WorldWideScience

Sample records for metal-contaminated subsurface soils

  1. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  2. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  3. Aromatic plant production on metal contaminated soils.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Craker, Lyle E; Xing, Baoshan; Nielsen, Niels E; Wilcox, Andrew

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  4. Heavy Metal Contamination Of Soils Around Municipal Solid Wastes ...

    African Journals Online (AJOL)

    Heavy Metal Contamination Of Soils Around Municipal Solid Wastes Dump In Port Harcourt, Nigeria. ... Global Journal of Environmental Sciences ... Soils around the waste dump were also contaminated as a result of continuous dispersion of heavy metals from the waste dump by run-off water, wind and scavengers.

  5. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  6. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  7. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  8. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    Science.gov (United States)

    1987-02-01

    associated with Army industrial )perations. Activities that contributed to soil contaminatioa included equipment rebuilding and repair, munitions maiufacturing...Hazardous Waste Engineering Research Laboratory, U.S. EPA, Cincinnati, Ohio 45268 (undated). 2. Personal communication with Dennis Hotaling , Technical...been used in several chemical industry installations to treat metal bearing wastewaters. NaBH 4 is a strong reducing agent which can reduce many metal

  9. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  10. Remediation of metal contaminated soil with mineral-amended composts

    Energy Technology Data Exchange (ETDEWEB)

    Herwijnen, Rene van [University of Surrey, School of Engineering, Guildford, Surrey GU2 7XH (United Kingdom); Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hutchings, Tony R. [Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Al-Tabbaa, Abir [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Moffat, Andy J. [Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Johns, Mike L. [University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Ouki, Sabeha K. [University of Surrey, School of Engineering, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: s.ouki@surrey.ac.uk

    2007-12-15

    This study examined the use of two composts derived from green waste and sewage sludge, amended with minerals (clinoptilolite or bentonite), for the remediation of metal-contaminated brownfield sites to transform them into greenspace. Soils contaminated with high or low levels of metals were mixed with the mineral-enhanced composts at different ratios and assessed by leaching tests, biomass production and metal accumulation of ryegrass (Lolium perenne L.). The results showed that the green waste compost reduced the leaching of Cd and Zn up to 48% whereas the composted sewage sludge doubled the leachate concentration of Zn. However, the same soil amended with composted sewage sludge showed an efficient reduction in plant concentrations of Cd, Cu, Pb or Zn by up to 80%. The results suggest that metal immobilisation and bioavailability are governed by the formation of complexes between the metals and organic matter. The amendment with minerals had only limited effects. - Composts can increase or decrease the bioavailability of metals in soil.

  11. Magnetic mineralogy of heavy metals-contaminated soils

    Science.gov (United States)

    Shenggao, L.

    2012-04-01

    Soils around mine and in urban areas are often contaminated by heavy metals derived from industrial and human activities [1, 2]. These contaminated soils are often characterized by a magnetic enhancement on topsoils. Many studies demonstrated that there are significant correlations between heavy metals and various magnetic parameters in contaminated soils, indicating a strong affinity of heavy metals to magnetic minerals. The magnetic particles in contaminated soils were separated by a magnetic separation technique. The rock magnetism, XRD, field emission scanning electron microscopy equiped with an energy-dispersive X-ray analyzer (FESEM/EDX) were used to characterize their magnetic mineralogy. Results of XRD analysis indicated that the magnetic particles separated from heavy metal-contaminated soils are composed of quartz, magnetite, and hematite. Based on the X-ray diffraction peak intensity, the Fe3O4 was identified as the predominant magnetic mineral phase. The high-temperature magnetization (Ms-T) curves of magnetic particles extracted from contaminated soils show a sharp Ms decrease at about 580C (the Curie temperature of magnetite), suggesting that magnetite is the dominant magnetic carrier. The hysteresis loops of contaminated soils are closed at about 100-200 mT which is consistent with the presence of a dominant ferrimagnetic mineral phase. The FESEM analysis showed a great variety of shapes of magnetic particles in contaminated soils. The most common morphology are observed in the form of spherules, with the sizes ranging from 20 to 100 um. The chemical composition of magnetic particles consist mainly of Fe, Si, Al, and Ca with minor heavy metal elements (Cu, Zn, Hg, and Cr). The semi-quantitative Fe content identified by FESEM/EDX ranged from 40 to 90%. Combined studies of rock magnetism, XRD, and FESEM/EDX indicated that magnetic mineral phases responsible for the magnetic enhancement of contaminated soils are anthropogenic origin which are coarse

  12. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    susceptible to metal contamination (Ololade, 2014;. Olanrewaju et al, 2015). There has been a gradual increase in the number of automobile mechanic workshops in many cities of Nigeria as a result of urban development and increase in population. Waste from these automobile mechanic workshops are disposed and ...

  13. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    Science.gov (United States)

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang

    2017-05-01

    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn 2+ , Cd 2+ , and Pb 2+ ) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  14. The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available It was believed that when hydroxyapatite (HAP was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP and micrometer particle size of HAP (mHAP induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb, zinc (Zn, copper (Cu, and chromium (Cr bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L. uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

  15. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  16. Phytoremediation of heavy metal contaminated soil using different ...

    African Journals Online (AJOL)

    A pot experiment was conducted to compare the plant biomass accumulation and heavy metal (HM) uptake by plant species grown in HM contaminated soils. The shoot dry weights of Eucalyptus camaldeulensis, Medicago sativum, and Brassica juncea grown in contaminated soils were reduced by 8, 5, and 3-fold, ...

  17. Assessment of heavy metal contamination of Robertkiri oil field's soil ...

    African Journals Online (AJOL)

    The soil reaction was within the acidic pH range, while moderate to high organic matter contents were recorded. Heavy metals measured in the soil showed varying concentrations among sample locations within the field. Some levels of significant difference (p<0.05) were observed for nickel and mercury concentrations ...

  18. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution. Keywords. Agricultural soil; heavy metals; copper mining areas; multivariate analysis; geo-accumu- lation index; Nemerow index. 1. Introduction. The contamination of agricultural ...

  19. Remediation of heavy metal contaminated soil | Nanda | African ...

    African Journals Online (AJOL)

    The worldwide awareness of the deleterious effects of heavy metal pollution has resulted in intensive research aiming at understanding metal interactions in soil and their removal in an efficient way. Although, the knowledge and practice of the conventional physio-chemical remedial technologies for degraded soils are ...

  20. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  1. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Tel: +81-11-706-6949. Fax: +81-11-706-5105. drinking water and inhaling air or soil contaminated by .... washed in 3% HNO3 and rinsed at least twice with distilled water. One gram of each soil or sediment sample ... using a mercury analysis system MA-2000 (Nippon Instruments. Corp., Tokyo, Japan) after preparation of ...

  2. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  3. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  4. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  5. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  7. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  8. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  9. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    Science.gov (United States)

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  10. Risk of antibiotic resistance from metal contaminated soils

    Science.gov (United States)

    Knapp, Charles

    2013-04-01

    It is known that contaminated soils can lead to increased incidence of illness and disease, but it may also prevent our ability to fight disease. Many antibiotic resistant genes (ARG) acquired by bacteria originate from the environment. It is important to understand factors that influence levels of ARG in the environment, which could affect us clinically and agriculturally. The presence of elevated metal content in soils often promotes antibiotic resistance in exposed microorganisms. Using qPCR, the abundances of ARG to compare levels with geochemical conditions in randomly selected soils from several countries. Many ARG positively correlated with soil metal content, especially copper, chromium, nickel, lead, and iron. Results suggest that geochemical metal conditions influence the potential for antibiotic resistance in soil, which might be used to estimate baseline gene presence on various landscape scales and may translate to epidemiological risk of antibiotic-resistance transmission from the environment. This suggests that we may have to reconsider tolerances of metal pollution in the environment.

  11. Toxic heavy metal contamination assessment and speciation in sugarcane soil

    Science.gov (United States)

    Wang, Xiaofei; Deng, Chaobing; Yin, Juan; Tang, Xiang

    2018-01-01

    The increasing heavy metal pollution in the sugarcane soils along the Great Huanjiang River was caused by leakage and spills of Lead (Pb) and Zinc (Zn) tailing dams during a flood event. Copper (Cu), Zn, Pb, Cadmium (Cd), and Arsenic (As) concentrations of soil samples collected from 16 different sites along the Great Huanjiang River coast typical pollution area were analyzed by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The mean concentrations of Pb, Cd, Zn, Cu, and As in the sugarcane soils were 151.57 mg/kg, 0.33 mg/kg, 155.52 mg/kg, 14.19 mg/kg, and 18.74 mg/kg, respectively. Results from the analysis of heavy metal speciation distribution showed that Cu, Zn, Pb, and Cd existed in weak acid, reducible, and oxidizable fractions, and the sum of these fractions accounted for significant proportions in sugarcane soils. However, the residual fraction of As with high proportion of reducible fraction indicated that this trace element still poses some environmental risk in the sugarcane soils because of its high content. Assessments of pollution levels revealed that the highest environmental risk was arouse by Pb. In addition, moderate to strong Cd and Zn pollution were found, while As has zero to medium level of pollution and Cu has zero level.

  12. Heavy metals contamination of soils surrounding waste deposits in Romania

    Science.gov (United States)

    Matache, M.; Rozylowicz, L.; Ropota, M.; Patroescu, C.

    2003-05-01

    Soils contamination with heavy metals is one of the most severe aspects of environmental pollution in Romania, independently of the origin sources (domestic or industrial activities) or type of disposal (organised landfill or hazardous deposits)[l-2]. This fact is the consequence of the poor state of the existing waste deposits in Romania and of the significant costs involved by the establishing of a new landfill according with the international regulations. The present study is trying to emphasise the contamination of soils surrounding different categories of waste deposits (sewage sludge ponds, domestic and industrial waste landfills, hillocks, sterile deposits) from various regions of Romania. Some case studies show a special interest being localise in a protected area (Iron Gates Natural Park). In order to quantify the concentration of metals like Cd, Cr, Cu, Pb, Zn, Ni, Mo in soil samples, analysis were performed using Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). Romanian standards were used as reference values[3].

  13. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  14. Heavy Metal Contamination of Soils and Vegetation around Solid ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: Assessment of the levels of copper, zinc and lead in soils and vegetation around solid waste ... dumping of waste. Both the quantity and quality of solid waste generated in Nigeria vary very widely from day to day and according to the season of the year and still ... condition impacts the natural environment.

  15. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    Manufacturing industries producing chemicals, pharmaceuticals, batteries, foundries, metal plating and plastic product have engulfed the area. Most of these industries directly ..... glass manufacturing units and poultry farms. These anthropogenic activities pollute the soil both directly as well as indirectly. The detailed discus-.

  16. Heavy metal contamination of soil in mechanic workshops | Ameh ...

    African Journals Online (AJOL)

    Latitude: 11° 4' 0 N, Longitude: 7° 42' 0 E) was studied. The types of mechanic workshops considered were motorcycle, motorcar, truck/lorries and generator set. The soils were sampled in August 2010. The results indicated that there was an ...

  17. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of soil contamination by metals around some automobile mechanic workshops in Oyo town in order to assess their possible adverse health implications on man and his environment. Concentrations of metals above certain levels have been shown to impair man's health.

  18. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4 ... The spatial variation maps deciphering different zones of heavy metal concentration in the soil were generated in a GIS (geographic information system) based environment ... Department of Geology, Osmania University, Hyderabad 500 007, India.

  19. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    may enter the food chain or leach down to ground- water and contaminate drinking water resources. (Jeevan ... international airport that has been expanding at a fast pace and now has the distinction of being one of the ...... Abrahams P W 2002 Soils: Their implications to human health; The Science of the Total Environ.

  20. assessment of trace metal contamination of soils around oluyole ...

    African Journals Online (AJOL)

    Fig. 3: Points of sample collection in Oluyole industrial estate. The soil samples were air dried in the laboratory, and sieved through a <0.075mm polyethylene sieve to obtain fine grained samples for chemical analysis. Samples that were too clustered were disaggregated in a porcelain mortar with a pestle before sieving.

  1. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  2. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    The concentrations, contamination/pollution index, anthropogenic input and enrichment factors for metals in soil in the vicinity of cassava processing mills in sub-urban areas of Delta State of Nigeria were examined. The concentrations of metals in all sites and depths ranged from 0.1 to 383.2 mg kg-1 for Mn, 4.0 to 11.3 mg ...

  3. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Batjargal, Tserennyam; Otgonjargal, Enktur; Baek, Kitae; Yang, Jung-Seok

    2010-12-15

    The purpose of this survey is to investigate the current status of metal pollution of the soil in Ulaanbaatar, the capital city of Mongolia. During the last decade, the city has been rapidly urbanized. Twenty-two soil samples were collected from different parts of the city and analyzed by aqua regia extraction. Generally, metal pollution was not a serious problem in the city and there was no significant evidence of infiltration of metal solutions into subsoil (at a depth of 30 cm). However, it was recently found that the arsenic(As) concentration in the soil was higher than the guideline value and the lead(Pb) content in some samples was higher than normal. The source of As pollution appears to be the coal combustion in three power plants in the city. The sources of the increase in Pb pollution might be the remarkable increase in the number of used vehicles and the increase in the use of leaded fuel in the last few years. To evaluate the leaching potential of heavy metals, sequential extraction was conducted. The quantity of the easily extractable fraction of metals was lower than that of the hardly extractable (residual) fraction. As a result, the leaching potential of heavy metals in Ulaanbaatar was found to be quite low. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    Science.gov (United States)

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-01-22

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  5. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  6. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Krzyżak Jacek

    2017-09-01

    Full Text Available When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2 ‘time-zero’ soil samples were taken to determine initial levels of total (aqua regia and bioavailable (CaCl2 extraction concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest and winter (March, brown harvest to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  7. Quantitative relations between soil heavy metal contamination and landscape pattern in Wuxi, China

    Science.gov (United States)

    Zhu, Ming; Pu, Lijie; Xu, Yan

    2017-04-01

    Land use practices changed landscape pattern and meanwhile, brought forth numerous environmental problems including heavy metal contamination in soil. In this study, we investigated the quantitative relations between soil heavy metal contamination and its surrounding landscape pattern based on topsoil samples and land use map of Wuxi in 2009. The results of vector fitting with Redundancy analysis in R package vegan showed that Percent Coverage of build-up area (PCB) within 2500 m, Perimeter-Area Fractal Dimension (PAFD) within 2500 m, Edge Density (ED) within 2500 m, Patch Density (PD) within 200 m, Percent Coverage of wetland (PCW) within 2000 m and Patch Cohesion (PC) within 200 m significantly affected the contents of heavy metal elements. The results of Stepwise regression suggested that increase of build-up area and fragmentation would increase Cu and Zn, while increase of wetland would decrease the contents of As and Cu. PAFD was negative with Cd, Hg, Pb and Zn.

  8. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Science.gov (United States)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  9. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  10. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of metal-contaminated forest soils from the Canadian shield to terrestrial organisms.

    Science.gov (United States)

    Feisthauer, Natalie C; Stephenson, Gladys L; Princz, Juliska I; Scroggins, Richard P

    2006-03-01

    The effects of elevated metal concentrations in forest soils on terrestrial organisms were investigated by determining the toxicity of six site soils from northern Ontario and Quebec, Canada, using a battery of terrestrial toxicity tests. Soils were collected from three sites on each of two transects established downwind of nickel (Sudbury, ON, Canada) and copper (Rouyn-Noranda, PQ, Canada) smelting operations. Site soils were diluted to determine if toxicity estimates for the most-contaminated site soils could be quantified as a percent of site soil. Rouyn-Noranda soils were toxic following acute exposure (14 d) to plants, but not to invertebrates (7 d for collembola and 14 d for earthworms). However, Rouyn-Noranda soils were toxic to all species following chronic exposure (21, 35, and 63 d for plants, collembola, and earthworms, respectively). The toxicity of the Rouyn-Noranda site soils did not correspond to the gradient of metal concentrations in soil. Metal-contaminated Sudbury soils were toxic to plants but not to invertebrates, following acute exposure. Chronic exposure to Sudbury soils caused adverse effects to plant growth and invertebrate survival and reproduction. The toxicity of Sudbury soils corresponded to the metal concentration gradient, with one exception: The reference soil collected in October was toxic to collembola following acute and chronic exposure. This study evaluated the applicability of the new Environment Canada terrestrial toxicity test methods, developed using agricultural soils, to forest soils and also provided useful data to assess the ecological risk associated with mixtures of metals in soil.

  12. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  13. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  14. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  15. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing.

    Science.gov (United States)

    Guo, Honghong; Nasir, Mubasher; Lv, Jialong; Dai, Yunchao; Gao, Jiakai

    2017-10-01

    To improve the understanding of bacterial community in heavy metals contaminated soils, we studied the effects of environmental factors on the bacterial community structure in contaminated fields located in Shaanxi Province of China. Our results showed that microbial community structure varied among sites, and it was significantly affected by soil environmental factors such as pH, soil organic matter (SOM), Cd, Pb and Zn. In addition, Spearman's rank-order correlation indicated heavy metal sensitive (Ralstonia, Gemmatimona, Rhodanobacter and Mizugakiibacter) and tolerant (unidentified-Nitrospiraceae, Blastocatella and unidentified-Acidobacteria) microbial groups. Our findings are crucial to understanding microbial diversity in heavy metal polluted soils of China and can be used to evaluate microbial communities for scientific applications such as bioremediation projects. Copyright © 2017. Published by Elsevier Inc.

  16. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  17. Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November, 1989. OTD has begun to search out, develop, test and demonstrate technologies that can now or in the future be applied to the enormous remediation problem now facing the DOE and the United States public in general. Technology demonstration projects have been designed to attack a separate problem as defined by DOE. The Heavy Metals Contaminated Soil Project was conceived to test and demonstrate off-the-shelf technologies (dominantly from the mining industry) that can be brought to bear on the problem of radionuclide and heavy metal contamination in soils and sediments. The Resource Recovery Project is tasked with identifying, developing, testing, and evaluating new and innovative technologies for the remediation of metal contaminated surface and groundwater. An innovative twist on this project is the stated goal of recovering the metals, formerly disposed of as a waste, for reuse and resale, thereby transforming them into a usable resource. Finally, the Dynamic Underground Stripping Project was developed to demonstrate and remediate underground spills of hydrocarbons from formations that are (1) too deep for excavation, and/or (2) require in-situ remediation efforts of long duration. This project has already been shown effective in reducing the time for remediation by conventional methods from an estimated 200 years at the Lawrence Livermore National Laboratory (LLNL) to less than one year. The savings in time and dollars from this technology alone can be immeasurable

  18. Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November, 1989. OTD has begun to search out, develop, test and demonstrate technologies that can now or in the future be applied to the enormous remediation problem now facing the DOE and the United States public in general. Technology demonstration projects have been designed to attack a separate problem as defined by DOE. The Heavy Metals Contaminated Soil Project was conceived to test and demonstrate off-the-shelf technologies (dominantly from the mining industry) that can be brought to bear on the problem of radionuclide and heavy metal contamination in soils and sediments. The Resource Recovery Project is tasked with identifying, developing, testing, and evaluating new and innovative technologies for the remediation of metal contaminated surface and groundwater. An innovative twist on this project is the stated goal of recovering the metals, formerly disposed of as a waste, for reuse and resale, thereby transforming them into a usable resource. Finally, the Dynamic Underground Stripping Project was developed to demonstrate and remediate underground spills of hydrocarbons from formations that are (1) too deep for excavation, and/or (2) require in-situ remediation efforts of long duration. This project has already been shown effective in reducing the time for remediation by conventional methods from an estimated 200 years at the Lawrence Livermore National Laboratory (LLNL) to less than one year. The savings in time and dollars from this technology alone can be immeasurable.

  19. Assessment of toxicity of heavy metal contaminated soils for Collembola in the field and laboratory

    DEFF Research Database (Denmark)

    Xu, Jie; Krogh, Paul Henning; Luo, Yongming

    2008-01-01

    of Zhejiang province, Fuyang county. We addressed the questions: 1) how do different collembolan life-forms respond to heavy metals in long-time pollution field site. 2) Are laboratory toxicity testing of field collected polluted soil predictable for the population effects observed in aged heavy metal...... pollutions. Effects of the heavy metals in the soil from the paddy fields were assessed for growth, survival and reproduction under laboratory conditions. For the tests we used two soil arthropod species: the parthenogenetic, Folsomia candida Willem 1902, and the sexually reproducing, Sinella curviseta Brook......We present a field and laboratory investigation of effects of increasing levels of heavy metal contamination on the biodiversity and performance of collembolans. A 40 year old pollution with Cu, Zn, Pb and Cd pollution due to Cu smelting over 40 years was investigated in a paddy field area...

  20. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  1. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    Science.gov (United States)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  2. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.

    Science.gov (United States)

    Begum, Zinnat A; Rahman, Ismail M M; Tate, Yousuke; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2012-06-01

    Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, an increasing interest is focused on the development and use of the eco-friendly APCs having better biodegradability and less environmental toxicity. The paper deals with the results from the lab-scale washing treatments of a real sample of metal-contaminated soil for the removal of the ecotoxic metal ions (Cd, Cu, Ni, Pb, and Zn) using five biodegradable APCs, namely [S,S]-ethylenediaminedisuccinic acid, imminodisuccinic acid, methylglycinediacetic acid, DL-2-(2-carboxymethyl) nitrilotriacetic acid (GLDA), and 3-hydroxy-2,2'-iminodisuccinic acid. The performance of those biodegradable APCs was evaluated for their interaction with the soil mineral constituents in terms of the solution pH and metal-chelant stability constants, and compared with that of EDTA. Speciation calculations were performed to identify the optimal conditions for the washing process in terms of the metal-chelant interactions as well as to understand the selectivity in the separation ability of the biodegradable chelants towards the metal ions. A linear relationship between the metal extraction capacity of the individual chelants towards each of the metal ions from the soil matrix and metal-chelant conditional stability constants for a solution pH greater than 6 was observed. Additional considerations were derived from the behavior of the major potentially interfering cations (Al, Ca, Fe, Mg, and Mn), and it was hypothesized that use of an excess of chelant may minimize the possible competition effects during the single-step washing treatments. Sequential extraction procedure was used to determine the

  3. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.

    Science.gov (United States)

    Liu, Lianwen; Li, Wei; Song, Weiping; Guo, Mingxin

    2018-03-21

    Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton -1 soil (or $1500m -3 soil or $100m -2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability. Copyright © 2018. Published by Elsevier B.V.

  4. F-RISA fungal clones as potential bioindicators of organic and metal contamination in soil.

    Science.gov (United States)

    Hong, J W; Fomina, M; Gadd, G M

    2010-08-01

    This work has examined the effects of a polycyclic aromatic hydrocarbon and selected toxic metals on fungal populations in a soil microcosm. By using fungal ribosomal intergenic spacer analysis (F-RISA) in combination with real-time PCR quantification, four fungi (D63P2-1, D63C2-1, D21Cu1-1 and D63Pb2-2) with specific primer pairs to each were successfully evaluated for their potential as bioindicators in response to pyrene, copper (Cu) and lead (Pb), supplied singly and in combination. F-RISA coupled with real-time PCR is a useful approach for the identification of microorganisms with potential as bioindicators of organic and toxic metal contamination. These bioindicators could be monitored for their population changes that may indicate pollutant-induced perturbations in a given system.

  5. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  6. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    Science.gov (United States)

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-04-13

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    Science.gov (United States)

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of heavy metal contamination in the soil and sediment of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Wang, Tujin; Pan, Jin; Liu, Xuelian

    2017-02-23

    This paper analyzes the concentration, distribution, bioavailability, and potential heavy metal contamination risk of Cu, Pb, Cd, Zn, and Cr in the soil and sediment of the Three Gorges Reservoir (TGR). In this paper, 14 stations that cover the upper reaches to the lower reaches of the TGR were selected. The spatial distribution of heavy metals in the TGR showed that the average concentrations of Cu, Pb, Cd, Zn, and Cr were higher in the upper and lower reaches than those in the middle reaches because of industrial and agricultural activities as well as natural processes (e.g., soil erosion, rock weathering). The results also indicated that multiple pollution sources and complex geomorphological, geochemical and biological processes resulted in remarkably higher heavy metal concentrations in the soils of the water-level-fluctuation zone (WLFZ) than in the soils of the banks. The Cu, Pb, Cd, Zn, and Cr concentrations in the soils of the TGR did not exceed their respective maximum allowable concentration (MAC) values for agricultural soils in China, indicating that the soil in the TGR was not seriously contaminated with Cu, Pb, Cd, Zn, or Cr. However, the mean concentrations of all the studied metals in the sediments were higher than the geochemical background values and much higher than those in the soils, thus indicating the effect of the pollution sources and the altered hydrologic conditions that occurred after the impoundment of the TGR. A geoaccumulation index analysis indicated that the TGR sediments were moderately polluted with Cu and Cd, unpolluted to moderately polluted with Pb and Cr, and unpolluted with Zn. Fractionation studies indicated that Cd was mainly present in the non-residual fractions and exhibited great instability and bioavailability; furthermore, the alternating wetting and drying of the WFLZ soils enhance the mobility and bioavailability of Cd. Thus, greater attention should be paid to Cd pollution in the TGR because of its higher risk

  9. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  10. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  11. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  12. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    International Nuclear Information System (INIS)

    Lee, Young-Chul; Kim, Eun Jung; Ko, Dong Ah; Yang, Ji-Won

    2011-01-01

    Highlights: ► Aminoclays have synthesized using centered metals with aminopropyl silane. ► Developed aminoclay has unique nano-sized and water-soluble properties. ► Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. ► Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  13. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    Science.gov (United States)

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  14. The Use of Plants for Remediation of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Andon Vassilev

    2004-01-01

    Full Text Available The use of green plants to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation is an emerging technology. In this paper, an overview is given of existing information concerning the use of plants for the remediation of metal-contaminated soils. Both site decontamination (phytoextraction and stabilization techniques (phytostabilization are described. In addition to the plant itself, the use of soil amendments for mobilization (in case of phytoextraction and immobilization (in case of phytostabilization is discussed. Also, the economical impacts of changed land-use, eventual valorization of biomass, and cost-benefit aspects of phytoremediation are treated. In spite of the growing public and commercial interest and success, more fundamental research is needed still to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between metals, soil, plant roots, and micro-organisms (bacteria and mycorrhiza in the rhizosphere. Further, more demonstration experiments are needed to measure the underlying economics, for publicacceptance and last but not least, to convince policy makers.

  15. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  16. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    OpenAIRE

    Fan, Yu; Zhu, Tingping; Li, Mengtong; He, Jieyi; Huang, Ruixue

    2017-01-01

    Background. Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods. This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results. Local soil contaminati...

  17. Risks to humans and wildlife from metal contamination in soils/sediments at CERCLA sites

    International Nuclear Information System (INIS)

    Hitch, J.P.; Hovatter, P.S.; Opresko, D.M.; Sample, B.; Young, R.A.

    1994-01-01

    A common problem that occurs at DOD and DOE CERCLA sites is metal contamination in soils and aquatic sediments and the protection of humans and wildlife from potential exposure to this contamination. Consequently, the authors have developed a site-specific reference dose for mercury in sediments at the Oak Ridge Reservation and site-specific cleanup levels for certain metals, including arsenic and nickel, in soils at an Army ammunition plant. Another concern during remediation of these sites is that limited data are available to determine the direct risks to indigenous wildlife. Therefore, the authors have developed toxicological benchmarks for certain metals and metal compounds to be used as screening tools to determine the potential hazard of a contaminant to representative mammalian and avian wildlife species. These values should enable the Army and DOE to more accurately determine the risks to humans and wildlife associated with exposure to these contaminated media at their sites in order to achieve a more effective remediation. This effort is ongoing at ORNL with toxicological benchmarks also being developed for metal compounds and other chemicals of concern to DOD and DOE in order to address the potential hazard to

  18. The effect of flow heterogeneity on the mobilization of colloids from metal-contaminated soils

    Science.gov (United States)

    Denovio, N. M.; Ryan, J. N.

    2003-12-01

    In vadose zone soils, colloid-facilitated transport has been shown to play a significant role in contaminant transport because colloids are abundant and the kinetics of contaminant desorption are likely to be slow relative to the time scale for colloid transport through the unsaturated zone. Understanding the rate of colloid generation and transport with respect to the surface area available for contaminant sorption and chemical composition of these colloids is critical for predicting colloid-facilitated transport. Soil cores (approximately 20 cm3)obtained from the Arkansas River Valley in Leadville, Colorado, where there is significant metal contamination, were leached at three rainfall rates corresponding to 10-, 20-, and 100-year storm events. Effluent water samples were collected with a 2.5 cm spatial resolution at the base of the column. Samples were analyzed for colloid concentration, size and metal elements (Pb, Zn, Cu) in addition to Al, Si, and other metals. Despite significant variability in the spatial distribution of water flow, there was little to no variability in the rate of colloid generation, size of the colloids, or heavy metal generation within a time step. Generally, colloid size appeared to increase during the course of the experiments and greater concentrations of heavy metals were generated with increasing duration of each rainfall event.

  19. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    Science.gov (United States)

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH) 2 , CuCO 3 , and Zn 5 (CO 3 ) 2 (OH) 6 , and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities.

    Science.gov (United States)

    Mohamad, Roba; Maynaud, Geraldine; Le Quéré, Antoine; Vidal, Céline; Klonowska, Agnieszka; Yashiro, Erika; Cleyet-Marel, Jean-Claude; Brunel, Brigitte

    2017-01-15

    living in symbiosis with rhizobia that can stimulate plant growth naturally through biological nitrogen fixation. We studied microsymbiont partners of a metal-tolerant legume, Anthyllis vulneraria, which is tolerant to very highly metal-polluted soils in mining and nonmining sites. Site-specific rhizobial communities were linked to taxonomic composition and metal tolerance capacity. The rhizobial species Mesorhizobium metallidurans was dominant in all Zn-Pb mines but one. It was not detected in unpolluted sites where other distinct Mesorhizobium species occur. Given the different soil conditions at the respective mining sites, including their heavy-metal contamination, revegetation strategies based on rhizobia adapting to local conditions are more likely to succeed over the long term compared to strategies based on introducing less-well-adapted strains. Copyright © 2016 American Society for Microbiology.

  1. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico.

    Science.gov (United States)

    Mitchell, Kerry Nigel; Ramos Gómez, Magdalena Samanta; Guerrero Barrera, Alma Lilian; Yamamoto Flores, Laura; Flores de la Torre, Juan Armando; Avelar González, Francisco Javier

    2016-08-01

    A total of sixteen composite soil and sediment samples were collected during the rainy and dry season in Asientos, Aguascalientes, Mexico, an area recently affected by increased mining operations. Physicochemical characterization showed that substrates were moderately to strongly calcareous with predominantly neutral to slightly alkaline pH, moderate to high cation-exchange capacity and high organic matter content. Due to these conditions, Cd, Pb, Cu and Zn were not water leachable despite high concentrations; up to 105.3, 7052.8, 414.7 and 12,263.2 mg kg(-1) respectively. However, Cd and Pb were considered to be easily mobilizable as they were found predominantly associated with exchangeable and carbonate fractions, whereas Cu and Zn were found associated with Fe/Mn oxide and organic matter fractions. The results highlighted the influence of physicochemical substrate properties on the mobility of metals and its importance during the evaluation of the potential current and future risk metal contamination presents in affected areas.

  3. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  4. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil

    OpenAIRE

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2017-01-01

    Two kinds of biochars, one derived from corn straw and one from pig manure, were studied as carriers of a mutant genotype from Bacillus subtilis (B38) for heavy metal contaminated soil remediation. After amendment with biochar, the heavy metal bioavailability decreased. Moreover, the heavy metal immobilization ability of the biochar was enhanced by combining it with B38. The simultaneous application of B38 and pig manure-derived biochar exhibited a superior effect on the promotion of plant gr...

  5. Metal accumulation in plants with added economical value grown on metal contaminated soils: sustainable use of these soils for bio-energy production and possibilities for phyto extraction

    International Nuclear Information System (INIS)

    Vangronsveld, J.; Boulet, J.; Weyens, N.; Meers, E.; Meiresonne, L.; Colpaert, J.; Thewys, T.; Lelie, D. van der; Carleer, R.; Ruttens, A.

    2009-01-01

    Phyto remediation has been proposed as an economic alternative for remediation of metal contaminated soils. It can be applied over extended surface areas and targets the bioavailable soil fraction of heavy metals, which is the most relevant fraction from an environmental risk assessment perspective. The most important drawback is the long remediation period required (years to decades). (Author)

  6. Aging and temperature effects on DOC and elemental release from a metal contaminated soil

    International Nuclear Information System (INIS)

    Martinez, C.E.; Jacobson, A.R.; McBride, M.B.

    2003-01-01

    Increased aging and temperatures may affect DOC element complexes and their release. - The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 deg. C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 μm) supernatants. For the samples equilibrated at 90 deg. C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 μm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 deg. C; however, at 90 deg. C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 deg. C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu

  7. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach

    International Nuclear Information System (INIS)

    Li Xiangdong; Lee Siulan; Wong Szechung; Shi Wenzhong; Thornton, Iain

    2004-01-01

    The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km 2 ) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km 2 . Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins. - GIS can be used to identify soil contamination hot-spot areas and to assess potential pollutant sources in an urban community

  8. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation.

    Science.gov (United States)

    Tamtam, Fatima; van Oort, Folkert; Le Bot, Barbara; Dinh, Tuc; Mompelat, Sophie; Chevreuil, Marc; Lamy, Isabelle; Thiry, Médard

    2011-01-01

    Spreading of urban wastewater on agricultural land may lead to concomitant input of organic and inorganic pollutants. Such multiple pollution sites offer unique opportunities to study the fate of both heavy metals and pharmaceuticals. We examined the occurrence and fate of selected antibiotics in sandy-textured soils, sampled four years after cessation of 100 years irrigation with urban wastewater from the Paris agglomeration. Previous studies on heavy metal contamination of these soils guided our sampling strategy. Six antibiotics were studied, including quinolones, with a strong affinity for organic and mineral soil components, and sulfonamides, a group of more mobile molecules. Bulk samples were collected from surface horizons in different irrigation fields, but also in subsurface horizons in two selected profiles. In surface horizons, three quinolones (oxolinic acid, nalidixic acid, and flumequine) were present in eight samples out of nine. Their contents varied spatially, but were well-correlated one to another. Their distributions showed great similarities regarding spatial distribution of total organic carbon and heavy metal contents, consistent with a common origin by wastewater irrigation. Highest concentrations were observed for sampling sites close to irrigation water outlets, reaching 22 μg kg(-1) for nalidixic acid. Within soil profiles, the two antibiotic groups demonstrated an opposite behavior: quinolones, found only in surface horizons; sulfamethoxazole, detected in clay-rich subsurface horizons, concomitant with Zn accumulation. Such distribution patterns are consistent with chemical adsorption properties of the two antibiotic groups: immobilization of quinolones in the surface horizons ascribed to strong affinity for organic matter (OM), migration of sulfamethoxazole due to a lower affinity for OM and its interception and retention in electronegative charged clay-rich horizons. Our work suggests that antibiotics may represent a durable

  9. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation

    International Nuclear Information System (INIS)

    Roach, Nicole; Reddy, Krishna R.; Al-Hamdan, Ashraf Z.

