra showed striking blue-shifts (171 ± 25 and 203 ± 35 nm) over the 12-week exposure, respectively. Plasmonic colors of single NPs changed distinctively from red to green over the 12-week exposure. The LSPR spectra of individual NPs in each array were acquired simultaneously and correlated specifically with their SEM and AFM images, demonstrating that DFOMS can serve as high-throughput, ultrasensitive and non-invasive means to characterize chemical, structural and optical properties of nano-arrays in situ in real time at single-NP resolution.

  12. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  13. Terahertz Nonlinearity in Graphene Plasmons

    CERN Document Server

    Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2015-01-01

    Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.

  14. Plasmonic 3D-structures based on silver decorated nanotips for biological sensing

    KAUST Repository

    Coluccio, M. L.

    2015-05-01

    Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity. © 2015 Elsevier Ltd.

  15. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures

    Science.gov (United States)

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-05-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  16. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  17. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures.

    Science.gov (United States)

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A; Yang, Joel K W; Qiu, Cheng-Wei; Wee, Andrew T S

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  18. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    Science.gov (United States)

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-01-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters. PMID:27150276

  19. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  20. Influence of the interlayer on coupling of surface plasmons in a sandwiched structure with periodic array of nanoapertures.

    Science.gov (United States)

    Sun, Liu-Yang; Qin, Ling; Zhu, Li-Hao; Fan, Ren-Hao; Li, De; Peng, Ru-Wen

    2013-02-01

    In this work, we investigate the optical properties of a multilayer structure, where a SiO2 film is sandwiched by silver films with periodic array of sub-wavelength apertures. Due to the coupling of surface plasmons (SPs) between different layers, electric and magnetic resonances have been observed. By varying the thickness of the interlayer SiO2, we can modify relative phase of the SPs resonance and control the shifts of transmission peaks. Experimentally the multilayers are fabricated by magnetron sputtering and the array of apertures is milled by focused-ion-beam facility. The measured optical transmission spectra reasonably agree with our numerical calculation, which bases on three-dimensional finite-difference time-domain method. To understand the shifts of the peaks, we present a phenomenological explanation, considering the transmission peaks as energy levels, and the coupling of localized surface plasmons as perturbation. These results may have potential applications in designing plasmonic devices and tuning electromagnetic wave in nanophotonics.

  1. Plasmonic atoms and plasmonic molecules

    CERN Document Server

    Klimov, V V

    2007-01-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  2. Plasmonic atoms and plasmonic molecules

    Science.gov (United States)

    Klimov, V. V.; Guzatov, D. V.

    2007-11-01

    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for the construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.

  3. Gold nanoisland structures integrated in a lab-on-a-chip for plasmonic detection of bovine growth hormone

    Science.gov (United States)

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2012-07-01

    Three-dimensional gold nanostructures fabricated through a novel convective assembly method are treated thermally to obtain a nanoisland morphology. The new structure is proved to be adequate for the detection of bovine growth hormone, by using an immunoassay method based on the localized surface plasmon resonance band of gold. The nanoisland structures are integrated into a microfluidic device and the spectral measurements are carried out by introducing the device directly in the light beam of a ultraviolet-visible spectrophotometer. The principal motivation for this work is the need for a simple and rapid method of detection of hormone levels in milk and milk products.

  4. Plasmonic-Electronic Transduction

    Science.gov (United States)

    2012-01-31

    resonances in two dimensional electron gases. Tunable plasmon absorption resonances were observed and studied in InP-based and GaN -based HEMTs . The...Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures,” A. V. Muravjov, D. B. Veksler, X. Hu, R. Gaska, N. Pala, H. Saxena...Nov. 2009, Singapore. 4. “Terahertz Plasmons in Grating-Gate AlGaN/ GaN HEMTs ,” A.V. Muravjov, D.B. Veksler, V.V. Popov, M.S. Shur, N. Pala, X. Hu, R

  5. Electric field induced structural colour tuning of a Silver/Titanium dioxide nanoparticle one-dimensional photonic crystals

    CERN Document Server

    Aluicio-Sarduy, E; del Valle, D G Figueroa; Kriegel, I; Scotognella, F

    2015-01-01

    The active tuning of the structural colour in photonic crystals by an electric field represents an effective external stimulus with impact on light transmission manipulation. In this work we present this effect in a photonic crystal device with alternating layers of Silver and Titanium dioxide nanoparticles showing shifts of around 10 nm for an applied voltage of 10 V only. The accumulation of charges at the metal/dielectric interface with applied electric field leads to an effective increase of the charges contributing to the plasma frequency in Silver. This initiates a blue shift of the Silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in Silver dielectric function, i.e. decrease of the effective refractive index. These results are the first demonstration of active colour tuning in Silver/TiO2 nanoparticle based photonic crystals and open the route to metal/dielectric based photonic crystals as electro-optic switches.

  6. Structure of plasmonic aerogel and the breakdown of the effective medium approximation.

    Science.gov (United States)

    Grogan, Michael D W; Heck, Susannah C; Hood, Katie M; Maier, Stefan A; Birks, Tim A

    2011-02-01

    A method for making aerogel doped with gold nanoparticles (GNPs) produces a composite material with a well-defined localized surface plasmon resonance peak at 520 nm. The width of the extinction feature indicates the GNPs are well dispersed in the aerogel, making it suited to optical study. A simple effective medium approximation cannot explain the peak extinction wavelengths. The plasmonic field extends on a scale where aerogel cannot be considered isotropic, so a new model is required: a 5 nm glass coating on the GNPs models the extinction spectrum of the composite material, with air (aerogel), methanol (alcogel), or toluene filling the pores.

  7. Spin orbit interaction of light mediated by scattering from plasmonic nano-structures

    CERN Document Server

    Soni, Jalpa; Mansha, Shampy; Gupta, S Dutta; Banerjee, Ayan; Ghosh, Nirmalya

    2012-01-01

    The spin orbit interactions (SOI) of light mediated by single scattering from plasmon resonant metal nanoparticles (nanorods and nanospheres) are investigated using explicit theory based on Jones and Stokes-Mueller polarimetry formalism. The individual SOI effects are analyzed and interpreted via the Mueller matrix-derived, polarimetry characteristics, namely, diattenuation d and retardance {\\delta}. The results demonstrate that each of the contributing SOI effects can be controllably enhanced by exploiting the interference of two neighboring modes in plasmonic nanostructures (orthogonal electric dipolar modes in rods or electric dipolar and quadrupolar modes in spheres).

  8. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  9. Plasmonic Nanostructures: Tailoring Light-matter Interaction

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2012-01-01

    The flow of light can be molded by plasmonic structures within the nanoscale. In this talk, plasmonic nanostructures for suppressing light transmission, improving light absorption and enhancing photoemissions are to be presented....

  10. The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Liu Bing-Can; Yu Li; Lu Zhi-Xin

    2011-01-01

    The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.

  11. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Chen, Yuntian

    2014-01-01

    for InGaN/GaN quantum-well structures. By using a thin SiN dielectric layer between Ag and GaN we manage to modify and improve surface plasmon coupling effects, and we attribute this to the improved scattering of the nanoparticles at the quantum-well emission wavelength. The results are interpreted using...... numerical simulations, where absorption and scattering cross-sections are studied for different sized particles on GaN and GaN/SiN substrates....

  12. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    R. Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  13. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  14. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    CHAN DU

    2014-01-01

    Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.

  15. Guidelines for designing 2D and 3D plasmonic stub resonators

    CERN Document Server

    Naghizadeh, Solmaz

    2016-01-01

    In this work we compare the performance of plasmonic waveguide integrated stub resonators based on 2D metal-dielectric-metal (MDM) and 3D slot-waveguide (SWG) geometries. We show that scattering matrix theory can be extended to 3D devices, and by employing scattering matrix theory we provide the guidelines for designing plasmonic 2D and 3D single-stub and double-stub resonators with a desired spectral response at the design wavelength. We provide transmission maps of 2D and 3D double-stub resonators versus stub lengths, and we specify the different regions on these maps that result in a minimum, a maximum or a plasmonically induced transparency (PIT) shape in the transmission spectrum. Radiation loss from waveguide terminations leads to a degradation of the 3D slot-waveguide based resonators. We illustrate improved waveguide terminations that boost resonator properties. We verify our results with 3D FDTD simulations.

  16. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption

    CERN Document Server

    Lobet, Michael; Sarrazin, Michael; Deparis, Olivier; Henrard, Luc

    2014-01-01

    Pyramidal metamaterials are currently developed for ultra-broadband absorbers. They consist of periodic arrays of alternating metal/dielectric layers forming truncated square-based pyramids. The metallic layers of increasing lengths play the role of vertically and, to a less extent, laterally coupled plasmonic resonators. Based on detailed numerical simulations, we demonstrate that plasmon hybridization between such resonators helps in achieving ultra-broadband absorption. The dipolar modes of individual resonators are shown to be prominent in the electromagnetic coupling mechanism. Lateral coupling between adjacent pyramids and vertical coupling between alternating layers are proven to be key parameters for tuning of plasmon hybridization. Following optimization, the operational bandwidth of Au/Ge pyramids, i.e. the bandwidth within which absorption is higher than 90%, extends over a 0.2-5.8 micrometers wavelength range, i.e. from UV-visible to mid-infrared, and total absorption (integrated over the operatio...

  17. Ultrafast Surface Plasmonic Switch in Non-Plasmonic Metals

    CERN Document Server

    Bévillon, E; Recoules, V; Zhang, H; Li, C; Stoian, R

    2015-01-01

    We demonstrate that ultrafast carrier excitation can drastically affect electronic structures and induce brief surface plasmonic response in non-plasmonic metals, potentially creating a plasmonic switch. Using first-principles molecular dynamics and Kubo-Greenwood formalism for laser-excited tungsten we show that carrier heating mobilizes d electrons into collective inter and intraband transitions leading to a sign flip in the imaginary optical conductivity, activating plasmonic properties for the initial non-plasmonic phase. The drive for the optical evolution can be visualized as an increasingly damped quasi-resonance at visible frequencies for pumping carriers across a chemical potential located in a d-band pseudo-gap with energy-dependent degree of occupation. The subsequent evolution of optical indices for the excited material is confirmed by time-resolved ultrafast ellipsometry. The large optical tunability extends the existence spectral domain of surface plasmons in ranges typically claimed in laser se...

  18. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides

    CERN Document Server

    Verhagen, Ewold; L.,; Kuipers,; Polman, Albert

    2010-01-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. By properly controlling coupling between adjacent waveguides, a metamaterial consisting of a one-dimensional multilayer stack exhibiting an isotropic index of -1 can be achieved at a free-space wavelength of 400 nm. The general concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  19. Three-Dimensional Negative Index of Refraction at Optical Frequencies by Coupling Plasmonic Waveguides

    Science.gov (United States)

    Verhagen, Ewold; de Waele, René; Kuipers, L.; Polman, Albert

    2010-11-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  20. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    Science.gov (United States)

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  1. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.

    Science.gov (United States)

    Hall, Anthony Shoji; Faryad, Muhammad; Barber, Greg D; Liu, Liu; Erten, Sema; Mayer, Theresa S; Lakhtakia, Akhlesh; Mallouk, Thomas E

    2013-06-25

    Light incident upon a periodically corrugated metal/dielectric interface can generate surface plasmon polariton (SPP) waves. This effect is used in many sensing applications. Similar metallodielectric nanostructures are used for light trapping in solar cells, but the gains are modest because SPP waves can be excited only at specific angles and with one linear polarization state of incident light. Here we report the optical absorptance of a metallic grating coupled to silicon oxide/oxynitride layers with a periodically varying refractive index, i.e., a 1D photonic crystal. These structures show a dramatic enhancement relative to those employing a homogeneous dielectric material. Multiple SPP waves can be activated, and both s- and p-polarized incident light can be efficiently trapped. Many SPP modes are weakly bound and display field enhancements that extend throughout the dielectric layers. These modes have significantly longer propagation lengths than the single SPP modes excited at the interface of a metallic grating and a uniform dielectric. These results suggest that metallic gratings coupled to photonic crystals could have utility for light trapping in photovoltaics, sensing, and other applications.