    2009-01-01

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1 VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  10. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.

    Science.gov (United States)

    Roach, Nicole; Reddy, Krishna R; Al-Hamdan, Ashraf Z

    2009-06-15

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  11. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  13. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Nguyen Van

    2016-11-01

    Full Text Available Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As, chromium (Cr, cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  14. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine.

    Science.gov (United States)

    Epelde, Lur; Lanzén, Anders; Blanco, Fernando; Urich, Tim; Garbisu, Carlos

    2015-01-01

    Toxicity of metals released from mine tailings may cause severe damage to ecosystems. A diversity of microorganisms, however, have successfully adapted to such sites. In this study, our objective was to advance the understanding of the indigenous microbial communities of mining-impacted soils. To this end, a metatranscriptomic approach was used to study a heavily metal-contaminated site along a metal concentration gradient (up to 3220 000 and 97 000 mg kg(-1) of Cd, Pb and Zn, respectively) resulting from previous mining. Metal concentration, soil pH and amount of clay were the most important factors determining the structure of soil microbial communities. Interestingly, evenness of the microbial communities, but not its richness, increased with contamination level. Taxa with high metabolic plasticity like Ktedonobacteria and Chloroflexi were found with higher relative abundance in more contaminated samples. However, several taxa belonging to the phyla Actinobacteria and Acidobacteria followed opposite trends in relation to metal pollution. Besides, functional transcripts related to transposition or transfer of genetic material and membrane transport, potentially involved in metal resistance mechanisms, had a higher expression in more contaminated samples. Our results provide an insight into microbial communities in long-term metal-contaminated environments and how they contrast to nearby sites with lower contamination. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    Science.gov (United States)

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  16. Ultrasonic and mechanical soil washing processes for the remediation of heavy-metal-contaminated soil

    Science.gov (United States)

    Kim, Seulgi; Lee, Wontae; Son, Younggyu

    2016-07-01

    Ultrasonic/mechanical soil washing process was investigated and compared with ultrasonic process and mechanical process using a relatively large lab-scale sonoreactor. It was found that higher removal efficiencies were observed in the combined processes for 0.1 and 0.3 M HCl washing liquids. It was due to the combination effects of macroscale removal for the overall range of slurry by mechanical mixing and microscale removal for the limited zone of slurry by cavitational actions.

  17. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-02-01

    Full Text Available The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr, cadmium (Cd, copper (Cu, nickel (Ni, lead (Pb and zinc (Zn levels were evaluated using Index of Geo-accumulation (Igeo and Potential Ecological Risk Index (RI values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW, which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management.

  18. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  19. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-01-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  1. Short-Term Effects of Low-Level Heavy Metal Contamination on Soil Health Analyzed by Nematode Community Structure

    Directory of Open Access Journals (Sweden)

    Byeong-Yong Park

    2016-08-01

    Full Text Available The short-term effects of low-level contamination by heavy metals (As, Cd, Cu, and Pb on the soil health were examined by analyzing soil nematode community in soils planted with tomatoes. For this, the soils were irrigated with five metal concentrations ([1, 1/4, 1/4², 1/4³, and 0] × maximum concentrations [MC] detected in irrigation waters near abandoned mine sites for 18 weeks. Heavy metal concentrations were significantly increased in soils irrigated with MC of heavy metals, among which As and Cu exceeded the maximum heavy metal residue contents of soil approved in Korea. In no heavy metal treatment controls, nematode abundances for all trophic groups (except omnivorous-predatory nematodes [OP] and colonizer-persister (cp values (except cp-4–5 were significantly increased, and all maturity indices (except maturity index [MI] of plant-parasitic nematodes and structure index (SI were significantly decreased, suggesting the soil environments might have been disturbed during 18 weeks of tomato growth. There were no concentration-dependent significant decreases in richness, abundance, or MI for most heavy metals; however, their significant decreases occurred in abundance and richness of OP and cp-4, MI2–5 (excluding cp-1 and SI, indicating disturbed soil ecosystems, at the higher concentrations (MC and MC/4 of Pb that had the most significant negative correlation coefficients for heavy metal concentrations and nematode community among the heavy metals. Therefore, the short-term effects of low-level heavy metal contamination on soil health can be analyzed by nematode community structures before the appearance of plant damages caused by the abiotic agents, heavy metals.

  2. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil.

    Science.gov (United States)

    Chu, Shuangshuang; Wu, Daoming; Liang, Liyin L; Zhong, Fengdi; Hu, Yaping; Hu, Xinsheng; Lai, Can; Zeng, Shucai

    2017-10-17

    Application of sewage sludge compost (SSC) as a fertilizer on landscaping provides a potential way for the effective disposal of sludge. However, the response of landscape trees to SSC application and the impacts of heavy metals from SSC on soil are poorly understood. We conducted a pot experiment to investigate the effects of SSC addition on Mangifera persiciforma growth and quantified its uptake of heavy metals from SSC by setting five treatments with mass ratios of SSC to lateritic soil as 0%:100% (CK), 15%:85% (S15), 30%:70% (S30), 60%:40% (S60), and 100%:0% (S100). As expected, the fertility and heavy metal concentrations (Cu, Zn, Pb and Cd) in substrate significantly increased with SSC addition. The best performance in terms of plant height, ground diameter, biomass and N, P, K uptake were found in S30, implying a reasonable amount of SSC could benefit the growth of M. persiciforma. The concentrations of Cu, Pb and Cd in S30 were insignificantly different from CK after harvest, indicating that M. persiciforma reduced the risk of heavy metal contamination of soil arising from SSC application. This study suggests that a reasonable rate of SSC addition can enhance M. persiciforma growth without causing the contamination of landscaping soil by heavy metals.

  4. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  5. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics

    International Nuclear Information System (INIS)

    Lee, Celine Siu-lan; Li Xiangdong; Shi Wenzhong; Cheung, Sharon Ching-nga; Thornton, Iain

    2006-01-01

    The urban environment quality is of vital importance as the majority of people now live in cities. Due to the continuous urbanisation and industrialisation in many parts of the world, metals are continuously emitted into the terrestrial environment and pose a great threat on human health. An extensive survey was conducted in the highly urbanised and commercialised Hong Kong Island area (80.3 km 2 ) of Hong Kong using a systematic sampling strategy of five soil samples per km 2 in urban areas and two samples per km 2 in the suburban and country park sites (0-15 cm). The analytical results indicated that the surface soils in urban and suburban areas are enriched with metals, such as Cu, Pb, and Zn. The Pb concentration in the urban soils was found to exceed the Dutch target value. The statistical analyses using principal component analysis (PCA) and cluster analysis (CA) showed distinctly different associations among trace metals and the major elements (Al, Ca, Fe, Mg, Mn) in the urban, suburban, and country park soils. Soil pollution maps of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in the surface soils were produced based on geographical information system (GIS) technology. The hot-spot areas of metal contamination were mainly concentrated in the northern and western parts of Hong Kong Island, and closely related to high traffic conditions. The Pb isotopic composition of the urban, suburban, and country park soils showed that vehicular emissions were the major anthropogenic sources for Pb. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios in soils decreased as Pb concentrations increased in a polynomial line (degree = 2)

  6. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    Science.gov (United States)

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  7. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei

    Energy Technology Data Exchange (ETDEWEB)

    Grumiaux, F.; Demuynck, S.; Schikorski, D.; Lemiere, S.; Lepretre, A. [Universite Lille Nord de France, Villeneuve Dascq (France)

    2010-03-15

    Earthworms (Eisenia andrei) were exposed, in controlled conditions, to metal-contaminated soils previously treated in situ with two types of fluidized bed combustion ashes. Effects on this species were determined by life history traits analysis. Metal immobilizing efficiency of ashes was indicated by metal bioaccumulation. Ashes-treated soils reduced worm mortality compared to the untreated soil. However, these ashes reduced both cocoon hatching success and hatchlings numbers compared to the untreated soil. In addition, sulfo-calcical ashes reduced or delayed worm maturity and lowered cocoon production compared to silico-alumineous ones. Metal immobilizing efficiency of ashes was demonstrated for Zn, Cu and to a lesser extent Pb. Only silico-alumineous ashes reduced Cd bioaccumulation, although Cd was still bioconcentrated. Thus, although ash additions to metal-contaminated soils may help in immobilizing metals, their use might result, depending on the chemical nature of ashes, to severe detrimental effects on earthworm reproduction with possible long term consequences to populations.

  8. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil.

    Science.gov (United States)

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2017-09-21

    Two kinds of biochars, one derived from corn straw and one from pig manure, were studied as carriers of a mutant genotype from Bacillus subtilis (B38) for heavy metal contaminated soil remediation. After amendment with biochar, the heavy metal bioavailability decreased. Moreover, the heavy metal immobilization ability of the biochar was enhanced by combining it with B38. The simultaneous application of B38 and pig manure-derived biochar exhibited a superior effect on the promotion of plant growth and the immobilization of heavy metals in soil. The plant biomass increased by 37.9% and heavy metal concentrations in the edible part of lettuce decreased by 69.9-96.1%. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that pig manure-derived biochar could enhance the proliferation of both exotic B38 and native microbes. These results suggest that B38 carried by pig manure-derived biochar may be a promising candidate for the remediation of soils contaminated by multiple heavy metals.

  9. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    OpenAIRE

    Chao Su; LiQin Jiang; WenJun Zhang

    2014-01-01

    Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/count...

  10. Helichrysum italicum growing on metalliferous areas as a potential tool in phytostabilization of metal-contaminated soils.

    Science.gov (United States)

    Bini, Claudio; Maleci, Laura; Giuliani, Claudia

    2015-04-01

    Plants that colonize metalliferous soils have developed physiological mechanisms that allow to tolerate high metal concentrations. Generally, metal uptake by these plants is not suppressed, but a detoxification process occurs, as a response to different strategies: some plants (accumulators) concentrate metals in the aerial parts, while others (excluders) present low metal concentrations in the aerial parts, since metals are arrested in their roots. In several regions of Italy (e.g. Veneto, Sardinia, Tuscany), numerous abandoned mine sites are present; On these metal-contaminated soils grow both metalliferous (e.g. Silene paradoxa) and non-metalliferous plants (e.g. Taraxacum officinale). Among them, Helichrysum italicum deserved attention since it is known as essential oil producer and is also used as a medicinal plant for its anti-inflammatory properties; for this reason, it must undergo the Drug Master File certifying the absence of chemical impurities and heavy metals. Samples of the whole plant (roots, leaves and flowers) of H. italicum have been collected at various sites, both mined and not mined, in order to ascertain its ability to uptake and translocate metals from roots to the aerial parts. Fresh and embedded material was examined by Light microscopy and Electron Microscopy (Scanning and Transmission) to ascertain possible damages in plant morphology. Dried samples were crushed, digested with HNO3 and analysed by ICP-OE technique for heavy metal (Cu, Fe, Mn, Zn) concentrations. Preliminary observations on the morphology of the different samples do not show significant differences in the leaf structure. The inorganic chemical composition of H. italicum was characterized by high metal content. Preliminary results of our analyses show that H. italicum accumulate metals (Mn, Zn) in roots, but do not translocate metals to the aerial parts; therefore, it may be considered an excluder plant. On the basis of our results, the aerial parts (leaves, flowers) of

  11. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    Science.gov (United States)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  12. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination.

    Science.gov (United States)

    Stefanowicz, Anna M; Niklińska, Maria; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna

    2010-11-15

    Metal pollution can affect soil microbial communities, and vegetation potentially influences this relationship. It can, for example, modify the toxicity of metal to soil microbes by controlling its input to the ground or by altering soil physicochemical properties. This study examined metal effects on soil respiration, potentially active microbial biomass (SIR) and catabolic abilities of culturable heterotrophic bacterial communities (Biolog GN) in pine forest and grassland ecosystems developed on soils contaminated with Zn, Pb and Cd. In samples from non-forested areas we found that metal pollution reduced the microbial biomass and functional diversity of bacteria, while increasing the metabolic quotient. In samples from pine forests we found no relationship between metal pollution and microbial parameters. Metals induced changes in soil respiration neither in forest nor in grassland sites. Generally, microbial performance was determined predominantly by soil physicochemical properties (nutrient content, acidity, contamination level). Vegetation type seemed a minor but important factor influencing microbial communities. More work is needed to determine why even relatively high metal concentrations do not significantly affect microbial communities in forest soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Heavy Metal Contamination of Soil, Irrigation Water and Vegetables in Peri-Urban Agricultural Areas and Markets of Delhi.

    Science.gov (United States)

    Bhatia, Arti; Singh, ShivDhar; Kumar, Amit

    2015-11-01

    Dietary exposure to heavy metals, namely cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu), has been identified as a risk to human health through consumption of vegetable crops. The present study investigates heavy metal contamination in irrigation water, soil, and vegetables at four peri-urban and one wholesale site in Delhi, India, and estimates the health risk index. Most of the samples collected from peri-urban areas exceeded the safe limits of lead and cadmium, whereas only lead concentration was found to be higher in vegetable samples collected from the wholesale market. Average uptake of metals by vegetables from soil decreased in the order Cd>Zn>Cu>Pb. The order of metal uptake based on transfer factor was highest in okra, cauliflower, and spinach, from greatest to least. Among the vegetables from peri-urban sites, only okra crossed the safe limit for cadmium; whereas vegetables from the wholesale site exceeded the limit for lead (potato, coriander, chilies, pea, and carrot, in order from greatest to least) with respect to health risk index.

  14. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2017-01-01

    Full Text Available Background. Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods. This research was conducted to determine lead (Pb, cadmium (Cd, arsenic (As, manganese (Mn, and antimony (Sb concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results. Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day, respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. Conclusions. The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required.

  15. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China.

    Science.gov (United States)

    Fan, Yu; Zhu, Tingping; Li, Mengtong; He, Jieyi; Huang, Ruixue

    2017-01-01

    Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day), respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required.

  16. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  17. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  18. Heavy metal contamination and burden sequestering in Cleveland area Brownfield soils

    International Nuclear Information System (INIS)

    Jennings, A.A.; Ma, J.; Petersen, E.J.

    2002-01-01

    This paper presents a survey of heavy metal soil contamination in brownfields of Cleveland, Ohio. Brownfields are abandoned or underutilized industrial properties for which environmental concerns increase the difficulty of redevelopment. Brownfield soils often suffer from the problems of 'old contamination'?. This refers to contamination that is strongly partitioned onto (or otherwise associated with) the soil, and has 'aged' in ways that reinforced immobilization. The dominant phenomena appear to be mass migration into and sheltering by younger (overlying) sorbed mass. Sequestered mass burdens can be much more difficult to identify, quantify and remediate than conventional 'young' soil contamination. This paper presents results of soil contamination (Cd, Cr, Cu, Ni, Pb, Zn) from over 50 brownfield sites in the Cleveland area. Results are also presented for public areas (parks, school grounds, gardens) to help quantify the degree to which brownfield problems are shared by nearby public resources. Soils were analyzed by a 24 hr. 1N HCL screening extraction, and by a more comprehensive process developed to quantify heavy metal sequestering. Both theoretical modeling and experimental results are presented to illustrate how soil pulverizations may be used to overcome the problems of mass-transport-limited sequestering and chemical heterogeneity in soil samples. Results of surveys conducted to quantify 'clean background' and 'appropriate remediation triggers' for the heavy metals are also discussed. It is believed that one must consider the whole picture carefully before making decisions about 'voluntary action program' initiatives that tempt compromises between environmental quality and new commercial, industrial or residential use of brownfield sites. (author)

  19. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  20. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils.

    Science.gov (United States)

    Pavel, Petronela-Bianca; Puschenreiter, Markus; Wenzel, Walter W; Diacu, Elena; Barbu, Constantin Horia

    2014-05-01

    A field experiment was carried out to evaluate the use of red mud, a by-product of the alumina industry, as a soil amendment on highly contaminated soils in the vicinity of a former Pb-Zn smelter in Copșa Mică (Romania). Changes in the distribution of Zn, Cd and Pb in various soil fractions, mobility of heavy metals in the soil, and their uptake and effects on growth and productivity of Miscanthus sinensis × giganteus were evaluated. Uptake of Zn, Cd and Pb was determined in different tissues of M. sinensis × giganteus cultivated in field plots situated at increasing distance from the pollution source and with different levels of contamination and metal availabilities. Soluble metal concentrations were determined in centrifugates, whereas potentially soluble fractions were analyzed by diffusive gradients in thin films. In terms of the biomass productivity there were significant differences among the plants obtained in plots with different characteristics and pollution levels. Bioconcentration factors were much lower than 1, indicating that M. sinensis × giganteus is an excluder of heavy metals, especially Pb. Amending soils with red mud reduced the exchangeable or phytoavailable fractions of Zn, Cd and Pb. Overall the results suggest that M. sinensis × giganteus is a valuable energy plant and can be successfully grown on heavily contaminated soils with Zn, Cd and Pb. Moreover, the addition of red mud to these soils can lead to a significant decrease in the concentration of heavy metals in the soil and in metal uptake by plant tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation

    International Nuclear Information System (INIS)

    Calace, N.; Campisi, T.; Iacondini, A.; Leoni, M.; Petronio, B.M.; Pietroletti, M.

    2005-01-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect. - Paper mill sludge decreased available metals

  2. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Directory of Open Access Journals (Sweden)

    Zueng-Sang Chen

    2010-10-01

    Full Text Available Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1 food safety risk assessment for brown rice growing in a HMs-contaminated site; (2 a tiered approach to health risk assessment for a contaminated site; (3 risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4 soil remediation cost analysis for contaminated sites in Taiwan.

  3. The effects of heavy metal contamination on the soil arthropod community of a shooting range

    International Nuclear Information System (INIS)

    Migliorini, Massimo; Pigino, Gaia; Bianchi, Nicola; Bernini, Fabio; Leonzio, Claudio

    2004-01-01

    Soils in clay pigeon shooting ranges can be seriously contaminated by heavy metals. The pellets contained in ammunition are composed of Pb, Sb, Ni, Zn, Mn and Cu. The total concentrations of these metals in soils, and the effects of their increasing levels on the arthropod community were investigated at seven sampling sites in a clay pigeon shooting range and compared with two controls. Research revealed that the spatial distribution of Pb and Sb contamination in the shot-fall area was strongly correlated with the flight path of the pellets. Ordination obtained through Redundance Analysis showed that Collembola, Protura and Diplura were positively correlated with major detected contaminants (Pb, Sb), while Symphyla showed a negative correlation with these pollutants. Determination of the soluble lead fraction in soil, and of its bioaccumulation in the saprophagous Armadillidium sordidum (Isopoda) and the predator Ocypus olens (Coleoptera), showed that a significant portion of metallic Pb from spent pellets is bioavailable in the soil and can be bioaccumulated by edaphic organisms, entering the soil trophic network, but without biomagnification. - Significant relationships were found between lead accumulation in soil from a shooting range and inhabiting arthropod communities

  4. [Heavy Metal Contamination in Farmland Soils at an E-waste Disassembling Site in Qingyuan, Guangdong, South China].

    Science.gov (United States)

    Zhang, Jin-lian; Ding, Jiang-feng; Lu, Gui-ning; Dang, Zhi; Yi, Xiao-yun

    2015-07-01

    Crude e-waste dismantling activities have caused a series of environmental pollution problems, and the pollutants released from the dismantling activities would finally pose high risks to human health by means of the accumulation through food chains. To explore the contamination status of heavy metals to the surrounding farmland soils in Longtang and Shijiao Town, Qingyuan, Guangdong, China, 22 farmland soil samples were collected and analyzed for the contents, spatial distributions and chemical forms of 6 heavy metals (Pb, Cu, Cd, Zn, Cr and Ni). The results showed that the 6 heavy metals exhibited obvious accumulations when compared to the corresponding background values in Guangdong Province. According to farmland environmental quality evaluation standard for edible agricultural products HJ 332-2006, the pollution severity of heavy metals was evaluated by monomial pollution index and Nemerow synthetic pollution index methods, the results indicated that 72. 7% of the soil samples contained one or more kinds of heavy metals with higher concentrations than the corresponding standard values, Cd, Cu, Pb and Zn were the main metals in the polluted soils, and for the proportion of contaminated soil samples in all the 22 samples, Cd was the highest, followed by Cu, and finally Pb and Zn. Nemerow synthetic pollution index further revealed that 68. 2% of soil samples were contaminated, and among them 53. 3% of samples were heavily contaminated. Most of the heavy metals were well correlated with each other at the 0. 05 or 0. 01 level, which indicated that primitive e-waste recycling activities were an important source of the heavy metal contamination in Longtang and Shijiao Town. The contents of Cd, Pb, Cu and Zn in surface soils were higher than those of other soil layers, and the contents of these 4 metals in deep soils (20- 100 cm) did not show significant decreases with the increasing depths. The contents of Cr and Ni maintained constant, and exhibited no statistical

  5. Assessment Of Heavy Metal Contamination Of Arable Soils In Central Bekaa Plain, Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Jomaa, I.; Khawlie, M.; Mýýuller, H. W.; Moller, A.

    2004-01-01

    The study area is located in the Bekaa plain of Lebanon totaling about 12753 ha. It lies between the eastern foothills of Mount Lebanon chain and expands across the Litani River towards the foothills of the eastern Anti-Lebanon Mountains. Its characteristics, i.e. natural terrain, climate and socio-economy, make it vulnerable especially due to soil pollution. This paper tries to identify the nature and level of soil pollution by heavy metals. Valley slopes represent a complex landform and lithology that contributed to the formation of different soil. Agriculture in the plain is being practiced mainly with cash, field crops and vegetables. Throughout the central part of the plain, groundwater table is abundant and relatively high (<1.0 m. locally) that multiplies the vulnerability of the soil-groundwater system. There are different sources of pollution, such as industrial (tanneries, batteries, leather manufacturing), solid and liquid wastes, and agricultural due to uncontrolled application of fertilizers, pesticides and insecticides. Meanwhile, no local criteria for land contamination with heavy metals are adapted yet. A total of 131 soil samples from 41 soil profiles were collected from sites representing different soil types and cropping systems. Additionally, five water samples were collected to get tentative idea about the extent of water contamination from surface and groundwater bodies. Soil samples were analyzed for physical and chemical properties and wet digested in aqua regia for the determination of the heavy metal content on the atomic absorption. Results of the total heavy metal content in the soils of the Central Bekaa showed normal values for main metals except Cr and Ni, which showed a relatively high level reaching, according to Eckamn Kloke, 1993-2000 criteria the tolerance level II. This is hazardous in an area of intensive vegetable production designed for fresh consumption. Point sources of pollution are equally found for Pb and Cd. The level

  6. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China.

    Science.gov (United States)

    Luo, Chunling; Liu, Chuanping; Wang, Yan; Liu, Xiang; Li, Fangbai; Zhang, Gan; Li, Xiangdong

    2011-02-15

    Environmental pollution due to uncontrolled e-waste recycling activities has been reported in a number of locations of China. In the present study, metal pollution to the surrounding environment from a primitive e-waste processing facility was investigated. Soils at sites where e-waste is burned in the open air, those of surrounding paddy fields and vegetable gardens, as well as common vegetable samples were collected and analyzed for heavy metals. The results showed that the soils of former incineration sites had the highest concentrations of Cd, Cu, Pb, and Zn with mean values of 17.1, 11,140, 4500, and 3690 mg kg(-1), respectively. The soils of nearby paddy fields and vegetable gardens also had relatively high concentrations of Cd and Cu. In the edible tissues of vegetables, the concentrations of Cd and Pb in most samples exceeded the maximum level permitted for food in China. Sequential leaching tests revealed that the Cu, Pb, and Zn were predominantly associated with the residual fraction, followed by the carbonate/specifically adsorbed phases with the exception of Cd, which was mainly in the extractable form in paddy fields and vegetable soils. The data showed that uncontrolled e-waste processing operations caused serious pollution to local soils and vegetables. The cleaning up of former incineration sites should be a priority in any future remediation program. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Use of composts in the remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Farrell, Mark; Jones, Davey L

    2010-03-15

    High levels of heavy metals in soil can ultimately lead to pollution of drinking water and contamination of food. Consequently, sustainable remediation strategies for treating soil are required. The potential ameliorative effect of several composts derived from source-separated and mixed municipal wastes were evaluated in a highly acidic heavily contaminated soil (As, Cu, Pb, Zn) in the presence and absence of lime. Overall, PTE (potentially toxic element) amelioration was enhanced by compost whilst lime had little effect and even exacerbated PTE mobilization (e.g. As). All composts reduced soil solution PTE levels and raised soil pH and nutrient levels and are well suited to revegetation of contaminated sites. However, care must be taken to ensure correct pH management (pH 5-6) to optimize plant growth whilst minimizing PTE solubilization, particularly at high pH. In addition, 'metal excluder' species should be sown to minimize PTE entry into the food chain. (c) 2009 Elsevier B.V. All rights reserved.

  8. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    Science.gov (United States)

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  9. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  10. Application of Microbial Products to Promote Electrodialytic Remediation of Heavy Metal Contaminated Soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    2006-01-01

    in gasoline ceased in the late 1980’es, the main human exposure derives from dust and soil. In order to eliminate the risk of children being affected by Pb-poisoning, with IQ-reduction and childhood hyperactivity as documented effects, treatment of the Pb-contaminated urban soil is a necessity. At present, Pb...... using a number of reactors in series, where the initial reactor works at the highest possible removal rate, and the final reactor works at the target Pb-concentration. Application of microbially produced siderophores, autotrophic leaching, heterotrophic leaching and biosurfactants were identified....... Siderophores, which are iron-chelating compounds produced by microorganisms under iron deficiency were investigated for their Pb-mobilizing ability. After having shown that a commercially available siderophore indeed was able to extract Pb from contaminated soil-fines, application of siderophores was however...

  11. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  12. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  13. Heavy metals contamination of soil and fodder: a possible risk to livestock

    International Nuclear Information System (INIS)

    Ahmad, K.; Shaheen, M.; Khan, Z.I.

    2013-01-01

    Heavy metals are significant ecological pollutant, principally in areas with sky-scraping anthropogenic stress. Their existence in the environment, soil and water, still in traces can cause severe tribulations to all organisms; heavy metal bioaccumulation in the food chain particularly can be extremely hazardous to animal and human health. Heavy metals generally come into the body by breathing and eating, ingestion being the most important route of contact to these elements in animals. The current study was conducted to examine lead (Pb), cadmium (Cd) and chromium (Cr) in the soil and fodders. Representative samples of soil were collected during two different seasons from two different sites, known as feeding sites for ruminants and analysed for heavy metals after wet digestion, using Atomic Absorption Spectrophotometer. The results showed that location and season had a significant effect (P>0.001) on soil and heavy metal concentrations. Soil and forage Pb, Cd, and Cr concentrations were higher in summer than in winter. From the results of the current study, it was determined that all the metals in soil were lower than deadly levels, posing no probable threat to both plant and animal life. There is an incessant need for monitoring the bioavailability of these heavy metals to grazing livestock, principally in summer season when these metals were found in relatively elevated concentrations, so that their possible toxic consequence to the grazing livestock can not be permitted. Agronomic practices, such as, manure and water managements as well as crop alternation system, can affect bioavailability and crop accretion of heavy metals, thus influencing the thresholds for assessing nutritional toxicity of heavy metals in the foodstuff. This study would be important for livestock owners and scientists working in extension services in Pakistan and other countries with same ecological condition. (author)

  14. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaoming; Lei, Mei, E-mail: leim@igsnrr.ac.cn; Chen, Tongbin

    2016-09-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm{sup 2} or US$37.7/m{sup 3}, with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  16. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    International Nuclear Information System (INIS)

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin

    2016-01-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm 2 or US$37.7/m 3 , with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  17. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.

    Science.gov (United States)

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin

    2016-09-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm(2) or US$37.7/m(3), with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heavy metals contamination of soils in response to wastewater irrigation in Rawalpindi region

    International Nuclear Information System (INIS)

    Mushtaq, N.; Khan, K.S.

    2010-01-01

    The study was conducted to evaluate the quality of effluents/ waste water samples from Rawalpindi region for irrigation purpose and to elucidate effects of their application on heavy metal contents in soils of area. Results indicated that the EC, SAR, RSC and TDS of most effluent/ waste water samples were above the critical limits. Cadmium and Cr were above the critical limits in almost all the effluent samples, whereas Ni was high in 14, Pb was high in 10, Cu was high in 5 and the Fe was high in 3 effluent samples as compared to critical limits. Regarding heavy metals contents of soils irrigated by these effluents/ waste water, total Fe, total Cd and total Ni were higher in almost all the sampled sites, whereas total Cr was high at 7 sampled sites. AB-DTPA extractable Fe and Zn were higher at all the sampled sites, while the extractable Cd was higher at 2 sampled sites. Overall, the effluent samples collected from Adiala showed high concentrations of heavy metals, whereas soils of Wah factory and Islamabad area had higher heavy metal contents (total and AB-DTPA extractable). On the basis of results it is concluded that quality of effluents/ waste water samples collected from different locations of Rawalpindi is not good for irrigation and the long term use of these effluents for crop production caused accumulation of some toxic metals in soils above critical limits which is harmful for soil health and may lead to elevated levels of heavy metals in crop plants. (author)

  19. The Effect of Heavy Metal Contaminated Soil on Growth and Development of Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Żurek G.

    2013-04-01

    Full Text Available Contamination of agricultural land in Poland by heavy metals is not a general problem but is limited to industrial areas. In regions of long history of industrial emission, of elevated levels of lead, cadmium, zinc and other ions during coal and ore mining and processing, as for example in Silesia, about 10 % of agricultural land may be characterized by exceeded maximum residue limits for Cd, Pb, Cu, Ni and Zn ions. Since the maintenance of agricultural areas in those regions is important from an ecological standpoint, the alternative farming activities are needed. Perennial grass biomass production for energy purposes is currently the best solution for majority of agricultural areas not suitable for food production in Poland. Along with increasing knowledge on separation and utilization of heavy metals (HM during and after biomass processing, phytoremediation of polluted soils will become important and valuable. To detect the effect of soil HM ions concentration on growth and development of selected, tall growing and high biomass yielding perennial grass cultivars, the chlorophyll fluorescence parameters were registered. The elevated content of Pb, Cd and Zn ions in soil influenced on decrease of: minimal (Fo, maximal (Fm and variable (Fv fluorescence level as well as on total complementary area on a diagram of chlorophyll a fluorescence induction curve (Area. Based on detected parameters it was concluded, that the high level of HM ions in soils negatively affected the efficiency of photosynthesis. Therefore, plant growth, as well as development of generative shoots and finally the biomass yield were reduced in some cultivars. Among tested cultivars different reaction for HM ions in polluted soil were noted: from only slightly modified parameters of photosynthesis and unreduced yield (Elytrigia elongata cv. Bamar and Arrhenatherum elatius cv. Wiwena to significantly reduced Fo, Fv, Fm and biomass yield (Bromus carinathus cv. Broma and Bromus

  20. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    Science.gov (United States)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  1. Determination of heavy metals contamination of trees and soils due vehicular emission in Karachi city

    International Nuclear Information System (INIS)

    Ara, F.; Iqbal, M.Z.; Qureshi, M.S.

    1996-01-01

    The concentration of Cu, Fe, Ni, and Pb in Eucalyptus sp. and Ficus religiosa leaves were at highest at those sites where the traffic density was highest, but the level of Zn in Eucalyptus sp. was highest at the other site. Cr was not detected in both the species in any area, while Cd was fund only in samples of Eucalyptus sp. Other site is comparatively less polluted area, therefore the level of these metals in leaves of above mentioned trees were low. The levels of above metals in soil were low as compared to leaves samples. Cu was highest at the site where the traffic is highest and lowest at other site, while level of P was highest in heavily traffic area and lowest at comparatively less traffic site soil samples. Zn showed significant results, highest concentration was detected at the highly polluted areas. (orig/A.B.)

  2. Remediation of heavy-metal-contaminated soil using chelant extraction: Feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Miller, G.; Taylor, J.D.; Schneider, J.F.; Zellmer, S.; Edgar, D.E.; Johnson, D.O.

    1993-08-01

    Results are presented of a laboratory investigation conducted to determine the efficacy of using chelating agents to extract heavy metals (Pb, Cd, Cr, Ba, Cu, and Zn) from soil, the primary focus being on the extraction of lead from the soil. Results from the batch-shaker studies and emphasizes the columnar extraction studies are described. The chelating agents studied included ethylenediaminetetraacetic acid (EDTA) and citric acid, in addition to water. Concentrations of the chelants ranged from 0.01 to 0.05 M; the suspension pH was varied between 3 and 8. Results showed that the removal of lead using citric acid and water was somewhat pH-dependent. For the batch-shaker studies, the results indicated that EDTA was more effective at removing Cd, Cu, Pb, and Zn than was citric acid (both present at 0.01 M). EDTA and citric acid were equally effective in mobilizing Cr and Ba from the soil. Heavy metals removal was slightly more effective in the more acidic region (pH {le} 5).

  3. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    Science.gov (United States)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  4. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  5. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado.

    Science.gov (United States)

    Meyer, Sylvia Therese; Castro, Samuel Rodrigues; Fernandes, Marcus Manoel; Soares, Aylton Carlos; de Souza Freitas, Guilherme Augusto; Ribeiro, Edvan

    2016-08-02

    Plants of the Cerrado have shown some potential for restoration and/or phytoremediation projects due to their ability to grow in and tolerate acidic soils rich in metals. The aim of this study is to evaluate the tolerance and accumulation of metals (Cd, Cu, Pb, and Zn) in five native tree species of the Brazilian Cerrado (Copaifera langsdorffii, Eugenia dysenterica, Inga laurina, Cedrela fissilis, Handroanthus impetiginosus) subjected to three experiments with contaminated soils obtained from a zinc processing industry (S1, S2, S3) and control soil (S0). The experimental design was completely randomized (factorial 5 × 4 × 3) and conducted in a greenhouse environment during a 90-day experimentation time. The plant species behavior was assessed by visual symptoms of toxicity, tolerance index (TI), translocation factor (TF), and bioaccumulation factor (BF). C. fissilis has performed as a Zn accumulator by the higher BFs obtained in the experiments, equal to 3.72, 0.88, and 0.41 for S1, S2, and S3 respectively. This species had some ability of uptake control as a defense mechanism in high stress conditions with the best behavior for phytoremediation and high tolerance to contamination. With economical and technical benefits, this study may support a preliminary analysis necessary for using native tree species in environmental projects.

  6. Magnetic susceptibility and heavy metals contamination in soils of Southern Poland

    Science.gov (United States)

    Strzyszcz, Z.; Magiera, T.

    The anthropogenic character of the increase in magnetic susceptibility of Silesian soils is doubtless. The dependence between the magnetic susceptibility of industrial dust and the concentration of heavy metals was investigated. Correlation coefficients between those two parameters range for metallurgic dust from 0.911 to 0.998 for Ni and Zn, for fly ashes from 0.710 to 0.820, for Pb and Zn, for cement dust from 0.261 to 0.519 for Ni and Pb, respectively. The anthropogenic character of this dependence is also confirmed by the values of the correlation coefficients between magnetic susceptibility and dust emission, fly ash, metallurgic dust, cement dust, are 0.903, 0.867, 0.918 and 0.365, respectively. For immission the correlation coefficients are as follow: 0.817, 0.656, 0.440 for dustfall, suspended dust and iron fall, respectively. In magnetic particles selected from fly ashes high concentrations of Pb, Zn, Ni and Cu were found. Regarding dependence of magnetic susceptibility on concentration of heavy metals in soils Upper Silesian Industrial Region the correltion coefficients were: between 0.616 - 0.986 for Zn, 0.724 - 0.979 for Pb, and 0.175 - 0.581 for Cd. These values were lower for 90 soil profiles collected from an area of 22 000 km 2 (Katowice Forest State Directorate) resulting from varying conditions of emission and immission of industrial pollutants.

  7. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.; Meng, X. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  8. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Department of Earth Sciences, National Taiwan University, Taipei (China); Wang, Jin; Li, Xiangping; Chen, Yongheng; Wu, Yingjuan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection (SCIES-MEP), Guangzhou (China); Wang, Chunlin [Research Center for Environmental Science, Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2012-07-15

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents ({mu}g/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Effects of petroleum and metal contaminated soil on plants and earthworms: Survival and bioaccumulation

    International Nuclear Information System (INIS)

    Tatem, H.E.; Simmers, J.W.; Skogerboe, J.G.; Lee, C.R.

    1993-01-01

    Earthworms, Eisenia foetida, and bermudagrass, Cynodon dactylon, were used in the laboratory to test the toxicity of contaminated sediment taken from a small fresh water lake in North Carolina. This work was part of an investigation to determine the potential effects of upland disposal of this sediment. The contaminated sediment contained As, Cr, Cu, Pb, Hg, Ni, Zn and petroleum hydrocarbons at concentrations much greater than nearby soils. Test cylinders were planted with bermudagrass; earthworms were added 30 days later. Both species were harvested at 60 days, weighed and submitted for chemical analyses. Cynodon was affected by the contaminated sediment but grew well in the mixtures of sediment and upland soil. Similar results were obtained with the Eisenia. These species did not accumulate hydrocarbons from the sediment with the possible exception of pyrene. The metals Cd, Pb, and Zn were elevated in plants exposed to the contaminated sediment. Earthworms exposed to this sediment accumulated Pb to concentrations greater than animals exposed to the manure control. This work demonstrated that a contaminated freshwater sediment was not toxic to plants or earthworms and that most petroleum hydrocarbons were not accumulated. The only metal that may be of some concern was Pb

  10. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China.

    Science.gov (United States)

    Kang, Wei; Bao, Jianguo; Zheng, Jin; Xu, Fen; Wang, Liuming

    2018-01-02

    Fast-growing metal-accumulating woody plants are considered potential candidates for phytoremediation of metals. Tonglushan mining, one of the biggest Cu production bases in China, presents an important source of the pollution of environment. The sample was collected at Tonglushan ancient copper spoil heap. The aims were to measure the content of heavy metal in the soil and woody plants and to elucidate the phytoremediation potential of the plants. The result showed that soil Cu, Cd and Pb were the main contamination, the mean contents of which were 3166.73 mg/kg, 3.66 mg/kg and 137.06 mg/kg respectively, which belonged to severe contamination. Fourteen species from 14 genera of 13 families were collected and investigated; except for Ligutrum lucidum, the other 13 woody plants species were newly recorded in this area. In addition, to assess the ability of metal accumulation of these trees, we proposed accumulation index. Data suggested that Platanus × acerilolia, Broussonetia papyrifera, Ligutrum lucidum, Viburnum awabuki, Firmiana simplex, Robina pseudoacacia, Melia azedarach and Osmanthus fragrans exhibited high accumulated capacity and strong tolerance to heavy metals. Therefore, Platanus × acerilolia and Broussonetia papyrifera can be planted in Pb contaminated areas; Viburnum awabuki, Firmiana simplex, Robina pseudoacacia and Melia azedarach are the suitable trees for Cd contaminated areas; Viburnum awabuki, Melia azedarach, Ligutrum lucidum, Firmiana simplex, Osmanthus fragrans and Robina pseudoacacia are appropriate to Cu, Pb and Cd multi-metal contaminated areas.

  11. Kinetic Sorption Studies of Heavy Metal Contamination on Indian Expansive Soil

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2009-01-01

    Full Text Available Sorption of metallic cadmium from the pH adjusted aqueous solutions at varying initial concentrations onto an alluvial (clay soil through batch sorption experiments was studied. The pH of the initial concentrations ranging between 50 mg/L to 250 mg/L was varied from 3.0 to 8.0. The sorption experiments were carried out for different durations and up to 16 hours. The cadmium continued to sorb till the last experimental pH=8. The experimental sorption data fitted very well with both Langmuir and Freundlich isotherm models and Freundlich model gave higher correlation coefficients. The pseudo-second order kinetics model was most agreeable with the experimental sorption data, whereas the pseudo-first order model was found to be insufficient.

  12. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  13. Residual effects of metal contamination on the soil quality: a field survey in central Portugal

    Science.gov (United States)

    Kikuchi, Ryunosuke; Gerardo, Romeu

    2017-04-01

    Agriculture is an important source of income and employment. But depletion and degradation of land challenge to producing safe food and other agricultural products to sustain livelihoods and meet the needs of urban populations. When developing or expanding an agricultural area, it becomes essential to access the soil quality. Even if the present source of contamination is not observed, it is a worth subject to evaluate whether or not any negative effects of the post contamination still last. For this purpose, a field survey (2 ha) was carried: a zinc and lead mining site that was abandoned about 50 years ago was researched at Sanguinheiro (40°18'N and 8°21'W) in Central Portugal. The area is characterized by very steep slopes that are confining with a small stream. The obtained results show that (i) the Pb content in the site (165 mg/kg) is higher than that in the background (67.7 mg/kg); (ii) the Zn content of local vegetation (Eucalyptus globulus) in the post-mining site is 2.1 times that in the control site, and (iii) dead bare ground is observed in some parts of the site. There is a possibility that great amounts of Zn and Pb accumulate in tissues of local vegetation. Although mining activity ended 50 years ago, the contents of Pb and Zn in the sampled soil were comparatively high in the site with about a 75% slope. It is concluded that not only the present contamination but also the post-environmental stress should be assessed to properly develop an agricultural area in terms of securing agricultural products.

  14. Heavy metal contamination of spontaneous vegetation and soil around the copper smelter "Legnica"

    Directory of Open Access Journals (Sweden)

    Franz Rebele

    2014-01-01

    Full Text Available The area around the copper smelter "Legnica" in western Poland is influenced by pollutants from the smelter for about 35 years. Ecosystems within a distance of 1-2 km from the smelting complex are heavily degradated. Copper levels of the upper soil layers averaged more than 15000 ppm, lead levels more than 2000 ppm (d.m. weight. Besides heavy metals, sulphur dioxide is one of the most important pollutants affecting plant growth. Only few plant species are able to grow on those highly contaminated sites. Vegetation patches within zones of bare ground without any vegetation are mainly dominated by Convolvulus arvensis, Agropyron repens, Calamagrostis epigeios or Sambucus nigra. Leaf metal contents of Artemisia vulgaris, a plant which is a good bioindicator and also very frequent around the copper smelter, ranged: 665-2340 ppm Cu (d.m. weight, 215-2301 ppm Zn, 189-1031 ppm Pb and 0.75-12.4 ppm Cd according to the distance and exposition to the pollution source.

  15. Grey relational analysis for evaluating the effects of different rates of wine lees-derived biochar application on a plant-soil system with multi-metal contamination.

    Science.gov (United States)

    Xu, Min; Zhu, Qihong; Wu, Jun; He, Yan; Yang, Gang; Zhang, Xiaohong; Li, Li; Yu, Xiaoyu; Peng, Hong; Wang, Lilin

    2018-03-01

    In this study, grey relational analysis (GRA) was used to investigate the effects of different application rates of wine lees-derived biochar on a plant-soil system with multi-metal contamination. A pot experiment was conducted to determine rice growth in multi-metal-contaminated soil amended with samples of wine lees-derived biochar, and 47 indicators (including soil properties, microbial activity, and plant physiology) were selected as evaluation indexes to assess the plant-soil system. The results indicated that higher wine lees-derived biochar application rates (2% W/W) were favorable for soil fertility, the bioconcentration factor (BF), and the mobility factor (MF, %) (with the exception of Cr, Zn, and Hg), but an application of 1% produced the highest plant growth, enzymatic activities, and bacterial diversity. The richness of the bacterial communities was reduced in the soil amended with the wine lees-derived biochar. According to the GRA assessment, the 1% application rate of wine lees-derived biochar was more suitable for restoring the holistic plant-soil system than were the application rates of 0, 0.5, and 2% (W/W). Furthermore, this study shows that GRA is a useful method for evaluating plant-soil systems.

  16. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have

  17. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China

    Directory of Open Access Journals (Sweden)

    Xiaolu Yan

    2018-01-01

    Full Text Available Heavy metal pollution in soils and sediments is becoming a matter of wide concern, this study was carried out in Dawa County of the Liaohe River Delta, with the aim of exploring the impacts of land use levels on heavy metal contamination of soil and sediment. A total of 129 soil samples were collected in different land use intensities (LUI. Soil metals (Fe, Mn, Cd, Cr, Cu, Ni, Pb and Zn and soil salinity, pH, soil organic carbon (SOC, nitrate nitrogen (NO3−-N, available phosphorus (AP and grain sizes were analyzed. Correlation analysis indicated that SOC and grain size played important roles in affecting the heavy metal distribution. The factor analysis results indicated that heavy metal contamination was most probably caused by industrial and agricultural wastewater discharges, domestic sewage discharge and atmospheric deposition. Using ANOVA, it found that human activities significantly changed soil physic-chemical properties through soil erosion, leaching and fertilizer application, further affecting the behaviors of heavy metals in the soil and sediments. The anthropogenic factors could lead to potential environmental risk, as indicated by the Geo-accumulation index (Igeo results of heavy metals. Overall, the heavy metals generally had approached or even exceeded moderately polluted (0 < Igeo < 1, 1 < Igeo < 2, but the Pb and Cu pollution level was low (Igeo < 0, and the Cd pollution level was moderately or strongly polluted (2 < Igeo < 3, 3 < Igeo < 4 in the five land use levels. This study will provide valuable information for appropriately determining how land should be used in future reclamation areas, as well as for the sustainable management of estuarine areas around the world.

  19. The selection of plant species-organic amendment combinations aids to restore soil microbial function recovery in a metal-contaminated soil

    Science.gov (United States)

    Kohler, Josef; Caravaca, Fuensanta; Azcón, Rosario; Diáz, Gisela; Fuensanta, Garcia-Orenes; Roldan, Antonio

    2014-05-01

    A mesocosm experiment was established to evaluate the effect of two organic wastes: fermented sugar beet residue (SBR) and urban waste compost on the stimulation of plant growth, phytoaccumulation of heavy metals and soil biological quality and their possible use in phytostabilitation tasks with native (Piptatherum miliaceum, Retama sphaerocarpa, Bituminaria bituminosa, Coronilla juncea and Anthyllis cytisoides) and non-native (Lolium perenne) plants in a heavy metal contaminated semiarid soil. Excepting R. sphaerocarpa, SBR increased the contents of shoot N, P and K and shoot biomass of all plants. The percentage of mycorrhizal colonization was not affected by the organic amendments. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended P. miliaceum. SBR reduced toxic levels of HM in shoot of P. miliaceum, mainly decreasing Fe and Pb uptake to plants. This study pointed out that the SBR was the most effective amendment for enhancing the plant performance and for improving soil quality. The combination of SBR and P. miliaceum can be regarded the most effective strategy for being employed in phytostabilisation projects of this contaminated site.

  20. Measurement of symbiotic nitrogen-fixation in leguminous host-plants grown in heavy metal-contaminated soils amended with sewage sludge.

    Science.gov (United States)

    Obbard, J P; Jones, K C

    2001-01-01

    Rates of nitrogen fixation by Rhizobium in symbiosis with leguminous host-plants including white clover, broad bean and peas have been established in soils that have been amended experimentally with heavy metal-contaminated sewage sludges. Results from 15N-dilution experiments for the measurement of N2 fixation have shown that adverse heavy metal effects are apparent on symbiotic N2 fixation rates for white clover grown in inter-specific competition with ryegrass under mixed sward conditions, compared to white clover grown in pure sward. Further experiments on broad bean and pea indicated a significant, but minor-inhibitory metal-related effect on the rate of N2 fixation compared to untreated soils and soils amended with a relatively uncontaminated sludge. The implications of the results with respect to sludge utilisation in agriculture are discussed.

  1. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.

    Science.gov (United States)

    Boteva, Silvena; Radeva, Galina; Traykov, Ivan; Kenarova, Anelia

    2016-03-01

    Ore mining and processing have greatly altered ecosystems, often limiting their capacity to provide ecosystem services critical to our survival. The soil environments of two abandoned uranium mines were chosen to analyze the effects of long-term uranium and heavy metal contamination on soil microbial communities using dehydrogenase and phosphatase activities as indicators of metal stress. The levels of soil contamination were low, ranging from 'precaution' to 'moderate', calculated as Nemerow index. Multivariate analyses of enzyme activities revealed the following: (i) spatial pattern of microbial endpoints where the more contaminated soils had higher dehydrogenase and phosphatase activities, (ii) biological grouping of soils depended on both the level of soil contamination and management practice, (iii) significant correlations between both dehydrogenase and alkaline phosphatase activities and soil organic matter and metals (Cd, Co, Cr, and Zn, but not U), and (iv) multiple relationships between the alkaline than the acid phosphatase and the environmental factors. The results showed an evidence of microbial tolerance and adaptation to the soil contamination established during the long-term metal exposure and the key role of soil organic matter in maintaining high microbial enzyme activities and mitigating the metal toxicity. Additionally, the results suggested that the soil microbial communities are able to reduce the metal stress by intensive phosphatase synthesis, benefiting a passive environmental remediation and provision of vital ecosystem services.

  2. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling.

    Science.gov (United States)

    Qiu, Menglong; Wang, Qi; Li, Fangbai; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2016-01-01

    A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC.

  3. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of bioassays with Enchytraeus crypticus and Folsomia candida to evaluate the toxicity of a metal-contaminated soil, before and after remediation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Veronica; Simon, Mariano [Univ. de Almeria (Spain). Dept. de Edafologia y Quimica Agricola; Dietz-Ortiz, Maria; Gestel, Cornelis A.M. van [VU Univ., Amsterdam (Netherlands). Dept. of Animal Ecology

    2011-10-15

    A contaminated soil was amended to reduce bioavailability of metals (As, Cd, Cu, Pb, and Zn) and to modify its potential environmental impacts. Reproduction toxicity tests using two different soil invertebrates, Enchytraeus crypticus and Folsomia candida, were used to evaluate efficiency of soil amendments to reduce metal availability. This study has been carried out on a very contaminated soil from El Arteal mining district (SE Spain). The amendments used were marble sludge from the cutting and polishing of marble, compost from greenhouse wastes, and synthetic iron oxides. Soils were analyzed for cation exchange capacity, organic carbon and calcium carbonate content, particle size distribution, pH, electrical conductivity, and total metal content. Porewater and 0.01 M CaCl{sub 2}-extractable concentrations were measured in unamended and amended soils. Soil organisms were exposed to all treatments and to untreated soil. The parameters evaluated in both bioassays were survival and reproduction. All treatments decreased the porewater and CaCl{sub 2}-extractable concentrations of Zn, Pb, Cd, and Cu. The amendments increased survival and reproduction of E. crypticus, reducing toxicity. Survival of F. candida was also increased by the treatments; its reproduction did, however, not improve. These differences may be due to other factors that may affect collembolan reproduction. The different sensitivity of each test organism to some soil properties such as pH and electrical conductivity, which can affect reproduction, should be considered before interpreting results from bioassays focussed on toxicity due to pollutants. Reproduction toxicity bioassays with soil invertebrates are a good complement of chemical analysis to properly assess the ecological risk of remediation processes. Organisms with different exposure routes and different sensitivities to soil properties should be used simultaneously to assess the environmental risk of metal-contaminated sites and to evaluate

  5. Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2016-01-01

    Full Text Available ABSTRACT Bioavailability of heavy metals at contaminated sites is largely controlled by the physicochemical properties of the environmental media such as dissolved organic matter, hydroxides and clay colloids, pH, soil cation exchange capacity and oxidation-reduction potential. The aim of this study was to investigate soil pH and heavy metal solubility effect by levels of humic and fulvic acids applied in soil samples with different levels of contamination by heavy metals. The soil samples used in this study were collected in a known metal-contaminated site. Humic acid (HA and fulvic acid (FA were purchased as a commercially available liquid material extracted from Leonardite. The experiment was carried out in a factorial scheme of 4 × (4 + 1, with four contaminated soil samples and four treatments, comprised of two levels of HA, two levels of FA and a control. The HA treatments increased the solubility of Cu, Zn, Ni, Cr, Cd, Pb, As and Ba from soils, while FA treatments decreased, thus raising or not their availability and mobility in soil. Humic acid concentration did not influence soil pH and FA decreased soil pH until 0.7 units. The initial heavy metal concentration in soil affects the magnitude of the processes involving humic substances. The lower releases of heavy metals by FA verified the importance of the complexation properties of organic compounds. These results appear to encourage the use of HA for increased plant-availability of heavy metals in remediation projects and the use of FA for decreased plant-availability of heavy metals at contaminated sites with a risk of introducing metals into the food chain.

  6. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  7. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analyses of contaminated soils by XRF

    Science.gov (United States)

    Mucke, D.

    2012-04-01

    Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analysis of contaminated soils by XRF Dieter Mucke, Rolf Kumann, Sebastian Baldauf GEOMONTAN Gesellschaft für Geologie und Bergbau mbH&Co.KG, Muldentalstrasse 56, 09603 Rothenfurth, Saxony/Germany For hundreds of years in the Ore Mountains between Bohemia and Saxony silver and other ores are produced and smelted. Sulphide- and sulpharsenide-ores needed to be roasted first. In doing so the sulphide sulphur was oxidised under formation of sulphur dioxide SO2 and arsenide conversed into elemental arsenic and arsenide trioxide As2O3 respectively. Also the metals lead, cadmium and zinc are components of hut smokes, in the field of nickel foundries also nickel. The contents of soils basically reflect the geogenic conditions, which are caused by decomposition- and relocation-effects of the mineralisations, in the area of foundries also with influences by with the hut smokes anthropogenic mobilised elements. The Saxonian Agency for Environment and Geology drafted in 1992 a Soil Investigation Program with the aim of investigation of the contamination of Saxonian soils with arsenic and toxic heavy metals. In order of this Agency GEOMONTAN investigated 1164 measuring points in the grid 4 * 4 km.soil profiles and extracted soil samples for analysis. In the result of the laboratory examinations the Agency edited the "Soil atlas of the Free State of Saxony". 27 elements, pH and PAK are shown in detailed maps and allow in whole Saxony the first assessment of the contamination of soils with arsenic and toxic heavy metals. Each of the investigated soil profiles represent an area of 16 km2. Already by the different use of the districts (agricultural, industrial, urban) restricts representative values. GEOMONTAN in the meantime used at the exploration of a copper deposit in Brandenburg/Germany with approx. 50,000 single tests at drill cores a very fast low-cost method: the X Ray fluorescence

  9. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils. Copyright © 2017 American Society for Microbiology.

  10. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.

    Science.gov (United States)

    Al-Hwaiti, Mohammad; Al-Khashman, Omar

    2015-04-01

    Phosphogypsum (PG) is a waste produced by the phosphate fertilizer industry that has relatively high concentrations of some heavy metals (e.g., Cd, Cr, Cu, Pb, V, and Zn). The present study was conducted to investigate heavy metal contamination in soils and vegetables (tomatoes and green peppers) and to evaluate the possible health risks associated with the consumption of vegetables grown in PG-amended soils. The enrichment factor values indicated that Pb, Cr, Cu, Ni, Zn, and V were depleted to minimally enriched, and Cd was moderately enriched. The pollution load index values indicated that the PG-amended soils were strongly polluted with Cd, moderately polluted with Cr and Ni, and slightly polluted with Pb, Cu, Zn and V. The geo-accumulation index values indicated that the PG-amended soils were uncontaminated with Pb, Cr, Cu, Ni, Zn, V, and moderately contaminated with Cd. The trace metal transfer for Cd, Cr, Pb, and Zn concentrations was below what are considered as acceptable limits ( Pb > Cd > Cr. The biological absorption coefficients in plants are, in order of highest to lowest, Pb > Zn > Cd > Cr, which suggests that Pb is more bioavailable to plants than Cd, Cr, and Zn. Furthermore, this study highlights that both adults and children consuming vegetables (e.g., tomatoes and green peppers) grown in PG-amended soils ingest significant amounts of the metals studied. However, the daily intake of metals (DIM) and the health risk index (HRI) values are contaminated soils, which were not included in this study.

  11. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile ...

  12. Endophytic and rhizospheric bacteria associated with Silene paradoxa grown on metal-contaminated soils are selected and transferred to the next generation of plants as seed endophytes

    Science.gov (United States)

    Mocali, Stefano; Fabiani, Arturo; Chiellini, Carolina; Gori, Giulia; Gonnelli, Cristina

    2017-04-01

    It is well known that bacteria are commonly associated to the plants, either on the outer surfaces (epiphytes) that inside the plant tissues (endophytes). These bacteria mainly derived from soil and reach the various organs of the plant throughout the root system. Despite recent works have shown that endophytic bacteria can have an important role in the physiology of the plant, little is known of their possible involvement in the resistance and tolerance mechanisms of plants to heavy metals. Furthermore, until now only limited research has been conducted to unravel the exact role and possible applications of seed endophytes. The aim of this work was to characterize the plant-associated bacterial communities present at both the rhizosphere and inside the seeds, roots and aerial parts of plants of Silene paradoxa, a plant highly well-adapted to extreme environments, such as metal-contaminated soils. Thus, soil samples and plants of S. paradoxa were collected from i) the landfill of a Cu mine at Fenice Capanne (Grosseto, Italy); ii) a serpentine soil (with a high Ni content) at Pieve Santo Stefano (Arezzo, Italy); iii) a limestone uncontaminated soil in Colle Val d'Elsa (Siena, Italy). Bacterial communities associated with the three different plant organs have been then characterized by high-throughput sequencing of the 16S rRNA genes (microbiota). Bacteria were also isolated from seeds and soil and the colony forming units (CFU) was determined on plates containing different concentrations of Ni and Cu (5, 10 and 15 mM). The results showed a greater bacterial diversity among the three soils compared to plants. In particular, even though some phyla occurred in all the three soils (Actinobacteria, Proteobacteria, Chlorflexi and Acidobacteria), in general the bacterial community structure of the three soils was quite different from each other. Interestingly, the endophytic composition within each plant compartment was observed to be strongly affected by the soil of

  13. Physicochemical Characteristics and Ecological Risk Assessment of Heavy Metals Contaminated Soils in Copper Mining of Nulasai, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Dina·Tursenjan

    2017-12-01

    Full Text Available Taking the mining areas, tailings and surrounding farmland soil of the Nulasai copper mine in Xinjiang as the research object, the characteristics of soil physical and characteristics of heavy metal contents in this area were studied, and their ecological and environmental risks were preliminarily evaluated. The results showed that due to the long-term impact of mining wastewater, soil pH in the Nulasai mining area was relatively low. Soil conductivity and salt content were higher than those in the surrounding farmland, while soil organic matter, available nitrogen, available potassium and available phosphorus were lower than those in the surrounding farmland. The contents of heavy metals Cr, Cd, Pb, Cu, Ni and Zn in the mining area, tailing area and farmland soil were all lower than those in Xinjiang except for Cu. Overall, the heavy metal content of the soil manifested the area > tailing area > farmland. Single factor(Pi, Nemerow comprehensive pollution index(I and potential ecological risk index(RI indicated that the ecological risk of heavy metals in the soil around the mining area was manifested tailings > mining area > farmland. The potential ecological risk index of heavy metals in 0~30 cm topsoil was higher than that in 30~70 cm deep soil, but the overall ecological risk was lower in different land use types.

  14. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  15. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    Science.gov (United States)

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  16. Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae at different soil depths in highly metal-contaminated site in southern Poland

    Directory of Open Access Journals (Sweden)

    Ewa Gucwa-Przepióra

    2013-12-01

    Full Text Available This study presents root colonization of Deschampsia cespitosa growing in the immediate vicinity of a former Pb/Zn smelter by arbuscular mycorhizal fungi (AMF and dark septated endophytes (DSE at different soil depths. AMF spores and species distribution in soil profile were also assessed. Arbuscular mycorrhiza (AM and DSE were found in D. cespitosa roots at all investigated soil levels. However, mycorrhizal colonization in topsoil was extremely low with sporadically occurring arbuscules. AM parameters: frequency of mycorrhization of root fragments (F%, intensity of root cortex colonization (M%, intensity of colonization within individual mycorrhizal roots (m%, and arbuscule abundance in the root system (A% were markedly higher at 20–40, 40–60 cm soil levels and differed in a statistically significant manner from AM parameters from 0–10 and 10–20 cm layers. Mycorrhizal colonization was negatively correlated with bioavailable Cd, Pb and Zn concentrations. The number of AMF spores in topsoil was very low and increased with soil depth (20–40 and 40–60 cm. At the study area spores of three morphologically distinctive AMF species were found: Archaeospora trappei, Funneliformis mosseae and Scutellospora dipurpurescens. The fourth species Glomus tenue colonized roots of D. cespitosa and was observed in the root cortex at 20–40 and 40–60 soil depth, however, its spores were not found at the site.

  17. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    Science.gov (United States)

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  18. Fingerprinting sedimentary and soil units by their natural metal contents: a new approach to assess metal contamination.

    Science.gov (United States)

    Amorosi, Alessandro; Guermandi, Marina; Marchi, Nazaria; Sammartino, Irene

    2014-12-01

    One of the major issues when assessing soil contamination by inorganic substances is reliable determination of natural metal concentrations. Through integrated sedimentological, pedological and geochemical analyses of 1414 (topsoil/subsoil) samples from 707 sampling stations in the southern Po Plain (Italy), we document that the natural distribution of five potentially toxic metals (Cr, Ni, Cu, Zn and Pb) can be spatially predicted as a function of three major factors: source-rock composition, grain size variability and degree of soil weathering. Thirteen genetic and functional soil units (GFUs), each reflecting a unique combination of these three variables, are fingerprinted by distinctive geochemical signatures. Where sediment is supplied by ultramafic (ophiolite-rich) sources, the natural contents of Cr and Ni in soils almost invariably exceed the Italian threshold limits designated for contaminated lands (150 mg/kg and 120 mg/kg, respectively), with median values around twice the maximum permissible levels (345 mg/kg for Cr and 207 mg/kg for Ni in GFU B5). The original provenance signal is commonly confounded by soil texture, with general tendency toward higher metal concentrations in the finest-grained fractions. Once reliable natural metal concentrations in soils are established, the anthropogenic contribution can be promptly assessed by calculating metal enrichments in topsoil samples. The use of combined sedimentological and pedological criteria to fingerprint GFU geochemical composition is presented here as a new approach to enhance predictability of natural metal contents, with obvious positive feedbacks for legislative purposes and environmental protection. Particularly, natural metal concentrations inferred directly from a new type of pedogeochemical map, built according to the international guideline ISO 19258, are proposed as an efficient alternative to the pre-determined threshold values for soil contamination commonly established by the national

  19. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.

    Science.gov (United States)

    Hong, Chang Oh; Gutierrez, Jessie; Yun, Sung Wook; Lee, Yong Bok; Yu, Chan; Kim, Pil Joo

    2009-02-01

    The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.

  20. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Hussain, Iqbal; Rasheed, Rizwan; Iqbal, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem

    2017-08-01

    Contamination of agricultural soils with trace metals present lethal consequences in terms of diverse ecological and environmental problems that entail entry of metal in food chain, soil deterioration, plant growth suppression, yield reduction and alteration in microbial community. Metal polluted soils have become a major concern for scientists around the globe. Phytoremediation involves the hyperaccumulation of metals in different plant parts. Phytoremediation of metals from polluted soils could be enhanced through inoculation with metal resistant plant growth promoting (PGP) bacteria. These PGP bacteria not only promote plant growth but also enhance metal uptake by plants. There are a number of reports in the literature where PGP bacterial inoculation improves metal accumulation in different plant parts without influencing plant growth. Therefore, there is a need to select PGP bacterial strains which possess the potential to improve plant growth as well as expedite the phytoremediation of metals. In this review, we have discussed the mechanisms possessed by PGP bacteria to promote plant growth and phytoremediation of metals. The central part of this review deals with the recent advances in microbial assisted-phytoremediation of metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metal contamination of home gardens soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    Science.gov (United States)

    Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.

    2015-01-01

    Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We

  2. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Tzvetkova, Nikolina; Miladinova, Kamelya; Ivanova, Katya; Georgieva, Teodora; Geneva, Marya; Markovska, Yuliana

    2015-01-01

    One-year-old two Paulownia lines (Ptomentosa x fortunei--TF 01 and R elongata x fortunei--EF 02) were grown, as pot experiment, in soil collected from the field of waste depository of Kremikovtzi ferrous metallurgical industry near Sofia. The soil was heavily polluted with Cd. Metals content (Ca, Mg, K, Na, Cd, Cu, Pb, Zn and Fe) in soil and its distribution in roots, stems and leaves of both lines was studied. The results showed that Ca and K accumulated more in stem, Mg, Na, Fe and Cd in root, while Pb, Cu and Zn in the leaves of both lines. The bloaccumulation factor (BF) and translocation factor (TF) were evaluated in order to determine the potential of plants in removing metals from contaminated soil. The BF for Fe, Pb, Cu and Zn in TF 01 line exceeded that of EF 02 line--5.6; 1.03; 1.20; 1.14 times, respectively. TF was higher in TF 01 line for Fe, Pb and Cd (6.0; 1.92 and 1.03, respectively), but not for Cu and Zn. The success of phytoremediation depends on plant growth and restricted distribution of heavy metals in shoots. Our results showed that stem length and total leaf area of Paulownia elongata x fortunei were higher than Paulownia tomentosa x fortuneibut BF for Cu and Zn and TF for Pb was less. BF for Cd was 1.7 times higher and TF for Zn was 1.03 times higher in Paulownia elongata x fortunei. Selected two lines (P. tomentosa x fortunei--TF 01 and P elongataxfortunei--EF02) were accumulators of Cu, Zn and Cd. Paulownia tomentosax fortunei accumulated more Pb and Zn in aboveground parts, while Paulownia elongata x fortunei--accumulated Zn only. These lines proved to be a promising species for phytoremediation of heavy metal polluted soils due to high biomass productivity.

  3. Combined and Relative Effect Levels of Perceived Risk, Knowledge, Optimism, Pessimism, and Social Trust on Anxiety among Inhabitants Concerning Living on Heavy Metal Contaminated Soil.

    Science.gov (United States)

    Tang, Zhongjun; Guo, Zengli; Zhou, Li; Xue, Shengguo; Zhu, Qinfeng; Zhu, Huike

    2016-11-02

    This research aims at combined and relative effect levels on anxiety of: (1) perceived risk, knowledge, optimism, pessimism, and social trust; and (2) four sub-variables of social trust among inhabitants concerning living on heavy metal contaminated soil. On the basis of survey data from 499 Chinese respondents, results suggest that perceived risk, pessimism, optimism, and social trust have individual, significant, and direct effects on anxiety, while knowledge does not. Knowledge has significant, combined, and interactive effects on anxiety together with social trust and pessimism, respectively, but does not with perceived risk and optimism. Social trust, perceived risk, pessimism, knowledge, and optimism have significantly combined effects on anxiety; the five variables as a whole have stronger predictive values than each one individually. Anxiety is influenced firstly by social trust and secondly by perceived risk, pessimism, knowledge, and optimism. Each of four sub-variables of social trust has an individual, significant, and negative effect on anxiety. When introducing four sub-variables into one model, trust in social organizations and in the government have significantly combined effects on anxiety, while trust in experts and in friends and relatives do not; anxiety is influenced firstly by trust in social organization, and secondly by trust in the government.

  4. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil.

    Science.gov (United States)

    Yang, Yang; Zhou, Xihong; Tie, Boqing; Peng, Liang; Li, Hongliang; Wang, Kelin; Zeng, Qingru

    2017-12-01

    Selecting suitable plants tolerant to heavy metals and producing products of economic value may be a key factor in promoting the practical application of phytoremediation polluted soils. The aim of this study is to further understand the utilization and remediation of seriously contaminated agricultural soil. In a one-year field experiment, we grew oilseed rape over the winter and then subsequently sunflowers, peanuts and sesame after the first harvest. This three rotation system produced high yields of dry biomass; the oilseed rape-sunflower, oilseed rape-peanut and oilseed rape-sesame rotation allowed us to extract 458.6, 285.7, and 134.5 g ha -1 of cadmium, and 1264.7, 1006.1, and 831.1 g ha -1 of lead from soil, respectively. The oilseed rape-sunflower rotation showed the highest phytoextraction efficiency (1.98%) for cadmium. Lead and cadmium in oils are consistent with standards after extraction with n-hexane. Following successive extractions with potassium tartrate, concentrations of lead and cadmium in oilseed rape and peanut seed meals were lower than levels currently permissible for feeds. Thus, this rotation system could be useful for local farmers as it would enable the generation of income during otherwise sparse phytoremediation periods. Copyright © 2017. Published by Elsevier Ltd.

  5. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate.