  2. Excitation of plasmons in Ag/Fe/W structure by spin-polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Samarin, Sergey N.; Kostylev, Mikhail; Williams, J. F. [School of Physics, The University of Western Australia, Perth WA 6009 (Australia); Artamonov, Oleg M.; Baraban, Alexander P. [St. Petersburg State University, Faculty of Physics, St. Petersburg 199034 (Russian Federation); Guagliardo, Paul [Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth WA 6009 (Australia)

    2015-09-07

    Using Spin-polarized Electron-Energy Loss Spectroscopy (SPEELS), the plasmon excitations were probed in a few atomic layers thick Ag film deposited on an Fe layer or on a single crystal of W(110). The measurements were performed at two specular geometries with either a 25° or 72° angle of incidence. On a clean Fe layer (10 atomic layers thick), Stoner excitation asymmetry was observed, as expected. Deposition of a silver film on top of the Fe layer dramatically changed the asymmetry of the SPEELS spectra. The spin-effect depends on the kinematics of the scattering: angles of incidence and detection. The spin-dependence of the plasmon excitations in the silver film on the W(110) surface and on the ferromagnetic Fe film is suggested to arise from the spin-active Ag/W or Ag/Fe interfaces.

  3. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Science.gov (United States)

    Suárez, Isaac; Ferrando, Albert; Marques-Hueso, Jose; Díez, Antonio; Abargues, Rafael; Rodríguez-Cantó, Pedro J.; Martínez-Pastor, Juan P.

    2017-08-01

    In this work, the unique optical properties of surface plasmon polaritons (SPPs), i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height), respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs) dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate) waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (super)modes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs) over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  4. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  5. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  6. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  7. Treatment of nonconvergence of Fourier modal method arising from irregular field singularities at lossless metal-dielectric right-angle edges.

    Science.gov (United States)

    Mei, Yanpeng; Liu, Haitao; Zhong, Ying

    2014-04-01

    In a recent work [J. Opt. Soc. Am. A28, 738 (2011)], Lifeng Li and Gerard Granet investigate nonconvergence cases of the Fourier modal method (FMM). They demonstrate that the nonconvergence is due to the irregular field singularities at lossless metal-dielectric right-angle edges. Here we make further investigations on the problem and find that the FMM surprisingly converges for deep sub-wavelength gratings (grating period being much smaller than the illumination wavelength). To overcome the nonconvergence for gratings that are not deep sub-wavelength, we approximately replace the lossless metal-dielectric right-angle edges by a medium with a gradually varied refraction index, so as to remove the irregular field singularities. With such treatment, convergence is observed as the region of the approximate medium approaches vanishing.

  8. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Science.gov (United States)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  9. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  10. Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Panah, Mohammad Esmail Aryaee

    Fabrication of large area metamaterial structures in a reproducible manner is a tremendous challenge. Here, we realize the fabrication of plasmonic metamaterials for the mid-infrared wavelength region composed of Al-doped ZnO (AZO) pillars by a combination of atomic layer deposition and reactive...

  11. Plasmonic Metamaterials

    CERN Document Server

    Yao, Kan

    2013-01-01

    Plasmonics and metamaterials have attracted considerable attention over the past decade, owing to the revolutionary impacts that they bring to both the fundamental physics and practical applications in multiple disciplines. Although the two fields initially advanced along their individual trajectories in parallel, they started to interfere with each other when metamaterials reached the optical regime. The dynamic interplay between plasmonics and metamaterials has generated a number of innovative concepts and approaches, which are impossible with either area alone. This review presents the fundamentals, recent advances and future perspectives in the emerging field of plasmonic metamaterials, aiming to open up new exciting opportunities for nanoscience and nanotechnology.

  12. Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array

    Science.gov (United States)

    Cao, Tun; Wei, Chenwei; Mao, Libang; Li, Yang

    2014-01-01

    Giant chiroptical responses routinely occur in three dimensional chiral metamaterials (MMs), but their resonance elements with complex subwavelength chiral shapes are challenging to fabricate in the optical region. Here, we propose a new paradigm for obtaining strong circular conversion dichroism (CCD) based on extrinsic 2D chirality in multilayer achiral MMs, showing that giant chiroptical response can be alternatively attained without complex structures. Our structure consists of an array of thin Au squares separated from a continuous Au film by a GaAs dielectric layer, where the Au squares occupy the sites of a rectangular lattice. This structure gives rise to a pronounced extrinsically 2D-chiral effect (CCD) in the mid-infrared (M-IR) region under an oblique incidence, where the 2D-chiral effect is due to the mutual orientation of the Au squares array and the incident light propagation direction; the large magnitude of CCD due to the large difference between left-to-left and right-to-right circularly polarized reflectance conversion efficiencies. PMID:25501766

  13. Erbium luminescence imaging of infrared surface plasmon polaritons

    Science.gov (United States)

    Verhagen, E.; Tchebotareva, A. L.; Polman, A.

    2006-03-01

    We demonstrate a new technique to spatially map the propagation and damping of infrared surface plasmon polaritons (SPPs) on metal films using optically active erbium ions as a probe of the SPP field. The bound SPP mode propagating along the Ag/glass interface of a 96nm thick Ag film on glass is excited by illuminating a subwavelength hole array in the metal with 1.49μm light. By imaging the 1.53μm photoluminescence of Er ions positioned in the glass at a distance of 60nm from the Ag/glass interface in a confocal microscope, a SPP beam was observed to propagate along a broad stripe waveguide, with a characteristic propagation length of 76μm. This technique provides a useful tool to study the characteristics of SPP modes at metal-dielectric interfaces in a wide range of geometries.

  14. Origin of third harmonic generation in plasmonic nanoantennas

    CERN Document Server

    Lesina, Antonino Calà; Ramunno, Lora

    2016-01-01

    Plasmonic nanoantennas have been recently proposed to boost nonlinear optical processes. In a metal dipole nanoantenna with a dielectric nanoparticle placed in the gap, the linear field enhancement can be exploited to enhance third harmonic emission. Since both metals and dielectrics exhibit nonlinearity, the nonlinear far-field contains contributions from each, and the impossibility of measuring these contributions separately has led to seemingly contradictory interpretations about the origin of the nonlinear emission. We determine that the origin of the third harmonic from metal-dielectric dipole nanoantennas depends on nanoantenna design, and in particular, the width. We find that the emission from gold dominates in thin threadlike nanoantennas, whereas the emission from the gap material dominates in wider nanoantennas. We also find that monopole nanoantennas perform better than dipoles having the same width, and due to their simplicity should be preferred in many applications.

  15. Existing conditions of full bandgaps and absolute negative refraction in metallic-dielectric photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Dong Jian-Wen; Hu Xin-Hua; Wang He-Zhou

    2007-01-01

    This paper has theoretically studied the characteristic frequencies of band structures in two-dimensional metallicdielectric photonic crystals. It is demonstrated that a large filling fraction benefits the existence of absolute photonic band gap, while a smaller filling fraction benefits an absolute negative refraction band. In addition, it also finds that the relation between the cut-off frequency of E-polarized wave and the filling fraction exceeding 10% is content with a linear increasing function, whose coefficients are exponential to the normalized lattice constant. These investigations have significant implications for tuning the operational frequencies to desired applications and manufacturing photonic crystals.

  16. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surfa...

  17. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surfa...

  18. Plasmonic photocatalysis.

    Science.gov (United States)

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  19. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  20. Highly Directional Emission from a Subwavelength Slit in Metal-Dielectric Layered Films

    Institute of Scientific and Technical Information of China (English)

    LI Zu-Bin; TIAN Jian-Guo; ZHOU Wen-Yuan; LIU Zhi-Bo; ZANG Wei-Ping; ZHANG Chun-Ping

    2006-01-01

    @@ The directional light emission from a single subwavelength slit surrounded by periodic grooves in layered films consisting of Ag and transparent dielectric is analysed numerically by the finite difference time domain method.The results show that the transmission through this structure is strongly confined by the modulation of the dielectric film with grooves on the output side. The role of evanescent waves in this phenomenon is discussed.It is the re-diffraction of the evanescent waves (that are generated by the diffraction of the subwavelength slit)caused by the grooves on the dielectric film that leads to the directional transmission. Some suggestions are given to obtain beaming light with high transmittance.

  1. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal

    Energy Technology Data Exchange (ETDEWEB)

    Stender, Anthony [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles. In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod at one of its LSPR wavelengths under polarized illumination, the optical behavior varies in a sinusoidal fashion. A dimer of nanorods exhibits optical behavior quite similar to a nanorod, except the LSPR maxima are shifted and broader. Under differential interference contrast (DIC) microscopy, a pair of nanorods separated by a distance below the diffraction limit can be distinguished from a single nanorod due to its optical behavior upon rotation. Dark field microscopy is unable to distinguish the two geometries. For the second set of experiments, the optical behavior of single gold nanorods at non-plasmonic wavelengths was investigated. The same nanorod was rotated with respect to a polarized light source under DIC, dark field, and polarized light microscopy. DIC microscopy was found to produce diffraction pattern peaks at non-plasmonic wavelengths, which could be altered by adjusting the setting of the polarizer. In the third set of experiments, the optical behavior of a single gold dumbbell and several simple dumbbell geometries were investigated with microscopy and simulations. The single dumbbell displayed behavior quite similar to that of a nanorod, but dumbbells exhibit a shift in both LSPR wavebands. Moreover, the shape of dumbbell particles allows them to

  2. Photocatalysis: Plasmonic solar desalination

    Science.gov (United States)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  3. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and the composition of the PMLID material. Some of these are p polarized, the others being s polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The...

  4. MgO nano-facet embedded silver-based dielectric/metal/dielectric transparent electrode.

    Science.gov (United States)

    Kim, Sungjun; Yu, Hak Ki; Hong, Kihyon; Kim, Kisoo; Son, Jun Ho; Lee, Illhwan; Kim, Kyoung-Bo; Kim, Tae-Yeob; Lee, Jong-Lam

    2012-01-16

    We replace Indium Tin Oxide (ITO) with an MgO nano-facet Embedded WO(3)/Ag/WO(3)(WAW) multilayer for electrodes of high efficiency OLEDs. WAW shows higher values for transmittance (93%) and conductivity (1.3×10(5) S/cm) than those of ITO. Moreover, WAW shows higher transmittance (92.5%) than that of ITO (86.4%) in the blue region (<500 nm). However, due to the large difference in refractive indices (n) of glass (n=1.55) and WO(3) (n=1.95), the incident light has a small critical angle (52°). Thus, the generated light is confined by the glass/WAW interface, resulting in low light outcoupling efficiency (~20%). This can be enhanced by using a nano-facet structured MgO (n=1.73) layer and a ZrO(2) (n=1.84) layer as a graded index layer. Using these optimized electrodes, ITO-free, OLEDs with various emission wavelengths have been produced. The luminance of OLEDs using MgO/ZrO(2)/WAW layers is enhanced by 24% compared to that of devices with ITO.

  5. Two-dimensional point spread matrix of layered metal-dielectric imaging elements

    CERN Document Server

    Kotynski, Rafal; Krol, Karol; Panajotov, Krassimir

    2010-01-01

    We describe the change of the spatial distribution of the state of polarisation occurring during two-dimensional imaging through a multilayer and in particular through a layered metallic flat lens. Linear or circular polarisation of incident light is not preserved due to the difference in the amplitude transfer functions for the TM and TE polarisations. In effect, the transfer function and the point spread function that characterize 2D imaging through a multilayer both have a matrix form and cross-polarisation coupling is observed for spatially modulated beams with a linear or circular incident polarisation. The point spread function in a matrix form is used to characterise the resolution of the superlens for different polarisation states. We demonstrate how the 2D PSF may be used to design a simple diffractive nanoelement consisting of two radial slits. The structure assures the separation of non-diffracting radial beams originating from two slits in the mask and exhibits an interesting property of a backwar...

  6. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.

    Science.gov (United States)

    Chen, Min; Gu, Jiajun; Sun, Cheng; Zhao, Yixin; Zhang, Ruoxi; You, Xinyuan; Liu, Qinglei; Zhang, Wang; Su, Yishi; Su, Huilan; Zhang, Di

    2016-07-26

    Photoelectric conversion driven by sunlight has a broad range of energy/environmental applications (e.g., in solar cells and water splitting). However, difficulties are encountered in the separation of photoexcited charges. Here, we realize a long-range (∼1.5 μm period) electric polarization via asymmetric localization of surface plasmons on a three-dimensional silver structure (3D-Ag). This visible-light-responsive effect-the photo-Dember effect, can be analogous to the thermoelectric effect, in which hot carriers are thermally generated instead of being photogenerated. The induced electric field can efficiently separate photogenerated charges, enabling sunlight-driven overall water splitting on a series of dopant-free commercial semiconductor particles (i.e., ZnO, CeO2, TiO2, and WO3) once they are combined with the 3D-Ag substrate. These photocatalytic processes can last over 30 h on 3D-Ag+ZnO, 3D-Ag+CeO2, and 3D-Ag+TiO2, thus demonstrating good catalytic stability for these systems. Using commercial WO3 powder as a reference, the amount of O2 generated with 3D-Ag+CeO2 surpasses even its recently reported counterpart in which sacrificial reagents had to be involved to run half-reactions. This plasmon-mediated charge separation strategy provides an effective way to improve the efficiency of photoelectric energy conversion, which can be useful in photovoltaics and photocatalysis.

  7. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes.

    Science.gov (United States)

    Chen, Hao Ming; Chen, Chih Kai; Tseng, Ming Lun; Wu, Pin Chieh; Chang, Chia Min; Cheng, Liang-Chien; Huang, Hsin Wei; Chan, Ting Shan; Huang, Ding-Wei; Liu, Ru-Shi; Tsai, Din Ping

    2013-09-09

    A new fabrication strategy in which Ag plasmonics are embedded in the interface between ZnO nanorods and a conducting substrate is experimentally demonstrated using a femtosecond-laser (fs-laser)-induced plasmonic ZnO/Ag photoelectrodes. This fs-laser fabrication technique can be applied to generate patternable plasmonic nanostructures for improving their effectiveness in hydrogen generation. Plasmonic ZnO/Ag nanostructure photoelectrodes show an increase in the photocurrent of a ZnO nanorod photoelectrodes by higher than 85% at 0.5 V. Both localized surface plasmon resonance in metal nanoparticles and plasmon polaritons propagating at the metal/semiconductor interface are available for improving the capture of sunlight and collecting charge carriers. Furthermore, in-situ X-ray absorption spectroscopy is performed to monitor the plasmonic-generating electromagnetic field upon the interface between ZnO/Ag nanostructures. This can reveal induced vacancies on the conduction band of ZnO, which allow effective separation of charge carriers and improves the efficiency of hydrogen generation. Plasmon-induced effects enhance the photoresponse simultaneously, by improving optical absorbance and facilitating the separation of charge carriers.

  8. Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films

    Science.gov (United States)

    Savaloni, Hadi; Fakharpour, Mahsa; Siabi-Garjan, Araz; Placido, Frank; Babaei, Ferydon

    2017-01-01

    Graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) are produced in three stages with different number of arms using oblique angle deposition together with rotation of substrate holder about its surface normal, plus a shadowing block fixed at the centre of the substrate holder. The structural characterization of the produced samples was obtained using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Results showed a structural gradient with distance from the edge of the shadowing block, which in turn is responsible for the decrease in the volume of void fraction and increase of grain size. Plasmon absorption peaks observed in the optical analysis of these nano-structures showed that their wavelength region and intensity depend on the polarization and the incident angle of light, as well as the distance from the edge of the shadowing block. According to our model and discrete dipole approximation (DDA) calculations, when the number of parallel nano-rods of different lengths and radii are increased the peak in the spectrum shifts to shorter wavelengths (blue shift). Also when the diameters of the nano-rods increases (a situation that occurs with increasing film thickness) the results is again a blue shift in the spectrum. The presence of defects in these sculptured structures caused by the shadowing effect is predicted by the theoretical DDA investigation of their optical spectra. Good agreement is obtained between our theoretical results and the experimental observations in this work.

  9. Spontaneous down conversion of surface plasmon polaritons: strong-field consideration

    CERN Document Server

    Hizhnyakov, Vladimir

    2016-01-01

    A non-perturbative theory of the spontaneous down conversion (SDC) of surface plasmon polaritons at a metal-dielectric interface is presented. It is shown that the process is resonantly enhanced for the characteristic power of excitation, typically of the order of tens of watts. At a stronger excitation the yield of SDC decreases rapidly. At a stronger excitation the yield of SDC decreases rapidly. The reason for this decrease is the high rate of the change of surface plasmon polaritons by the laser field, exceeding the rate of the zero-point fluctuations responsible for the SDC process. The obtained results may help one to construct miniature sources of entangled photons for quantum communication.

  10. Analysis of transient plasmonic interactions using an MOT-PMCHWT integral equation solver

    KAUST Repository

    Uysal, Ismail Enes

    2014-07-01

    Device design involving metals and dielectrics at nano-scales and optical frequencies calls for simulation tools capable of analyzing plasmonic interactions. To this end finite difference time domain (FDTD) and finite element methods have been used extensively. Since these methods require volumetric meshes, the discretization size should be very small to accurately resolve fast-decaying fields in the vicinity of metal/dielectric interfaces. This can be avoided using integral equation (IE) techniques that discretize only on the interfaces. Additionally, IE solvers implicitly enforce the radiation condition and consequently do not need (approximate) absorbing boundary conditions. Despite these advantages, IE solvers, especially in time domain, have not been used for analyzing plasmonic interactions.

  11. Plasmonic response of nanoscale spirals.

    Science.gov (United States)

    Ziegler, Jed I; Haglund, Richard F

    2010-08-11

    The Archimedean spiral geometry presents a platform for exploration of complex plasmonic mechanisms and applications. Here we show both through simulations and experiment that more complex plasmonic modes with unique near-field structure and larger mode volumes can be realized within a single, topologically robust structure. In the spiral, complex polarization response, resonant interactions and symmetry-breaking features are defined by the width and spacing of the spiral tracks and by the winding number of the spiral.

  12. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    Science.gov (United States)

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm‑2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  13. A silicon-based electrical source of surface plasmon polaritons.

    Science.gov (United States)

    Walters, R J; van Loon, R V A; Brunets, I; Schmitz, J; Polman, A

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  14. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures

    Institute of Scientific and Technical Information of China (English)

    Thomas Allsop; Raz Arif; Ron Neal; Kyriacos Kalli; Vojtěch Kundrát; Aleksey Rozhin; Phil Culverhouse

    2016-01-01

    We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing.CNTs have attracted significant research interest because they can be functionalized for a particular chemical,yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing.So far,however,utilizing their optical properties for this purpose has proven to be challenging.We demonstrate the use of localized surface plasmons generated on a nanostructured thin film,resembling a large array of nano-wires,to detect changes in the optical properties of the CNTs.Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature.The demonstrated methodology results additionally in a new,electrically passive,optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

  15. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    CERN Document Server

    Csete, M; Szalai, A; Najafi, F; Berggren, K K

    2012-01-01

    The absorptance of p-polarized light in superconducting-nanowire single-photon detectors (SNSPDs) was improved by integrating (1) ~quarter-wavelength nano-optical cavity closed by a gold reflector (OC-SNSPD), (2) nano-cavity-array closed by vertical and horizontal gold segments (NCAI-SNSPD), and (3) nano-cavity-deflector-array consisting of longer vertical gold segments (NCDAI-SNSPD) into short- (p-) and long- (3p-) periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs the highest absorptance is observable at perpendicular incidence onto NbN stripes in P-orientation due to E-field concentration at the bottom of nano-optical cavities. In short-periodic NCAI-SNSPDs off-axis illumination results in almost polar-angle-independent perfect absorptance due to collective resonances on plasmonic MIM nano-cavity-arrays in S-orientation. In long-periodic NCAI-SNSPDs the surface wave-excitation phenomena promoting EM-field transportation to the NbN stripes in S-orientation are capable of resulting in local absorpt...

  16. Influence of surface properties on the structure of granular silver films and excitation of localized plasmons

    Science.gov (United States)

    Shcherbinin, D. P.; Konshina, E. A.; Polischuk, V. A.

    2016-04-01

    Granular silver films deposited on a thin insulating film of amorphous hydrogenated carbon ( a-C:H) and transparent conducting electrode (polycrystalline indium tin oxide (ITO) layer) have been investigated by spectroscopy and microscopy methods. The extinction spectra of silver films on the surface of these materials are found to be significantly different. An annealing of silver films causes a blue shift of the peak of plasmon resonance band in the spectrum of silver nanoparticles: by 16 nm on the a-C:H surface and by 94 nm on the ITO surface. Silver films on the surface of a-C:H films are characterized by a narrower band in the extinction spectrum, which is peaked at 446 nm. The changes observed in the optical density of Ag films are related to the change in size and area of nanoparticles. The results of spectral studies of Ag films are in agreement with the data on the nanostructure obtained by scanning electron microscopy and statistical image processing. The spectra of granular silver films are shown to correlate well with the nanoparticle distribution function over the film area.

  17. Real-time monitoring of carbonarius DNA structured biochip by surface plasmon resonance imaging

    Science.gov (United States)

    Manera, M. G.; Rella, R.; Spadavecchia, J.; Moreau, J.; Canva, M.

    2008-06-01

    Surface plasmon resonance imaging (SPRI) studies, performed on a specially designed system exploiting the Kretschmann configuration, have been carried out to develop a DNA sensor for the detection of gene mutations accounting for the analysis of a fungin species which can proliferate especially in cereals, producing toxic compounds such as mycotoxins. The SPRI system has been used in order to study the hybridization process of ssDNA carbonarius probes immobilized onto a bio-functionalized Au surface in order to detect in real time the mutations in a DNA fragment. The SPRI system is a good choice for real-time monitoring of hybridization dynamics on an array of immobilized oligonucleotide probes because of the high sensitivity in characterization of ultra-thin films adsorbed onto gold or other noble metal surfaces. Using this technique, local changes in the reflectivity of a thin metal film describe the hybridization process between the molecules tethered to the surface and those sent in solution in the test chamber. The increase in the greyscale levels of the images (representing the functionalized gold traps) during the hybridization process demonstrated the occurrence of the binding event. The process has been proven to be reversible and specific for the investigated probes, since no signal has been detected in the presence of a negative control which is a non-complementary target.

  18. Plasmonic optical nanotweezers

    Science.gov (United States)

    Kotb, Rehab; El Maklizi, Mahmoud; Ismail, Yehea; Swillam, Mohamed A.

    2017-02-01

    Plasmonic grating structures can be used in many applications such as nanolithography and optical trapping. In this paper, we used plasmonic grating as optical tweezers to trap and manipulate dielectric nano-particles. Different plasmonic grating structures with single, double, and triple slits have been investigated and analyzed. The three configurations are optimized and compared to find the best candidate to trap and manipulate nanoparticles. The three optimized structures results in capability to super focusing and beaming the light effectively beyond the diffraction limit. A high transverse gradient optical force is obtained using the triple slit configuration that managed to significantly enhance the field and its gradient. Therefore, it has been chosen as an efficient optical tweezers. This structure managed to trap sub10nm particles efficiently. The resultant 50KT potential well traps the nano particles stably. The proposed structure is used also to manipulate the nano-particles by simply changing the angle of the incident light. We managed to control the movement of nano particle over an area of (5μm x 5μm) precisely. The proposed structure has the advantage of trapping and manipulating the particles outside the structure (not inside the structure such as the most proposed optical tweezers). As a result, it can be used in many applications such as drug delivery and biomedical analysis.

  19. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    Science.gov (United States)

    Badalyan, S. M.; Shylau, A. A.; Jauho, A. P.

    2017-09-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q . Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  20. Dispersion engineering of surface plasmons.

    Science.gov (United States)

    Mandel, Isroel M; Bendoym, Igor; Jung, Young U; Golovin, Andrii B; Crouse, David T

    2013-12-30

    In this work, it is shown how the shapes of surface plasmon dispersion curves can be engineered by manipulating the distribution of the electromagnetic fields in multilayer structures, which themselves are controlled by the free electron density in metal-like materials, such as doped semiconductors in the THz spectral range. By having a nonuniform free electron density profile, reduced relative to that in typical bulk metals, the electromagnetic fields of surface plasmons are distributed in different metallic materials that have different complex dielectric permittivities. As the in-plane component of surface plasmon's wave-vector increases, they become more confined to a particular layer of the multilayer structure and have energies that are predictable by considering the permittivity of the layer in which the fields are most concentrated. Unusual and arbitrary shapes of surface plasmon dispersion curves can be designed, including stair steps and dovetails shapes.