    Science.gov (United States)

    Avelar Ferreira, Paulo Ademar; Lopes, Guilherme; Bomfeti, Cleide Aparecida; de Oliveira Longatti, Silvia Maria; de Sousa Soares, Cláudio Roberto Fonseca; Guimarães Guilherme, Luiz Roberto; de Souza Moreira, Fatima Maria

    2013-11-01

    Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg(-1)) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg(-1)). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals.

  6. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    International Nuclear Information System (INIS)

    Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P.

    2006-01-01

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil

  7. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, Roberta [Occupational Health, University of Brescia (Italy); Hashim, Dana [Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York (United States); Smith, Donald R. [Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States); Guazzetti, Stefano [Public Health Service, Reggio Emilia (Italy); Donna, Filippo [Occupational Health, University of Brescia (Italy); Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina [Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia (Italy); Beone, Gian Maria [Institute of Agricultural and Environmental Chemistry, Università Cattolica, Piacenza (Italy); Lucchini, Roberto G. [Occupational Health, University of Brescia (Italy); Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York (United States); Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States)

    2015-06-15

    Background: For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods: Home gardens (n = 63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results: Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions: Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1 + F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references

  8. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    International Nuclear Information System (INIS)

    Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.

    2015-01-01

    Background: For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods: Home gardens (n = 63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results: Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions: Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1 + F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references

  9. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    Science.gov (United States)

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.

  10. Variance analysis on different trees species depending on soil type – uncontaminated and heavy metals contaminated ones

    Directory of Open Access Journals (Sweden)

    Monica MARIAN

    2008-05-01

    Full Text Available This paper summarizes our research work regarding the dynamics of vegetation growth of miscellaneous species of trees planted and monitored in the particular environment of the tailing pond in Bozanta Mare (Maramures County. The structure of soil bearing high content of heavy metals and cyanides considerably impacts the ecologic conditions of tailing ponds. Aspects related to soil characteristics (such as structure, size of particles, porosity, texture, chemical composition are included. Vegetal species that have accommodated within the tail pond are included as well. In the framework of our experiment we have planted seedlings belonging to four species of trees: Quercus petraea, Populus tremula, Betula verrucosa, Salix caprea. We have planted the seedlings in different location contexts in the tailing pond (“in situ”, as we have also planted “ex situ” witness trees. Our aim was to monitor the dynamics of growth of the stem and of cuttings. Our contribution, based on the outcomes of our research, consists in the formulation of functional correlations spotted between cormophites and micro biota, between the species of trees and their environmental underlying conditions, with the overarching goal to optimize the activities undertaken in order to alleviate the tailing ponds inherent to mining activities.

  11. Risk Assessment of Heavy Metals Contamination in Soils and Selected Crops in Zanjan Urban and Industrial Regions

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2016-02-01

    Full Text Available Introduction: Heavy metals are types of elements naturally present in soil or enter into soil as a result of human activities. The most important route of exposure to heavy metals is daily intake of food. Crops grown in contaminated soil (due to mining activities, industrial operations and agriculture may contain high concentrations of heavy metals. Also closeness to cities and industrial centers can have a great influence on the accumulation of heavy metals to agricultural products grown in the region. The study aimed to determine the concentration of heavy metals in soil and agricultural products around urban and industrial areas of Zanjan province (North West of Iran and consumption hazard probability. Materials and Methods: Soil (75 samples of soil from a depth of 0 to 10 cm and plant (101 samples samples, in the summer 2011, were randomly taken from industrial areas as follow: tomatoes (Lycopersicum esculentum M, wheat seed (Triticum vulgare, barley seeds (Hordeum vulgare, alfalfa shoots (Medicago sativa L., potato tubers (Solanumtuberosum L., apple fruit, vegetables and fruits such as Dill (Aniethum graveolens L., leek (Allium porrum L., Gardencress (Barbara verna L. and basil (Ocimum basilicum L.. Plant samples were then washed with distilled water, oven dried for48 hours at a temperature of 70 ´C until constant weight was attained and then they digested using 2 M hydrochloric acid (HCl and nitric acid digestion in 5 M. Concentrations of heavy metals in the soil and crops were determined by atomic absorption spectrometry. DTPA extraction of metals by Lindsay and Norvell (1978 method and sequential extraction method by Tessier et al. (1979 were performed. Statistical analysis was accomplished using the software SPSS 16.0 and the comparison of mean values was done using the Duncan test at the 5% level of significance. Results and Discussion: The magnitude of variations for total copper was from 11.5 to 352.5 (average 52.4, zinc was from 96

  12. Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilising efficiency.

    Science.gov (United States)

    Friesl-Hanl, Wolfgang; Platzer, Klaus; Riesing, Johann; Horak, Othmar; Waldner, Georg; Watzinger, Andrea; Gerzabek, Martin H

    2017-01-15

    Extensive contamination of grassland with cadmium (Cd), lead (Pb) and zinc (Zn) is a typical problem close to Pb/Zn smelter sites. The entry of Cd or Pb into the food chain is very likely, as are toxicity effects of Zn in plants. Previous promising results from pot and field experiments showed the high potential of using amendments for immobilisation to reduce metal input into the food chain via crops grown on smelter-contaminated soils at Arnoldstein (Austria) (Friesl et al., 2006). The aim of this study was to find a practical solution for large-scale contaminations in hilly regions that avoids erosion. Field application of amendments without destroying the vegetation cover (grassland) involved two approaches: (a) slurrying (Slu) the amendments into cut gaps in the vegetation cover and (b) injecting (Inj) the amendments through the vegetation cover. Here, we investigate the immobilising and long-term efficiency of treatments [gravel sludge (2.5%) + red mud (0.5%) (GS + RM)]. Risk assessment was based on soil, plant and water samples taken over a period of 10 years. Ammonium-nitrate-extractable Cd was reduced up to 50%, Pb up to 90%, and Zn over 90%. Plant uptake into the grass mixture and narrow leaf plantain was significantly reduced for Cd, Pb, and Zn. Harvesting early in vegetation period can further reduce uptake and meet the threshold for fodder crops. The reduction of these elements in the seepage water in 24 samplings within these 10 years reached 40%, 45% and 50%, respectively. Immobilisation increased microbial biomass and decreased human bioaccessibility for Pb. Our investigation of the long-term efficiency of GS + RM in all treatments shows that the Slu and Inj amendment application techniques have promising potential as a realistic and practical method for extensively contaminated hilly land. Slurrying performed best. We conclude that grassland remediation methods involving tillage are counterproductive from the viewpoint of bioaccessibility

  13. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils.

    Science.gov (United States)

    Shi, Yanan; Xie, Huarong; Cao, Lixiang; Zhang, Renduo; Xu, Zaichao; Wang, Zhuoya; Deng, Zujun

    2017-01-01

    Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.

  14. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  15. Comparisons of Soil Properties, Enzyme Activities and Microbial Communities in Heavy Metal Contaminated Bulk and Rhizosphere Soils of Robinia pseudoacacia L. in the Northern Foot of Qinling Mountain

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    2017-11-01

    Full Text Available The toxic effects of heavy metal (HM contamination on plant metabolism and soil microorganisms have been emphasized recently; however, little is known about the differences in soil physical, chemical, and biological properties between bulk and rhizosphere soils contaminated with HMs in forest ecosystem. The present study was conducted to evaluate the rhizosphere effect on soil properties, enzyme activities and bacterial communities associated with Robinia pseudoacacia L. along a HM contamination gradient. Soil organic matter (SOM, available nitrogen (AN and phosphorus (AP contents were significantly higher in rhizosphere soil than those in bulk soil at HM contaminated sites (p < 0.05. Compared to bulk soil, activities of four soil enzymes indicative of C cycle (β-glucosidase, N cycle (protease, urease and P cycle (alkaline phosphatase in rhizosphere soil across all study sites increased by 47.5%, 64.1%, 52.9% and 103.8%, respectively. Quantitative PCR (qPCR and restriction fragment length polymorphism (RFLP were used to determine the relative abundance, composition and diversity of bacteria in both bulk and rhizosphere soils, respectively. The copy number of bacterial 16S rRNA gene in bulk soil was significantly lower than that in rhizosphere soil (p < 0.05, and it had significantly negative correlations with total/DTPA-extractable Pb concentrations (p < 0.01. Alphaproteobacteria, Gammaproteobacteria and Firmicutes were the most dominant groups of bacteria at different study sites. The bacterial diversity index of Species richness (S and Margalef (dMa were significantly higher in rhizosphere soil compared with those in bulk soil, although no difference could be found in Simpson index (D between bulk and rhizosphere soils (p > 0.05. Redundancy analysis (RDA results showed that soil pH, EC, SOM and total/DTPA-extractable Pb concentrations were the most important variables affecting relative abundance, composition and diversity of bacteria (p < 0

  16. Subsurface Salts in Antarctic Dry Valley Soils

    Science.gov (United States)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  17. Remediation of metal-contaminated soils with the addition of materials - part II: leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils.

    Science.gov (United States)

    González-Núñez, R; Alba, M D; Orta, M M; Vidal, M; Rigol, A

    2012-05-01

    The effect of the addition of materials on the leaching pattern of As and metals (Cu, Zn, Ni, Pb, and Cd) in two contaminated soils was investigated. The examined materials included bentonites, silicates and industrial wastes, such as sugar foam, fly ashes and a material originated from the zeolitization of fly ash. Soil + material mixtures were prepared at 10% doses. Changes in the acid neutralization capacity, crystalline phases and contaminant leaching over a wide range of pHs were examined by using pH(stat) leaching tests. Sugar foam, the zeolitic material and MX-80 bentonite produced the greatest decrease in the leaching of pollutants due to an increase in the pH and/or the sorption capacity in the resulting mixture. This finding suggests that soil remediation may be a feasible option for the reuse of non-hazardous wastes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    Science.gov (United States)

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  19. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    This paper presents an exploratory assessment of heavy metal contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the contamination for environmental management purposes can be supported by GIS and Remote Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were ...

  20. Heavy metals contamination of topsoil and dispersion in the ...

    African Journals Online (AJOL)

    Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile. A total of 75 ...

  1. Wet-dry cycles impact DOM retention in subsurface soils

    Science.gov (United States)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil

  2. Wet–dry cycles impact DOM retention in subsurface soils

    Directory of Open Access Journals (Sweden)

    Y. Olshansky

    2018-02-01

    Full Text Available Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet–dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet–dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet–dry treatment before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment. Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR and near-edge X-ray absorption fine structure (NEXAFS spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil

  3. Remediation of metal-contaminated soils with the addition of materials--part I: characterization and viability studies for the selection of non-hazardous waste materials and silicates.

    Science.gov (United States)

    González-Núñez, R; Alba, M D; Orta, M M; Vidal, M; Rigol, A

    2011-11-01

    Contamination episodes in soils require interventions to attenuate their impact. These actions are often based on the addition of materials to increase contaminant retention in the soil and to dilute the contaminant concentration. Here, non-hazardous wastes (such as sugar foam, fly ash and a material produced by the zeolitization of fly ash) and silicates (including bentonites) were tested and fully characterized in the laboratory to select suitable materials for remediating metal-contaminated soils. Data from X-ray fluorescence (XRF), N(2) adsorption/desorption isotherms, X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) analyses revealed the chemical composition, specific surface area and the phases appearing in the materials. A pH titration test allowed the calculation of their acid neutralization capacity (ANC). The metal sorption and desorption capacities of the waste materials and silicates were also estimated. Sugar foam, fly ash and the zeolitic material were the best candidate materials. Sugar foam was selected because of its high ANC (17000 meq kg(-1)), and the others were selected because of their larger distribution coefficients and lower sorption reversibilities than those predicted in the contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Metal contamination in environmental media in residential ...

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  5. Innovative technology summary report: compact subsurface soil investigation system

    International Nuclear Information System (INIS)

    1998-01-01

    The compact subsurface soil investigation system is a mobile soil sampler used to obtain soil samples, including from below concrete floors, such as under fuel storage basins. If soils under buildings can be sampled and analyzed to document that the soil is not contaminated and thus can remain in place, the concrete structure over it may also be left in place or only partially removed. Taking soil samples through a concrete floor, often in inaccessible or congested locations, required rugged, portable equipment, such as the improved technology tested, the Geoprobe Model 540M soil sampler that is mounted on a hand cart. The traditional (baseline) technology used a comparable probe mounted on a full-size, 1-ton capacity, diesel-powered truck. The truck was not easily able to access all areas, because of its greater size and weight. In two sample holes from below the fuel storage basin at C-Reactor, the Geoprobe Model 540M was able to penetrate to the full sampling target depth of 3.3 m (10 ft). In the other three locations the sampler was stopped at lesser depths because of large stones. The Geoprobe 540M reduced schedule time and reduced costs by approximately 50% versus the baseline technology. For sampling at a congested fuel storage basin at five locations, the improved technology cost $7,300, whereas the baseline technology would have cost $13,000. As an extension of this demonstration, cost savings and schedule acceleration can be expected to increase commensurate with structure complexity/congestion and the number of samples required

  6. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    Science.gov (United States)

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  7. Addition of microbially-treated sugar beet residue and a native bacterium increases structural stability in heavy metal-contaminated Mediterranean soils.

    Science.gov (United States)

    Carrasco, L; Caravaca, F; Azcón, R; Kohler, J; Roldán, A

    2009-10-15

    A mesocosm experiment was conducted to investigate the effect of the addition of Aspergillus niger-treated sugar beet waste, in the presence of rock phosphate, and inoculation with a native, metal-tolerant bacterium, Bacillus thuringiensis, on the stabilisation of soil aggregates of two mine tailings, with differing pH values, from a semiarid Mediterranean area and on the stimulation of growth of Piptatherum miliaceum. Bacterium combined with organic amendment enhanced structural stability (38% in acidic soil and 106% in neutral soil compared with their corresponding controls). Only the organic amendment increased pH, electrical conductivity, water-soluble C, water-soluble carbohydrates and plant growth, in both soils. While in neutral soil both organic amendment and bacterium increased dehydrogenase activity, only organic amendment had a significant effect in acidic soil. This study demonstrates that the use of P. miliaceum in combination with organic amendment and bacterium is a suitable tool for the stabilisation of the soil structure of degraded mine tailings, although its effectiveness is dependent on soil pH.

  8. Effect of the earthworm Dendrobaena rubida on the solubility of lead, zinc, and calcium in heavy metal contaminated soil in Wales

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, M.P.

    1975-01-01

    The quantities of lead, zinc, and calcium dissolved by various extraction techniques from soil, earthworm feces, and decayed earthworm (Dendrobaena rubida, Savigny) corpses have been studied. A small proportion of the total metals was water soluble and the amount of lead in feces was significantly higher than in soil. Putrified earthworm extracts gave by far the highest concentrations of all three metals. Acetic acid extractable lead was higher in soil than feces but putrified earthworm extracts gave the highest concentration of lead. The quantities of zinc and calcium extracted were lowest in soil, higher in feces, and much higher in decomposed earthworms. This particular species of earthworm can therefore be considered as a possible source of lead and zinc contamination in heavy metal polluted, acid soil.

  9. Biological reduction of uranium in groundwater and subsurface soil

    International Nuclear Information System (INIS)

    Abdelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.H.; Strietelmeier, B.A.; Travis, B.J.

    2000-01-01

    Biological reduction of uranium is one of the techniques currently studied for in situ remediation of groundwater and subsurface soil. We investigated U(VI) reduction in groundwaters and soils of different origin to verify the presence of bacteria capable of U(VI) reduction. The groundwaters originated from mill tailings sites with U concentrations as high as 50 mg/l, and from other sites where uranium is not a contaminant, but was added in the laboratory to reach concentrations up to 11 mg/l. All waters contained nitrate and sulfate. After oxygen and nitrate reduction, U(VI) was reduced by sulfate-reducing bacteria, whose growth was stimulated by ethanol and trimetaphosphate. Uranium precipitated as hydrated uraninite (UO 2 ·xH 2 O). In the course of reduction of U(VI), Mn(IV) and Fe(III) from the soil were reduced as well. During uraninite precipitation a comparatively large mass of iron sulfides formed and served as a redox buffer. If the excess of iron sulfide is large enough, uraninite will not be oxidized by oxygenated groundwater. We show that bacteria capable of reducing U(VI) to U(IV) are ubiquitous in nature. The uranium reducers are primarily sulfate reducers and are stimulated by adding nutrients to the groundwater

  10. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS.

    Science.gov (United States)

    Suh, Jangwon; Lee, Hyeongyu; Choi, Yosoon

    2016-12-01

    The use of portable X-ray fluorescence (PXRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) increases the rapidity and accuracy of soil contamination mapping, respectively. In practice, it is often necessary to repeat the soil contamination assessment and mapping procedure several times during soil management within a limited budget. In this study, we have developed a rapid, inexpensive, and accurate soil contamination mapping method using a PXRF data and geostatistical spatial interpolation. To obtain a large quantity of high quality data for interpolation, in situ PXRF data analyzed at 40 points were transformed to converted PXRF data using the correlation between PXRF and ICP-AES data. The method was applied to an abandoned mine site in Korea to generate a soil contamination map for copper and was validated for investigation speed and prediction accuracy. As a result, regions that required soil remediation were identified. Our method significantly shortened the time required for mapping compared to the conventional mapping method and provided copper concentration estimates with high accuracy similar to those measured by ICP-AES. Therefore, our method is an effective way of mapping soil contamination if we consistently construct a database based on the correlation between PXRF and ICP-AES data.

  11. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS

    Directory of Open Access Journals (Sweden)

    Jangwon Suh

    2016-12-01

    Full Text Available The use of portable X-ray fluorescence (PXRF and inductively coupled plasma atomic emission spectrometry (ICP-AES increases the rapidity and accuracy of soil contamination mapping, respectively. In practice, it is often necessary to repeat the soil contamination assessment and mapping procedure several times during soil management within a limited budget. In this study, we have developed a rapid, inexpensive, and accurate soil contamination mapping method using a PXRF data and geostatistical spatial interpolation. To obtain a large quantity of high quality data for interpolation, in situ PXRF data analyzed at 40 points were transformed to converted PXRF data using the correlation between PXRF and ICP-AES data. The method was applied to an abandoned mine site in Korea to generate a soil contamination map for copper and was validated for investigation speed and prediction accuracy. As a result, regions that required soil remediation were identified. Our method significantly shortened the time required for mapping compared to the conventional mapping method and provided copper concentration estimates with high accuracy similar to those measured by ICP-AES. Therefore, our method is an effective way of mapping soil contamination if we consistently construct a database based on the correlation between PXRF and ICP-AES data.

  12. The enchytraeid reproduction test (ERT): A potentially quick and affordable tool for the assessment of metal contaminated soils in emerging economies.

    Science.gov (United States)

    Voua Otomo, Patricks; Wahl, Jurie; Maboeta, Mark S

    2013-11-01

    The enchytraeid reproduction test (ERT) was used to assess the ecotoxicity of selected mine tailings and agricultural soils from South Africa. The mine tailings had higher cumulative metal concentrations than agricultural soils. The most contaminated mine tailings significantly reduced the survival of the oligochaete Enchytraeus doerjesi whose reproduction was suppressed in all mine waste substrates. Because it reliably singled out the most contaminated substrate and was found easy to perform, we suggest that the ERT could be a quick and affordable tool for assigning intervention values for soil remediation in emerging economies such as South Africa.

  13. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    OpenAIRE

    Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil...

  14. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils.

    Science.gov (United States)

    Deng, Zujun; Zhang, Renduo; Shi, Yang; Hu, Li'ao; Tan, Hongming; Cao, Lixiang

    2014-02-01

    The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0 × 10(3), 1.1 × 10(4), and 1.3 × 10(4) mg kg(-1) for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6 × 10(4), 5.6 × 10(5), and 7.0 × 10(4) mg kg(-1), respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd+Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.

  15. Assessing geochemical influence of traffic and other vehicle-related activities on heavy metal contamination in urban soils of Kerman city, using a GIS-based approach.

    Science.gov (United States)

    Hamzeh, Mohammad Ali; Aftabi, Alijan; Mirzaee, Mohammad

    2011-12-01

    Heavy metal pollution caused by traffic activities is increasingly becoming a great threat to urban environmental quality and human health. In this paper, soils of Kerman urban and suburban areas were collected to assess the potential effects of traffic and other vehicle-related pollution by heavy metal accumulation in soils. Eighty-six samples were collected along streets and from residential and rural sectors, as well as vehicle-related workshops from depth of 0-5 and 15-20 cm and analyzed by flame atomic absorption spectrometry (FAAS) for heavy metals (Cd, Cr, Cu, Pb, Sn and Zn), as well as major elements (Al, Ca, Fe and Mn). Several hot-spot areas were identified in the composite geochemical maps produced based on Geographical Information System (GIS) technology. The majority of the hot-spot areas were identified to be vehicle-related workshops, fuel stations and road junctions. The most polluted hot-spot in the study area was located in soils close to a car battery processing workshop in the southwestern part of Kerman city, with concentrations of Cd (0.32 mg/kg), Cr (169 mg/kg), Cu (250 mg/kg), Pb (5,780 mg/kg), Sn (27.2 mg/kg) and Zn (178 mg/kg) of 1, 8.5, 8.3, 230, 13.5 and 3 times more than the relevant mean concentrations in natural soils, respectively. Traffic pollution has resulted in significant accumulation of heavy metals in soils and sediments, and that level of accumulation varied remarkably among elements. Based on X-ray diffraction analysis, most parts of soils and sediments of the Kerman basement consist of calcite and clay minerals. Abundance of clay minerals and medium to alkaline pH causes low mobility of heavy metals in soils of Kerman.

  16. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer.

    Science.gov (United States)

    Ning, Dongfeng; Liang, Yongchao; Song, Alin; Duan, Aiwang; Liu, Zhandong

    2016-12-01

    Steel slag has been widely used as amendment and silicon fertilizer to alleviate the mobility and bioavailability of heavy metals in soil. The objective of this study was to evaluate the influence of particle size, composition, and application rate of slag on metal immobilization in acidic soil, metals uptake by rice and rice growth. The results indicated that application of slag increased soil pH, plant-available silicon concentrations in soil, and decreased the bioavailability of metals compared with control treatment, whereas pulverous slag (S1) was more effective than granular slag (S2 and S3). The acid-extractable fraction of Cd in the spiked soil was significantly decreased with application of S1 at rates of 1 and 3 %, acid-extractable fractions of Cu and Zn were decreased when treated at 3 %. Use of S1 at both rates resulted in significantly lower Cd, Cu, and Zn concentrations in rice tissues than in controls by 82.6-92.9, 88.4-95.6, and 67.4-81.4 %, respectively. However, use of pulverous slag at 1 % significantly promotes rice growth, restricted rice growth when treated at 3 %. Thus, the results explained that reduced particle size and suitable application rate of slag could be beneficial to rice growth and metals stabilization.

  18. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L. at the East Coast of India

    Directory of Open Access Journals (Sweden)

    Deepmala Satpathy

    2014-01-01

    Full Text Available Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L. including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb and the micronutrients (Cu, Mn, and Zn were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI values of rice consuming adults (1.561 and children (1.360 suggest their adverse health effects in the near future.

  19. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India.

    Science.gov (United States)

    Satpathy, Deepmala; Reddy, M Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future.

  20. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    Science.gov (United States)

    Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future. PMID:24995308

  1. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria.

    Science.gov (United States)

    Ihedioha, J N; Ukoha, P O; Ekere, N R

    2017-06-01

    The study assessed the levels of some heavy metals in soils in the vicinity of a municipal solid waste dumpsite with a view to providing information on the extent of contamination, ecological risk of metals in the soils and human health risk to the residents in Uyo. Soil samples were collected in rainy and dry seasons and analyzed for metals (Pb, Cd, Zn, Mn, Cr, Ni and Fe) using atomic absorption spectrometry. The concentrations of heavy metals (mg/kg) at the dumpsite in rainy season were Pb (9.90), Zn (137), Ni (12.56), Cr (3.60), Cd (9.05) and Mn (94.00), while in dry season, the concentrations were Pb (11.80), Zn (146), Ni (11.82), Cr (4.05), Cd (12.20) and Mn (91.20). The concentrations of metals in the studied sites were higher than that of the control site (P contamination than adult.

  2. Metal contamination at recreational boatyards linked to the use of antifouling paints-investigation of soil and sediment with a field portable XRF.

    Science.gov (United States)

    Lagerström, Maria; Norling, Matz; Eklund, Britta

    2016-05-01

    The application of a field portable X-ray fluorescence spectrometer (FPXRF) to measure Cu, Zn, and Pb in soil and sediments at recreational boatyards by Lake Mälaren in Sweden was investigated. Confirmatory chemical analysis on freeze-dried samples shows that, ex situ, the FPXRF produces definitive level data for Cu and Zn and quantitative screening data for Pb, according to USEPA criteria for data quality. Good agreement was also found between the ex situ measurements and the in situ screening. At each of the two studied boatyards, >40 in situ soil measurements were carried out. Statistical differences in soil concentration based on land use were consequently found: the areas used for boat storage and maintenance were significantly higher in Cu and Zn than the areas used for car parking and transportation. The metal pollution in the boat storage areas is therefore shown to be directly linked to hull maintenance activities during which metal-containing antifouling paint particles are shed, end up on the ground, and consequently pollute the soil. In the boat storage areas, the Cu and Zn concentrations often exceeded the national guideline values for soil. In this study, they were also shown to increase with increasing age of the boatyard operation. Pb soil concentrations were only elevated at a few measurement points, reflecting the phasing out of Pb compounds from antifouling products over the past 2 decades. In the surface sediments, concentrations of Cu and Zn were 2-3 times higher compared to deeper levels. No decrease in metal concentration with time was found in the sediments, indicating that boat owners are not complying with the ban of biocide-containing paints in freshwater introduced over 20 years ago.

  3. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.

    Science.gov (United States)

    Pelfrêne, Aurélie; Kleckerová, Andrea; Pourrut, Bertrand; Nsanganwimana, Florien; Douay, Francis; Waterlot, Christophe

    2015-02-01

    The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.

  4. [Prediction of Cadmium Content in the Leaves of Navel Orange in Heavy Metal Contaminated Soil Using VIS-NIR Reflectance Spectroscopy].

    Science.gov (United States)

    Shi, Rong-jie; Pan, Xian-zhang; Wang, Chang-kun; Liu, Ya; Li, Yan-li; Li, Zhi-ting

    2015-11-01

    Visual and Near-infrared (VIS-NIR) reflectance spectroscopy had been used widely in monitoring agricultural pollution in recent years, however, it was rarely applied in monitoring the contamination of heavy metal in orchards. In the present paper, Newhall navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) were cultivated in the potted soil contaminated with cadmium (Cd) at different levels, and the spectral reflectance and Cd content in the leaves were measured simultaneously at different growing seasons, which then were used to establish the prediction model by partial least squares regression (PLSR) based on spectral reflectance and by linear regression based on spectral index. The results showed that Cd was more easily transferred to and cumulated in the new leaves, and this phenomenon was more obvious in heavily contaminated soils with Cd. Blue shift in red edge was found in the band of 700-730 nm in the new leaves, however, no such phenomenon was found in the old leaves. The coefficient of determination (R²) of linear regression model based on spectral index was nearly 0. 8, while the PLSR model had a better result in predicting Cd content in the new leaves than the linear regression with R²CV of approximately 0.9. Furthermore, the standard normal variate transformation(SNV) in spectral preprocessing can improve the precision significantly in PLSR model. These results suggest that the VIS-NIR method has a great potential in monitoring heavy metal pollution in the navel orange.

  5. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil.

    Science.gov (United States)

    Carrasco, L; Azcón, R; Kohler, J; Roldán, A; Caravaca, F

    2011-02-15

    The aim of this study was to assess the effectiveness of inoculation with a native arbuscular mycorrhizal (AM) fungus, Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, or a filamentous fungus, Penicillium aurantiogriseum Dierckx 1901, on the establishment of Coronilla juncea L. seedlings grown in a polluted, semiarid soil. For that, root and shoot biomass, nutrient uptake, mycorrhizal colonisation and nitrate reductase (NR) and phosphatase activities were analysed. Six months after planting, the shoot biomass of C. juncea was increased only by the inoculation with G. mosseae (by about 62% compared with non-mycorrhizal plants). The shoot NR and root acid phosphatase activities were increased more by inoculation with G. mosseae than with P. aurantiogriseum inoculation. The root NR activity and foliar nutrient contents were increased only by the inoculation with the AM fungus. The root Zn and Cu decreased with the AM fungus. In conclusion, the autochthonous AM fungus was an effective inoculant with regard to stimulating growth and alleviating heavy metal toxicity for plants growing on a soil contaminated by multiple heavy metals. Inoculation with an autochthonous, filamentous fungus does not seem to be a good strategy for phytoremediation of such problematic sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia.

    Science.gov (United States)

    Ong, Ghim Hock; Wong, Ling Shing; Tan, Ai Li; Yap, Chee Kong

    2016-01-01

    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.

  7. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources.

  8. Metal Contamination in the Republic of Armenia.

    Science.gov (United States)

    Kurkjian

    2000-05-01

    / Air, soil, and water samples were collected throughout the Republic of Armenia both before and after its independence from the Soviet Union in 1991. Reported analyses of those samples indicated that levels of several trace metal concentrations (Ag, Cd, Cr, Cu, Mo, Ni, Pb, Ti, and Zn) exceeded the maximum allowable concentrations established by the former Soviet Union (FSU) and subsequently adopted by Armenia. Although industrial production has declined by more than 80% since the 1980s, the economy is improving and there is potential for a significant increase in the generation of industrial metal emissions. These include automobile emissions, which are now considered to be the primary source of atmospheric lead. Historically, the Soviet Union did not strictly enforce environmental standards, and Armenia is now faced with the resulting environmental problems and the associated risks to public health. Since some trace metal concentrations may be at or near potentially toxic levels, there is a need to accurately assess the extent of metal contamination in order to devise cleanup plans and develop long-term environmental protection and public health strategies in Armenia.

  9. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    DEFF Research Database (Denmark)

    Zheng, Shixue; Su, Jing; Wang, Liang

    2014-01-01

    ) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain......Background: Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium...... that is less toxic. Results: A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS...

  10. An assessment of heavy metal contamination in soils of fresh water aquifer system and evaluation of eco-toxicity by lithogenic implications.

    Science.gov (United States)

    Harichandan, R; Routroy, S; Mohanty, J K; Panda, C R

    2013-04-01

    The chemistry of heavy metals in sediments with respect to bio-availability and chemical reactivity is regulated by pH, texture, and organic matter contents of the sediments and specific binding form and coupled reactivity of the metals within. To focus on the metal distribution (Fe, Mn, Pb, Cd, Zn, Co, Cu, and Cr) and behavior in a fresh water aquifer system along with the ecological toxicity parameters, a four-step sequential extraction method was applied on 18 Eastern Ghats' type sediments from fluorosis-hit Nayagarh district, India. Geo-accumulation index of metals in the sediments indicates that they are practically uncontaminated and/or less contaminated with and Fe, Mn, and Cu; contaminated to moderately contaminated with Pb, Zn, and Cr; and strongly contaminated with Cd. Rather, more than 80 % recovered Cd metal concentration in sediments constitute the labile fractions. Temporal clustering of metal fractions indicates transition metal fraction distribution claiming the sediment pH regulation. Similarly, base metal distribution accounts for organic carbon and soil conductivity due to their greater availability in exchangeable and sulfide fractions. Correlation analysis and factor analysis scores demonstrate lack of inter-relationship between transition group and base metal fractions. High fluoride concentration in ground water is associated with high sodium-bicarbonate-iron affinity with elevated pH values (i.e., >7.0) and high positive factor score with the total iron concentration in ground water.

  11. Crescimento e teor de metais de mudas de espécies arbóreas cultivadas em solo contaminado com metais pesados Growth and metal concentration of seedlings of woody species in a heavy metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Lara Lanza de Sá e Melo Marques

    2000-01-01

    Full Text Available O objetivo do trabalho foi avaliar o teor de metais pesados e o crescimento de mudas de 20 espécies arbóreas tropicais em solo com elevado grau de contaminação com metais pesados. Em casa de vegetação, as mudas foram transplantadas para vasos contendo 3,3 kg de misturas com diferentes proporções (0, 20, 40 e 60% v/v de solo contaminado. Verificou-se comportamento diferenciado das espécies quanto à inibição de crescimento e aos teores de metais na raiz e na parte aérea em decorrência da contaminação. Com base na produção de matéria seca da parte aérea, concluiu-se que apenas Myrsine umbellata, Cedrella fissilis, Tabebuia impetiginosa e Copaifera langsdorffii não foram afetadas pela contaminação, enquanto Hymenaea courbaril, Mimosa caesalpiniaefolia, Acacia mangium e Platypodium gonoacantha sofreram pequeno impacto. As demais espécies foram muito inibidas pela contaminação do solo, o que é causado pela absorção, na maioria dos casos, de Zn e Cd. Várias espécies apresentaram elevada capacidade de reter esses metais nas raízes, evitando sua translocação para a parte aérea.The objective of the paper was to evaluate metal content and ability to grow in soil with excess of heavy metals of seedlings of 20 woody species. In the greenhouse, seedlings were transplanted to pots with 3.3 kg of soil-mixes with different proportions (0, 20, 40, 60% v/v of a heavy metal contaminated soil. It was found that plant species behaved differently in terms of growth inhibition and metal content in the shoots and roots. Based upon the dry matter yield, only Myrsine umbellata, Cedrella fissilis, Tabebuia impetiginosa and Copaifera langsdorffii were not affected by increasing contamination, whereas Hymenaea courbaril, Mimosa caesalpiniaefolia, Acacia mangium and Platypodium gonoacantha were only slightly affected by it. All the other species were highly inhibited by the excess of metals in the soil, being such effects related, in most

  12. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study

    Science.gov (United States)

    Fu, Z. Y.; Chen, H. S.; Zhang, W.; Xu, Q. X.; Wang, S.; Wang, K. L.

    2015-12-01

    Soil and epikarst co-evolve resulting in complex structures, but their coupled structural effects on hydrological processes are poorly understood in karst regions. This study examined the plot-scale subsurface flow characteristics from an integrated soil-epikarst system perspective in a humid subtropical cockpit karst region of Southwest China. A trench was excavated to the epikarst lower boundary for collecting individual subsurface flows in five sections with different soil thicknesses. Four field rainfall simulation experiments were carried out under different initial moisture conditions (dry and wet) and rainfall intensities (114 mm h- 1 (high) and 46 mm h- 1 (low) on average). The soil-epikarst system was characterized by shallow soil overlaying a highly irregular epikarst surface with a near-steady infiltration rate of about 35 mm h- 1. The subsurface flows occurred mainly along the soil-epikarst interface and were dominated by preferential flow. The subsurface flow hydrographs showed strong spatial variability and had high steady-state coefficients (0.52 and 0.36 for high and low rainfall intensity events). Irregular epikarst surface combining with high vertical drainage capacity resulted in high threshold rainfall depths for subsurface flows: 67 mm and 263 mm for initial wet and dry conditions, respectively. The above results evidenced that the irregular and permeable soil-epikarst interface was a crucial component of soil-epikarst architecture and consequently should be taken into account in the hydrological modeling for karst regions.