  1. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy

    Science.gov (United States)

    Umakoshi, Takayuki; Saito, Yuika; Verma, Prabhat

    2016-03-01

    Near-field scanning optical microscopy (NSOM) combined with plasmon nanofocusing is a powerful nano-analytical tool due to its attractive feature of efficient background suppression as well as light energy compression to the nanoscale. In plasmon nanofocusing-based NSOM, the metallic tip plays an important role in inducing plasmon nanofocusing. It is, however, very challenging to control plasmonic properties of tips for plasmon nanofocusing with existing tip fabrication methods, even though the plasmonic properties need to be adjusted to experimental environments such as the sample or excitation wavelength. In this study, we propose an efficient tip design and fabrication which enable one to actively control plasmonic properties for efficient plasmon nanofocusing. Because our method offers flexibility in the material and structure of tips, one can easily modify the plasmonic properties depending on the requirements. Importantly, through optimization of the plasmonic properties, we achieve almost 100% reproducibility in plasmon nanofocusing in our experiments. This new approach of tip fabrication makes plasmon nanofocusing-based NSOM practical and reliable, and opens doors for many scientists working in related fields.

  2. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R < 5 nm) that can result in a great incr...

  3. Bandpass filters based on planar metal-dielectric structures in the E-plane of a rectangular waveguide (Review)

    Science.gov (United States)

    Gololobov, V. P.; Omelianenko, M. Iu.

    1987-01-01

    The paper surveys the literature and some original results on the development of low-insertion-loss E-plane filters for microwave integrated circuits. Emphasis is placed on the design and fabrication of inductive-strip bandpass filters in rectangular and partially filled waveguides. The possibility of improving the performance of these filters in the multilayer planar realization is demonstrated theoretically. Experimental results agree satisfactorily with calculations.

  4. Tailoring reflection of graphene plasmons by focused ion beams

    CERN Document Server

    Luo, Weiwei; Wu, Wei; Xiang, Yinxiao; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-01-01

    Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental important. Through near-field plasmon imaging, we demonstrate controllable modifying of the reflection of graphene plasmon at boundaries etched by ion beams. Moreover, by varying ion dose at a proper value, nature like reflection boundary can be obtained. We also investigate the influence of ion beam incident angle on plasmon reflection. To illustrate the application of ion beam etching, a simple graphene wedge-shape plasmon structure is fabricated and performs excellently, proving this technology as a simple and efficient tool for controlling graphene plasmons.

  5. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water

    Science.gov (United States)

    Derrien, T. J.-Y.; Koter, R.; Krüger, J.; Höhm, S.; Rosenfeld, A.; Bonse, J.

    2014-08-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ0 ˜ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (ΛLSFL ˜ 0.7 × λ0) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods ΛLIPSS ˜ 0.15 × λ0 were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water.

  6. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, T. J.-Y., E-mail: thibault.derrien@gmail.com; Koter, R.; Krüger, J.; Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Höhm, S.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Staße 2A, D-12489 Berlin (Germany)

    2014-08-21

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ{sub 0} ∼ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (Λ{sub LSFL} ∼ 0.7 × λ{sub 0}) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods Λ{sub LIPSS} ∼ 0.15 × λ{sub 0} were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water.

  7. Observations of Plasmons in Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R

    2006-09-05

    We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

  8. Efficiency enhancements in Ag nanoparticles-SiO2-TiO2 sandwiched structure via plasmonic effect-enhanced light capturing

    Science.gov (United States)

    2013-01-01

    TiO2-SiO2-Ag composites are fabricated by depositing TiO2 films on silica substrates embedded with Ag nanoparticles. Enhancement of light absorption of the nanostructural composites is observed. The light absorption enhancement of the synthesized structure in comparison to TiO2 originated from the near-field enhancement caused by the plasmonic effect of Ag nanoparticles, which can be demonstrated by the optical absorption spectra, Raman scattering investigation, and the increase of the photocatalytic activity. The embedded Ag nanoparticles are formed by ion implantation, which effectively prevents Ag to be oxidized through direct contact with TiO2. The suggested incorporation of plasmonic nanostructures shows a great potential application in a highly efficient photocatalyst and ultra-thin solar cell. PMID:23402586

  9. Emission enhancement in indium zinc oxide(IZO)/Ag/IZO sandwiched structure due to surface plasmon resonance of thin Ag film

    Science.gov (United States)

    Kiba, Takayuki; Yanome, Kazuki; Kawamura, Midori; Abe, Yoshio; Kim, Kyung Ho; Takayama, Junichi; Murayama, Akihiro

    2016-12-01

    We report on a photoluminescence (PL) enhancement in IZO/Ag/IZO sandwiched structure via surface plasmonic effects of 14 nm-thick Ag film. In the presence of Ag thin film, the 2-8-fold enhancement was observed for the broad PL around 2.34 eV, which can be originated from defect states in amorphous IZO film. The results of time-resolved PL spectra suggested that the increase in radiative recombination rate, and the maximum Purcell factor of 19 was estimated from the analysis of the PL decay profiles. The comparison between the results of static- and dynamic-PL measurement suggests that the non-radiative process after the excitation of the surface plasmon of the silver film also affects the total efficiency of the emission enhancement.

  10. Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain

    Science.gov (United States)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2016-12-01

    Incorporation of gain media in plasmonic nanostructures can give the possibility to compensate for high Ohmic losses in the metal and design truly nanoscale optical components for diverse applications ranging from biosensing to on-chip data communication. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission. This spontaneous emission greatly impacts the performance characteristics of deep-subwavelength active plasmonic devices and casts doubt on their practical use. Here we develop a theoretical framework to evaluate the influence of spontaneous emission, which can be applied to waveguide structures of any shape and level of mode confinement. In contrast to the previously developed theories, we take into account that the spectrum of spontaneous emission can be very broad and nonuniform, which is typical for deep-subwavelength structures, where a high optical gain (approximately 1000 cm-1 ) in the active medium is required to compensate for strong absorption in the metal. We also present a detailed study of the spontaneous emission noise in metal-semiconductor active plasmonic nanowaveguides and demonstrate that by using both optical and electrical filtering techniques, it is possible to decrease the noise to a level sufficient for practical applications at telecom and midinfrared wavelengths.

  11. Fo cusing surface plasmon p olaritons in archimedes’ spiral nanostructure%阿基米德螺旋微纳结构中的表面等离激元聚焦∗

    Institute of Scientific and Technical Information of China (English)

    李嘉明; 唐鹏; 王佳见; 黄涛; 林峰; 方哲宇; 朱星

    2015-01-01

    Surface plasmon polaritons (SPPs) are a hybrid mode of a light field and metallic collective electrons oscillated resonantly and excited at the metal/dielectric interface. Recently extensive research has been carried out due to its technological potential in nano-optics. The SPPs coupling, focusing, waveguiding and resonance enhancement are hot spots in this field. In particular, to find a simple method that can focus SPPs into a highly confined spot with the size beyond the diffraction limit is still a big challenge. In this work, we have fabricated the Archimedes’ spiral structures with different structural parameters on an Au film by using focused ion beam etching technique. Through changing the chiralities of the incident circularly polarized light and the spiral structure, we have studied theoretically and experimentally the focusing properties of the Archimedes spiral structures with different parameters. We find that besides the chiralities of the incident light and the spiral structure, the pitch of screw of the spiral structure and the wavelength of the excited light also affect the surface plasmon field. The resulting surface plasmon fields inside the structure are the zero-order, first-order, and high-order evanescent Bessel beams. By using a phase analysis and a finite-difference time-domain simulation method, we calculate the electric field and phase distribution in different spiral structures. A near-field vortex mode with different spin-dependent topological charges can be obtained in the structures. Furthermore, the results of the scanning near-field optical microscopy measurements verify the theory and simulation results. The method of using an Archimedes’ spiral structure to focus SPPs provides a new route to manipulate the SPPs optical field in nanoscale. Based on theoretical calculation and FDTD simulation in this work, we have studied the physical process of the optical field manipulation in spiral structures. The significant and innovated

  12. Graphene active plasmonic metamaterials for new types of terahertz lasers

    Science.gov (United States)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  13. Infrared Topological Plasmons in Graphene

    Science.gov (United States)

    Jin, Dafei; Christensen, Thomas; Soljačić, Marin; Fang, Nicholas X.; Lu, Ling; Zhang, Xiang

    2017-06-01

    We propose a two-dimensional plasmonic platform—periodically patterned monolayer graphene—which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies up to tens of terahertz. By the bulk-edge correspondence, these band gaps host topologically protected one-way edge plasmons, which are immune to backscattering from structural defects and subject only to intrinsic material and radiation loss. Our findings reveal a promising approach to engineer topologically robust chiral plasmonic devices and demonstrate a realistic example of high-frequency topological edge states.

  14. Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

    DEFF Research Database (Denmark)

    Sánchez-García, Laura; Tserkezis, Christos; Ramírez, Mariola O;

    2016-01-01

    We demonstrate a 60–fold enhancement of the second harmonic generation (SHG) response at the nanoscale in a hybrid metal-dielectric system. By using complex silver nanostructures photochemically deposited on the polar surface of a ferroelectric crystal, we tune the plasmonic resonances from the v...... the potential of aggregates of silver nanostructures for enhancing optical nonlinearities at the nanoscale and provides an alternative approach for the development of nanometric nonlinear photonic devices in a scalable way.......We demonstrate a 60–fold enhancement of the second harmonic generation (SHG) response at the nanoscale in a hybrid metal-dielectric system. By using complex silver nanostructures photochemically deposited on the polar surface of a ferroelectric crystal, we tune the plasmonic resonances from...... or up to 60 times when it matches the fundamental NIR radiation. The results are consistent with the more spatially-extended near-field response of complex metallic nanostructures and can be well explained by taking into account the quadratic character of the SHG process. The work points out...

  15. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    CERN Document Server

    Wang, Weihua; Mortensen, N Asger; Christensen, Johan

    2015-01-01

    Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.

  16. Surface magneto plasmons and their applications in the infrared frequencies

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2015-11-01

    Full Text Available Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of metals and magnetic materials based on surface magneto plasmon are difficult to be realized due to the challenges in device fabrication and high losses. In the infrared frequencies, highly-doped semiconductors can replace metals, owning to the lower incident wave frequencies and lower plasma frequencies. The required magnetic field is also low, which makes the tunable devices based on surface magneto plasmons more practically to be realized. Furthermore, a promising 2D material-graphene shows great potential in infrared magnetic plasmonics. In this paper, we review the magneto plasmonics in the infrared frequencies with a focus on device designs and applications. We investigate surface magneto plasmons propagating in different structures, including plane surface structures and slot waveguides. Based on the fundamental investigation and theoretical studies, we illustrate various magneto plasmonic micro/nano devices in the infrared, such as tunable waveguides, filters, and beam-splitters. Novel plasmonic devices such as one-way waveguides and broad-band waveguides are also introduced.

  17. Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer

    CERN Document Server

    Liu, Zhenzhen; Zhang, Qiang; Zhang, Xiaoming; Tao, Keyu

    2015-01-01

    We report collective dark states controlled transmission in metal-dielectric-metal waveguides with a stub coupled to two twin cavities, namely, plasmonic waveguide-stub-dimer systems. In absence of one individual cavity in the dimer, plasmon induced transparency (PIT) is possible when the cavity and the stub have the same resonance frequency. However, it is shown that the hybridized modes in the dimer collectively generate two dark states which make the stub-dimer "invisible" to the straight waveguide, splitting the original PIT peak into two in the transmission spectrum. Simultaneously, the original PIT peak becomes a dip due to dark state interaction, yielding anti-PIT-like modulation of the transmission. With full-wave electromagnetic simulation, we demonstrate that this transition is controlled by the dimer-stub separation and the dimer-stub relative position. All results are analytically described by the temporal coupled mode theory. Our results may be useful in designing densely integrated optical circu...

  18. Dynamical analysis of a weakly coupled nonlinear dielectric waveguide -- surface-plasmon model as a new type of Josephson Junction

    CERN Document Server

    Ekşioğlu, Yasa; Güven, Kaan

    2011-01-01

    We propose that a weakly-coupled nonlinear dielectric waveguide -- surface-plasmon system can be formulated as a new type of Josephson junction. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g. fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson-Junction (BJJ) of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface-plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and $\\pi$ time averaged phase difference. The salient features of the dynamics are presented in the phase space.

  19. Dielectric coating and surface plasmon enhancement of multi-color quantum-well structures

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Ou, Yiyu

    We fabricate a multi-colored quantum-well structure as a prototype towards monolithic white light-emitting diodes, and modify the emission intensities of different colors by introducing dielectric and Ag nanoparticle coating.......We fabricate a multi-colored quantum-well structure as a prototype towards monolithic white light-emitting diodes, and modify the emission intensities of different colors by introducing dielectric and Ag nanoparticle coating....

  20. Physics and design possibilities of plasmonic-based fishnet metamaterial structures

    Science.gov (United States)

    Fiala, Jan; Kwiecien, Pavel; Richter, Ivan

    2012-01-01

    Metamaterials (MM) represent a class of artificially-made structures, exhibiting, if properly designed, negative values of effective permittivity and permeability in specific spectral regions simultaneously. Recently, such structures have indeed attracted much attention due to their unique optical behavior not found in nature. These structures offer, e.g. a possibility of practical realization of perfect lenses, possessing a spatial resolution below the wavelength limit. In this contribution, we have focused on theoretical rigorous study on one specific class of MM structures, called fishnets, consisting of a combination of metal and dielectric layers with periodically arranged sub-wavelength holes. Our attempt was to reveal the physics and optimize the fishnet structure by tailoring the geometrical features in order to achieve optimized response in terms of negative refraction indices in particular spectral regions. For that purpose, our in-house 2D rigorous coupled wave analysis (RCWA) software was used for rigorous computing, the results of which were afterwards post-processed in order to retrieve the effective parameters. Using this tool, with the help of our approximate model, enabling more physical insight of wave-coupling processes, numerical simulations of plane-wave excitation of the multilayered nanofishnets have thus been performed. The reflection and transmission coefficients have been calculated and the effective material parameters have consequently been extracted from the obtained data, via the homogenization procedure.

  1. Resonant Plasmonic Enhancement of InGaN/GaN LED using Periodically Structured Ag Nanodisks

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Zhu, Xiaolong

    2013-01-01

    Ag nanodisks are fabricated on GaN-based LED to enhance emission efficiency. Nanosphere lithography is used to obtain a periodic nano-structure, and a photoluminescence enhancement of 2.7 is reported with Ag nanodisk diameter of 330 nm.......Ag nanodisks are fabricated on GaN-based LED to enhance emission efficiency. Nanosphere lithography is used to obtain a periodic nano-structure, and a photoluminescence enhancement of 2.7 is reported with Ag nanodisk diameter of 330 nm....

  2. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  3. Self-Complementary Plasmonic Structures for High Efficiency Broadband Absorber in the Visible Range

    Science.gov (United States)

    Sun, Tianyi; Wang, Yang; Ren, Zhifeng; Kempa, Krzysztof

    2013-03-01

    We demonstrate, by simulation, that a planar 3-layer structure on a metal substrate can highly absorb electromagnetic radiation in the entire visible range, which can become a potential platform for high-efficiency broadband absorber. Such a structure consists of an ultrathin semiconducting layer topped with a solid nanoscopically perforated metallic film and then a dielectric interference layer. It is shown that the perforated metallic film and the ultrathin absorber form an effective metamaterial film, which negatively refracts light in this broad frequency range. Our quantitative simulation confirms that the absorption bandwidth is maximized at the self-complementary pattern of the percolation threshold. If amorphous silicon (a-Si) is selected as the ultrathin semiconducting material, the absorbance of the structure with a checkerboard-patterned perforated metallic film is about 90% in the visible range (from 400 nm to 700 nm), where 80% goes into the a-Si layer and the other 10% being absorbed by other layers. Further simulation shows that for a single p-i-n a-Si junction, the energy conversion efficiency of an optimized structure can exceed 12%.

  4. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  5. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  6. Near-field imaging and spectroscopy of plasmonic cavities (Conference Presentation)

    Science.gov (United States)

    Kilbane, Deirdre

    2016-09-01

    Photoemission electron microscopy (PEEM) is an attractive and advantageous technique in the field of plasmonics. Whilst surface plasmons are excited at the metal dielectric interface by light, it is the near-field photoelectron distribution that is imaged, with optical diffraction limit is overcome. Additionally parallel acquisitioning makes time-resolved (TR) PEEM1 possible. PEEM therefore allows us to investigate light-matter interactions in localized, propagating and hybridized surface plasmons leading to advances in fundamental research and technological applications. In addition to near-field imaging it is also possible to perform near-field spectroscopy. A tunable short pulse optical parametric oscillator (OPO) light source can be combined with PEEM. We demonstrate this technique with arrays of whispering gallery mode (WGM) cavities2 fabricated with focused ion beam milling (FIB) on gold surfaces. Characteristic spectral peaks and near-field mode distributions result from the coherent excitation of different plasmon resonances. This near-field interference of modes allows us to control the emission from these WGM cavities3. Additionally recent advances in ultrafast near-field microscopy and spectroscopy will be discussed. [1] M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer and M. Aeschlimann, Appl. Phys. A 88 473 (2007) [2] E. J. Vesseur, F. J. García de Abajo and A. Polman Nano Letters 9 3147 (2009) [3] P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman and M. Aeschlimann Optics Express 23, 31619 (2015)

  7. Plasmonic Light Trapping in an Ultrathin Photovoltaic Layer with Film-Coupled Metamaterial Structures

    CERN Document Server

    Wang, Hao

    2014-01-01

    A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced in the film-coupled metamaterial structure, resulting in significant enhancement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

  8. Plasmonic materials for energy: From physics to applications

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2013-10-01

    Full Text Available Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP modes – propagating surface plasmon polaritons (SPPs and localized surface plasmons (LSPs – as collective photon–electron oscillations makes them attractive candidates for energy applications. A high density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. The advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvements not achievable by other methods are identified.

  9. Plasmons in nanoscale and atomic-scale systems

    Directory of Open Access Journals (Sweden)

    Tadaaki Nagao, Gui Han, ChungVu Hoang, Jung-Sub Wi, Annemarie Pucci, Daniel Weber, Frank Neubrech, Vyacheslav M Silkin, Dominik Enders, Osamu Saito and Masud Rana

    2010-01-01

    Full Text Available Plasmons in metallic nanomaterials exhibit very strong size and shape effects, and thus have recently gained considerable attention in nanotechnology, information technology, and life science. In this review, we overview the fundamental properties of plasmons in materials with various dimensionalities and discuss the optical functional properties of localized plasmon polaritons in nanometer-scale to atomic-scale objects. First, the pioneering works on plasmons by electron energy loss spectroscopy are briefly surveyed. Then, we discuss the effects of atomistic charge dynamics on the dispersion relation of propagating plasmon modes, such as those for planar crystal surface, atomic sheets and straight atomic wires. Finally, standing-wave plasmons, or antenna resonances of plasmon polariton, of some widely used nanometer-scale structures and atomic-scale wires (the smallest possible plasmonic building blocks are exemplified along with their applications.

  10. Plasmonic materials for energy: from physics to applications

    CERN Document Server

    Boriskina, Svetlana V; Chen, Gang

    2013-01-01

    Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP) modes - propagating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) - as collective photon-electron oscillations makes them attractive candidates for energy applications. High density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. Advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvement...

  11. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  12. Complementary magnetic localized surface plasmons

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Zhang, Baile

    2015-01-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field.

  13. Plasmonics based VLSI processes

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2013-04-01

    Full Text Available In continuum to my previous paper titled‘Implementation of plasmonics in VLSI’, this paperattempts to explore further, the actual physicalrealization of an all-plasmonic chip. In this paper,various methods of plasmon-basedphotolithography have been discussed and anobservation is made w.r.t the cost effectiveness andease of adaptability. Also, plasmonics based activeelement has been discussed which would helpunravel further arenas ofapproaches and methodstowards the realization of an all-plasmonic chip.

  14. The synthesis of single layers of Ag nanocrystals by ultra-low-energy ion implantation for large-scale plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Carles, R; Farcau, C; Bonafos, C; Benassayag, G; Pecassou, B; Zwick, A, E-mail: robert.carles@cemes.f [Groupe Nanomat-CEMES-CNRS-Universite de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2009-09-02

    Single layers of silver (Ag) nanoparticles embedded in silica (SiO{sub 2}) have been fabricated by ultra-low-energy ion implantation. The distance between the Ag particles and the free SiO{sub 2} surface is controlled with nanometer precision. Raman scattering and reflectivity measurements strongly correlate to transmission electron microscopy analyses, allowing the use of these non-invasive techniques to monitor structural and dynamical properties. These results open up new opportunities to manipulate electromagnetic near-field interactions on wafer-scale plasmonic devices.

  15. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  16. Plasmonic effects in metal-semiconductor nanostructures

    CERN Document Server

    Toropov, Alexey A

    2015-01-01

    Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconducto...

  17. Plasmonic solutions for coupling and modulation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Babicheva, Viktoriia; Malureanu, Radu;

    We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show that the pl......We present our design results for efficient coupling and modulation in plasmonic structures. Fiber coupling to a plasmonic slot waveguide is significantly increased by a metallic nanoantenna with additional reflectors or by the configuration of several connected antennas. We also show...... that the plasmonic four-layer waveguide with patterned ITO layer can modulate light with higher transmission and the same modulation depth as a waveguide with a uniform ITO layer....

  18. Fabrication and characterization of woodpile structures

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Andryieuski, Andrei

    2011-01-01

    In this paper we present the whole fabrication and characterization cycle for obtaining 3D metal-dielectric woodpile structures. The optical properties of these structures have been measured using different setups showing the need of considering e.g. border effects when planning their use in real...

  19. Hidden progress: broadband plasmonic invisibility

    CERN Document Server

    Renger, Jan; Dupont, Guillaume; Aćimović, Srdjan S; Guenneau, Sébastien; Quidant, Romain; Enoch, Stefan

    2010-01-01

    The key challenge in current research into electromagnetic cloaking is to achieve invisibility over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry, with dielectric structures superposed on a mirror. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this to control plasmonic coupling and demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at the wavelength 800 nm.

  20. Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping

    Science.gov (United States)

    Balci, Sinan; Kocabas, Coskun; Ates, Simge; Karademir, Ertugrul; Salihoglu, Omer; Aydinli, Atilla

    2012-12-01

    In this paper, we report experimental and theoretical investigations on tuning of the surface plasmon-exciton coupling by controlling the plasmonic mode damping, which is defined by the plasmonic layer thickness. The results reveal the formation of plasmon-exciton hybrid state characterized by a tunable Rabi splitting with energies ranging from 0 to 150 meV. Polarization-dependent spectroscopic reflection measurements were employed to probe the dispersion of the coupled system. The transfer matrix method and analytical calculations were used to model the self-assembled J-aggregate/metal multilayer structures in excellent agreement with experimental observations.

  1. Semiconductor plasmonic nanolasers: current status and perspectives

    Science.gov (United States)

    Gwo, Shangjr; Shih, Chih-Kang

    2016-08-01

    Scaling down semiconductor lasers in all three dimensions holds the key to the development of compact, low-threshold, and ultrafast coherent light sources, as well as integrated optoelectronic and plasmonic circuits. However, the minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators (photonic cavities) is limited by the diffraction limit. To date, surface plasmon amplification by stimulated emission of radiation (spaser)-based plasmonic nanolaser is the only photon and plasmon-emitting device capable of this remarkable feat. Specifically, it has been experimentally demonstrated that the use of plasmonic cavities based on metal-insulator-semiconductor (MIS) nanostructures can indeed break the diffraction limit in all three dimensions. In this review, we present an updated overview of the current status for plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers. In particular, by using composition-varied indium gallium nitride/gallium nitride core-shell nanorods, it is possible to realize all-color, single-mode nanolasers in the full visible wavelength range with ultralow continuous-wave (CW) lasing thresholds. The lasing action in these subdiffraction plasmonic cavities is achieved via a unique auto-tuning mechanism based on the property of weak size dependence inherent in plasmonic nanolasers. As for the choice of metals in the plasmonic structures, epitaxial silver films and giant colloidal silver crystals have been shown to be the superior constituent materials for plasmonic cavities due to their low plasmonic losses in the visible and near-infrared (NIR) spectral regions. In this review, we also provide some perspectives on the challenges and opportunities in this exciting new research frontier.

  2. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2011-04-25

    Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.

  3. Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate.

    Science.gov (United States)

    D'Antonio, Palma; Inchingolo, Alessio Vincenzo; Perna, Giuseppe; Capozzi, Vito; Stomeo, Tiziana; De Vittorio, Massimo; Magno, Giovanni; Grande, Marco; Petruzzelli, Vincenzo; D'Orazio, Antonella

    2012-11-16

    In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal-dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip.