  13. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  15. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  16. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  17. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Antibiotic resistance genes persist longer in soils with subsurface banded poultry litter

    Science.gov (United States)

    The objective of this study was to determine the concentration of AR genes for sulfonamide (sulI), tetracycline (tetW), streptomycin (strpB) and for the class one integrase (intI1) gene in soils with subsurface banded PL. Field scale plots were established with triplicate treatments of either no fer...

  19. Is Metal Contamination a Health Risk in Study Subjects from Urban Vadodara?

    OpenAIRE

    Suneeta Chandorkar; Priyanka Bajaj and Prachi Deota

    2015-01-01

    Metal contamination of food is a major food safety concern emerging at global as well as national level. Air, water and soil are the major routes through which metals enter the food chain. Gujarat being the second most industrialized state of India and Vadodara having the highest number of chemical factories in Gujarat is at a higher risk of metal toxicity. Research has also been done to analyze metal contamination of raw food hence in the present study investigations were done on metal conta...

  20. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  1. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how......The qualitative and quantitative effects of macropore flow and transport in an agricultural subsurface-drained glacial till soil in eastern Denmark have been investigated. Three controlled tracer experiments on individual field plots (each approximately 1000 m(2)) were carried out by surface...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...

  2. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen G.; Jensen, Karsten Høgh

    1998-01-01

    The experimental results from a field-scale tracer experiment in a subsurface-drained glacial till soil were analyzed by the application of a single/dual porosity model (MACRO), optionally accounting for concurrent and interacting flow and transport in the bulk soil porosity as well...... concentration. The exchange was overpredicted and too rapid when the soil aggregate size (distance between macropores) obtained from an image analysis of soil cores was used in the model. On this basis, the model assumption of instant equilibration of the solute across the matrix porosity, disregarding small...... disturbance and compaction of the soil surface. Hypothetically introducing fully surface-connected macropores into the calibrated model resulted in a 22% increase in the loss of solute to the drain, indicating the significance of the hydraulic conditions at the soil surface and the model specification thereof...

  3. The role of fragipan soils properties for hillslope subsurface flow dynamics

    Science.gov (United States)

    Dahlke, Helen; Easton, Zachary; Brown, Larry; Steenhuis, Tammo

    2010-05-01

    In watersheds characterized by fragipan, soils runoff generation is traditionally assumed to be dominated by shallow subsurface flow perched by a nearly impenetrable, low-conductive, subsurface soil horizon. However, several irrigation studies have indicated that fragipan soils can conduct subsurface flow vertically in considerable amounts resulting from differences in fragipan properties (e.g., prism diameter, interprism cracks, etc). These fragipan properties remain difficult to measure at the hillslope and watershed scales and consequently are inadequately accounted for in hydrological models. In the present study, a geophysical survey using ground penetrating radar of a 0.5 ha hillslope in central New York, USA has shown that spatial variability of the continuity and depth of fragipan soils is more influential on subsurface flow pathways than the physical characteristics of the fragipan itself. The geophysical survey revealed that the depth to fragipan varied between 0.3 and 0.8 m, resulting in water table and subsurface flow dynamics similar to the ‘fill and spill hypothesis'. The survey also indicated that the fragipan is interrupted by a higher conductive glacial sand lens that facilitates percolation of subsurface flow beneath the fragipan. The effect of the spatial variability of fragipan soils on subsurface flow pathways and flux was examined in further detail by installation of a 1.5 m wide, 1.5 m deep and 12.5 m long trench at the base of the 125 m long hillslope. The trench was installed in a variable source area (VSA) that forms at the base of the hillslope. The trench was instrumented with a surface flow collector measuring runoff from the upper 5 cm of the soil, and two collector drains installed at the soil-fragipan interface in 0.4 m depth and at the base of the trench (1.5 m depth). In addition, water levels were recorded at 5-min intervals in a 10 m x 10 m grid at the upslope contributing area of the trench. Soils in the study site are

  4. Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils

    Science.gov (United States)

    Carte, J.; Fantle, M. S.

    2017-12-01

    An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due

  5. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    Science.gov (United States)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  6. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  7. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  8. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  9. Soil, climate and the environment - an indissociable threesome. Soil carbon and global changes: reciprocal impacts; Carbon in all its forms; Echomicadas, a new tool to analyse carbon 14; Biotransformation of metallic trace elements by soil micro-organisms; Absorption and distribution of metallic elements in plants; Dynamics of metallic contaminants in agricultural systems; Is photo-remediation for tomorrow? Hyper-accumulator plants; Sediments, tell me the Seine history... The complex history of plant feeding by the soil; The environmental analysis

    International Nuclear Information System (INIS)

    Hatte, Christine; Tisnerat-Laborde, Nadine; Ayrault, Sophie; Balesdent, Jerome; Chapon, Virginie; Bourguignon, Jacques; Alban, Claude; Ravanel, Stephane; Denaix, Laurence; Nguyen, Christophe; Vavasseur, Alain; Sarrobert, Catherine; Gasperi, Johnny; Latrille, Christelle; Savoye, Sebastien; Augusto, Laurent; Conan Labbe, Annie; Bernard Michel, Bruno; Douysset, Guilhem; Toqnelli, Antoine; Vailhen, Dominique; Moulin, Christophe

    2016-01-01

    The articles of this file on the relationships between soils, climate and the environment discuss the reciprocal impacts of soil carbon and global changes with the objective of reduction of greenhouse effect and of increase of carbon sequestration; the various forms of carbon are presented and their properties commented ; a compact radiocarbon system (ECHoMiCADAS) is presented, developed by the Laboratory of sciences of climate and environment (LSCE) and designed for the analysis of carbon 14; an article describes how micro-organisms can play a crucial role in the transformation of soil pollutants by modifying their chemical speciation and thus their toxicity; strategies based on the absorption of metallic trace elements present in the soil to control physiological processes in plants are discussed, with applications to agriculture, food supply and to the environment; researches related to the study of effects of metallic contaminants in agricultural systems are evoked, and the reasons for a slow development of phyto-technologies, notably phyto-remediation, for pollution control and decontamination of soils and liquid media, are explained. Other themes are presented : hyper-accumulator plants which present very high contents of non-essential (As, Cd, Hg, Pb, Se) or essential (Co, Cu, Fe, Mn, Mo, Ni) elements, are slowly growing, and display a limited biomass, but could be used for a phyto-extraction of metals from contaminated soils; how analysis and dating of sediments can reveal the presence of contaminants, and therefore give an insight into human activities and regulations, and into their impact on the river; how plants are able to develop strategies in their search for nutrients in different types of soils, even poor ones, and presentation of the various disciplines, methods and techniques used for environmental analysis with their applications to installation and site control, or to the study of pollutant migration

  10. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  11. Frozen Soil Barrier. Subsurface Contaminants Focus Area. OST Reference No. 51

    International Nuclear Information System (INIS)

    1999-01-01

    Problem: Hazardous and radioactive materials have historically been disposed of at the surface during operations at Department of Energy facilities. These contaminants have entered the subsurface, contaminating soils and groundwater resources. Remediation of these groundwater plumes using the baseline technology of pump and treat is expensive and takes a long time to complete. Containment of these groundwater plumes can be alternative or an addition to the remediation activities. Standard containment technologies include slurry walls, sheet piling, and grouting. These are permanent structures that once installed are difficult to remove. How It Works: Frozen Soil Barrier technology provides a containment alternative, with the key difference being that the barrier can be easily removed after a period of time, such as after the remediation or removal of the source is completed. Frozen Soil Barrier technology can be used to isolate and control the migration of underground radioactive or other hazardous contaminants subject to transport by groundwater flow. Frozen Soil Barrier technology consists of a series of subsurface heat transfer devices, known as thermoprobes, which are installed around a contaminant source and function to freeze the soil pore water. The barrier can easily be maintained in place until remediation or removal of the contaminants is complete, at which time the barrier is allowed to thaw.

  12. Subsurface and terrain controls on runoff generation in deep soil landscapes

    Science.gov (United States)

    Mallard, John; McGlynn, Brian; Richter, Daniel

    2017-04-01

    Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete despite the prevalence of this setting worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA. The Piedmont region of the United States extends east of the Appalachians from Maryland to Alabama, and is home to some of the most rapid population growth in the country. Regional and local relief is modest, although the landscape is highly dissected and local slope can be quite variable. The region's soils are ancient, deeply weathered, and characterized by sharp changes in hydrologic properties due to concentration of clay in the Bt horizon. Despite a mild climate and consistent precipitation, seasonally variable energy availability and deciduous tree cover create a strong evapotranspiration mediated seasonal hydrologic dynamic: while moist soils and extended stream networks are typical of the late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. To elucidate the control of the complex vertical and planform structure of this region, as well as the strongly seasonal subsurface hydrology, on runoff generation, we installed a network of nested, shallow groundwater wells across an ephemeral to first-order watershed to continuously measure internal water levels. We also recorded local precipitation and discharge at the outlet of this watershed, a similar adjacent watershed, and in the second to third order downstream watershed. Subsurface water dynamics varied spatially, vertically, and seasonally. Shallow depths and landscape positions with minimal contributing area exhibited flashier dynamics comparable to the stream hydrographs while positions with more contributing area exhibited relatively muted dynamics. Most well positions showed minimal response to precipitation throughout the summer, and even occasionally observed response rarely co

  13. Heavy metal contamination in a school vegetable garden in Johannesburg.

    Science.gov (United States)

    Kootbodien, T; Mathee, A; Naicker, N; Moodley, N

    2012-03-07

    Feeding schemes based on school garden produce have been proposed as an effective solution to food insecurity and hunger among learners in South Africa. However, few studies have looked at the potential contamination of school food gardens when situated near mine tailing dams. The aim of the study was to evaluate the potential heavy metal contamination in a school vegetable garden in Johannesburg. Twenty soil samples were collected from the study school and a comparison school. Surface and deep (±10 cm beneath the surface) soil samples were analysed using X-ray fluorescence for levels of arsenic, chromium, copper, lead and zinc. Thirteen vegetables samples were collected from the school garden, and compared with six samples from a national retailer and four obtained from a private organic garden. The heavy metal concentrations of the vegetable samples were analysed in the laboratories of the South African Agricultural Research Council. High levels of arsenic were found in the school soil samples, and elevated concentrations of lead and mercury in the school vegetables. Calculation of the estimated daily intake for a child of 30 kg however, indicated that levels of lead, mercury and arsenic in vegetables were within acceptable limits. However, the levels of lead in the vegetable samples were high across all three sites. Further investigation and research should be undertaken to assess the source/s and extent of public exposure to heavy metals in vegetables in South Africa.

  14. Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments

    Science.gov (United States)

    2015-12-23

    equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, Cu, lead, nickel, silver , and Zn...FINAL REPORT Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments SERDP Project ER-1746 DECEMBER 2015 Dr. G...Resuspended Metal Contaminated Sediments 5a. CONTRACT NUMBER (ER-1746) 5b. GRANT NUMBER ER-1746 5c. PROGRAM ELEMENT NUMBER 6

  15. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  16. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    Science.gov (United States)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  17. Effects of subsurface aeration and trinexapac-ethyl application on soil microbial communities in a creeping bentgrass putting green

    Science.gov (United States)

    Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.

    2002-01-01

    The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.

  18. Changes in element availability induced by sterilization in heavy metal contaminated substrates: A comprehensive study.

    Science.gov (United States)

    Krauße, Thomas; Schütze, Eileen; Phieler, René; Fürst, David; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-11-10

    Microbiome analyses of soils and microcosm experiments depend on conditions that include sterilization in order to perform experimental manipulation of microbial communities. Still, they should represent conditions close to nature. When using metal contaminated soils, sterilization methods might alter metal availability. Here, four typical metal contaminated substrates were analyzed, representing different contamination histories and soil types. They included two very poor substrates, as they are often found at metal contaminated sites. The low contents in organic carbon and nitrogen as well as two substrates with slightly higher nutrient availability were used to perform a comprehesive study for element availability changes induced by sterilization. Autoclaving, dry heat or gamma raγ sterilization were applied and compared to a non-treated control. The sterile substrates were analyzed using sequential extraction to account for different associations of the elements. Metals forming specific (hydro)oxide layers were specifically analyzed since they in turn may also impact other metals or ions. In addition, (heavy) metals and (micro)nutrients were analyzed for changes in speciation. The effects of autoclaving (wet heat) was found acceptable, while γ-ray irradiation did show unexpected changes in metal associations, especially for one substrate. Dry heat changed metal availability to the highest degree. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  20. Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    the investigation of study area. The quality of the modeling is further improved by the application of some controlling techniques involved in ANN. Based on the obtained results and considering that the test data were not presented to the network in the training process, it can be stated that the trained neural......This paper is concerned principally with the application of ANN model in geotechnical engineering. In particular the application for subsurface soil layering and landslide analysis is discussed in more detail. Three ANN models are trained using the required geotechnical data obtained from...

  1. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  2. Subsurface drainage

    CSIR Research Space (South Africa)

    Van Der Merwe, CJ

    1993-09-01

    Full Text Available The report describes the findings of the research project on subsurface drainage. The need for drainage was quantified by evaluating HVS tests on wet pavements. Geotextiles were investigated and various tests performed. Soil/geotextile compatibility...

  3. Investigation of (de)coupling between surface and subsurface soil moisture using a Distributed Lag Non-linear Model (DNLM)

    Science.gov (United States)

    Carranza, Coleen; van der Ploeg, Martine

    2017-04-01

    Accurate estimates of water content in the soil profile are essential for environmental and climate modeling studies. Current trends for estimating profile soil moisture incorporate remote sensing methods for mapping soil moisture at greater spatial coverage but is limited to the upper soil layers (e.g. 5cm for radar satellites). Data assimilation methods offer promising computational techniques to translate mapped surface soil moisture to estimates of profile soil moisture, in conjunction with physical models. However, a variety of factors, such as differences in the drying rates, can lead to "decoupling" (Capehart and Carlson, 1997) of surface and subsurface soil moisture. In other words, surface soil moisture conditions no longer reflect or represent subsurface conditions. In this study, we investigated the relation and observed decoupling between surface and subsurface soil moisture from 15-minute interval time series datasets in four selected Dutch agricultural fields (SM_05, SM_09, SM_13, SM_20) from the soil moisture network in Twente region. The idea is that surface soil moisture conditions will be reflected in the subsurface after a certain time lag because of its movement or flow from the surface. These lagged associations were analysed using distributed lag non-linear model (DLNM). This statistical technique provides a framework to simultaneously represent non-linear exposure-response dependencies and delayed effects. DNLM was applied to elucidate which surface soil moisture conditions resulted in a high association to subsurface values, indicating good correlation between the two zones. For example, initial results for this ongoing study from SM_13 show an overall low but increasing association from dry to intermediate soil moisture values (0 to 25%). At this range of values, we say that the two zones are decoupled. Above these values towards near saturated conditions ( 40%), associations between the two zones remain high. For predictor

  4. Modelling and interpreting biologically crusted dryland soil sub-surface structure using automated micropenetrometry

    Science.gov (United States)

    Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter

    2015-04-01

    Soil penetrometers are used routinely to determine the shear strength of soils and deformable sediments both at the surface and throughout a depth profile in disciplines as diverse as soil science, agriculture, geoengineering and alpine avalanche-safety (e.g. Grunwald et al. 2001, Van Herwijnen et al. 2009). Generically, penetrometers comprise two principal components: An advancing probe, and a transducer; the latter to measure the pressure or force required to cause the probe to penetrate or advance through the soil or sediment. The force transducer employed to determine the pressure can range, for example, from a simple mechanical spring gauge to an automatically data-logged electronic transducer. Automated computer control of the penetrometer step size and probe advance rate enables precise measurements to be made down to a resolution of 10's of microns, (e.g. the automated electronic micropenetrometer (EMP) described by Drahorad 2012). Here we discuss the determination, modelling and interpretation of biologically crusted dryland soil sub-surface structures using automated micropenetrometry. We outline a model enabling the interpretation of depth dependent penetration resistance (PR) profiles and their spatial differentials using the model equations, σ {}(z) ={}σ c0{}+Σ 1n[σ n{}(z){}+anz + bnz2] and dσ /dz = Σ 1n[dσ n(z) /dz{} {}+{}Frn(z)] where σ c0 and σ n are the plastic deformation stresses for the surface and nth soil structure (e.g. soil crust, layer, horizon or void) respectively, and Frn(z)dz is the frictional work done per unit volume by sliding the penetrometer rod an incremental distance, dz, through the nth layer. Both σ n(z) and Frn(z) are related to soil structure. They determine the form of σ {}(z){} measured by the EMP transducer. The model enables pores (regions of zero deformation stress) to be distinguished from changes in layer structure or probe friction. We have applied this method to both artificial calibration soils in the

  5. Response of subsurface soils covered by sand clay liners to temperature variations

    Science.gov (United States)

    Dafalla, Muawia

    2017-04-01

    The use of sand clay liners as a cover for near surface material works as a heat insulator as well as a hydraulic barrier. The soil temperature profile below grade level is normally a function of soil type, dampness and state of compaction. The temperature rise and fall is closely related to the moisture content conditions within the strata. This study is aimed at investigating the effect of a sand clay liner placed on ground surface on the temperature moisture profile. A section of clay sand liners was constructed on site on top of a silty sand formation with some clay. The field section was observed for variable temperature and weather conditions over six month's period. 5TE Decagon sensors capable of recording moisture content, temperature and electrical conductivity connected to Em50 data loggers were employed. A weather station equipped with rainfall, temperature, humidity and wind sensors was installed on site throughout the period of the investigation. The measurements of electrical conductivity were found extremely sensitive to wetting and drying and to temperature changes. Profiles for dry soil being wetted and wet soil being dried out are presented and compared in this study. Mineralogy and chemical composition of the subsurface soil in addition to the chemistry of water do have a remarkable influence on shaping these profiles.

  6. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    Science.gov (United States)

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De

    2011-01-01

    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site.

  7. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  8. Heavy metal contamination of selected spices obtained from Nigeria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    info and www.bioline.org.br/ja. Heavy metal contamination of selected spices obtained from Nigeria ... rhizome) from a major market in Northern Nigeria were determined using atomic absorption ..... sensitive humans (WHO, 1999b). Food is the ...

  9. Spatial variation in herbicide leaching from a marine clay soil via subsurface drains

    Science.gov (United States)

    Ulén, Barbro M; Larsbo, Mats; Kreuger, Jenny K; Svanbäck, Annika

    2013-01-01

    Background Subsurface transport via tile drains can significantly contribute to pesticide contamination of surface waters. The spatial variation in subsurface leaching of normally applied herbicides was examined together with phosphorus losses in 24 experimental plots with water sampled flow-proportionally. The study site was a flat, tile-drained area with 60% marine clay in the topsoil in southeast Sweden. The objectives were to quantify the leaching of frequently used herbicides from a tile drained cracking clay soil and to evaluate the variation in leaching within the experimental area and relate this to topsoil management practices (tillage method and structure liming). Results In summer 2009, 0.14, 0.22 and 1.62%, respectively, of simultaneously applied amounts of MCPA, fluroxypyr and clopyralid were leached by heavy rain five days after spraying. In summer 2011, on average 0.70% of applied bentazone was leached by short bursts of intensive rain 12 days after application. Peak flow concentrations for 50% of the treated area for MCPA and 33% for bentazone exceeded the Swedish no-effect guideline values for aquatic ecosystems. Approximately 0.08% of the glyphosate applied was leached in dissolved form in the winters of 2008/2009 and 2010/2011. Based on measurements of glyphosate in particulate form, total glyphosate losses were twice as high (0.16%) in the second winter. The spatial inter-plot variation was large (72–115%) for all five herbicides studied, despite small variations (25%) in water discharge. Conclusions The study shows the importance of local scale soil transport properties for herbicide leaching in cracking clay soils. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23658148

  10. Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

    2014-01-01

    Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

  11. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  12. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    International Nuclear Information System (INIS)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10 -4 , 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10 -4 , 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents

  13. Subsurface Hydrologic Processes Revealed by Time-lapse GPR in Two Contrasting Soils in the Shale Hills CZO

    Science.gov (United States)

    Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.

    2017-12-01

    Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the

  14. MATHEMATICAL AND CHEMOMETRICAL MODELS – TOOLS TO EVALUATE HEAVY METALS CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Despina Maria Bordean

    2017-11-01

    Full Text Available The aim of the this study is to present a combined view of bio – geo - chemistry, soil – plant interactions, mathematic models and statistic analysis, based on the correlation between the levels of soil contamination, and the remanence of polluting substances in soil and respectively in harvested fruits and vegetables. Most of the mathematical models which describe plant - soil interactions are integrated in plant growth models or climate change models. The models presented by this paper are Soil – Plant Interaction Models, Pollution Indices, The Indices for Evaluating the Adaptative Strategies of Plants and Chemo-metrical Methods, and they have the role to synthesize and evaluate the information regarding heavy metals contamination.

  15. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm and soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.

  16. Short communication Assessment of heavy metal contamination in ...

    African Journals Online (AJOL)

    2016-05-27

    May 27, 2016 ... Assessment of heavy metal contamination in raw milk for human consumption. M. Younus1#, T. ... studies on the amount of chemical contaminants in unprocessed and raw milk that is available at .... the environment in large quantities through atmospheric deposition, solid waste disposal, sludge application.

  17. Assessment of metallic contaminants in grinded millet using ...

    African Journals Online (AJOL)

    In this study, the quantity of metallic contaminants extracted from grinded millet was evaluated. The millet was grinded in three different forms; wet, paste, and dry forms for up to 3 minutes using locally fabricated grinding machine with cast grinding discs. Separate grinding discs were used for different millet forms, while the ...

  18. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  19. Use of Clay Deposits in Water Management of Calcareous Sandy Soils Under-surface and Sub-surface Drip Irrigation

    International Nuclear Information System (INIS)

    Al-Omran, A.; Falatah, A.; Sheta, A.; Al-Harbi, A.

    2006-01-01

    The objective of this study was to investigate the effect of irrigation (levels and methods) and type of clay deposits on lettuce yield, water use efficiency WUE and the distributions of soil moisture and salts in the root zone of sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002-2003. It consists of three clay deposits, three rates (0, 1.0 and 2.0%), and four total irrigation applied water levels, 360 mm (T1), 520 mm (T2), 635 mm (T3) and 822 mm (T4), using surface and subsurface drip irrigation. Results indicated that yield was significantly increased with the increase of irrigation level, whereas WUE significantly decreased with increase of irrigation level. The average yield increased by 9.30% in a high irrigation level compared to a moderate irrigation level, and decreased by 14.2% at the more stressed irrigation level. WUE decreased by 49.0% at a moderate irrigation level and yield was significantly affected by amendment rates. The difference between surface and subsurface drip on yields and WUE were also significant. Results indicated that the moisture content of the subsurface treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. The advantages of surface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and the water content was relatively high. (author)

  20. Combining hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)

    Science.gov (United States)

    Lagacherie, Philippe; Sneep, Anne-Ruth; Gomez, Cécile

    2013-04-01

    Previous studies have demonstrated that Visible Near InfraRed (Vis-NIR) Hyperspectral imagery is a cost-efficient way for mapping soil properties at fine resolutions (~5m) over large areas. However, such mapping is only feasible for soil surface since the effective penetration depths of optical sensors do not exceed several millimetres. This study aimed to extend the use of Vis-NIR hyperspectral imagery to the mapping of subsurface properties at three intervals of depth (15-30 cm, 30-60 cm and 60-100 cm) as specified by the GlobalSoilMap project. To avoid additional data collection, our basic idea was to develop an original Digital Soil Mapping approach that combines the digital maps of surface soil properties obtained from Vis-NIR hyperspectral imagery with legacy soil profiles of the region and with easily available images of DEM-derived parameters. The study was conducted in a pedologically-contrasted 300km² cultivated area located in the Cap Bon region (Northern Tunisia). AISA-Dual Vis-NIR hyperspectral airborne data were acquired over the studied area with a fine spatial resolution (5 m) and fine spectral resolution (260 spectral bands from 450 to 2500nm). Vegetated surfaces were masked to conserve only bare soil surface which represented around 50% of the study area. Three soil surface properties (clay and sand contents, Cation Exchange Capacity) were successfully mapped over the bare soils, from these data using Partial Least Square Regression models (R2 > 0.7). We used as additional data a set of images of landscape covariates derived from a 30 meter DEM and a local database of 152 legacy soil profiles from which soil properties values at the required intervals of depths were computed using an equal-area-spline algorithm. Our Digital Soil Mapping approach followed two steps: i) the development of surface-subsurface functions - linear models and random forests - that estimates subsurface property values from surface ones and landscape covariates and that

  1. Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes

    International Nuclear Information System (INIS)

    King, C.

    1980-01-01

    Subsurface soil gas along active faults in central California has been continuously monitored by the Track Etch method to test whether its radon-isotope content may show any premonitory changes useful for earthquake prediction. The monitoring network was installed in May 1975 and has since been gradually expanded to consist of more than 60 stations along a 380-km section of the San Andreas fault system between Santa Rosa and Cholame. This network has recorded several episodes, each lasting several weeks to several months, during which the radon concentration increased by a factor of approximately 2 above average along some long, but limited, fault segments (approx.100 km). These episodes occurred in different seasons and do not appear to be systematically related to changes in meteorological conditions. However, they coincided reasonably well in time and space with larger local earthquakes above a threshold magnitude of about 4.0. These episodic radon changes may be caused by a changing outgassing rate in the fault zones in response to some episodic strain changes, which incidentally caused the earthquakes

  2. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    Science.gov (United States)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  3. Pile driving models for the evaluation of soil penetration resistance measurements from planetary subsurface probes

    Science.gov (United States)

    Kömle, Norbert I.; Poganski, Joshua; Kargl, Günter; Grygorczuk, Jerzy

    2015-05-01

    Several planetary lander missions conducted in the past and planned for the near future have instruments on board, which are dedicated to the determination of various material properties, among them mechanical properties of the surface like material strength and penetration resistance. In this paper two instruments are considered in more detail: (i) the MUPUS penetrator, a device aboard the Lander Philae of ESA's Rosetta mission, and (ii) the Mole HP3, which is part of the payload of NASA's next Discovery mission InSight, due for landing on Mars in 2016. Both devices are driven by hammering mechanisms designed to work under low or micro-gravity conditions and blaze themselves a trail into the subsurface of their respective target bodies. Naturally the speed with which this process takes place and if penetration is possible at all depends on the mechanical properties of the soil. However, a quantitative evaluation of soil mechanical parameters from measured depth-versus-time data is not a straightforward task. In this paper we apply an old technique, originally developed for modelling the driving of a pile into the ground, to describe the performance of penetrators and Moles developed for planetary applications. The numerical pile driving model of Smith (1962) is scaled and adapted for this purpose and used to predict the penetration behaviour of these instruments in dependence of their internal construction and the properties of the soil they are driven in. The model computes the permanent set of the surrounding soil in response to one hammer blow cycle as well as the oscillations and waves excited inside the devices and in the surrounding soil. Both the penetration resistance of the tip and the resistance caused by friction of the penetrator along the cylindrical side wall are calculated. By comparing the modelling results with previous laboratory measurements it is demonstrated that the models produce realistic results and can be used both as tools for proper

  4. The perceptual trap: Experimental and modelling examples of soil moisture, hydraulic conductivity and response units in complex subsurface settings.

    Science.gov (United States)

    Jackisch, Conrad; Demand, Dominic; Allroggen, Niklas; Loritz, Ralf; Zehe, Erwin

    2017-04-01

    In order to discuss hypothesis testing in hydrology, the question of the solid foundation of such tests has to be answered. But how certain are we about our measurements of the components of the water balance and the states and dynamics of the complex systems? What implicit assumptions or bias are already embedded in our perception of the processes? How can we find light in the darkness of heterogeneity? We will contribute examples from experimental findings, modelling approaches and landscape analysis to the discussion. Example soil moisture and the soil continuum: The definition of soil moisture as fraction of water in the porous medium assumes locally well-mixed conditions. Moreover, a unique relation of soil water retention presumes instant local thermodynamic equilibrium in the pore water arrangement. We will show findings from soil moisture responses to precipitation events, from irrigation experiments, and from a model study of initial infiltration velocities. The results highlight, that the implicit assumption relating soil moisture state dynamics with actual soil water flow is biased towards the slow end of the actual velocity distribution and rather blind for preferential flow acting in a very small proportion of the pore space. Moreover, we highlight the assumption of a well-defined continuum during the extrapolation of point-scale measurements and why spatially and temporally continuous observation techniques of soil water states are essential for advancing our understanding and development of subsurface process theories. Example hydraulic conductivity: Hydraulic conductivity lies at the heart of hydrological research and modelling. Its values can range across several orders of magnitude at a single site alone. Yet, we often consider it a crisp, effective parameter. We have conducted measurements of soil hydraulic conductivity in the lab and in the field. Moreover, we assessed infiltration capacity and conducted plot-scale irrigation experiments to

  5. Study of different environmental matrices to access the extension of metal contamination along highways.

    Science.gov (United States)

    Zanello, Sônia; Melo, Vander Freitas; Nagata, Noemi

    2018-02-01

    Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg kg -1 ): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways.

  6. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  7. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  8. Effect of the grain size of the soil on the measured activity and variation in activity in surface and subsurface soil samples

    International Nuclear Information System (INIS)

    Sulaiti, H.A.; Rega, P.H.; Bradley, D.; Dahan, N.A.; Mugren, K.A.; Dosari, M.A.

    2014-01-01

    Correlation between grain size and activity concentrations of soils and concentrations of various radionuclides in surface and subsurface soils has been measured for samples taken in the State of Qatar by gamma-spectroscopy using a high purity germanium detector. From the obtained gamma-ray spectra, the activity concentrations of the 238U (226Ra) and /sup 232/ Th (/sup 228/ Ac) natural decay series, the long-lived naturally occurring radionuclide 40 K and the fission product radionuclide 137CS have been determined. Gamma dose rate, radium equivalent, radiation hazard index and annual effective dose rates have also been estimated from these data. In order to observe the effect of grain size on the radioactivity of soil, three grain sizes were used i.e., smaller than 0.5 mm; smaller than 1 mm and greater than 0.5 mm; and smaller than 2 mm and greater than 1 mm. The weighted activity concentrations of the 238U series nuclides in 0.5-2 mm grain size of sample numbers was found to vary from 2.5:f:0.2 to 28.5+-0.5 Bq/kg, whereas, the weighted activity concentration of 4 degree K varied from 21+-4 to 188+-10 Bq/kg. The weighted activity concentrations of 238U series and 4 degree K have been found to be higher in the finest grain size. However, for the 232Th series, the activity concentrations in the 1-2 mm grain size of one sample were found to be higher than in the 0.5-1 mm grain size. In the study of surface and subsurface soil samples, the activity concentration levels of 238 U series have been found to range from 15.9+-0.3 to 24.1+-0.9 Bq/kg, in the surface soil samples (0-5 cm) and 14.5+-0.3 to 23.6+-0.5 Bq/kg in the subsurface soil samples (5-25 cm). The activity concentrations of 232Th series have been found to lie in the range 5.7+-0.2 to 13.7+-0.5 Bq/kg, in the surface soil samples (0-5 cm)and 4.1+-0.2 to 15.6+-0.3 Bq/kg in the subsurface soil samples (5-25 cm). The activity concentrations of 4 degree K were in the range 150+-8 to 290+-17 Bq/kg, in the surface

  9. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Science (June, 2013), 21(2): 96-104. DOI: http://dx.doi.org/10.4314/njbas.v21i2.2 ..... possible sources of copper in these sites are engine wear and cassava wastes. With respect to ..... Applied Science Research, 2(26): 515-521. Iwegbue, C.M..A. (2007). Distribution of heavy metals.

  10. Heavy metal contamination of soil and sediment in Zambia | Ikenaka ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 11 (2010) >. Log in or Register to get access to full text downloads.

  11. Optimal selection of biochars for remediating metals contaminated mine soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce ...

  12. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Author Affiliations. Soma Giri1 Abhay Kumar Singh1 Mukesh Kumar Mahato2. Natural Resources and Environmental Management Group, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad 826 015, India. Department of Chemistry, Vinoba Bhave University, Hazaribag 825 301 India.

  13. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22, No 1 (2016) >. Log in or Register to get access to full text downloads.

  14. Heavy Metal Contamination Of Soils Around Municipal Solid Wastes ...

    African Journals Online (AJOL)

    Global Journal of Environmental Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 1 (2005) >. Log in or Register to get access to full text downloads.

  15. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22, No 1 (2016) >. Log in or Register to get access to full text downloads.

  16. Heavy Metal Contamination of Soils and Vegetation around Solid ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 14, No 1 (2010) >. Log in or Register to get access to full text downloads.

  17. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... 2001; Prüss-Ustün et al. 2011). The study area falls in the Singhbhum shear zone (SSZ) which is known for its rich mineral deposits and production of copper and uranium ores. Although, few studies were carried out on the heavy metal distribution in the sediments, surface and groundwater sources and fish ...

  18. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  19. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  20. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    Science.gov (United States)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  1. Risk Assessment of Heavy Metal Contamination on Vegetables Grown in Long-term Wastewater Irrigated Urban Farming Sites in Accra, Ghana

    DEFF Research Database (Denmark)

    Lente, I.; Keraita, Bernard; Drechsel, P.

    2012-01-01

    Assessment was done of heavy-metal contamination and its related health risks in urban vegetable farming in Accra. Samples of irrigation water (n = 120), soil (n = 144) and five different kinds of vegetable (n = 240) were collected and analyzed for copper, zinc, lead, cadmium, chromium, nickel...

  2. Magnetic susceptibility as an indicator of heavy metal contamination in compost.

    Science.gov (United States)

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2009-02-01

    One of the main restrictions to the agronomic use of compost is the excess of heavy metals, which are often present due to inadequate separation of biodegradable fractions from non-degradable or inert materials. Magnetic susceptibility (MS) measurements are a simple technique that has been reported as a useful tool for assessing anthropogenic pollution, especially heavy metal pollution on soil and sediment samples. The close relationship of MS with heavy metal contamination has been proved by combined analyses of chemical and magnetic data. In this study, the MS and total heavy metal concentrations of eight composts from different origins were determined; all composts were passed under a magnet to remove the magnetic material, and total heavy metals were determined again. In our work, high correlations were found between magnetic susceptibility and total Cd, Zn, Pb, Cr and Ni, thus confirming the applicability of MS measurement as a proxy for heavy metal contamination in compost quality assessments. The application of a magnet over the composts reduced the MS as well as the heavy metal content, the reduction of Fe and MS being the most significantly correlated. Thus, the inclusion of an additional magnetic separation step in the post-process compost finishing could be envisaged.