  4. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  5. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    Science.gov (United States)

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

  6. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2009-07-01

    Full Text Available Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (AlInGaP/(InGaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging.

  7. Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas

    Science.gov (United States)

    Metzger, Bernd; Hentschel, Mario; Nesterov, Maxim; Schumacher, Thorsten; Lippitz, Markus; Giessen, Harald

    2016-04-01

    We investigate the polarization-resolved linear and third-order optical response of plasmonic nanostructure arrays that consist of orthogonally coupled gold nanoantennas. By rotating the incident light polarization direction, either one of the two eigenmodes of the coupled system or a superposition of the eigenmodes can be excited. We find that when an eigenmode is driven by the external light field, the generated third-harmonic signals exhibit the same polarization direction as the fundamental field. In contrast, when a superposition of the two eigenmodes is excited, third-harmonic can efficiently be radiated at the perpendicular polarization direction. Furthermore, the interference of the coherent third-harmonic signals radiated from both nanorods proves that the phase between the two plasmonic oscillators changes in the third-harmonic signal over 3π when the laser is spectrally tuned over the resonance, rather than over π as in the case of the fundamental field. Finally, almost all details of the linear and the nonlinear spectra can be described by an anharmonic coupled oscillator model, which we discuss in detail and which provides deep insight into the linear and the nonlinear optical response of coupled plasmonic nanoantennas.

  8. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic

  9. Plasmon absorption modulator systems and methods

    Science.gov (United States)

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  10. The road towards nonlinear magneto-plasmonics

    Science.gov (United States)

    Zheng, Wei; Liu, Xiao; Lüpke, Günter; Hanbicki, Aubrey T.; Jonker, Berend T.

    2016-10-01

    Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. NMP can be referred to as interdisciplinary studies at the intersection of Nonlinear Plasmonics (NP), Magneto- Plasmonics (MP), and nanoscience. In NMP systems, nanostructures are the bases, Surface Plasmons (SPs) work as catalyst due to strong field enhancement effects, and the nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method. Many new effects were discovered recently, which include enhanced magnetization-induced harmonic generation, controlled and enhanced magnetic contrast, magneto-chiral effect, correlation between giant magnetroresistance (GMR) and nonlinear MOKE, etc. We review the structures, experiments, findings, and the applications of NMP.

  11. Subwavelength Plasmonic Waveguides and Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    Ruoxi Yang

    2012-01-01

    Full Text Available With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.

  12. Ultracompact beam splitters based on plasmonic nanoslits

    Science.gov (United States)

    Zhou, Chuanhong; Kohli, Punit

    2011-01-01

    An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248

  13. A Variable Single Photon Plasmonic Beamsplitter

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Kumar, Shailesh; Huck, Alexander

    Plasmonic structures can both be exploited for scaling down optical components beyond the diffraction limit and enhancing andcollecting the emission from a single dipole emitter. Here, we experimentally demonstrate adiabatic coupling between two silvernanowires using a nitrogen vacancy center...

  14. Plasmonic color tuning

    Science.gov (United States)

    Lee, Byoungho; Yun, Hansik; Lee, Seung-Yeol; Kim, Hwi

    2016-03-01

    In general, color filter is an optical component to permit the transmission of a specific color in cameras, displays, and microscopes. Each filter has its own unchangeable color because it is made by chemical materials such as dyes and pigments. Therefore, in order to express various colorful images in a display, one pixel should have three sub-pixels of red, green, and blue colors. Here, we suggest new plasmonic structure and method to change the color in a single pixel. It is comprised of a cavity and a metal nanoaperture. The optical cavity generally supports standing waves inside it, and various standing waves having different wavelength can be confined together in one cavity. On the other hand, although light cannot transmit sub-wavelength sized aperture, surface plasmons can propagate through the metal nanoaperture with high intensity due to the extraordinary transmission. If we combine the two structures, we can organize the spatial distribution of amplitudes according to wavelength of various standing waves using the cavity, and we can extract a light with specific wavelength and amplitude using the nanoaperture. Therefore, this cavity-aperture structure can simultaneously tune the color and intensity of the transmitted light through the single nanoaperture. We expect that the cavity-apertures have a potential for dynamic color pixels, micro-imaging system, and multiplexed sensors.

  15. Plasmonics fundamentals and applications

    CERN Document Server

    Maier, Stefan Alexander

    2007-01-01

    Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

  16. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... of quantum dots in proximity to semiconductor/air and semiconductor/metal interfaces, were fabricated. We measured the decay dynamics of quantum dots near plasmonic gap waveguides and observed modied decay rates. The obtainable modications with the fabricated structures are calculated to be too small...... for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect...

  17. Treatment of nonconvergence of the Fourier modal method and C method arising from field hypersingularities at lossless metal-dielectric arbitrary-angle edges.

    Science.gov (United States)

    Zhu, Junda; Liu, Haitao; Zhong, Ying

    2016-05-01

    Here, we report perturbative approaches to overcome the recently reported nonconvergence of the Fourier modal method (FMM) and the coordinate transformation method (C method) caused by the field hypersingularities (also called irregular field singularities) at lossless metal-dielectric arbitrary-angle edges. For the example of triangular gratings, we replace the sharp edge with a rounded edge to remove the hypersingularities at the edge. With such profile perturbations, we observe the convergence of the C method. The converged values of the diffraction efficiency are tested by the finite element method. However, with the radius of the rounded edge approaching zero, the converged values of the diffraction efficiency cannot approach a fixed value. For the example of parallelogram gratings, we smooth the sharp lamellar boundaries with a medium having a gradually varied refractive index to remove the hypersingularities. With the decrease of the width of the perturbative medium, the converged values of the diffraction efficiency can approach a fixed value for some numerical examples but cannot for other examples. For parallelogram gratings with a period much smaller than the wavelength, we surprisingly find that the FMM tends to converge despite the existence of hypersingularities, and the converged value consists well with the theoretical value given by the effective medium theory.

  18. Direct temperature mapping of nanoscale plasmonic devices.

    Science.gov (United States)

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  19. Imaging through plasmonic nanoparticles

    Science.gov (United States)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  20. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Alexander V. Baryshev

    2014-12-01

    Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.

  1. Imaging standing surface plasmons by photon tunneling

    Science.gov (United States)

    Passian, A.; Lereu, A. L.; Wig, A.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2005-04-01

    We present a direct method for optically exciting and imaging delocalized standing surface plasmons in thin metal films. We show theoretically that when imaging the field of the plasmons with a photon scanning tunneling microscope, the presence of the dielectric probe has a negligible effect on the surface modes of the metal film. We demonstrate that plasmon interference can be sustained in arbitrarily large regions of the metal film in comparison to the excitation wavelength. This knowledge can be important when seeking the relative distance between two scattering centers such as the presence of micron or submicron structures.

  2. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  3. Feasibility study of SWIR light absorption enhancement in PbS and PbSe nano-structure layers using surface plasmon polariton

    Directory of Open Access Journals (Sweden)

    Nimrod Nissim

    2017-03-01

    Full Text Available We present a theoretical feasibility study of the use of reflection grating couplers in order to harness the Surface Plasmon Polariton (SPP to increase the absorption efficiency in the short wavelength infrared (SWIR spectral range of a novel SWIR to visible (VIS direct up-conversion imaging device. This device detects the SWIR spectral band photons using high absorption PbSe/CdSe core-shell, PbS nano-spheres or PbSe nano-columns. In order to further enhance the absorption of the SWIR light within the nano-structure layer we propose to add another light absorption enhancement, known as SPP enhanced absorption. The idea is to cover the absorber layer surface with a structured metal layer that will ignite SPPs on the metal – dielectric interface, by coupling between the incident TM polarized photons and the SPP modes; this results in better field confinement at the interface that will further increase the SWIR absorption of this thin layer. Calculation of the field profile of the surface plasmon (SP in the SWIR range shows perpendicular dominance of the SP’s electrical field direction on the dielectric layer side (the PbS or PbSe/CdSe absorption layer side. Based on this result, it was found that, due to the use of quantum confined and, thus, high oscillator strength nanostructures, there is only a marginal increase in the absorption and, hence, in the quantum efficiency when using the SPP enhancement technique. Nevertheless, we show that one of the proposed configurations of the metal grating coupler, having a lamellar structure with a pitch of 1.38μm, a duty cycle (DC of 0.12μm and a height of 60nm, is predicted to increase the total layer’s absorption by 9.5%, mainly due to efficient light scattering rather than to SPP enhanced absorption.

  4. Tunable plasmonic crystal

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  5. Plasmonic Demultiplexer and Guiding

    CERN Document Server

    Zhao, Chenglong

    2010-01-01

    Two-dimensional plasmonic demultiplexers for surface plasmon polaritons (SPPs), which consist of concentric grooves on a gold film, are proposed and experimentally demonstrated to realize light-SPP coupling, effective dispersion and multiple-channel SPP guiding. A resolution as high as 10 nm is obtained. The leakage radiation microscopy imaging shows that the SPPs of different wavelengths are focused and routed into different SPP strip waveguides. The plasmonic demultiplexer can thus serve as a wavelength division multiplexing element for integrated plasmonic circuit and also as a plasmonic spectroscopy or filter.

  6. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  7. Reviews in plasmonics 2016

    CERN Document Server

    2017-01-01

    Reviews in Plasmonics 2016, the third volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  8. Reviews in plasmonics 2015

    CERN Document Server

    2016-01-01

    Reviews in Plasmonics 2015, the second volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

  9. Theory of spoof plasmons in real metals

    Science.gov (United States)

    Rusina, Anastasia; Durach, Maxim; Stockman, Mark I.

    2010-08-01

    In this Letter we develop a theory of spoof plasmons propagating on real metals perforated with planar periodic grooves. Deviation from the spoof plasmons on perfect conductor due to finite skin depth has been analytically described. This allowed us to investigate important propagation characteristics of spoof plasmons such as quality factor and propagation length as the function of the geometrical parameters of the structure. We have also considered THz field confinement by adiabatic increase of the depth of the grooves. It is shown that the finite skin depth limits the propagation length of spoof plasmons as well as a possibility to localize THz field. Geometrical parameters of the structure are found which provide optimal guiding and localization of THz energy.

  10. Effect of the band structure of InGaN/GaN quantum well on the surface plasmon enhanced light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Zhang, Rong, E-mail: rzhang@nju.edu.cn, E-mail: bliu@nju.edu.cn; Liu, Bin, E-mail: rzhang@nju.edu.cn, E-mail: bliu@nju.edu.cn; Xie, Zili; Zhang, Guogang; Tao, Tao; Zhuang, Zhe; Zhi, Ting; Zheng, Youdou [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2014-07-07

    The spontaneous emission (SE) of InGaN/GaN quantum well (QW) structure with silver(Ag) coated on the n-GaN layer has been investigated by using six-by-six K-P method taking into account the electron-hole band structures, the photon density of states of surface plasmon polariton (SPP), and the evanescent fields of SPP. The SE into SPP mode can be remarkably enhanced due to the increase of electron-hole pairs near the Ag by modulating the InGaN/GaN QW structure or increasing the carrier injection. However, the ratio between the total SE rates into SPP mode and free space will approach to saturation or slightly decrease for the optimized structures with various distances between Ag film and QW layer at a high injection carrier density. Furthermore, the Ga-face QW structure has a higher SE rate than the N-face QW structure due to the overlap region of electron-hole pairs nearer to the Ag film.

  11. Nano-plasmonic phenomena in graphene

    Science.gov (United States)

    Basov, Dimitri

    2014-03-01

    Infrared nano-spectroscopy and nano-imaging experiments have uncovered a rich variety of optical effects associated with the Dirac plasmons of graphene [Fei et al. Nano Lett. 11, 4701 (2011)]. We were able to directly image Dirac plasmons propagating over sub-micron distances [Fei et al. Nature 487, 82 (2012)]. We have succeeded in altering both the amplitude and wavelength of these plasmons by gate voltage in common graphene/SiO2/Si back-gated structures. Scanning plasmon interferometry has allowed us to visualize grain boundaries in CVD graphene. These latter experiments revealed that the grain boundaries tend to form electronic barriers that impede both electrical transport and plasmon propagation. Our results attest to the feasibility of using these electronic barriers to realize tunable plasmon reflectors: a precondition for implementation of various metamaterials concepts [Fei et al. Nature Nano 8, 821 (2013)]. Finally, we have carried out pump-probe experiments interrogating ultra-fast dynamics of plasmons in exfoliated graphene with the nano-scale spatial resolution [Wagner et al. (under review)].