  3. On the control of irrigation through soil moisture measurement using a neutron depth probe in horizontal subsurface measuring circuits

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1977-01-01

    An outline is given of the advantages inherent in soil moisture measurement by means of a neutron probe in horizontal subsurface measuring circuits for irrigation control. Preliminary experience for the setting up of a field calibration curve and for practical measurement are submitted. This technique includes the following advantages: almost complete covering of the upper soil range which is of interest to irrigation control; good measuring density; suitable distribution of measuring points per unit area; possibility of continuous probe passage; optimal repeatability of measurements; exploration of a unit area with but few measuring circuits; no obstacles to tillage, drilling, intercultivation and harvest operations; and complete conservation of crop and plot which is not reached with any other soil moisture measurement technique so far available. Making use of the above advantages, the new technique allows automatic irrigation control with only one neutron depth probe. (author)

  4. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  5. Heavy metal contamination of vegetables irrigated by urban stormwater: a matter of time?

    Directory of Open Access Journals (Sweden)

    Minna Tom

    Full Text Available Urban stormwater is a crucial resource at a time when climate change and population growth threaten freshwater supplies; but there are health risks from contaminants, such as toxic metals. It is vitally important to understand how to use this resource safely and responsibly. Our study investigated the extent of metal contamination in vegetable crops irrigated with stormwater under short- and long-term conditions. We created artificially aged gardens by adding metal-contaminated sediment to soil, simulating accumulation of metals in the soil from irrigation with raw stormwater over zero, five and ten years. Our crops--French bean (Phaseolus vulgaris, kale (Brassica oleracea var. acephala, and beetroot (Beta vulgaris--were irrigated twice a week for 11 weeks, with either synthetic stormwater or potable water. They were then tested for concentrations of Cd, Cr, Pb, Cu and Zn. An accumulation of Pb was the most marked sign of contamination, with six of nine French bean and seven of nine beetroot leaf samples breaching Australia's existing guidelines. Metal concentration in a crop tended to increase with the effective age of the garden; but importantly, its rate of increase did not match the rate of increase in the soil. Our study also highlighted differences in sensitivity between different crop types. French bean demonstrated the highest levels of uptake, while kale displayed restrictive behaviour. Our study makes it clear: irrigation with stormwater is indeed feasible, as long as appropriate crops are selected and media are frequently turned over. We have also shown that an understanding of such risks yields meaningful information on appropriate safeguards. A holistic approach is needed--to account for all routes to toxic metal exposure, including especially Pb. A major outcome of our study is critical information for minimising health risks from stormwater irrigation of crops.

  6. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    Science.gov (United States)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the

  7. Effect of some surface and subsurface attributes on soil water erosion

    Science.gov (United States)

    Bertol, Ildegardis; César Ramos, Júlio; Vidal Vázquez, Eva; Mirás Avalos, José Manuel

    2013-04-01

    Soil erosion is a complex phenomenon depending on climate, topography, soil intrinsic characteristics, crop and residue cover, and management and conservation practices that may be accelerated by man activities. Within the above mentioned factors, soil cover and soil management most influence soil erosion. Soil management includes mechanical mobilization and in soil conservationist systems soil residues are mobilized for increasing soil surface roughness. Even if soil roughness is ephemeral, it increases soil water storage and sediment retention in surface microdepressions, which contributes to decrease water erosion. Conservationist soil management systems also maintain the soil surface covered by crop residues, which are more persistent than roughness and contribute to dissipate kinetic energy from raindrops and partly also from runoff. Crop residues are more efficient than soil roughness in controlling water erosion because of its ability to retain detached soil particles. The objective of this study was to assess the efficiency of both soil cover by crop residues and soil surface roughness in controlling water erosion. A field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. The following treatments were evaluated: 1) residues of Italian ryegrass (Lolium multiflorum), 2) residues of common vetch (Vicia sativa), 3) scarification after cultivation of Italian ryegrass, 4) scarification after cultivation of common vetch, 5) scarified bare soil with high roughness as a control. Treatments #1 and 2 involved no-tilled soil with a rather smooth soil surface, where roots and crop residues of the previous crop were maintained. Treatments # 3 and 4 involved a rather high roughness, absence of previous crop residues and maintenance of antecedent roots. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator

  8. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils

    OpenAIRE

    El-Nesr, MN; Alazba, AA; Šimůnek, J

    2014-01-01

    Subsurface drip irrigation systems, compared to other irrigation systems, enhance the delivery of water and nutrients directly into the root zone. However, in light-textured soils, certain quantities of water may percolate below the root zone due to the subsurface position of drip lines and/or poor management of irrigation systems. The main objective of this paper is to evaluate three technologies to enhance a spatial distribution of water and solutes in the root zone and to limit downward le...

  9. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  10. Characteristics and evaluation on heavy metal contamination in Changchun municipal waste landfill after closure.

    Science.gov (United States)

    Zhou, Xu-dan; Zhao, Chun-li; Qu, Tong-bao; Wang, Ying; Guo, Tai-jun; Sun, Xiao-gang

    2015-07-01

    In the present study, comprehensive investigation on the spot and typical investigation method were used to assess Mn, Zn, Pb, Cd, Cr, Ni, As and Cu level, pH value, organic matter, total nitrogen and total phosphorus contents in soil of Changchun municipal waste landfill. The results showed that soil in the closure area of Changchun municipal waste landfill was alkaline in nature and the average value of organic matter, total nitrogen and total phosphorus contents were lower than that in normal black soil in Changchun City of Jilin Province. Single factor indices of As, Pb and Cr content was > 1, where P(As) was 1.131, P(Pb) 1.061 and P(Cr) 1.092 mildly contaminated. In different sample spots but the same landfill time, the comprehensive Nemerow contamination indexes of 7a (5 #) and 7a (2 #) were P(2 comprehensive) = 1.176 and P(5 comprehensive) = 1.229. The performance value of of heavy metal contamination in soil was similar and there was a low ecological risk.

  11. HEAVY METALS CONTAMINATION IN FISH OF THE LIGURIAN SEA

    Directory of Open Access Journals (Sweden)

    M. Prearo

    2013-02-01

    Full Text Available Aim of this investigation was to evaluate heavy metals contamination (mercury, cadmium and lead in fish and shellfish from Ligurian Sea. 58 muscle samples (45 fish and 13 shellfish were collected and analyzed. 20 samples exceeded the maximum residue limits (MRLs set by regulation for mercury (16 fish and 4 shellfish samples, while only one fish sample was not consistent with the MRL for lead. Therefore, 35,8% of Ligurian fishing turned out to be not adequate and potentially harmful for consumers. In order to estimate the real risk for human health it is necessary to enforce this study, correlating the results with fish species and with the effective fish consumption.

  12. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  13. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bidar, G. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Garcon, G. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Pruvot, C. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Dewaele, D. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Cazier, F. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Douay, F. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Shirali, P. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France)]. E-mail: pirouz.shirali@univ-littoral.fr

    2007-06-15

    The use of a vegetation cover for the management of heavy metal contaminated soils needs prior investigations on the plant species the best sustainable. In this work, behaviors of Trifolium repens and Lolium perenne, growing in a metal-polluted field located near a closed lead smelter, were investigated through Cd, Pb and Zn-plant metal concentrations and their phytotoxicity. In these plant species, metals were preferentially accumulated in roots than in shoots, as follow: Cd > Zn > Pb. Plant exposure to such metals induced oxidative stress in the considered organs as revealed by the variations in malondialdehyde levels and superoxide dismutase activities. These oxidative changes were closely related to metal levels, plant species and organs. Accordingly, L. perenne seemed to be more affected by metal-induced oxidative stress than T. repens. Taken together, these findings allow us to conclude that both the plant species could be suitable for the phytomanagement of metal-polluted soils. - Usefulness of Trifolium repens and Lolium perenne for the phytomanagement of heavy metal-contaminated soils.

  14. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  15. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford

  16. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    Science.gov (United States)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  17. Using organic biomarkers to trace the transport pathways of livestock-derived organic matter in the soil subsurface.

    Science.gov (United States)

    Lloyd, Charlotte; Michaelides, Katerina; Evershed, Richard; Chadwick, David; Dungait, Jennifer

    2010-05-01

    and analysed for 5-β stanols, this allowed the spatial distribution of LD-OM to be determined following the rainfall event. The results showed that not only is LD-OM transported on the surface of the hillslope via overland flow, but the dissolved component infiltrates through the soil profile and is transported via deeper hydrological flowpaths. 5-β stanol analysis showed that soil erosion processes were extremely important, as LD-OM was found downslope of the application area and in eroded material lost from the base of the experimental hillslope. These experiments provided new insights into how LD-OM interacts with the soil-water system and allows quantification of the contamination risk posed. This is important as 90 million tonnes of LD-OM is applied to land annually in the UK. It is well known that there is a potential for contamination of water courses by nitrate, ammonium and other faecal-derived pollutants such as E. Coli through runoff from treated land. Pollution from LD-OM has now been shown to extend to the contamination of subsurface pathways and potentially groundwater resources.

  18. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    in a deep and highly layered vadose zone contaminated with petroleum hydrocarbons. Soil slurry experiments on benzene biodegradation were used for determining the relative potential for hydrocarbon biodegradation in 100 soil samples collected from 2-16 m below ground surface. Regardless of nutrient...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  19. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  20. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  1. HEAVY METALS CONTAMINATION IN HERBAL PLANTS FROM SOME GHANAIAN MARKETS

    Directory of Open Access Journals (Sweden)

    Crentsil Kofi Bempah

    2012-12-01

    Full Text Available A study was conducted to investigate the magnitude of heavy metals (arsenic [As], copper [Cu], cadmium [Cd] and mercury [Hg] contamination that may be present in some Ghanaian medicinal herbs/plants available in local markets and also to compare the levels with recommended levels by the International Organization. A total of 267 samples of herbal plants representing 18 different plants collected from several markets in Ghana were tested for heavy metals contamination. Atomic Absorption Spectrophotometry was used for the analyses, and content of metals per sample was expressed as percent µg/g. The study showed differences in metal concentrations according to the parts analysed (leaf, fruit, root bark and crown. The obtained results which showed the predominance of Cd in almost all the analysed parts of the samples followed by Zn, Cu, As and Hg. However, Hg was the least predominant metal detected in the analyzed samples. All the monitored metals in the herbal plants were within the safe limit approved by Codex Alimentarius Commission and FAO/WHO limit for spices. The findings generally suggest that consumers of these herbal products would not be exposed to any risk associated with the intake of herbal plant products for the management of diseases.

  2. Residual metallic contamination of transferred chemical vapor deposited graphene.

    Science.gov (United States)

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

  3. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shiming [Chinese Geological Survey, Nanjing Center, Nanjing (China); Mathur, Ryan, E-mail: mathurr@juniata.edu [Department of Geology, Juniata College, Huntingdon, PA (United States); Ruiz, Joaquin [Department of Geosciences, University of Arizona, Tucson, AZ (United States); Chen, Dandan [Chinese Geological Survey, Nanjing Center, Nanjing (China); Allin, Nicholas [Department of Geology, Juniata College, Huntingdon, PA (United States); Guo, Kunyi; Kang, Wenkai [Chinese Geological Survey, Nanjing Center, Nanjing (China)

    2016-02-15

    Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS{sub 2} has a ‘tight’ cluster of Cu isotope values (− 0.15‰ to + 1.65‰; + 0.37 ± 0.6‰, 1σ, n = 10), and the second mineral source, pyrite (FeS{sub 2}), has a much larger range of Cu isotope values (− 4‰ to + 11.9‰; 2.7 ± 4.3‰, 1σ, n = 16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately + 1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (< 0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ{sup 65}Cu ranging between + 2 to + 5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. - Highlights:

  4. Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution

    Directory of Open Access Journals (Sweden)

    C. Lanni

    2012-11-01

    Full Text Available Topographic index-based hydrological models have gained wide use to describe the hydrological control on the triggering of rainfall-induced shallow landslides at the catchment scale. A common assumption in these models is that a spatially continuous water table occurs simultaneously across the catchment. However, during a rainfall event isolated patches of subsurface saturation form above an impeding layer and their hydrological connectivity is a necessary condition for lateral flow initiation at a point on the hillslope.

    Here, a new hydrological model is presented, which allows us to account for the concept of hydrological connectivity while keeping the simplicity of the topographic index approach. A dynamic topographic index is used to describe the transient lateral flow that is established at a hillslope element when the rainfall amount exceeds a threshold value allowing for (a development of a perched water table above an impeding layer, and (b hydrological connectivity between the hillslope element and its own upslope contributing area. A spatially variable soil depth is the main control of hydrological connectivity in the model. The hydrological model is coupled with the infinite slope stability model and with a scaling model for the rainfall frequency–duration relationship to determine the return period of the critical rainfall needed to cause instability on three catchments located in the Italian Alps, where a survey of soil depth spatial distribution is available. The model is compared with a quasi-dynamic model in which the dynamic nature of the hydrological connectivity is neglected. The results show a better performance of the new model in predicting observed shallow landslides, implying that soil depth spatial variability and connectivity bear a significant control on shallow landsliding.

  5. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  6. Ecological Risk Assessment of a Metal-Contaminated Area in the Tropics. Tier II: Detailed Assessment.

    Directory of Open Access Journals (Sweden)

    Júlia Carina Niemeyer

    Full Text Available This study presents data on the detailed evaluation (tier 2 of a site-specific ecological risk assessment (ssERA in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil. Combining information from three lines of evidence (LoE, chemical (ChemLoE, ecotoxicological (EcotoxLoE and ecological (EcoLoE, in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei, shoot length and plant biomass (Avena sativa, Brassica rapa. For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth. Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available

  7. Remediation techniques for heavy-metals contamination in lakes: A Mini-Review

    Digital Repository Service at National Institute of Oceanography (India)

    Giripunje, M.D.; Fulke, A.B.; Meshram, P.U.

    Heavy-metals contamination in lakes has a negative impact on lake ecosystems This review provides an insight into possible heavy-metals remediation techniques for lake environments using different techniques, for example, physical, chemical...

  8. Heavy metal contamination assessment and partition for industrial and mining gathering areas.

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-07-16

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  9. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  10. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  11. BIOLOGICAL REMOVAL OF LEAD BY BACILLUS SP. OBTAINED FROM METAL CONTAMINATED INDUSTRIAL AREA

    Directory of Open Access Journals (Sweden)

    Rinoy Varghese

    2012-10-01

    Full Text Available In the present study bacterial strains were isolated from soil, sediment and water samples of metal polluted environment. As a result, various 164 heterotrophic bacterial strains were isolated and studied the multiple metal tolerance profile and lead bioaccumulation potentiality. We also analyze the metal contamination of the selected study area. The average abundance order of heavy metal contents in soil, water and sediments were Zn>Cu>Pb>Cd. Zinc concentration ranged from 39.832µg/L to 310.24µg/L in water, 12.81µg/g to 407.53µg/g in soil and 81.06µg/g to 829.54µg/g in sediment; copper concentration from 25.54µg/L to 66.29µg/L in water, 8.22µg/g to 73.11µg/g in soil and 32.28µg/g to 600.61µg/g in sediment; lead concentration from 8.09µg/L to 25.23µg/L in water, 5.31µg/g to 73.11µg/g in soil and 1.02µg/g to 60.14µg/g in sediment and cadmium concentration ranged from 39.832µg/L to 310.24µg/L in water, 12.81µg/g to 407.53µg/g in soil and 81.06µg/g to 829.54µg/g in sediment. Metal resistance studies of the bacterial isolates revealed that out of 164 isolates collected about 45% of the isolates showed very high tolerance (>6000µg/ml to lead. Tolerance to Cd and Zn were relatively low (<500 µg/ml. Resistance to Ni and Cr were in between 1000µg/ml - 1500µg/ml. A total of 18 bacterial genera were recorded from the study area; ten genera from soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples. Bioaccumulation studies revealed that with increase in time, the biomass of the selected bacterial isolates increased. Correspondingly, with increase in biomass, the heavy metal bioaccumulation was also increased. In lead removal studies, around 50% of the lead in the experimental flasks was reduced by Bacillus sp. In control flask, only 5% metal reduction occurs. The obtained results showed that the selected Bacillus sp. is good bioaccumulation medium for lead ions.

  12. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata

    International Nuclear Information System (INIS)

    Hill, Nicole A.; Simpson, Stuart L.; Johnston, Emma L.

    2013-01-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. - Highlights: ► Potential for contaminated sediments to exert impacts beyond the sediment communities. ► We examine effects on recruitment to sediments and overlying hard substrata simultaneously. ► Metal-contaminated sediments had a strong negative impact on sediment fauna. ► Metal-contaminated sediments pose less of a hazard to hard-substratum fauna. ► Sediment quality guidelines are likely protective of hard-substrata organisms. - Under natural disturbance regimes, metal-contaminated sediments pose less of a direct risk to hard-substratum fauna than to sediment-dwelling fauna and SQG appear appropriate.

  13. Soil archives of a Fluvisol: subsurface analysis and soil history of the medieval city centre of Vlaardingen, the Netherlands - an integral approach

    Science.gov (United States)

    Kluiving, Sjoerd; de Ridder, Tim; van Dasselaar, Marcel; Roozen, Stan; Prins, Maarten

    2016-06-01

    The medieval city of Vlaardingen (the Netherlands) was strategically located on the confluence of three rivers, the Maas, the Merwede, and the Vlaarding. A church of the early 8th century AD was already located here. In a short period of time, Vlaardingen developed in the 11th century AD into an international trading place and into one of the most important places in the former county of Holland. Starting from the 11th century AD, the river Maas repeatedly threatened to flood the settlement. The flood dynamics were registered in Fluvisol archives and were recognised in a multidisciplinary sedimentary analysis of these archives. To secure the future of these vulnerable soil archives an extensive interdisciplinary research effort (76 mechanical drill holes, grain size analysis (GSA), thermo-gravimetric analysis (TGA), archaeological remains, soil analysis, dating methods, micromorphology, and microfauna) started in 2011 to gain knowledge on the sedimentological and pedological subsurface of the settlement mound as well as on the well-preserved nature of the archaeological evidence. Pedogenic features are recorded with soil description, micromorphological, and geochemical (XRF - X-ray fluorescence) analysis. The soil sequence of 5 m thickness exhibits a complex mix of "natural" as well as "anthropogenic" layering and initial soil formation that enables us to make a distinction between relatively stable periods and periods with active sedimentation. In this paper the results of this interdisciplinary project are demonstrated in a number of cross-sections with interrelated geological, pedological, and archaeological stratification. A distinction between natural and anthropogenic layering is made on the basis of the occurrence of the chemical elements phosphor and potassium. A series of four stratigraphic and sedimentary units record the period before and after the flooding disaster. Given the many archaeological remnants and features present in the lower units, in

  14. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    Science.gov (United States)

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  15. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  16. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    Science.gov (United States)

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  17. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  18. Metal Contamination In Plants Due To Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Md. Farhad Ali

    2015-08-01

    Full Text Available Abstract This paper analyzes the determination of heavy metals named Chromium Lead and Cadmium deposited in soil as well as in the plants and vegetables due to the tanning industries of the area of Hazaribagh Dhaka. The tanneries discharge untreated tannery effluents which get mixed with the soil water of rivers and canals in this area. The determination of metals was performed for the soil that was collected from the land adjacent to the canals which bear untreated tannery effluents. The soil is affected with the untreated effluents through the deposition of heavy metals. The metals were furthers deposited into the plants and vegetables grown on that soil. The roots stems and leaves of the plants of Jute Corchorus capsularis and Spinach Basella alba grown on that soil were analyzed for determining these metals. Extreme amount of chromium was found for plants and again Lead Cadmium were found in higher amount in these parts of the two plants. These two plants are taken as a popular vegetables extensively. In case of soil the amount of Chromium Lead and Cadmium were analyzed as 87 mgL 0.131 mgL and 0.190 mgL respectively. For the roots stems and leaves of Jute Corchorus capsularis the average values are 115.62 mgL for Chromium 11.25 mgL for Lead and 2.27 mgL for Cadmium respectively. Again in case of Spinach Basella alba 124.42 mgL was found for Chromium 7.38 mgL for lead and 2.97 mgL for Cadmium as average values for these parts of the two trees. All the observed values of metals of Chromium Lead and Cadmium are higher than the permissible and specially for Chromium the amount is extremely higher.

  19. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  20. Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

    Science.gov (United States)

    2016-01-01

    Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn (205.0±65.5 mg/kg)>Cu (29.9±10.2 mg/kg)>Pb (22.7±10.3 mg/kg)>Cd (3.7±2.2 mg/kg). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p<0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p<0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p<0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta. PMID:27669754

  1. Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India.

    Science.gov (United States)

    Khatun, Amina; Pal, Sandipan; Mukherjee, Aloke Kumar; Samanta, Palas; Mondal, Subinoy; Kole, Debraj; Chandra, Priyanka; Ghosh, Apurba Ratan

    2016-01-01

    The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus . The concentration of metals in sediment were, from highest to lowest, Mn (205.0±65.5 mg/kg)>Cu (29.9±10.2 mg/kg)>Pb (22.7±10.3 mg/kg)>Cd (3.7±2.2 mg/kg). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations ( p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation ( p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta .

  2. Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

    Directory of Open Access Journals (Sweden)

    Amina Khatun

    2016-09-01

    Full Text Available Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd, copper (Cu, manganese (Mn, and lead (Pb were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn (205.0±65.5 mg/kg>Cu (29.9±10.2 mg/kg>Pb (22.7±10.3 mg/kg>Cd (3.7±2.2 mg/kg. The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p<0.001 between soil organic carbon (OC percentage and Mn (r =0.771, and sediment OC percentage and Pb (r=0.832. Cation exchange capacity (CEC also showed a positive correlation (p<0.001 with Cu (r=0.721, Mn (r=0.713, and Pb (r=0.788, while correlations between sediment OC percentage and Cu (r=0.628, sediment OC percentage and Cd (r=0.559, and CEC and Cd (r=0.625 were significant at the p<0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta.

  3. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China.

    Science.gov (United States)

    Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie

    2017-12-12

    The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10 -6 -10 -4 ). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond.

  4. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Yaya Liang

    2017-12-01

    Full Text Available The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10−6–10−4. Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond.

  5. Heavy metal contamination of some vegetables from pesticides and ...

    African Journals Online (AJOL)

    Vegetable farming in developing countries is characterized by the indiscriminate application of pesticides and the resultant pollution of agricultural soil with heavy metals that form constituents of these pesticides. These heavy metals have long term toxicity to human and other biota in the ecosystem. This problem is ...

  6. Biomonitoring of some heavy metal contaminations from a steel ...

    African Journals Online (AJOL)

    Soil and plants growing in the vicinity of industrial areas display increased concentrations of heavy metals and give an indication of the environmental quality. The contamination source for aluminum, iron, nickel and lead in the Botanical garden of Mobarakeh Steel Company was recognized by analyzing the leaves and ...

  7. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    contamination. Solid waste and run-off that are discharged into the stream indiscriminately are also sources of contamination with such metals. Municipal solid waste contains a variety of materials which contain trace metals. An investigation on municipal waste site in. Yola, Nigeria showed that the soil of the dump site was ...

  8. METAL CONTAMINATION AT DUMP SITES IN MAKURDI, NIGERIA ...

    African Journals Online (AJOL)

    Samples were pretreated, digested by aqua regia and the resulting solution analyzed for Fe, Zn, Cu, Pb and Cd using atomic absorption spectrophotometer ... Result shows that extraction rates (mobility) were in the order Zn>Cd>Cu>Pd> Fe which may be due to differences in geochemical behaviour of metals in the soil.

  9. A fundamental study using Monte-Carlo simulation technique on the effect on the earthquake response of subsurface layers caused by uncertainy of soil properties

    International Nuclear Information System (INIS)

    Hata, Akihito; Shiba, Yukio

    2009-01-01

    The standard for Probabilistic Safety Assessment of Nuclear Power Plant on earthquakes published by Atomic Energy Society of Japan in 2007 states that the effect of uncertainy of soil properties on the earthquake response of subsurface layers should be assessed with conducting Monte-Carlo simulations of equivalent linear analysis. This paper presents a fundamental study on the effect of uncertainty of dynamic soil properties on the earthquake response with equivalent linear approach. A series of Monte-Carlo simulations of earthquake response analysis of a simple one-dimensional soil layer model have been conducted, where uncertainty of initial shear modulus G 0 , strain dependency of G/G 0 -γ and h-γ are considered. Through a series of simulations, it is demonstrated that although the average of maximum response of the subsurface top layer increases as input earthquake motion increases, the coefficient of variance of them does not necessarily increases, and that G/G 0 -γ relationship is the most influential factor among the concerned parameters. And also, it is shown that the maximum response of ground surface plotted against the peak frequency of the frequency response function calculated with equivalent linear analysis under converged condition, distributes around the response spectrum curve of the input earthquake motion so that the maximum response can be roughly estimated from the response spectrum curve. Finally, applicability of two-point-estimate technique is examined with being compared with Monte-Carlo simulation results. (author)

  10. Phytoremediation Opportunities with Alimurgic Species in Metal-Contaminated Environments

    Directory of Open Access Journals (Sweden)

    Marianna Bandiera

    2016-04-01

    Full Text Available Alimurgic species are edible wild plants growing spontaneously as invasive weeds in natural grassland and farmed fields. Growing interest in biodiversity conservation projects suggests deeper study of the multifunctional roles they can play in metal uptake for phytoremediation and their food safety when cultivated in polluted land. In this study, the responses of the tap-rooted perennial species Cichorium intybus L., Sonchus oleracerus L., Taraxacum officinale Web., Tragopogon porrifolius L. and Rumex acetosa L. were studied in artificially-highly Cd-Co-Cu-Pb-Zn-contaminated soil in a pot-scale trial, and those of T. officinale and R. acetosa in critical open environments (i.e., landfill, ditch sediments, and sides of highly-trafficked roads. Germination was not inhibited, and all species showed appreciable growth, despite considerable increases in tissue metal rates. Substantial growth impairments were observed in C. intybus, T. officinale and T. porrifolius; R. acetosa and S. oleracerus were only marginally affected. Zn was generally well translocated and reached a high leaf concentration, especially in T. officinale (~600 mg·kg−1·dry weight, DW, a result which can be exploited for phytoremediation purposes. The elevated Cd translocation also suggested applications to phytoextraction, particularly with C. intybus, in which leaf Cd reached ~16 mg·kg−1·DW. The generally high root retention of Pb and Cu may allow their phytostabilisation in the medium-term in no-tillage systems, together with significant reductions in metal leaching compared with bare soil. In open systems, critical soil Pb and Zn were associated with heavily trafficked roadsides, although this was only seldom reflected in shoot metal accumulation. It is concluded that a community of alimurgic species can serve to establish an efficient, long-lasting vegetation cover applied for phytoremediation and reduction of soil metal movements in degraded environments. However

  11. Heavy metals contamination: implications for health and food safety

    OpenAIRE

    Yulieth C. Reyes; Inés Vergara; Omar E. Torres; Mercedes Díaz; Edgar E. González

    2016-01-01

    Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg), arsenic (As), cadmium (Cd) and lead (Pb) in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and result...

  12. Assessment of heavy metal contamination of dust at some selected fuel filling stations in Accra

    International Nuclear Information System (INIS)

    Afrifa, C. G.

    2011-07-01

    Heavy metal contaminated dust particles of fuel filling stations can be re-suspended into the ambient air and serve as a source of atmospheric pollution since the fine particles are aerodynamic and have longer life time in ambient air. This can cause ill-health effect on the fuel attendants and residents within the neighbourhood especially infants and the aged who are more vulnerable. In spite of this, not much research has been done on heavy metal contamination of dust at fuel filling stations. In this study, 55 dust samples were collected from six fuel filling stations in the Ga-East district and Accra Metropolitan assembly, both in Accra, in order to assess the levels of contamination of heavy metals; their possible sources and the human health risk associated with them. The dust samples were divided into two parts with one part sieved into four fractions using metric mesh sizes 500 µm, 200µm, 100µm and 45 µm, and pulverised. Total concentrations of heavy metals (Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Br, Rb, Sr, Y, Zr and Pb) were determined in the dust samples using energy dispersive X-ray fluorescence analysis. The pollution indices; enrichment factors (EF), index of geoaccumulation (Igeo), contamination factor (CF) and pollution load index (PLI) were used to identify possible levels of pollution from anthropogenic sources. The possible sources of metals were also identified with principal component analysis. Noncancer effect of children and adults due to exposure to dust from these fuel filling stations were also estimated. For the three fuelling areas, the average concentrations of V, Cr, Ni and Cu exceeded the acceptable values in common soil in the <45 µm fraction. The average concentration of Zn however exceeded the acceptable value only at the mixed-fuel fuelling area whereas the average concentration of Pb was within the acceptable value for all three fuelling areas. The dust samples showed moderate to significant enrichments for V, Cu, Br

  13. Soil archives of a Fluvisol, part II. Archaeostratigraphical model of the subsurface of the medieval city centre of Vlaardingen, the Netherlands

    Science.gov (United States)

    Kluiving, Sjoerd; De Ridder, Tim; van Dasselaar, Marcel; Prins, Maarten

    2017-04-01

    In Medieval times the city of Vlaardingen (the Netherlands) was strategically located on the confluence of three rivers, the Meuse, the Merwede and the Vlaarding. A church of early 8th century was already located here. In a short period of time Vlaardingen developed into an international trading place, the most important place in the former county of Holland. Starting from the 11th century the river Meuse threatened to flood the settlement. These floods have been registered in the archives of the fluvisol and were recognised in a multidisciplinary sedimentary analysis of these archives. To secure the future of this vulnerable soil archive an extensive interdisciplinary research (76 mechanical drill holes, grain size analysis (GSA), thermo-gravimetric analysis (TGA), archaeological remains, soil analysis, dating methods, micromorphology, and microfauna has started in 2011 to gain knowledge on the sedimentological and pedological subsurface of the mound as well as on the well-preserved nature of the archaeological evidence. Pedogenic features are recorded with soil descriptive, micromorphological and geochemical (XRF) analysis. The soil sequence of 5 meters thickness exhibits a complex mix of 'natural' as well as 'anthropogenic layering' and initial soil formation that enables to make a distinction for relatively stable periods between periods with active sedimentation. In this paper the results of this large-scale project are demonstrated in a number of cross-sections with interrelated geological, pedological and archaeological stratification. Distinction between natural and anthropogenic layering is made on the occurrence of chemical elements phosphor and potassium. A series of four stratigraphic / sedimentary units record the period before and after the flooding disaster. Given the many archaeological remnants and features present in the lower units, we know that the medieval landscape was drowned while it was inhabited in the 12th century AD. After a final

  14. Assessment of Water Quality Index and Heavy Metal Contamination in Active and Abandoned Iron Ore Mining Sites in Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Madzin Zafira

    2017-01-01

    Full Text Available The composition of heavy metals in water and surface soils of iron ore mining sites were investigated to evaluate on the potential occurrence of heavy metal contamination. Physico-chemical characteristics of the waters were also investigated to determine the current status of water quality index (WQI of the sites. Samples of water and surface soils of active mine (Kuala Lipis and abandoned mine (Bukit Ibam in Pahang were collected at four locations, respectively. The physico-chemical parameters measured for WQI were pH, dissolved oxygen, biological oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SS, and ammoniacal nitrogen (AN. The water quality parameters were classified according to the Department of Environment (DOE water quality classification. The study revealed that most of the sites in Bukit Ibam and Kuala Lipis were categorized as clean to slightly polluted. On the other hand, heavy metal analysis in water showed that aluminium and manganese level in both sites have exceeded the allowable limits for raw and treated water standards by the Ministry of Health. For heavy metal compositions in soils showed most of the heavy metal concentrations were below the recommended guideline values except for lead, arsenic, zinc and copper.

  15. Heavy metals contamination: implications for health and food safety

    Directory of Open Access Journals (Sweden)

    Yulieth C. Reyes

    2016-07-01

    Full Text Available Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg, arsenic (As, cadmium (Cd and lead (Pb in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and results in some countries included Colombia are discussed.

  16. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    Science.gov (United States)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  17. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  18. Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Directory of Open Access Journals (Sweden)

    A. P. Tran

    2017-09-01

    Full Text Available Quantitative characterization of soil organic carbon (OC content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid water content, temperature and electrical resistivity tomography (ERT data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and

  19. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Science.gov (United States)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  20. A diagnosis of sub-surface water table dynamics in low hydraulic conductivity soils in the sugar cane fields of Pongola, South Africa

    Science.gov (United States)

    Malota, Mphatso; Senzanje, Aidan

    2016-04-01

    Water and land are the two natural resources restraining crop production in South Africa. With the increasing demand for food, emphasis has shifted from the sole reliance on rain fed crop production, to irrigation. The deterioration in irrigation water quality from surface water sources is, however, posing a big challenge to the sustainability of irrigated crop production. This is because more water is required for leaching, resulting in shallow water tables in agricultural lands. The installation of well designed subsurface drainage systems alone is not enough; the provision of timely maintenance is also necessary. In this study, the extent and severity of problems as a consequence of shallow water tables and their possible causes were investigated at three sugarcane fields in Pongola, South Africa, having low hydraulic conductivity soils. Also investigated were soil salinity levels and the temporal variation in the salinity of the irrigation water. A water table map of a 32 ha sugarcane field was generated, using observed water table depth (WTD) data from 36 piezometers monitored from September 2011 to February 2012. Out of the total 32 ha under cultivation, 12% was found to be affected by shallow WTDs of less than the 1.0 m design WTD. The inability of natural drainage to cope with subsurface drainage needs and the poor maintenance of subsurface drainage systems contributed to the shallow water tables in the area. Furthermore, the currently adopted drainage design criteria also proved unsatisfactory with mean observed water table depth and drainage discharge (DD) of 20% and 50%, respectively, less than their respective design levels. The salinity of the irrigation water was, on average, 32% higher than threshold tolerance level of sugarcane. The root zone soil salinity levels at the three study sites were greater than the 1.7 dS m-1 threshold for sugar cane. The subsurface drainage design criteria adopted at the site needs to be revisited by ensuring that the

  1. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    NARCIS (Netherlands)

    Zorn, M.I.; van Gestel, C.A.M.; Eijsackers, H.J.P.