  12. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd

  13. Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals

    Science.gov (United States)

    Petrov, Aleksandr S.; Svintsov, Dmitry; Ryzhii, Victor; Shur, Michael S.

    2017-01-01

    We identify a possible mechanism of the plasmon instabilities in periodically gated two-dimensional electron systems with a modulated electron density (plasmonic crystals) under direct current. The instability occurs due to the amplified reflection of the small density perturbations from the gated/ungated boundaries under the proper phase-matching conditions between the crystal unit cells. Based on the transfer-matrix formalism, we derive the generic dispersion equation for the traveling plasmons in these structures. Its solution in the hydrodynamic limit shows that the threshold drift velocity for the instability can be tuned below the plasmon phase and carrier saturation velocities, and the plasmon growth rate can exceed the collisional damping rate typical of III-V semiconductors and graphene at room temperature.

  14. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification.

    Science.gov (United States)

    Shokri Kojori, Hossein; Yun, Ju-Hyung; Paik, Younghun; Kim, Joondong; Anderson, Wayne A; Kim, Sung Jin

    2016-01-13

    Direct coupling of electronic excitations of optical energy via plasmon resonances opens the door to improving gain and selectivity in various optoelectronic applications. We report a new device structure and working mechanisms for plasmon resonance energy detection and electric conversion based on a thin film transistor device with a metal nanostructure incorporated in it. This plasmon field effect transistor collects the plasmonically induced hot electrons from the physically isolated metal nanostructures. These hot electrons contribute to the amplification of the drain current. The internal electric field and quantum tunneling effect at the metal-semiconductor junction enable highly efficient hot electron collection and amplification. Combined with the versatility of plasmonic nanostructures in wavelength tunability, this device architecture offers an ultrawide spectral range that can be used in various applications.

  15. Dielectric function and plasmons in graphene

    OpenAIRE

    Hill, A.; Mikhailov, S. A.; Ziegler, K

    2009-01-01

    The electromagnetic response of graphene, expressed by the dielectric function, and the spectrum of collective excitations are studied as a function of wave vector and frequency. Our calculation is based on the full band structure, calculated within the tight-binding approximation. As a result, we find plasmons whose dispersion is similar to that obtained in the single-valley approximation by Dirac fermions. In contrast to the latter, however, we find a stronger damping of the plasmon modes d...

  16. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    Science.gov (United States)

    2013-10-10

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Chiral Plasmonic Nanostructures on Achiral...Nanopillars Chirality of plasmonic films can be strongly enhanced by threedimensional (3D) out-of-plane geometries. The complexity of lithographic...methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical

  17. Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using finite elements method

    CERN Document Server

    Hiremath, Kirankumar R; Schmidt, Frank

    2012-01-01

    Nonlocal material response distinctively changes the optical properties of nano-plasmonic scatterers and waveguides. It is described by the nonlocal hydrodynamic Drude model, which -- in frequency domain -- is given by a coupled system of equations for the electric field and an additional polarization current of the electron gas modeled analogous to a hydrodynamic flow. Recent works encountered difficulties in dealing with the grad-div operator appearing in the governing equation of the hydrodynamic current. Therefore, in these studies the model has been simplified with the curl-free hydrodynamic current approximation; but this causes spurious resonances. In this paper we present a rigorous weak formulation in the Sobolev spaces $H(\\mathrm{curl})$ for the electric field and $H(\\mathrm{div})$ for the hydrodynamic current, which directly leads to a consistent discretization based on N\\'ed\\'elec's finite element spaces. Comparisons with the Mie theory results agree well. We also demonstrate the capability of the...

  18. Plasmon-assisted photoresponse in Ge-coated bowtie nanojunctions

    CERN Document Server

    Evans, Kenneth M; Natelson, Douglas

    2016-01-01

    We demonstrate plasmon-enhanced photoconduction in Au bowtie nanojunctions containing nanogaps overlaid with an amorphous Ge film. The role of plasmons in the production of nanogap photocurrent is verified by studying the unusual polarization dependence of the photoresponse. With increasing Ge thickness, the nanogap polarization of the photoresponse rotates 90 degrees, indicating a change in the dominant relevant plasmon mode, from the resonant transverse plasmon at low thicknesses to the nonresonant "lightning rod" mode at higher thicknesses. To understand the plasmon response in the presence of the Ge overlayer and whether the Ge degrades the Au plasmonic properties, we investigate the photothermal response (from the temperature-dependent Au resistivity) in no-gap nanowire structures, as a function of Ge film thickness and nanowire geometry. The film thickness and geometry dependence are modeled using a cross-sectional, finite element simulation. The no-gap structures and the modeling confirm that the strik...

  19. Nonlinear graphene plasmonics (Conference Presentation)

    Science.gov (United States)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  20. Plasmonic metasurfaces for coloration of plastic consumer products.

    Science.gov (United States)

    Clausen, Jeppe S; Højlund-Nielsen, Emil; Christiansen, Alexander B; Yazdi, Sadegh; Grajower, Meir; Taha, Hesham; Levy, Uriel; Kristensen, Anders; Mortensen, N Asger

    2014-08-13

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum.

  1. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun;

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  2. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  3. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  4. Positional control of plasmonic fields and electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R., E-mail: rkoe@pdx.edu [Department of Physics, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201 (United States)

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  5. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  6. Linear and ultrafast nonlinear plasmonics of single nano-objects

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump–probe experiments performed on

  7. Plasmon cross transmission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzynski, Leonard; Akjouj, Abdellatif; Li, Changsheng, E-mail: Abdellatif.Akjouj@univ-lille1.fr [Centre National de la Recherche Scientifique, Universite Lille Nord de France, Lille1, Institut d' Electronique, de Microelectronique et de Nanotechnologie, Unite de Physique, Batiment P5, 59655 Villeneuve d' Ascq Cedex (France)

    2011-09-14

    Plasmon cross transmission avoids the frontal collision between two plasmons traveling in opposite directions along a guide. The guide is made out of equidistant identical metal dots. Thanks to two resonator dots, the plasmon frontal impact is avoided by transmission of the two plasmons from the input guide to an output one. The resonator and guide dots are identical in size and metal composition. The dipole-dipole interactions are restricted to first nearest neighbors. A convenient metal doping is assumed to compensate exactly all attenuations. The parameters are the nearest neighbor distances between the dots. These distances are rescaled to the chain nearest neighbor distance d. The system has two symmetry mirror planes. This simple model enables us to obtain two analytic tuning relations for the plasmon cross transmission. The intensities of the transmitted signals versus kd, where k is the plasmon propagation vector, are also given. (paper)

  8. Self-assembled plasmonic metamaterials

    Science.gov (United States)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  9. Retrieval of Effective Parameters of Subwavelength Periodic Photonic Structures

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Yankovskaya, Elizaveta A.; Zhukovsky, Sergei;

    2014-01-01

    We revisit the standard Nicolson Ross Weir method of effective permittivity and permeability restoration of photonic structures for the case of subwavelength metal-dielectric multilayers. We show that the direct application of the standard method yields a false zero-epsilon point and an associated...

  10. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  11. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  12. Technological studies for plasmonic metasurfaces

    Science.gov (United States)

    Tomescu, Roxana; Kusko, Cristian; Dinescu, Adrian; Bita, Bogdan; Popescu, Marian

    2016-12-01

    This work will present the technological processes necessary to experimentally obtain plasmonic metasurfaces for developing flat optical components or diffractive optical elements (DOE) which have reflexion functionalities. This class of metasurfaces offers the possibility to manipulate the beam shape using an array of metallic nanoscale elements patterned on a substrate. The main feature of these structures is that one can manipulate the phase behavior by modifying some of the geometrical parameters of the nano-antennas in order to achieve the required phase shift values for the desired applications. The first important step in experimentally obtaining a plasmonic metasurface structures is the electron beam lithography (EBL) followed by the lift-off method. Due to the small sizes of the gold nano-antennas and tight periodicity of the array a number of impediments can emerge in experimentally obtaining such geometries which can be overcome by the parameter optimization of the employed technologies.

  13. Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation

    Science.gov (United States)

    Rashidi-Huyeh, M.; Volz, S.; Palpant, B.

    2008-09-01

    Relaxation dynamics of embedded metal nanoparticles after ultrafast laser pulse excitation is driven by thermal phenomena of different origins, the accurate description of which is crucial for interpreting experimental results: hot electron-gas generation, electron-phonon coupling, heat transfer to the particle environment, and heat propagation in the latter. Regarding this last mechanism, it is well known that heat transport in nanoscale structures and/or at ultrashort timescales may deviate from the predictions of the Fourier law. In these cases heat transport may rather be described by the Boltzmann transport equation. We present a numerical model allowing to determine the electron and lattice temperature dynamics in a spherical gold nanoparticle core under subpicosecond pulsed excitation as well as that in the surrounding shell dielectric medium. For this, we have used the electron-phonon coupling equation in the particle with a source term linked with the laser pulse absorption and the ballistic-diffusive equations for heat conduction in the host medium. Either thermalizing or adiabatic boundary conditions have been considered at the shell external surface. Our results show that the heat transfer rate from the particle to the matrix can be significantly smaller than the prediction of Fourier’s law. Consequently, the particle-temperature rise is larger and its cooling dynamics might be slower than that obtained by using Fourier’s law. This difference is attributed to the nonlocal and nonequilibrium heat conductions in the vicinity of the core nanoparticle. These results are expected to be of great importance for analyzing pump-probe experiments performed on single nanoparticles or nanocomposite media.

  14. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  15. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  16. Nonlinear surface magneto-plasmonics in Kretschmann multilayers

    CERN Document Server

    Razdolski, Ilya; Rasing, Theo; Makarov, Denys; Schmidt, Oliver G; Temnov, Vasily V

    2015-01-01

    The nonlinear magneto-plasmonics aims to utilize plasmonic excitations to control the mechanisms and taylor the efficiencies of the non-linear light frequency conversion at the nanoscale. We investigate the mechanisms of magnetic second harmonic generation in hybrid gold-cobalt-silver multilayer structures, which support propagating surface plasmon polaritons at both fundamental and second harmonic frequencies. Using magneto-optical spectroscopy in Kretschmann geometry, we show that the huge magneto-optical modulation of the second harmonic intensity is dominated by the excitation of surface plasmon polaritons at the second harmonic frequency, as shown by tuning the optical wavelength over the spectral region of strong plasmonic dispersion. Our proof-of-principle experiment highlights bright prospects of nonlinear magneto-plasmonics and contributes to the general understanding of the nonlinear optics of magnetic surfaces and interfaces.

  17. Topological collective plasmons in bipartite chains of metallic nanoparticles

    CERN Document Server

    Downing, Charles A

    2016-01-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudo-relativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunnelling. We also show that the system is governed by a nontriv...

  18. Enhanced plasmonic coloring of silver and formation of large laser-induced periodic surface structures using multi-burst picosecond pulses

    CERN Document Server

    Guay, J -M; Baxter, J; Charron, M; Côté, G; Ramunno, L; Berini, P; Weck, A

    2016-01-01

    We report on the creation of angle-independent colors on silver using closely time-spaced laser bursts. The use of burst mode, compared to traditional non-burst is shown to increase the Chroma (color saturation) by ~50% and to broaden the lightness range by up to ~60%. Scanning electron microscope analysis of the surfaces created using burst mode, reveal the creation of 3 distinct sets of laser induced periodic surface structures (LIPSS): low spatial frequency LIPSS (LSFL), high spatial frequency LIPSS (HSFL) and large laser-induced periodic surface structures (LLIPSS) that are 10 times the laser wavelength and parallel to the laser polarization. Nanoparticles are responsible for each plasmonic color and their distributions are observed to be similar for both burst and non-burst modes, indicating that the underlying structures (i.e. LIPSSs) are responsible for the increased Chroma and Lightness. Two-temperature model simulations of silver irradiated by laser bursts show significant increase in the electron-ph...

  19. Plasmonics analysis of nanostructures for bioapplications

    Science.gov (United States)

    Xie, Qian

    Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the

  20. Understanding the Plasmonics of Nanostructured Atomic Force Microscopy Tips

    CERN Document Server

    Sanders, Alan; Zhang, Liwu; Turek, Vladimir; Sigle, Daniel O; Lombardi, Anna; Weller, Lee; Baumberg, Jeremy J

    2016-01-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy (TERS), with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  1. Long-range plasmonic waveguides with hyperbolic cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-11-30

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly coupled, and the propagation length can be on the order of a millimeter.