    2008-01-01

    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a

  2. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  3. Residential metal contamination and potential health risks of ...

    Science.gov (United States)

    Potosí, Bolivia, is the site of centuries of historic and present-day mining of the Cerro Rico Mountain, known for its rich polymetallic deposits, and was the site of large-scale Colonial era silver refining operations, both of which have left a legacy of pollution. In this study, trace elements were quantified in adobe brick, dirt floor, and surface dust samples from 49 houses. Mean concentrations of total mercury (Hg), lead (Pb), and arsenic (As) were statistically significantly greater than concentrations measured in Sucre, Bolivia, a non-mining town used as a reference site, and exceeded US-based soil screening levels that are designed to be protective of human health. Adobe brick samples were analyzed for bioaccessible concentrations of elements using a simulated gastric fluid (GF) extraction. Mean GF extractable concentrations of Hg, As, and Pb were 0.841, 14.9, and 30.2 percent of the total concentration, respectively. Total and GF extractable concentrations of these elements were used to estimate exposure and potential health risks to children following incidental ingestion of adobe brick particles. Risks were assessed using a range of potential ingestion rates (50-1000 mg/day). Although the majority of households have total Hg, As, and Pb concentrations that represent a potential health risk, fewer are of concern when GF extractable concentrations are considered at lower ingestion rates. For Hg, only a small percentage of the sampled houses have GF ex

  4. Exposure to pesticides and metal contaminants of fertilizer among tree planters.

    Science.gov (United States)

    Gorman Ng, Melanie; Stjernberg, Ernst; Koehoorn, Mieke; Demers, Paul A; Davies, Hugh W

    2011-08-01

    In British Columbia, Canada, harvested forests are manually replanted by seasonal workers. The work is known to be physically demanding and ergonomically difficult, and recently, there have been concerns over chemical exposures due to pesticide residues on seedlings, fertilizers (often applied alongside seedlings), and potential metal contamination of these fertilizers. This study aimed to characterize metal and pesticide exposure among a sample of British Columbia tree planters. Between May 2006 and April 2007, exposure measurements were taken from 54 tree planters at five geographically disperse worksites throughout British Columbia. Four worksites were using fertilizer and one was not. Metal concentrations were measured by inductively coupled plasma mass spectrometry on post-shift hand wipes, full-shift personal air sample, bulk soil, seedling root balls, and fertilizer samples. Pesticides were measured on post-shift hand wipes and on bulk seedling samples. Seedling nursery pesticide application records were used to focus pesticide analyses on pesticides known to have been applied to the seedlings used at the study sites. Carbamate pesticides were analyzed by high-performance liquid chromatography/mass spectroscopy and all other pesticides by gas chromatography mass spectrometry. No evidence was found that tree planters who worked with fertilizer were at an elevated risk of exposure to arsenic, lead, cadmium, chromium, and nickel relative to tree planters who did not. Pesticide residues were found on seedlings taken from work sites early in the tree planting season in April 2007. At these worksites, the fungicides chlorothalonil and iprodione were found on the skin of workers at low levels (range 0.37-106.3 ng cm(-2) and 0.48-15.9 ng cm(-2), respectively), providing evidence for exposure potential. Very poor hygiene conditions were observed at all tree planting work sites. Hand washing facilities were not available at work sites and only 5.6% of subjects

  5. Estabelecimento de plantas herbáceas em solo com contaminação de metais pesados e inoculação de fungos micorrízicos arbusculares Establishment of herbaceous plants in heavy metal contaminated soils inoculated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro

    2001-12-01

    Full Text Available Neste trabalho estudou-se o estabelecimento de plantas herbáceas em solo com contaminação de metais pesados (MP e inoculação de fungos micorrízicos arbusculares (FMAs. O experimento foi realizado em bandejas, em esquema fatorial 5 x 2, sendo cinco proporções de solo contaminado com MP na ausência e presença de FMAs. Sementes de oito espécies de gramíneas e uma crucífera (mostarda -- Brassica sp. foram plantadas e cultivadas por 120 dias e avaliadas em dois cortes. No primeiro corte, as gramíneas foram severamente afetadas pela contaminação, e a mostarda foi pouco afetada, mostrando alta tolerância. No segundo corte, o efeito da contaminação foi negligível para as gramíneas, e a inoculação dos FMAs aumentou em 24% a matéria seca destas em relação ao controle sem inoculação. A inoculação teve também efeito positivo na matéria seca das raízes e na colonização micorrízica. Os teores de Cd, Zn e Pb na parte aérea foram maiores na mostarda do que nas gramíneas em ambos os cortes. Apesar de a inoculação não ter efeito no crescimento das gramíneas do primeiro corte, as plantas com inoculação apresentaram maior acúmulo de Zn, Cd e Pb no segundo corte. A maior tolerância da mostarda aos metais pesados permitiu seu crescimento e conseqüente acúmulo de Zn, Cd e Pb do solo contaminado. A extração destes elementos do solo pode ter contribuído para o melhor desenvolvimento subseqüente das gramíneas, favorecendo o estabelecimento das plantas.The establishment of herbaceous plants in soil contaminated by heavy metals (HM and inoculated with arbuscular mycorrhizal fungi (AMF was evaluated in the present study. The experiment was conducted in trays, in a 5 x 2 factorial, being five proportions of contaminated soil with or without inoculation with arbuscular mycorrhizal fungi (AMF. Seeds of eight grass species and a mustard (Brassica sp. were planted and allowed to grow for 120 days under greenhouse conditions

  6. Responses and Remediating Effects of Pennisetum hydridum to Application of Heavy-Metals-Contaminated Chicken Manures and Sewage Sludges

    Directory of Open Access Journals (Sweden)

    WANG Xi-na

    2015-10-01

    Full Text Available Pennisetum hydridum is a rapid growth, large biomass and multi-stress resistant plant. A pot experiment was carried out to investigate the bioremediation effects of P. hydridum by 2 kg heavy metal (Cd, Cu, Pb, and Zn contaminated chicken manure or sewage sludge mixing with 18 kg of lateritic red soil. The growth and heavy metal uptake of P. hydridum were measured in order to assess the phytoremediation potential. Results showed that P. hydridum growed well in all treatments and the best appeared in chicken manure. The biomass of plant in treatments with chicken manure, sewage sludge, and the control was 736.56±29.21, 499.99±32.01 g·pot-1, and 466.89±37.08 g·pot-1, respectively. The heavy metals in the soils were reduced significantly at the 200 d after planting P. hydridum in fall. The removing percentage of total Zn, Cu, Pb, and Cd in soil was 1.90%~4.52%, 3.96%~5.72%, 0.53%~1.24% and 10.34%~17.14% respectively. The best effect of removing Zn, Cd and Pb appeared in chicken manure treatment was 89.74, 0.68 mg and 19.18 mg. The best effect of removing Cu appeared in sludge treatment was 16.84 mg. The results indicated that P. hydridum could be used for removement of the heavy metals from the heavy metal contaminated soils which could be considered as an potential plant for bioremediation of heavy metals.

  7. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  8. Laboratory and field magnetic evaluation of the heavy metal contamination on Shilaoren Beach, China.

    Science.gov (United States)

    Wang, Yonghong; Huang, Qinghui; Lemckert, Charles; Ma, Ying

    2017-04-15

    This study uses magnetic measurements to evaluate the heavy metal contamination of the surface sediments on Shilaoren Beach. The values of the laboratory magnetic measurements have a positive relationship with the concentrations of Fe, Mn, Cr, Ni, As and Pb. The field magnetic parameter provides an effective and rapid method for evaluating the distribution and dispersal of heavy metal. Sediments with higher heavy metal contents generally accumulate near higher and lower tide lines on the beach, reflecting the control of waves and tides. The sewage and stormwater outlets are the primary sources of the heavy metal contamination. Variations in seasonal waves and winds affect the sediment transport and the heavy metal distribution patterns. Based on the Australian ISQG-Low sediment quality criteria, Fe, Mn and Cr generally exhibit intermediate accumulation levels, whereas Pb and Zn exhibit higher accumulation levels because of the socioeconomic status of the area surrounding the beach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    Science.gov (United States)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2017-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  10. Effect of weak metallic contamination on silicon epitaxial layer and gate oxide integrity

    Energy Technology Data Exchange (ETDEWEB)

    Mello, D.; Coccorese, C.; Ferlito, E.; Sciuto, G.; Ricciari, R.; Barbarino, P.; Astuto, M. [STMicroelectronics, Physics Lab. Stradale primosole, 50 I-95121 Catania (Italy)

    2011-08-15

    The detection of metallic contaminants in microelectronics devices is one of the main issues in production line. In fact they could diffuse rapidly into the silicon bulk and establishing energy states into the silicon energy-band gap. The presence of trace of metals on the silicon surface can also degrade the gate oxide integrity, cause structural defect in silicon epitaxial layers or anomalies in silicon/gate oxide interface. Usually in semiconductor manufacturing superficial metallic contamination is monitored using Total X-ray Reflection Fluorescence spectroscopy (TXRF) and performing specific electrical measurements on dedicated capacitor. In this work a weak contamination, undetected by TXRF analysis, was revealed by Transmission Electron Microscopy (TEM) observing lattice damaging and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) detecting an anomalous Na distribution in depth profile. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  12. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    International Nuclear Information System (INIS)

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  13. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  14. Toxic heavy metal contamination and risk assessment of street dust in small towns of Shanghai suburban area, China.

    Science.gov (United States)

    Zhang, Ju; Deng, Huanguang; Wang, Dongqi; Chen, Zhenlou; Xu, Shiyuan

    2013-01-01

    The aims of this paper were to quantify the heavy metal concentrations in street dust of small towns in Shanghai suburban area compared with those in urban area, and examine their seasonal and spatial variations, and to assess their risks to water environment and local populations. Street dust samples were collected from three small towns and urban area in Shanghai in different seasons. Levels of heavy metals were determined by atomic adsorption spectrophotometer analyzer. The method of potential ecological risk index and the health risk assessment model were used to evaluate the potential risks to water bodies and local residents, respectively. The mean metal concentrations in street dust of small towns were far above soil background values but still lower than those in the urban area. No significant seasonal change was observed except for Cr, Ni, and Zn concentrations. Higher metal concentrations tended to be located in central area of towns and township roads. The integrated metal contamination was high and posed a strong potential ecological risk. Children had greater health risk than adults. The carcinogenic risk probabilities were under the acceptable level. The hazard index values to children were close to the safe level. Street dust from the studied area has been contaminated by heavy metals. The contamination of these elements is related more to the pollution source than seasonal change. The combination of the six metals may threaten the water environment and has non-cancer health risk to children, but not to adults.

  15. Subsurface probing

    International Nuclear Information System (INIS)

    Lytle, R.J.

    1978-01-01

    Imaging techniques that can be used to translate seismic and electromagnetic wave signals into visual representation are briefly discussed. The application of these techniques is illustrated on the example of determining the subsurface structure of a proposed power plant. Imaging makes the wave signals intelligible to the non-geologists. R and D work needed in this area are tabulated

  16. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  17. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  18. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  19. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  20. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology

    Science.gov (United States)

    Bonell, M.; Purandara, B. K.; Venkatesh, B.; Krishnaswamy, Jagdish; Acharya, H. A. K.; Singh, U. V.; Jayakumar, R.; Chappell, N.

    2010-09-01

    SummaryThere is comparatively limited information in the humid tropics on the surface and sub-surface permeability of: (i) forests which have been impacted by multi-decades of human occupancy and (ii) forestation of land in various states of degradation. Even less is known about the dominant stormflow pathways for these respective scenarios. We sampled field saturated hydraulic conductivity, K∗ at 23 sites at four depths (0 m, n = 166), (0.10 m, n = 139), 0.45-0.60 m, n = 117, (1.35-1.50 m, n = 117) under less disturbed forest (Forest), disturbed production forest of various local species (Degraded Forest) and tree-plantations ( Acacia auriculiformes, 7-10 years old, Tectona grandis, ˜25-30 years old, Casuarina equisetifolia, 12 years old) in the Uttar Kannada district, Karnataka, India, in the Western Ghats. The sampling strategy was also undertaken across three physiographic blocks and under three main soil types. Subsequently the determined K∗ were then linked with rainfall intensity-duration-frequency (IDF) characteristics to infer the dominant stormflow pathways. The Degraded Forest shows an order of magnitude decline in K∗ at the surface as result of human impacts at decadal to century time scales. The lowest surface permeability is associated with the Degraded Forests over the Laterite ( Eutric Nitosols and Acrisols) and Red soils ( Eutric Nitosols) and infiltration-excess overland flow, IOF probably occurs. Further there is a progressive decline in K∗ with depth in these soils supporting Degraded Forests. The A. auriculiformes plantations over the Red and Lateritic soils are progressively restoring the near-surface K∗, but their K∗ still remain quite low when compared to the less disturbed forest permeability. Consequently these plantations still retain the 'memory' from the previous degraded state. In contrast the permeability of the Black soils (Vertisols) are relatively insensitive to T. grandis plantations and this soil group has a very low

  1. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    , phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy...

  2. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  3. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  4. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    Directory of Open Access Journals (Sweden)

    T. Blume

    2009-07-01

    Full Text Available Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale and binary indicator maps (for the long-term and hillslope scale. Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to

  5. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    Science.gov (United States)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    Science.gov (United States)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  7. Evaluation of Small Arms Range Soils for Metal Contamination and Lead Bioavailability

    Science.gov (United States)

    2009-11-03

    M A J O R United States Army, Center for Health Promotion and Preventive Medicine , Directorate of Toxicology, Aberdeen Proving Ground, Maryland 21010...lead contamination (10), mobility of lead (4) and lead ecotoxicology (11, 12), but little effort has been made to establish the potential human...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Army,Center for Health Promotion and Preventive Medicine

  8. Heavy metal contamination in agricultural soils and water in Dar es ...

    African Journals Online (AJOL)

    USER

    Sampling frequency, CI: Confidence Interval,, WHO: World Health Organization. materials. The lowest concentration of copper was. (4.513±1.713) mg/kg at sampling location S4. Cadmium concentrations were consistently low at all sampling locations as compared to the rest heavy metals and lower than the recommended ...

  9. Heavy metal contamination in agricultural soils and water in Dar es ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 11 (2010) >. Log in or Register to get access to full text downloads.

  10. Microbial indicators for the assessment of the impact of metal contamination and phytoremediation of soil health

    OpenAIRE

    Burges Ruiz, Aritz

    2017-01-01

    215 p. El suelo es un sistema dinámico y complejo, cuyas funciones son de gran importancia para la sostenibilidad de los ecosistemas terrestres y nuestra propia supervivencia. Por desgracia, la contaminación de suelos con metales pesados ha generado un problema medioambiental de gran magnitud, con efectos adversos sobre la funcionalidad y sostenibilidad del ecosistema edáfico. La fitorremediación y la fitogestión se presentan como alternativas de remediación que ofrecen beneficios añadidos...

  11. The interactive effects of chelator, fertilizer, and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Cutright, T.J. [Dept. of Civil Engineering, Univ. of Akron, Akron, OH (United States)

    2002-07-01

    The role of chelator, fertilizer, and enriched rhizobacteria in facilitating Cd, Cr, and Ni accumulation by Helianthus annuus was studied. It was found that by adding a synthetic chelator, EDTA, the shoot concentrations of Cd and Ni were significantly increased from 34.2 mg kg{sup -1} and 14.5 mg kg{sup -1} to 115 mg kg{sup -1} and 117 mg kg{sup -1}, respectively. However, the total biomass of plants was drastically decreased by 50 to 60%. Compared with this treatment, inoculating enriched rhizobacteria to plants grown under similar conditions maintained the surged shoot concentrations of Cd and Ni while increasing the plants biomass by more than 1.6-fold. It was also found that introducing a commercial fertilizer, Hydro-Gro trademark, to plants significantly increased the Ni accumulation by 3-fold and the plant biomass by 1.43-fold. These results suggest that combing fertilizers, chelators and/or rhizobacteria might provide a more effective approach for enhancing phytoremediation. (orig.)

  12. MOBILE ATOMIC ABSORPTION SPECTROMETER OPERATED BY PACE ENVIRONMENTAL FOR METALS-CONTAMINATED SOIL CHARACTERIZATION

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA), through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. This report describes ...

  13. Distribuição de água no solo aplicado por gotejamento enterrado e superficial Soil water distribution for subsurface and surface drip irrigation

    Directory of Open Access Journals (Sweden)

    Allan C. Barros

    2009-12-01

    Full Text Available Devido à falta de estudos sobre o movimento da água quando aplicada abaixo da superfície, realizou-se este trabalho com o objetivo de avaliar a distribuição de água aplicada pelo sistema de gotejamento enterrado e convencional. O experimento de campo foi conduzido na área experimental do Departamento de Engenharia Rural da ESALQ/USP - Piracicaba, SP. Para o estudo, trincheiras foram abertas e instaladas sondas de TDR, dispostas a 0,05; 0,15; 0,25; 0,35 e 0,45 m profundidade, e a 0,05; 0,15; 0,25; 0,35 m comprimento, totalizando 17 sondas por trincheira. Os tratamentos foram baseados na profundidade de aplicação (0,0 e 0,10 m e vazão aplicada (2 e 4 L h-1: ENT2; ENT4; SUP2 e SUP4. A cada hora era aplicado 1 L de água (total de 10 L, seguida de leituras com o TDR. Medições do disco úmido e saturado foram feitas com régua milimetrada; além disso, estabeleceu-se um volume controle onde foi avaliada a uniformidade de aplicação; assim, foi possível verificar, em relação aos sistemas superficiais, que os sistemas enterrados apresentaram menor área superficial molhada e atingiram maior largura e profundidade; já as maiores concentrações foram obtidas próximas ao ponto de emissão.Studies of sub-surface water movement is an interesting topic in irrigation but, in spite of the its importance, there is little literature. One of the purposes of this study was to contribute to this subject and evaluate the distribution of water applied by both subsurface drip irrigation (SDI and conventional irrigation. Experiments were conducted at the Department of Rural Engineering (ESALQ/USP, located at Piracicaba, SP. Trenches were opened and 17 three-rod TDR probes were installed, placed at 0.05, 0.15, 0.25, 0.35 and 0.45 m depths, and to 0.05, 0.15, 0.25, 0.35 m intervals. This procedure was repeated using a dripper buried at 0 and 0.10 m for each discharge rate of 2 and 4 L h-1 tested. Wetted soil volume was observed with 1 L of water

  14. Influence of dams on sediment continuity: A study case of a natural metallic contamination.

    Science.gov (United States)

    Frémion, Franck; Bordas, François; Mourier, Brice; Lenain, Jean-François; Kestens, Tim; Courtin-Nomade, Alexandra

    2016-03-15

    Sediments play an important role on the quality of aquatic ecosystems, notably in the reservoir areas where they can either be a sink or a source of contaminants, depending on the management and hydrological conditions. The physicochemical properties of 25 surface sediments samples of a reservoir catchment (Vaussaire, Cantal, France) were studied. Results show a strong influence of dam presence, notably on the grain size and organic matter (OM) contents. The concentrations of trace metals and metalloids (As, Cd, Cr, Cu, Ni, Pb and Zn) were also measured and compared with worldwide reservoir concentrations and international sediment quality guideline levels in order to assess the intensity of the metallic contamination. Cr and Ni are the trace elements presenting the significantly highest values at the catchment scale. Enrichment Factors (EF), calculated using both local and national backgrounds, show that metals have mainly a natural origin, explaining especially the Cr and Ni values, linked with the composition of parental rocks. Unexpectedly, all the observed metal concentrations are lower in the reservoir than upstream and downstream, which might be related to the high fresh OM inputs in the reservoir, diluting the global metallic contamination. Multivariate statistical analyses, carried out in order to identify the relationship between the studied metals and sediment characteristics, tend to support this hypothesis, confirming the unusually low influence of such poorly-degraded OM on trace element accumulation in the reservoir. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Lyophilization of a triply unsaturated phospholipid: Effects of trace metal contaminants

    Science.gov (United States)

    Payton, N.M.; Wempe, M.F.; Betker, Jamie L.; Randolph, T.W.; Anchordoquy, T.J.

    2013-01-01

    As liquid liposomal formulations are prone to chemical degradation and aggregation, these formulations often require freeze drying (e.g. lyophilization) to achieve sufficient shelf-life. However, liposomal formulations may undergo oxidation during lyophilization and/or during prolonged storage. The goal of the current study was to characterize the degradation of 1, 2-dilinolenoyl-sn-glycero-3-phosphocholine (DLPC) during lyophilization, and to also probe the influence of metal contaminants in promoting the observed degradation. Aqueous sugar formulations containing DLPC (0.01 mg/ml) were lyophilized, and DLPC degradation was monitored using HPLC/UV and GC/MS methods. The effect of ferrous ion and sucrose concentration, as well as lyophilization stage promoting lipid degradation, was investigated. DLPC degradation increased with higher levels of ferrous ion. After lyophilization, 103.1% ± 1.1%, 66.9% ± 0.8%, and 28.7% ± 0.7% DLPC remained in the sucrose samples spiked with 0.0 ppm, 0.2 ppm and 1.0 ppm ferrous ion, respectively. Lipid degradation predominantly occurs during the freezing stage of lyophilization. Sugar concentration and buffer ionic strength also influence the extent of lipid degradation, and DLPC loss correlated with degradation product formation. We conclude that DLPC oxidation during the freezing stage of lyophilization dramatically compromises the stability of lipid-based formulations. In addition, we demonstrate that metal contaminants in sugars can become highly active when lyophilized in the presence of a reducing agent. PMID:23567484

  16. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean)

    Energy Technology Data Exchange (ETDEWEB)

    Lafabrie, C. [University of Corsica, Faculty of Sciences, Equipe Ecosystemes Littoraux, BP 52, 20250 Corte (France)], E-mail: lafabrie@univ-corse.fr; Pergent-Martini, C.; Pergent, G. [University of Corsica, Faculty of Sciences, Equipe Ecosystemes Littoraux, BP 52, 20250 Corte (France)

    2008-01-15

    The aim of this study is to determine metal (Cd, Co, Cr, Hg, Ni, Pb) concentrations in Posidonia oceanica tissues along the Corsican coastline. The results show that except for Cr, all the metals are preferentially accumulated in the blades; this is particularly interesting as it means that future metal analyses may be carried out only on the blades avoiding thus the removal of the shoots. Moreover, they show that metal concentrations may reflect the 'background noise' of the Mediterranean Sea. Station 15 (Canari) can however be distinguished from the others due to its high Co, Cr and Ni concentrations. This result may be related to the presence of a previous asbestos mine, located near this station. Therefore, this study reinforces the usefulness and the relevance of Posidonia oceanica as a tracer of spatial metal contamination and as an interesting tool for water quality evaluation. - The seagrass Posidonia oceanica is a relevant tracer of spatial metal contamination and an interesting tool for water quality evaluation.

  17. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiguo [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Feng Huan, E-mail: fengh@mail.montclair.ed [Department of Earth and Environmental Studies, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043 (United States); Chang Jinna; Qu Jianguo; Xie Hongxia; Yu Lizhong [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China)

    2009-05-15

    Surface sediments (0-5 cm) from 59 stations within the Yangtze River intertidal zone (YRIZ) were sampled for metal contamination analysis in April and August 2005. The concentrations ranged (in mg kg{sup -1} dry weight): Al, 40,803-97,213; Fe, 20,538-49,627; Cd, 0.12-0.75; Cr, 36.9-173; Cu, 6.87-49.7; Mn, 413-1,112; Ni, 17.6-48.0; Pb, 18.3-44.1; and Zn, 47.6-154; respectively. Among the 59 sampling stations, enrichment factors (EF) indicate enrichment of Cd (52 stations), Cr (54 stations), Cu (5 stations), Ni (26 stations), Pb (5 stations) and Zn (5 stations). Geoaccumulation indexes (I{sub geo}) also suggest individual metal contamination in localized areas. This study indicates that Cd, Cr and Ni enrichment in the YRIZ sediment is widespread whereas Cu, Mn, Pb and Zn enrichment is localized or nonexistent. Factor and cluster analyses indicate that Cd is associated with total organic carbon whereas Cu, Cr, Ni, Pb and Zn have a close association with Mn. - Surface sediment metal enrichment is evidenced for Cd, Cr and Ni in the Yangtze River intertidal zone.

  18. Adverse events associated with metal contamination of traditional chinese medicines in Korea: a clinical review.

    Science.gov (United States)

    Kim, Hyunah; Hughes, Peter J; Hawes, Emily M

    2014-09-01

    This study was performed to review studies carried out in Korea reporting toxic reactions to traditional Chinese medicines (TCMs) as a result of heavy metal contamination. PubMed (1966-August 2013) and International Pharmaceutical Abstracts (1965-August 2013) were searched using the medical subject heading terms of "Medicine, Chinese Traditional," "Medicine, Korean Traditional," "Medicine, Traditional," "Metals, Heavy," and "Drug Contamination". For Korean literature, Korea Med (http://www.koreamed.org), the Korean Medical Database (http://kmbase.medric.or.kr), National Discovery for Science Leaders (www.ndsl.kr), Research Information Sharing Service (http://www.riss.kr), and Google Scholar were searched using the terms "Chinese medicine," "Korean medicine," "herbal medicine," and "metallic contamination" in Korean. Bibliographies of case reports and case series, identified using secondary resources, were also utilized. Only literature describing cases or studies performed in Korea were included. Case reports identified clear issues with heavy metal, particularly lead, contamination of TCMs utilized in Korea. No international standardization guidelines for processing, manufacturing and marketing of herbal products exist. Unacceptably high levels of toxic metals can be present in TCM preparations. Health care providers and patients should be educated on the potential risks associated with TCMs. International advocacy for stricter standardization procedures for production of TCMs is warranted.

  19. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean)

    International Nuclear Information System (INIS)

    Lafabrie, C.; Pergent-Martini, C.; Pergent, G.

    2008-01-01

    The aim of this study is to determine metal (Cd, Co, Cr, Hg, Ni, Pb) concentrations in Posidonia oceanica tissues along the Corsican coastline. The results show that except for Cr, all the metals are preferentially accumulated in the blades; this is particularly interesting as it means that future metal analyses may be carried out only on the blades avoiding thus the removal of the shoots. Moreover, they show that metal concentrations may reflect the 'background noise' of the Mediterranean Sea. Station 15 (Canari) can however be distinguished from the others due to its high Co, Cr and Ni concentrations. This result may be related to the presence of a previous asbestos mine, located near this station. Therefore, this study reinforces the usefulness and the relevance of Posidonia oceanica as a tracer of spatial metal contamination and as an interesting tool for water quality evaluation. - The seagrass Posidonia oceanica is a relevant tracer of spatial metal contamination and an interesting tool for water quality evaluation

  20. Electrical resistivity determination of subsurface layers, subsoil ...

    African Journals Online (AJOL)

    Electrical resistivity determination of subsurface layers, subsoil competence and soil corrosivity at and engineering site location in Akungba-Akoko, southwestern Nigeria. A I Idornigie, M O Olorunfemi, A A Omitogun ...

  1. Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    RSI

    2008-03-01

    The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU met the Zone 2 ROD requirements

  2. Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis

    International Nuclear Information System (INIS)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K.; Guérold, François

    2016-01-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. - Highlights: • A meta-analysis was done to assess the effects of heavy metals on litter decomposition. • Heavy metals significantly and strongly inhibited litter decomposition in streams.

  3. Anomalous values of heavy metals in soil of cemetery

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Balestrin Flores

    2012-04-01

    Full Text Available The necro chorume generated by the decomposition of human bodies has a high pollution load and depending on its location, it may reach and contaminate the soil, the surface and underground water resources. The problem is critical because the analyzed cemetery is located in a vulnerable area and the surrounding population makes use of the water under the influence of the necro chorume, and therefore, subjected to water carrying diseases. This study aimed to analyze the concentrations of heavy metals barium, copper, chromium and zinc in soil occupied by necropolis. An auger was used to collect soil samples in 10 different sites and depths. For determining the concentration of metals, the technique of fluorescence X-ray Energy Dispersive with the support of the software Surfer 10 was used to spatially generate concentration data maps. The concentrations of barium and copper indicated contamination of the soil in all sampled sites, while the chrome showed evidence of contamination at various depths between 0 and 300 cm. The lowest topographic point was the only one to have zinc concentration above reference values, indicating a contamination by this element in the surface flow and sub-surface water. With these results we can confirm the potential of metal contamination in soil occupied by the cemetery.

  4. Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China.

    Science.gov (United States)

    Xu, Songjun; Lin, Chuxia; Qiu, Penghua; Song, Yan; Yang, Wenhuai; Xu, Guanchang; Feng, Xiaodan; Yang, Qian; Yang, Xiu; Niu, Anyi

    2015-11-15

    A baseline investigation into heavy metal status in the mangrove sediments was conducted in Shenzhen, China where rapid urban development has caused severe environmental contamination. It is found that heavy metal contamination in this mangrove wetland is characterized by the dominant presence of tungsten and cobalt, which is markedly different from the neighboring Hong Kong and other parts of the world. The vertical variation pattern of these two metals along the sediment profile differed from other heavy metals, suggesting an increasing influx of tungsten and cobalt into the investigated mangrove habitat, as a result of uncontrolled discharge of industrial wastewater from factories that produce or use chemical compounds or alloys containing these two heavy metals. Laboratory simulation experiment indicated that seawater had a stronger capacity to mobilize sediment-borne tungsten and cobalt, as compared to deionized water, diluted acetic, sulfuric and nitric acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characterizing the effect of heavy metal contamination on marine mussels using metabolomics.

    Science.gov (United States)

    Kwon, Yong-Kook; Jung, Young-Sang; Park, Jong-Chul; Seo, Jungju; Choi, Man-Sik; Hwang, Geum-Sook

    2012-09-01

    Marine mussels (Mytilus) are widely used as bioindicators to measure pollution in marine environments. In this study, (1)H NMR spectroscopy and multivariate statistical analyses were used to differentiate mussel groups from a heavy metal-polluted area (Onsan Bay) and a clean area (Dokdo area). Principal component analysis and orthogonal projection to latent structure-discriminant analysis revealed significant separation between extracts of mussels from Onsan Bay and from the Dokdo area. Organic osmolytes (betaine and taurine) and free amino acids (alanine, arginine, glutamine, phenylalanine, and threonine) were more highly accumulated in Onsan Bay mussels compared with Dokdo mussels. These results demonstrate that NMR-based metabolomics can be used as an efficient method for characterizing heavy metal contamination derived from polluted area compared to clean area and to identify metabolites related to environments that are contaminated with heavy metals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Modeling Adsorption Based Filters (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    I will discuss kinetic models of adsorption, as well as models of filters based on those mechanisms. These mathematical models have been developed in support of our interdisciplinary lab group, which is centered at BMCC/CUNY (City University of New York). Our group conducts research into bio-remediation of heavy metal contaminated water via filtration. The filters are constructed out of biomass, such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). The models involve differential equations, stochastic methods, and recursive functions. I will compare the models' predictions to data obtained from computer simulations and experimentally by our lab group. Funding: CUNY Collaborative Incentive Research Grant (Round 12); CUNY Research Scholars Program.

  7. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Science.gov (United States)

    Benson, Nsikak U; Asuquo, Francis E; Williams, Akan B; Essien, Joseph P; Ekong, Cyril I; Akpabio, Otobong; Olajire, Abaas A

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  8. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  9. Geostatistical exploration of dataset assessing the heavy metal contamination in Ewekoro limestone, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Kehinde D. Oyeyemi

    2017-10-01

    Full Text Available The dataset for this article contains geostatistical analysis of heavy metals contamination from limestone samples collected from Ewekoro Formation in the eastern Dahomey basin, Ogun State Nigeria. The samples were manually collected and analysed using Microwave Plasma Atomic Absorption Spectrometer (MPAS. Analysis of the twenty different samples showed different levels of heavy metals concentration. The analysed nine elements are Arsenic, Mercury, Cadmium, Cobalt, Chromium, Nickel, Lead, Vanadium and Zinc. Descriptive statistics was used to explore the heavy metal concentrations individually. Pearson, Kendall tau and Spearman rho correlation coefficients was used to establish the relationships among the elements and the analysis of variance showed that there is a significant difference in the mean distribution of the heavy metals concentration within and between the groups of the 20 samples analysed. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the heavy metals are compared with recommended regulatory limit concentration.

  10. CHLOROPLAST STRUCTURAL AND FUNCTIONAL CHANGES AS BIOMARKERS OF HEAVY METAL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    M. V.

    2016-02-01

    Full Text Available The aim was to confirm the hypothesis of possibility to use the chloroplast structural and functional changes in higher plants as biomarkers to assess heavy metal contamination. Chloroplast ultra-structural changes of Pisum sativum L were detected using the transmission electron microscopy. This work deals with studies of chloroplast structure responses to a high content of copper (250 μmМ and zinc (400 μmМ. Data on changes in the structure of chloroplasts in particular, heterogeneity in the grain thylakoid packing, increase of interthylakoid gaps and thickness of chloroplast grain thylakoids in comparison with controls were obtained. The results of studies on structural and functional chloroplasts changes offer challenges for their use as markers for an early diagnostics of abiotic stress effects and in biotechnological studies to produce novel advanced varieties of crops resistant to stress.

  11. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    Energy Technology Data Exchange (ETDEWEB)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  12. Orientation behavior is a good biomarker of trace metal contamination in Parallelomorphus laevigatus (Coleoptera, Carabidae).

    Science.gov (United States)

    Conti, Erminia; Dattilo, Sandro; Costa, Giovanni; Puglisi, Concetto

    2017-07-01

    Behavioral ecotoxicology has become very important in the short time since a change in behavior is very often the first response to environmental altered conditions. We investigated the influence of trace metal intake on the spatial orientation performances of the carabid beetle Parallelomorphus laevigatus, fundamental ability for its survival. The aim of this study was to consider the solar orientation as behavioral biomarker for exposure to trace metal contamination. Therefore, we tested the ability of solar orientation of specimens of this species, fed with shrimps contaminated with three different concentrations of Cu, Zn, or Hg. We carried out the orientation tests after 1, 3, 7, and 10 days of contaminated feeding. Subsequently, we fed these beetles with not contaminated shrimps and again tested them after 1, 3, 7, and 10 days. For all three metals considered and, regardless of the degree of contamination of the food, we have found a progressive and significant counterclockwise displacement of the angle of orientation and a corresponding progressive reduction in the precision in the directional choices by the animals. We also noticed a clear growing recovery in the normal orientation by these insects after returning to their feeding with uncontaminated food. In conclusion, we can consider the orientation in space of P. laevigatus as a behavioral biomarker for exposure to trace metal contamination. We believe that the intake of trace metals may induce the insects to make mistakes in their spatial orientation, due to an acceleration of their biological clock. Such a clock malfunction is not definitive, since the return to a normal diet restores P. laevigatus the ability to re-make the correct directional choices. Ultimately, our results confirm the usefulness of behavioral ecotoxicology investigations; moreover, they stimulate the opportunity to deepen the understanding of functioning of the biological clock in the animals.