  2. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi;

    2015-01-01

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic...... waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  3. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    Science.gov (United States)

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-01

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  4. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.

    Science.gov (United States)

    Lin, Linhan; Peng, Xiaolei; Wang, Mingsong; Scarabelli, Leonardo; Mao, Zhangming; Liz-Marzán, Luis M; Becker, Michael F; Zheng, Yuebing

    2016-09-21

    Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/μm(2)) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/μm(2). Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.

  5. Plasmon-assisted optoelectrofluidics

    DEFF Research Database (Denmark)

    Ndukaife, Justus C.; Kildishev, Alexander V.; Agwu Nnanna, A. G.

    2015-01-01

    By harnessing the photo-induced heating of a single plasmonic nanostructure and AC E-field in our research at the interface between plasmonics and optofluidics we demonstrate on-demand fluid flow control with unparalleled micron per second-scale velocities. © 2015 OSA....

  6. Integrated Plasmonic Metasurfaces for Spectropolarimetry

    CERN Document Server

    Chen, Wei Ting; Foreman, Matthew R; Liao, Chun Yen; Tsai, Wei-Yi; Wu, Pei Ru; Tsai, Din Ping

    2015-01-01

    Plasmonic metasurfaces, i.e. nano-structured thin metallic films, are promising candidates for development of compact nanoscale photonic devices, since they afford simultaneous control over the phase, momentum, amplitude and polarization of incident light. Integration of multiple metasurfaces affords optical functionality unrealisable with conventional planar photonic devices. In this work we demonstrate the principle of an integrated plasmonic metasurface (IPM) device by designing a spectropolarimeter that diffracts light with given polarization states into well-defined spatial domains. By capturing the diffracted light, the polarization state of the incident light can be fully determined using a single IPM avoiding the need for many optical components. The dispersive nature of the device provides simultaneous access to both polarization and spectral information. Our proposed IPM is robust, compact and fully compatible with today's semiconductor manufacturing technology, promising many applications in polari...

  7. Nanoscale 2.5-dimensional surface patterning with plasmonic lithography.

    Science.gov (United States)

    Jung, Howon; Park, Changhoon; Oh, Seonghyeon; Hahn, Jae W

    2017-08-29

    We report an extension of plasmonic lithography to nanoscale 2.5-dimensional (2.5D) surface patterning. To obtain the impulse response of a plasmonic lithography system, we described the field distribution of a point dipole source generated by a metallic ridge aperture with a theoretical model using the concepts of quasi-spherical waves and surface plasmon-polaritons. We performed deconvolution to construct an exposure map of a target shape for patterning. For practical applications, we fabricated several nanoscale and microscale structures, such as a cone, microlens array, nanoneedle, and a multiscale structure using the plasmonic lithography system. We verified the possibility of applying plasmonic lithography to multiscale structuring from a few tens of nanometres to a few micrometres in the lateral dimension. We obtained a root-mean-square error of 4.7 nm between the target shape and the patterned shape, and a surface roughness of 11.5 nm.

  8. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide r

  9. Plasmonic Nanostructures for Enhanced Light-Matter Interactions

    DEFF Research Database (Denmark)

    Zhu, Xiaolong

    the spontaneous emission of emitters by exciting plasmonic modes. An enhancement of photoemission up to 30 times is observed, leading to a 4 times broader emission spectrum. Next, we mainly discuss the LMIs in metal-graphene hybrid plasmonic structures. We introduce two novel hybrid systems for studying light...

  10. Formaldehyde sensing with plasmonic near-infrared optical fiber grating sensors

    Science.gov (United States)

    González-Vila, Á.; Debliquy, M.; Lahem, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    A tilted fiber Bragg grating is photo-inscribed in the core of a single-mode optical fiber, leading to the coupling of cladding mode resonances all along a wide region of the near-infrared spectrum. The grating is then coated with a thin film of gold in order to create a metal-dielectric interface. This way, light propagating through the cladding of the optical fiber is able to excite a surface plasmon wave on the outer interface. As sensitive element, a molecularly imprinted polymer is deposited by electropolymerization as a thin film around the previous gold coating. The thickness of the polymer is controlled by means of the surface plasmon resonance signature in order to preserve a correct surrounding refractive index sensitivity when used in a gaseous environment. The chosen polymer has an affinity to formaldehyde, which is a volatile organic compound worth to detect, especially because of its toxicity for the human being. We report a global wavelength shift of the grating cladding mode resonances in the presence of formaldehyde in gaseous state. This shift is due to a change in the refractive index of the polymer when it bounds to the target molecules. The sensor exhibits a linear response, together with a low limit of detection.

  11. Synthesis of tunable plasmonic metal-ceramic nanocomposite thin films by temporally modulated sputtered fluxes

    Science.gov (United States)

    Magnfält, D.; Melander, E.; Boyd, R. D.; Kapaklis, V.; Sarakinos, K.

    2017-05-01

    The scientific and technological interest for metal-dielectric nanocomposite thin films emanates from the excitation of localized surface plasmon resonances (LSPRs) on the metal component. The overall optical response of the nanocomposite is governed by the refractive index of the dielectric matrix and the properties of the metallic nanoparticles in terms of their bulk optical properties, size, and shape, and the inter-particle distance of separation. In order to tune the film morphology and optical properties, complex synthesis processes which include multiple steps—i.e., film deposition followed by post-deposition treatment by thermal or laser annealing—are commonly employed. In the present study, we demonstrate that the absorption resonances of Ag/AlOxNy nanocomposite films can be effectively tuned from green (˜2.4 eV) to violet (˜2.8 eV) using a single-step synthesis process that is based on modulating the arrival pattern of film forming species with sub-monolayer resolution, while keeping the amount of Ag in the films constant. Our data indicate that the optical response of the films is the result of LSPRs on isolated Ag nanoparticles that are seemingly shifted by dipolar interactions between neighboring particles. The synthesis strategy presented may be of relevance for enabling integration of plasmonic nanocomposite films on thermally sensitive substrates.

  12. Dynamic plasmonic colour display

    Science.gov (United States)

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-02-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.

  13. Plasmonic propagation and sp ectral splitting in nanostructured metal wires%金属微结构纳米线中等离激元传播和分光特性∗

    Institute of Scientific and Technical Information of China (English)

    徐地虎; 胡青; 彭茹雯; 周昱; 王牧

    2015-01-01

    Due to the coupling of photons with the electrons at a metal-dielectric interface, surface plasmons (SPs) can achieve extremely small wavelengths and highly localized electromagnetic fields. Hence, plas-monics with subwavelength characteristics can break the diffraction limit of light, and thus has aroused great interest for decades. The SP-inspired research, in the application aspect, includes extraordinary optical transmission, surface enhanced Raman spectroscopy, sub-wavelength imaging, electromagnetic in-duced transparency, perfect absorbers, polarization switches, etc.;and in the fundamental aspect, includes plasmon-mediated light-matter interaction, such as plasmonic lasing, plasmon-exciton strong coupling, etc. Recently a series of studies has been performed to push the dimensions of plasmonic devices into deep subwavelength by using nanowires. The chemically synthesized metallic nanowires have good plasmonic properties such as low damping. The reported silver nanowire structures show great potential as plasmonic devices for communication and computation. Now we develop the nanostructured metal wires for plasmonic splitters based on the following considerations. One is that we introduce cascade nano-gratings on a metallic nanowire, enabling a single nanowire to act as a spectral splitting device at subwavelength;and the other is that we use silicon as a substrate for the metallic nanowire, making the plasmonic nanowire device compatible with silicon based technologies. In this paper, we continue and develop our previous work on position-sensitive spectral splitting with a plasmonic nanowire on silicon chip (see Scientific Reports (2013) 3 3095). The three parts are organized as follows. In the first part, we derive analytically the dispersion relation of the SPs in a suspended silver nanowire based on Maxwell equations. In the second part, we place a silver nanowire in the silicon substrate, and use the finite-element method (FEM) to obtain the dispersion

  14. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  15. Leaky wave lenses for spoof plasmon collimation.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2016-06-27

    We theoretically demonstrate the feasibility of collimating radiating spoof plasmons using a leaky wave lens approach. Spoof plasmons are surface waves excited along reactance surfaces realized through metallic corrugations. By employing a periodic perturbation to the geometric profile of this type of reactance surface, it becomes feasible to convert the excited spoof plasmons into free-space radiating leaky wave modes. It is demonstrated that by structurally modifying such a corrugated surface through the introduction of a non-uniform sinusoidally modulated reactance profile, then a tapered wavenumber, with a real part less than that of free space, can be established along the surface. In this way the radiating properties of the structure (amplitude and phase) can be locally controlled thereby creating a radiating effect similar to that of a non-uniform current distribution. By properly engineering the space dependent wavenumber along the corrugated surface, different regions of the structure will emit spoof plasmon energy at different angles with varying intensity. The combined effect is the emission of an electromagnetic wave exhibiting a converging wave-front that eventually collimates spoof plasmon energy at some desired focal point.

  16. Graphene on plasmonic metamaterials for infrared detection

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Matsumoto, Kazuhiko

    2016-05-01

    Graphene consists of a single layer of carbon atoms with a two-dimensional hexagonal lattice structure. Recently, it has been the subject of increasing interest due to its excellent optoelectronic properties and interesting physics. Graphene is considered to be a promising material for use in optoelectronic devices due to its fast response and broadband capabilities. However, graphene absorbs only 2.3% of incident white light, which limits the performance of photodetectors based on it. One promising approach to enhance the optical absorption of graphene is the use of plasmonic resonance. The field of plasmonics has been receiving considerable attention from the viewpoint of both fundamental physics and practical applications, and graphene plasmonics has become one of the most interesting topics in optoelectronics. In the present study, we investigated the optical properties of graphene on a plasmonic metamaterial absorber (PMA). The PMA was based on a metal-insulator-metal structure, in which surface plasmon resonance was induced. The graphene was synthesized by chemical vapor deposition and transferred onto the PMA, and the reflectance of the PMA in the infrared (IR) region, with and without graphene, was compared. The presence of the graphene layer was found to lead to significantly enhanced absorption only at the main plasmon resonance wavelength. The localized plasmonic resonance induced by the PMA enhanced the absorption of graphene, which was attributed to the enhancement of the total absorption of the PMA with graphene. The results obtained in the present study are expected to lead to improvements in the performance of graphene-based IR detectors.

  17. THE INFLUENCE OF PLASMONIC AND DIELECTRIC INCLUSIONS ON ANTIREFLECTIVE PROPERTIES OF HOMOGENEOUS COATINGS FOR SILICON PHOTOVOLTAIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    K. V. Baryshnikova

    2015-09-01

    Full Text Available Subject of Study. Theoretical analysis of the efficiency for the antireflective coatings based on plasmonic silver (Ag and dielectric silicon (Si nanoparticles is presented. We observe the increase of light absorption in the active layer, which is related to the optical resonant properties of considered nanoparticles. Characteristic property of the studied composite layer is its ability to combine the functions of electric contacts and anti-reflective coating. Method. Numerical calculations were performed in CST Microwave Studio with FDFD method (Finite Difference in Frequency Domain. The optical parameters of materials were extracted from the experimentally measured data available in literature. Geometrical parameters of composite layer – size and location of particles – were varied. Comparison of light absorption efficiency for different coatings on top of the active layer is presented: the homogeneous Indium Tin Oxide (ITO layer, ITO layer with the spherical nanoparticle inclusions on the ITO surface, ITO layer with spherical nanoparticle bulk inclusions. Periodical lattices of particles with sizes of range between 15 and 80 nm were considered. Nanoparticles of this size have dominant dipole response. Main Results. Numerical calculations have shown that nanoparticle inclusions cause significant deformation of the absorption spectra with appearing of resonant pecularities in the wavelength range equal to 300-800 nm. It originates from the nanoparticle resonant features, which are similar to the resonant features of isolated nanoparticles. Absorption in the active layer decreases sharply at the resonant wavelength. Resonant response of nanoparticles placed on the ITO surface differs significally from the isolated ones: the resonant frequency and Q-factor decrease. It was shown that absorption in the active layer decreases by 25 % when the size of Ag and Si particles increases. Ag nanoparticles, placed in ITO layer on top of the active layer

  18. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  19. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  20. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Rippa, Massimo; Petti, Lucia [Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, Via Campi Flegrei 34, 80072 Pozzuoli (Italy)

    2015-10-28

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.