  13. Characterization of microbial and metal contamination in flooded New York City neighborhoods following Superstorm Sandy

    Science.gov (United States)

    Dueker, M.; O'Mullan, G. D.; Sahajpal, R.

    2013-12-01

    Large scale flooding of waterfront neighborhoods occurred in New York City (NYC) during Superstorm Sandy. While NYC waterways commonly experience combined sewer overflow (CSO) and associated water quality degradation during rain storms, Superstorm Sandy was unique in that these potentially contaminated waters were transported over the banks and into city streets and buildings. Sampling of waterways, storm debris on city streets, and flood water trapped in building basements occurred in the days following Sandy, including in neighborhoods bordering the Gowanus Canal and Newtown Creek, which are both Superfund sites known to frequently contain high levels of sewage associated bacteria and metal contamination. Samples enumerated for the sewage indicating bacterium, Enterococcus, suggest that well-flushed waterways recovered quickly from sewage contamination in the days following the storm, with Enterococci concentrations similar to background levels measured before flooding occurred. In contrast, storm debris on city streets and waters from flooded basements had much higher levels of sewage-associated bacteria days after flooding occurred. Analysis of 180,000 bacterial 16S rRNA gene sequences obtained from flood water samples and flood debris confirmed the presence of bacterial genera often associated with sewage impacted samples (e.g. Escherichia, Streptococcus, Clostridium, Trichococcus, Aeromonas) and a community composition similar to CSO discharge. Elemental analysis suggests low levels of metal contamination in most flood water, but much higher levels of Cu, Pb, and Cr were found in leach from some storm debris samples found adjacent to the Newtown Creek and Gowanus Canal superfund sites. These data suggest a rapid recovery of water quality in local waterways after Superstorm Sandy, but that trapped flood water and debris samples in urban neighborhoods retained elevated levels of microbial sewage pollution, and in some cases metal pollution, days after that

  14. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    Science.gov (United States)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  15. USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William D. Bostick

    2003-05-01

    Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

  16. Intelligent SUBsurface Quality : Intelligent use of subsurface infrastructure for surface quality

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Kuzniecow Bacchin, T.; Lafleur, F.; van de Ven, F.H.M.; Clemens, F.H.L.R.; Broere, W.; Laumann, S.J.; Klaassen, R.G.; Marinetti, C.

    2016-01-01

    This project focuses on the urban renewal of (delta) metropolises and concentrates on the question how to design resilient, durable (subsurface) infrastructure in urban renewal projects using parameters of the natural system – linking in an efficient way (a) water cycle, (b) soil and subsurface

  17. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  18. A watershed-scale approach to tracing metal contamination in the environment

    Science.gov (United States)

    Church, Stanley E

    1996-01-01

    IntroductionPublic policy during the 1800's encouraged mining in the western United States. Mining on Federal lands played an important role in the growing economy creating national wealth from our abundant and diverse mineral resource base. The common industrial practice from the early days of mining through about 1970 in the U.S. was for mine operators to dispose of the mine wastes and mill tailings in the nearest stream reach or lake. As a result of this contamination, many stream reaches below old mines, mills, and mining districts and some major rivers and lakes no longer support aquatic life. Riparian habitats within these affected watersheds have also been impacted. Often, the water from these affected stream reaches is generally not suitable for drinking, creating a public health hazard. The recent Department of Interior Abandoned Mine Lands (AML) Initiative is an effort on the part of the Federal Government to address the adverse environmental impact of these past mining practices on Federal lands. The AML Initiative has adopted a watershed approach to determine those sites that contribute the majority of the contaminants in the watershed. By remediating the largest sources of contamination within the watershed, the impact of metal contamination in the environment within the watershed as a whole is reduced rather than focusing largely on those sites for which principal responsible parties can be found.The scope of the problem of metal contamination in the environment from past mining practices in the coterminous U.S. is addressed in a recent report by Ferderer (1996). Using the USGS1:2,000,000-scale hydrologic drainage basin boundaries and the USGS Minerals Availability System (MAS) data base, he plotted the distribution of 48,000 past-producing metal mines on maps showing the boundaries of lands administered by the various Federal Land Management Agencies (FLMA). Census analysis of these data provided an initial screening tool for prioritization of

  19. Influence of biofilms on colloid mobility in the subsurface

    NARCIS (Netherlands)

    Strathmann, M.; Leon Morales, C.F.; Flemming, H.C.

    2007-01-01

    Transport processes in subsurface environments are determined by complex interactions between the soil matrix and dissolved as well as particulate substances. Biofilms play an important role in the transport of colloids in the subsurface, since biofilms cover the solid soil matrix and hence

  20. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments.

    Science.gov (United States)

    Cheng, Xiaoliang; Shi, Honglan; Adams, Craig D; Ma, Yinfa

    2010-08-01

    Heavy metal contaminants in environment, especially in drinking water, are always of great concern due to their health impact. Due to the use of heavy metals as catalysts during plastic syntheses, particularly antimony, human exposure to metal release from plastic bottles has been a serious concern in recent years. The aim and scope of this study were to assess metal contaminations leaching out from a series of recycling plastic bottles upon treatments. In this study, leaching concentrations of 16 metal elements were determined in 21 different types of plastic bottles from five commercial brands, which were made of recycling materials ranging from no. 1 to no. 7. Several sets of experiments were conducted to study the factors that could potentially affect the metal elements leaching from plastic bottles, which include cooling with frozen water, heating with boiling water, microwave, incubating with low-pH water, outdoor sunlight irradiation, and in-car storage. Heating and microwave can lead to a noticeable increase of antimony leaching relative to the controls in bottle samples A to G, and some even reached to a higher level than the maximum contamination level (MCL) of the US Environmental Protection Agency (USEPA) regulations. Incubation with low-pH water, outdoor sunlight irradiation, and in-car storage had no significant effect on antimony leaching relative to controls in bottle samples A to G, and the levels of antimony leaching detected were below 6 ppb which is the MCL of USEPA regulations. Cooling had almost no effect on antimony leaching based on our results. For the other interested 15 metal elements (Al, V, Cr, Mn, Co, Ni, Cu, As, Se, Mo, Ag, Cd, Ba, Tl, Pb), no significant leaching was detected or the level was far below the MCL of USEPA regulations in all bottle samples in this study. In addition, washing procedure did contribute to the antimony leaching concentration for polyethylene terephthalate (PET) bottles. The difference of antimony leaching

  1. White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada

    International Nuclear Information System (INIS)

    Johnson, Dallas; Hale, Beverley

    2004-01-01

    Copper smelter emissions in Sudbury, Ontario may cause reductions in birch litter decomposition. - Decomposition of white birch (Betula papyrifera Marshall) foliar litter was examined at metal-contaminated and uncontaminated sites established along gradients of soil Cu, Ni, Pb and Zn concentrations near Sudbury, Ontario and Rouyn-Noranda, Quebec. Over an 18-month study period, a significantly lower rate of litter mass loss was observed at the Sudbury contaminated site (S1) than at the uncontaminated site (S2). This result was not duplicated at corresponding sites (RN1, RN2) in Rouyn-Noranda, despite similar levels of soil metal contaminants and atmospheric inputs. Concentrations of metals in litter increased at all sites with time. However, the greatest litter Cu and Ni concentrations were observed at S1 (188 and 192 μg/g, respectively), a result of substantial net gains of these elements from atmospheric inputs. On a per hectare basis, Cu accumulation in litter at S1 approached recommended application rates of Cu as copper sulphate for control of fungal diseases in agricultural operations, indicating that the current rate of Cu smelter emissions in Sudbury may cause the observed impairment of decomposition

  2. Heavy Metal Contamination in the Surface Sediments of Representative Limnetic Ecosystems in Eastern China

    Science.gov (United States)

    Tang, Wenzhong; Shan, Baoqing; Zhang, Hong; Zhang, Wenqiang; Zhao, Yu; Ding, Yuekui; Rong, Nan; Zhu, Xiaolei

    2014-11-01

    A comprehensive analysis of heavy metal pollution was conducted in the representative limnetic ecosystems of eastern China, which are subject to rapid economic development and population growth. The results demonstrated that the average contents with standard deviations of Cd, Cr, Cu, Ni, Pb and Zn in the surface sediments were 0.925 +/- 0.936, 142 +/- 46.8, 54.7 +/- 29.1, 60.5 +/- 21.6, 61.9 +/- 36.0 and 192 +/- 120 mg/kg dry wt., respectively, and that higher values were mainly observed in the southern portion of the study area, especially in the basins of Southeast Coastal Rivers (SCRB) and the Zhu River (ZRB). The six heavy metals in the surface sediments all had anthropogenic origins. In addition, the limnetic ecosystems, especially in the southern portion of the study area were found to be polluted by heavy metals, especially Cd. Overall, two hotspots of heavy metal pollution in the limnetic ecosystems of eastern China were found, one that consisted of the heavy pollution regions, SCRB and ZRB, and another composed of Cd pollution. These results indicate that heavy metal contamination, especially Cd, should be taken into account during development of management strategies to protect the aquatic environment in the limnetic ecosystems of eastern China, especially in the two aforementioned basins.

  3. Skeletal pathology in white storks (Ciconia ciconia) associated with heavy metal contamination in southwestern Spain.

    Science.gov (United States)

    Smits, Judit E G; Bortolotti, Gary R; Baos, Raquel; Blas, Julio; Hiraldo, Fernando; Xie, Qianle

    2005-01-01

    In 1998, a mine tailings dyke in southwestern Spain broke, flooding the Agrio-Guadiamar river system with acid tailings up to the borders of one of the largest breeding colonies of white storks in the western Palearctic, Dehesa de Abajo. Over the following years, a high proportion of nestlings developed leg defects, prompting this study. Ten fledglings with leg deformities from the spill area were compared with 11 normal storks of the same year class from another region far from the spill. However, metals were analyzed as a continuum rather than by site, as reference birds also contained high levels of metals. Gross pathology of the legs was supported by histopathology, which showed that bone remodeling activity was greater in the deformed storks, which also had more irregular subperiosteal bone, and tended to have higher residual islets of cartilage in their metaphyses, which, in turn were related to metal contaminant residues. Both Ca and P in bone were affected independently by metals. Deformed birds had lower serum bone alkaline phosphatase. Bone malformations, measured by leg asymmetry, was only partially explained by bone metals, indicating that a combination of factors was involved with the abnormal development in these young storks.

  4. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló, D.

    2016-11-03

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.

  5. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites].

    Science.gov (United States)

    Wang, Yu-ling; Nai, Chang-xin; Wang, Yan-wen; Dong, Lu

    2013-05-01

    In order to analyze the effects of electrical resistivity in heavy metal contaminated sites, we established the resistivity model of typical contaminated sites and simulate the DC resistivity method with Wenner arrays using the finite element method. The simulation results showed that the electrical method was influenced by the contamination concentration and the location of pollution. The more serious the degree of pollution was, the more obvious the low resistivity anomaly, thus the easier the identification of the contaminated area; otherwise, if there was light pollution, Wenner array could not get obvious low resistivity anomalies, so it would be hard to judge the contaminated area. Our simulation results also showed that the closer the contaminated areas were to the surface, the more easily the pollution was detected and the low resistivity anomalies shown in the apparent resistivity diagram were influenced by the Layered medium. The actual field survey results using resistivity method also show that the resistivity method can correctly detect the area with serious pollution.

  6. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China

    Directory of Open Access Journals (Sweden)

    Xie-feng Yao

    Full Text Available Abstract In this study, determination of heavy metal parameters and microbiological characterization of marine sediments obtained from two heavily polluted sites and one low-grade contaminated reference station at Jiaozhou Bay in China were carried out. The microbial communities found in the sampled marine sediments were studied using PCR-DGGE (denaturing gradient gel electrophoresis fingerprinting profiles in combination with multivariate analysis. Clustering analysis of DGGE and matrix of heavy metals displayed similar occurrence patterns. On this basis, 17 samples were classified into two clusters depending on the presence or absence of the high level contamination. Moreover, the cluster of highly contaminated samples was further classified into two sub-groups based on the stations of their origin. These results showed that the composition of the bacterial community is strongly influenced by heavy metal variables present in the sediments found in the Jiaozhou Bay. This study also suggested that metagenomic techniques such as PCR-DGGE fingerprinting in combination with multivariate analysis is an efficient method to examine the effect of metal contamination on the bacterial community structure.

  7. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania.

    Science.gov (United States)

    Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B

    2017-04-18

    Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.

  8. Cleaning of metal-contaminated graphite tiles of the TEXTOR ALT-II pump limiter blades

    Energy Technology Data Exchange (ETDEWEB)

    Dippel, K.H.; Kohlhaas, W.; Stickelmann, C. (Kernforschungsanlage Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Wallura, E. (Kernforschungsanlage Juelich GmbH (Germany, F.R.). Inst. fuer Reaktorwerkstoffe)

    Graphite is the preferred material for plasma facing components in today's fusion experiments and it is a prime candidate material also for coming fusion devices. At least in the existing tokamaks it cannot be excluded that the graphite surface will become contaminated, e.g. with metals, which leads to undesired effects on the plasma. Instead of an expensive exchange for new graphite parts, an appropriate cleaning method should be applied. This paper describes comparative tests of different mechanical cleaning methods applied to metal contaminated graphite tiles of the ALT-II toroidal belt pump limiter in the TEXTOR tokamak. Scanning electron microscope techniques have been used to characterize the cleaning efficiency. Best results have been obtained by sandblasting the graphite surface with boron carbide grains, which proves to be a very effective, inexpensive and fast cleaning method. After reassembly of the tiles, in-situ tests by exposure to tokamak discharges showed undetectably low ({le}10{sup 5}) metal concentrations in the TEXTOR plasma. (orig.).

  9. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  10. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  11. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.

    Science.gov (United States)

    Chiba, W A C; Passerini, M D; Tundisi, J G

    2011-05-01

    Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  12. Treatment of an automobile effluent from heavy metals contamination by an eco-friendly montmorillonite

    Directory of Open Access Journals (Sweden)

    Kovo G. Akpomie

    2015-11-01

    Full Text Available Unmodified montmorillonite clay was utilized as a low cost adsorbent for the removal of heavy metals from a contaminated automobile effluent. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used to characterize the adsorbent. Batch sorption experiments were performed at an optimum effluent pH of 6.5, adsorbent dose of 0.1 g, particle size of 100 μm and equilibrium contact time of 180 min. Thermodynamic analysis was also conducted. Equilibrium data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. A heterogeneous surface of the adsorbent was indicated by the Freundlich model. The Langmuir maximum adsorption capacity of the montmorillonite for metals was found in the following order: Zn (5.7 mg/g > Cu (1.58 mg/g > Mn (0.59 mg/g > Cd (0.33 mg/g > Pb (0.10 mg/g ≡ Ni (0.10 mg/g. This was directly related to the concentration of the metal ions in solution. The pseudo-first order, pseudo-second order, intraparticle diffusion and liquid film diffusion models were applied for kinetic analysis. The mechanism of sorption was found to be dominated by the film diffusion mechanism. The results of this study revealed the potential of the montmorillonite for treatment of heavy metal contaminated effluents.

  13. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC Chiba

    Full Text Available Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  14. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  15. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil.

    Science.gov (United States)

    Cabrini, Tatiana M B; Barboza, Carlos A M; Skinner, Viviane B; Hauser-Davis, Rachel A; Rocha, Rafael C; Saint'Pierre, Tatiana D; Valentin, Jean L; Cardoso, Ricardo S

    2017-02-01

    We evaluated concentrations of eight heavy metals Cr, Zn, Pb, Ni, Cu, Cd, Co and V, in tissues of representative macrofauna species from 68 sandy beaches from the coast of Rio de Janeiro state. The links between contamination levels and community descriptors such as diversity, evenness, density and biomass, were also investigated. Metal concentrations from macrofaunal tissues were compared to maximum permissible limits for human ingestion stipulated by the Brazilian regulatory agency (ANVISA). Generalized linear models (GLM's) were used to investigate the variability in macrofauna density, richness, eveness and biomass in the seven different regions. A non-metric multidimensional scaling analysis (n-MDS) was used to investigate the spatial pattern of heavy metal concentrations along the seven regions of Rio de Janeiro coast. Variation partitioning was applied to evaluate the variance in the community assemblage explained by the environmental variables and the heavy metal concentrations. Our data suggested high spatial variation in the concentration of heavy metals in macrofauna species from the beaches of Rio de Janeiro. This result highlighted a diffuse source of contamination along the coast. Most of the metals concentrations were under the limits established by ANVISA. The variability in community descriptors was related to morphodynamic variables, but not with metal contamination values, indicating the lack of direct relationships at the community level. Concentration levels of eight heavy metals in macrofauna species from 68 sandy beaches on Rio de Janeiro coast (Brazil) were spatially correlated with anthropogenic activities such as industrialization and urbanization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Assessment of metals contamination in Klang River surface sediments by using different indexes

    Directory of Open Access Journals (Sweden)

    Abolfazl Naji

    2011-01-01

    Full Text Available Surface sediments (0-5 cm from 21 stations throughout Klang River were sampled for metal concentration as well sediment's pH, total organic carbon (TOC and particles sizes to obtain an overall classification of metal contaminations in the area. The concentration of metals (µg∕g, Fe%, dw were as follows: 0.57- 2.19 Cd; 31.89-272.33 Zn; 5.96-24.47 Ni; 10.57- 52.87 Cu; 24.23-64.11 Pb and 1.56-3.03 Fe. The degree of sediment contaminations were computed using an enrichment factor (EF and geoaccumulation index (Igeo. The results suggested that enrichment factor and geoaccumulation values of Cd were greatest among the studied metals. Pearson's correlation indicated that effectiveness of TOC in controlling the distribution and enrichment of metals was a more important factor than that of the grain size (< 63µm. The study revealed that on the basis of computed indexes, Klang River is classified as moderately polluted river.

  17. Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece.

    Science.gov (United States)

    Aloupi, M; Angelidis, M O

    2001-07-01

    Sediment cores from the harbour and the coastal zone of Mytilene, island of Lesvos, Greece, were used to study the metal contamination caused by the discharge of untreated urban effluents into the sea. In the harbour. the upper layers were highly enriched in Cd, Cu, Pb and Zn, while no metal enrichment was recorded in the cores from the wider coastal zone. The metal data were normalized to Li (conservative element) to compensate for the natural textural and mineralogical variability. It was found that only the upper 18 cm of the core collected from the harbour of Mytilene could be reported as metal contaminated. Also, through the normalization procedure, it was found that the surface layers of coastal sediments assumed 'clean' were enriched in Pb, probably as a result of atmospheric transportation of the metal from the nearby town.

  18. Lead contamination in soil and vegetation of areas surrounding ...

    African Journals Online (AJOL)

    H

    2012-09-25

    Sep 25, 2012 ... 1Department of ecology, International Center for Science, High Technology & Environmental Sciences, Kerman, Iran. 2Department of ... In metal-contaminated soils, vegetation growing on such soils .... between waste pH and plant Pb concentration; H, relationship modeling between soil pH and waste pH; I, ...

  19. Risk and health implications of polluted soils for crop production ...

    African Journals Online (AJOL)

    Studies of polluted soils have shown heavy metals contamination of the soils as well the uptake of these toxic elements by plants. Consequently, there are reasons for concern over elevated concentration levels of heavy metal/toxic elements in polluted soils. This can ultimately result in high human and animal exposure to ...

  20. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  1. Combined effects of temperature changes and metal contamination at different levels of biological organization in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Grasset, Julie [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Ollivier, Élodie [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bougas, Bérénice [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Yannic, Glenn [Laboratoire d’Écologie Alpine, UMR CNRS 5553, Université de Savoie Mont Blanc, 73376 Le Bourget-du-lac (France); Campbell, Peter G.C. [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada)

    2016-08-15

    Highlights: • Yellow perch were exposed to a combination of heat and metal (Cd or Ni) stress. • Kidney metal accumulation was greatly enhanced at higher temperatures. • Elevated temperatures negatively affected several indicators of condition and metabolic capacities. • Exposure to Ni stimulated gonad development. • Metal stress modified the normal response of antioxidant capacities and apoptosis to heat stress. - Abstract: In this study, we measured the effects of temperature (9 °C, 20 °C, and 28 °C), metal contamination (cadmium and nickel) and their interaction on yellow perch (Perca flavescens) using liver enzymatic and transcriptomic endpoints and biometric indices. Kidney metal concentrations increased with a rise of temperature. The biometric indices analysed (Fulton condition factor, pyloric cæca, hepatosomatic and gonadosomatic indices) generally decreased with an increase of temperature but not with metal contamination. At the enzymatic level, the activity of superoxide dismutase (SOD), involved in antioxidant response, was affected by both temperature and metal contamination, whereas the activity of glucose-6-phosphate dehydrogenase (G6PDH), involved in energy accumulation but also in antioxidant response, was only affected by metal exposure. The response of perch to the stressors at the transcriptional level differed from the metabolic response. In particular, the transcription level of the cco and g6pdh genes sharply decreased with increasing temperature, while the activities of the corresponding enzymes remained stable. The normal response of the transcription level of the apoptotic gene (diablo) to heat stress was also altered in metal-contaminated fish. The combination of metal and temperature stresses also modified the response of antioxidant metabolism induced by these stressors individually. This study contributes to a better understanding of the influences of natural stressors like temperature on biomarkers commonly used in

  2. Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis oil and char/ash fraction

    OpenAIRE

    STALS, Mark; CARLEER, Robert; REGGERS, Guy; Schreurs, Sonja; YPERMAN, Jan

    2010-01-01

    Flash pyrolysis of heavy metal contaminated hardwoods originating from phytoremediation is studied. Different kinds of hardwoods, i.e. Salix fragilis (crack willow), Salix jorunn ("Jorunn" willow) and Populus grimminge (Grimminge poplar) are compared in a preliminary phase. Salix fragilis scores the best on both remediation capabilities and pyrolysis characteristics. Therefore, this cultivar is chosen for in-depth research. S. fragilis stems, leaves and stems mixed with leaves are pyrolysed. ...

  3. Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia.

    Science.gov (United States)

    Nath, Bibhash; Chaudhuri, Punarbasu; Birch, Gavin

    2014-09-01

    Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements <0.13, except for Mn). Translocation factors of essential elements (i.e., common plant micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Movements of adult chinook salmon during spawning migration in a metals-contaminated system, Coeur d'Alene River, Idaho

    Science.gov (United States)

    Goldstein, J.N.; Woodward, D.F.; Farag, A.M.

    1999-01-01

    Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.

  5. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. EVALUATION OF A METHOD USING COLLOIDAL GAS APHRONS TO REMEDIATE METALS-CONTAMINATED MINE DRAINAGE WATERS

    Energy Technology Data Exchange (ETDEWEB)

    R. Williams Grimes

    2002-06-01

    Experiments were conducted in which three selected metals-contaminated mine drainage water samples were treated by chemical precipitation followed by flotation using colloidal gas aphrons (CGAs) to concentrate the precipitates. Drainage water samples used in the experiments were collected from an abandoned turn-of-the-century copper mine in south-central Wyoming, an inactive gold mine in Colorado's historic Clear Creek mining district, and a relatively modern gold mine near Rapid City, South Dakota. The copper mine drainage sample was nearly neutral (pH 6.5) while the two gold mine samples were quite acidic (pH {approx}2.5). Metals concentrations ranged from a few mg/L for the copper mine drainage to several thousand mg/L for the sample from South Dakota. CGAs are emulsions of micrometer-sized soap bubbles generated in a surfactant solution. In flotation processes the CGA microbubbles provide a huge interfacial surface area and cause minimal turbulence as they rise through the liquid. CGA flotation can provide an inexpensive alternative to dissolved air flotation (DAF). The CGA bubbles are similar in size to the bubbles typical of DAF. However, CGAs are generated at ambient pressure, eliminating the need for compressors and thus reducing energy, capital, and maintenance costs associated with DAF systems. The experiments involved precipitation of dissolved metals as either hydroxides or sulfides followed by flotation. The CGAs were prepared using a number of different surfactants. Chemical precipitation followed by CGA flotation reduced contaminant metals concentrations by more than 90% for the copper mine drainage and the Colorado gold mine drainage. Contaminant metals were concentrated into a filterable sludge, representing less than 10% of the original volume. CGA flotation of the highly contaminated drainage sample from South Dakota was ineffective. All of the various surfactants used in this study generated a large sludge volume and none provided a

  7. Characterisation by PIXE RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Science.gov (United States)

    Guibert, G.; Irigaray, J. L.; Moretto, Ph.; Sauvage, T.; Kemeny, J. L.; Cazenave, A.; Jallot, E.

    2006-09-01

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl 6V 4 or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl 6V 4 and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl 6V 4 debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  8. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  9. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  10. Assessment of toxic metal contamination using a regional lithogenic geochemical background, Pampean area river basin, Argentina.

    Science.gov (United States)

    Castro, Liliana Norma; Rendina, Alicia Elena; Orgeira, Maria Julia

    2018-06-15

    Contamination assessment in riverbed sediments depends on the accurate determination of the background values. The aim of this study is to assess the degree of contamination and to evaluate the most adequate background for the determination of anthropogenic contamination in Cd, Cr, Cu, Ni, Pb and Zn in bed sediments of the Pampean area river basin (Matanza-Riachuelo River and tributary streams), Argentina. The geo-accumulation index (Igeo) values were calculated using selected lithogenic backgrounds (loess, loessoid sediments and paleosoils), the metal concentrations in the residual fraction (F4) in riverbed sediments and a global average shale often applied in the estimation of toxic metal Igeo. The IgeoF4, IgeoLZB and most of the others Igeos, indicated that in land areas used mainly for agriculture and cattle grazing, the superficial sediments were uncontaminated with Cd, Cr, Cu and Zn, and slightly contaminated with Ni and Pb. Conversely, in those areas dedicated to urban and industrial use, the metal contamination was greater. Overall, the relatively significant anthropogenic contamination of Cr > Pb ≥ Cu > Zn > Ni > Cd in the Riachuelo River area was associated with metallurgic activities, tanning and industrial waste. The comparative analysis of different values suggested that Buenos Aires' "pristine" loess could be recommended to evaluate the Igeo index of riverbed sediments in the Pampean area. To enhance the use of the selected background, the normalized enrichment factor using Al. In this study case, the Igeo and the EF using LZB background display the same trend, showing the greatest degree of contamination, as would be expected, in Riachuelo samples (RIA 1 and RIA 2) located in the urban/industrial area. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Subsurface Contaminants Focus Area annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line

  12. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  13. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution.

    Science.gov (United States)

    Alshahri, Fatimh

    2017-01-01

    Accumulation of heavy metals in environment may cause series potential risk in the living system. This study was carried out to investigate heavy metal contamination in sand samples and sediments along the beach near to disposal site of reject brine from Alkhobar desalination plant, which is one of the oldest and largest reverse osmosis desalination plants in eastern Saudi Arabia, Arabian Gulf. Fourteen heavy metals (U, Ca, Fe, Al, Ti, Sr, Rb, Ni, Pb, Cd, Cr, Cu, As, and Zr) were measured using gamma-ray spectrometry, atomic absorption spectrometer (AAS) and energy dispersive X-ray fluorescence spectrometer (EDX). The obtained data revealed that the concentrations of these metals were higher than the values in sediment and soil for other studies in Arabian Gulf. Furthermore, the mean values of Fe, Mn, Cr, Cu, As, Sr, and Zr concentrations in sand and sediments were higher than the geochemical background values in shale. The contamination factor (CF), modified degree of contamination (mC d ) and pollution load index (PLI) were assessed. According to contamination factors (CF > 1), the results showed elevated levels of Cu, Cr, Mn, Zr, and As in all samples. The highest value of contamination factor was found for As. Based on PLI (PLI > 1), the values of all sampling sites indicate a localized pollution in the study area. Current study could be useful as baseline data for heavy metals in sand and sediments nearby a desalination plant.

  14. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  15. Measuring Spatial Distribution Characteristics of Heavy Metal Contaminations in a Network-Constrained Environment: A Case Study in River Network of Daye, China

    Directory of Open Access Journals (Sweden)

    Zhensheng Wang

    2017-06-01

    Full Text Available Measuring the spatial distribution of heavy metal contaminants is the basis of pollution evaluation and risk control. Considering the cost of soil sampling and analysis, spatial interpolation methods have been widely applied to estimate the heavy metal concentrations at unsampled locations. However, traditional spatial interpolation methods assume the sample sites can be located stochastically on a plane and the spatial association between sample locations is analyzed using Euclidean distances, which may lead to biased conclusions in some circumstances. This study aims to analyze the spatial distribution characteristics of copper and lead contamination in river sediments of Daye using network spatial analysis methods. The results demonstrate that network inverse distance weighted interpolation methods are more accurate than planar interpolation methods. Furthermore, the method named local indicators of network-constrained clusters based on local Moran’ I statistic (ILINCS is applied to explore the local spatial patterns of copper and lead pollution in river sediments, which is helpful for identifying the contaminated areas and assessing heavy metal pollution of Daye.

  16. Hydrogeochemical Evolution and Heavy Metal Contamination in Groundwater of a Reclaimed Land on Zhoushan Island

    OpenAIRE

    Xiaoying Zhang; Bill X. Hu; Peng Wang; Junbing Chen; Lei Yang; Kai Xiao; Xiaowei Zhang

    2018-01-01

    The need for valuable land has encouraged reclamation in coastal areas worldwide in the past decades. Land reclamation can alter the groundwater quality in coastal aquifers. The purpose of this study is to identify the effect of land reclamation on groundwater chemistry, especially the major ions, and heavy metals on Zhoushan Island, China. The subsurface media on the island is composed of two layers, i.e., an upper infill layer and an underlain clay layer. The upper layer is previously ocean...

  17. Study of the effect of soil disturbance on vapor transport through integrated modeling of the atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.

    2014-12-01

    Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the

  18. Study of parameters for safety assessment of sub-surface disposal. Tunnel-excavating speed and thickness of additional soil in residential land development by filling

    International Nuclear Information System (INIS)

    Ishitoya, Kimihide; Sugaya, Toshikatsu; Funabashi, Hideyuki

    2012-02-01

    Japan Atomic Energy Agency (JAEA) is making preparations for the sub-surface disposal of own low level radioactive wastes. In order to carry out the disposal, it is necessary to confirm the safety of the disposal. Nuclear Safety Commission of Japan (NSC) issued 'Policy of the Safety Assessment of Sub-surface Disposal after the Period for Active Control' (April 1, 2010). Then, we investigated the parameters for dose assessment in tunnel excavation scenario and large-scale land use scenario which were described in the 'Policy of the Safety Assessment', in order to perform the assessment based on actual conditions. To be concrete, we investigated the tunnel excavating speeds in Japan for the former scenario, and investigated technical standards of the filling for the latter scenario. We studied the realistic parameters for the dose assessment with the results of those investigations. (author)

  19. Earthworms and Soil Pollutants

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Tamae

    2011-11-01

    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  20. Subsurface Noble Gas Sampling Manual

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that all sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.

  1. How functional traits of estuarine macrobenthic assemblages respond to metal contamination?

    KAUST Repository

    Piló, D.

    2016-08-06

    The effects of metal contamination on estuarine macrobenthic communities were investigated using the Biological Traits Analysis (BTA). The study was carried out in the Tagus estuary (western Portugal). Samples of macrobenthic communities and associated environmental variables were taken in four surveys (September 2012, and February, May and October 2013) across the contamination gradient from three main zones: a slightly contaminated, a moderately contaminated and a highly contaminated zone. Functional traits for the most abundant species were assigned using seven categories based on “Feeding mode”, “Life span”, “Body size”, “Motility”, “Position in sediments”, “Larval type” and “AMBI ecological group”. To investigate whether the macroinvertebrate community structure was associated with the environmental parameters and biological traits an integrative multivariate analysis, combining the RLQ analysis and the fourth-corner method, was applied. Within this analysis, human-induced estuarine variables (metals) were rendered independent from natural ones (sediment fine particles) through partial correlations. Following this approach, it was possible to decouple the effects of two typically highly correlated environmental descriptors with different origins. Overall, the study identified significant relationships between sediment environmental descriptors and the functional traits of macrobenthic communities. Further, RLQ/Fourth-corner combined analysis successfully isolated the traits and corresponding species that were most correlated with the measured concentration of trace metals in sediments, supporting the knowledge that benthic organisms exhibit distinct responses to different levels of disturbance. A shift in species dominance occurred along the contamination gradient with epifaunal tolerant species with very small size, long life span, and crawling motility dominating the highest contaminated area. This area was also related with

  2. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  3. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field.

    Science.gov (United States)

    Bidar, Géraldine; Pruvot, Christelle; Garçon, Guillaume; Verdin, Anthony; Shirali, Pirouz; Douay, Francis

    2009-01-01

    organs showed the effective contamination by industrial dust emissions. Metals absorbed by plants were mainly stored in the roots. With regard to this storage, the plants seemed to limit the metal transfer to their aerial parts over the time, thereby indicating their availability for metal phytostabilization. Aerial deposition was another source of plant exposure to nonferrous metals. Despite the occurrence of metal-induced oxidative alterations in plant organs, both plant species seemed to tolerate a high metal concentration in soils. Taken together, these results indicated that T. repens and L. perenne were able to form a plant cover on highly Cd-, Pb-, and Zn-polluted soils, to limit the metal transfer to their aerial parts and were relatively metal-tolerant. All these characteristics made them suitable for phytostabilization on metal-contaminated soils. These findings also highlighted the necessity to take into account seasonal and annual variations for a future phytomanagement. In this work, the behavior of plant species grown in metal-polluted soil has been studied during 2 years. Obviously, this time is too short to ensure that metals remain accumulated in the root system and few are transferred in aerial parts over the time. It is why regular monitoring should be achieved during more than a decade after the settlement of the plant cover. This work will be completed by the study of the T. repens and L. perenne effects on mobility of metals in order to evaluate the quantities of pollutants which could be absorbed by the biota and transferred to groundwater. Bioaccessibility tests could be also realized on polluted soils in order to evaluate the phytostabilization impacts on the exposition risks for humans.

  4. Activation of Peroxymonosulfate by Subsurface Minerals

    Science.gov (United States)

    Yu, Miao; Teel, Amy L.; Watts, Richard J.

    2016-08-01

    In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible react