WorldWideScience

Sample records for metal-boron alloy nanotubes

  1. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  2. Effects of Boron-Incorporation in a V-Containing Zr-Based AB2 Metal Hydride Alloy

    Directory of Open Access Journals (Sweden)

    Shiuan Chang

    2017-11-01

    Full Text Available In this study, boron, a metalloid element commonly used in semiconductor applications, was added in a V-containing Zr-based AB2 metal hydride alloy. In general, as the boron content in the alloy increased, the high-rate dischargeability, surface exchange current, and double-layer capacitance first decreased and then increased whereas charge-transfer resistance and dot product of charge-transfer resistance and double-layer capacitance changed in the opposite direction. Electrochemical and gaseous phase characteristics of two boron-containing alloys, with the same boron content detected by the inductively coupled plasma optical emission spectrometer, showed significant variations in performances due to the difference in phase abundance of a newly formed tetragonal V3B2 phase. This new phase contributes to the increases in electrochemical high-rate dischargeability, surface exchange current, charge-transfer resistances at room, and low temperatures. However, the V3B2 phase does not contribute to the hydrogen storage capacities in either gaseous phase and electrochemical environment.

  3. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi

    2016-04-19

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. © 2016 American Chemical Society.

  4. A density functional theory study of new boron nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhao-Hua [Shijiazhuang Institute of Technology, Shijiazhuang (China); Xie, Zun [Hebei Normal Univ., Shijiazhuang (China). College of Physics Science and Information Engineering and Hebei Advanced Thin Films Lab.

    2017-07-01

    Using first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.

  5. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    Science.gov (United States)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  6. Microstructural characterization aluminium alloys from the addition of boron

    International Nuclear Information System (INIS)

    Nunes, A.G.P.; Pipano, T.F.; Mota, M.A.; Mariano, N.A.; Ramos, E.C.T.

    2014-01-01

    In the electrical industry, the aluminum becomes attractive because it has excellent characteristics for transmitting electricity. The liquid aluminum has in its composition transition elements (zirconium, titanium, vanadium and chromium) that interfere negatively on the quality of the product. The addition of aluminum-boron alloys have been used to remove transition metals through the formation of borides, enabling an increase in electrical conductivity. However, no detailed reports of reactions between boron, transition metals and primary aluminum engines. However, the objective is to determine the stoichiometric composition that enables an increase in electrical conductivity of an aluminum alloy. Samples with different concentrations of boron were characterized by optical emission spectrometry, electrical conductivity and X-ray diffraction. The addition of boron in excess reduces the time in the formation of borides, and enable an increase in electrical conductivity. (author)

  7. On Certain Topological Indices of Boron Triangular Nanotubes

    Science.gov (United States)

    Aslam, Adnan; Ahmad, Safyan; Gao, Wei

    2017-08-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.

  8. On certain topological indices of boron triangular nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, Adnan [Univ. of Engineering and Technology, Lahore (Pakistan). Dept. of Natural Sciences and Humanities; Ahmad, Safyan [GC Univ. Lahore (Pakistan). Abdus Salam School of Mathematical Sciences; Gao, Wei [Yunnan Normal Univ., Kunming (China). School of Information Science and Technology

    2017-11-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randic (R{sub a}), first Zagreb (M{sub 1}) and second Zagreb (M{sub 2}), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC{sub 4}) and the fifth version of geometric-arithmetic (GA{sub 5}) indices of boron triangular nanotubes.

  9. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  10. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  11. Electronic structures and three-dimensional effects of boron-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Koretsune, Takashi; Saito, Susumu

    2008-01-01

    We study boron-doped carbon nanotubes by first-principles methods based on the density functional theory. To discuss the possibility of superconductivity, we calculate the electronic band structure and the density of states (DOS) of boron-doped (10,0) nanotubes by changing the boron density. It is found that the Fermi level density of states D(ε F ) increases upon lowering the boron density. This can be understood in terms of the rigid band picture where the one-dimensional van Hove singularity lies at the edge of the valence band in the DOS of the pristine nanotube. The effect of three-dimensionality is also considered by performing the calculations for bundled (10,0) nanotubes and boron-doped double-walled carbon nanotubes (10,0)/(19,0). From the calculation of the bundled nanotubes, it is found that interwall dispersion is sufficiently large to broaden the peaks of the van Hove singularity in the DOS. Thus, to achieve the high D(ε F ) using the bundle of nanotubes with single chirality, we should take into account the distance from each nanotube. In the case of double-walled carbon nanotubes, we find that the holes introduced to the inner tube by boron doping spread also on the outer tube, while the band structure of each tube remains almost unchanged.

  12. Compatibility of heat resistant alloys with boron carbide, (4)

    International Nuclear Information System (INIS)

    Baba, Sinichi; Saruta, Toru; Ooka, Kiichi; Tanaka, Isao; Aoyama, Isao

    1985-07-01

    This paper relates to the compatibility test of control rod sheath (Hastelloy XR alloy) and neutron absorber (boronated graphite) for the VHTR, which has been researched and developed by JAERI. The irradiation was conducted by using the OGL-1 irradiation facility in the JMTR in order to study reaction behaviour between Hastelloy XR alloy and boronated graphite as well as to determine a reaction barrier performance of refractory metal foils Nb, Mo, W and Re. Irradiation conditions were as follows. Neutron dose : 4.05 x 10 22 m -2 (E 18 m -2 (E > 0.16 pJ, 1 Mev). Helium coolant : Average temperature 855 0 C, Pressure 2.94 MPa, Total impurity concentration 400 kBq/m 3 . Irradiation time : 5.0 Ms (1390 hours). Post-irradiation examinations i.e. visual inspection, dimensional inspection, weight measurement, metallography, hardness test, morphological observations by SEM and analysis of element distributions by EPMA were carried out. In the result, reaction products of Hastelloy XR alloy were observed in the ellipsoidal form locally. These results were same as those of the out-of-pile tests. Obvious irradiation effects were not detectable but a little accelarated increase in reaction depth of Hastelloy XR alloy by heat effect of specimens was observed. The refractory metal foils had a good performance of reaction barrier between Hastelloy XR alloy and boronated graphite. Furthermore, movement of Ni, Fe and Cr in the reaction area of Hastelloy XR alloy, difference in the reaction depth of B and C, irradiation effects on diffusion coefficient, lithium production and heat effect are discussed. (author)

  13. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  14. First principle investigations on Boron doped Fe2VAl Heusler alloy

    International Nuclear Information System (INIS)

    Venkatesh, Ch.; Srivastava, S.K.; Rao, V.V.

    2014-01-01

    The role of atomic size of sp-element is investigated through theoretical calculations and basic experiments to understand the physical properties of Boron doped Fe 2 VAl alloy. The results of ab-initio calculations on ordered L2 1 structure of Fe 2 VAl 1-x B x (x=0, 0.5, 1) alloys have been compared to understand the role of sp-element size on the hybridization among their respective valance states. Interestingly, semi-metallic and paramagnetic like ground states were found in the Boron doped alloys in similar to Fe 2 VAl, eliminating the role of size of the doppent sp-atom. These calculations result in hybridization where the covalent distribution of valance states among the atoms is responsible to produce a finite pseudo-gap at the Fermi level. The observed features could be explained on the basis of covalent theory of magnetism in which an amount of spectral weight transfer occurs in the DOS spectrum among the same spin orbitals, leading to symmetric distribution of bonding and anti-bonding states. However, the obtained experimental findings on Boron doped alloys are in contrast with these calculations, indicating that experimentally the alloy formation into an ideal L2 1 lattice does not happen while doping with Boron. Further, the micro structural analysis shows Boron segregation across the grain boundaries that may form magnetic inhomogeneities in the lattice of Boron doped Fe 2 VAl alloys which preferably cause these experimental anomalies

  15. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Page 1 ... 1. Introduction. Boron nitride nanotubes (BNNTs) are like carbon nanotubes. (CNTs) in structure in which carbon atoms are replaced by alternate boron and nitrogen atoms. Thus, BNNTs demon- ... istic analyser for intermediate landing situation of inserted mass.15 Also, a macroscopic continuum simulation is sug-.

  16. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  17. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  18. Multiple-walled BN nanotubes obtained with a mechanical alloying technique

    International Nuclear Information System (INIS)

    Rosas, G.; Sistos, J.; Ascencio, J.A.; Medina, A.; Perez, R.

    2005-01-01

    An experimental method to obtain multiple-walled nanotubes of BN using low energy is presented. The method is based on the use of mechanical alloying techniques with elemental boron powders and nitrogen gas mixed in an autoclave at room temperature. The chemical and structural characteristics of the multiple-walled nanotubes were obtained using different techniques, such as X-ray diffraction, transmission electron microscopy, EELS microanalysis, high-resolution electron microscopy images and theoretical simulations based on the multisliced approach of the electron diffraction theory. This investigation clearly illustrates the production of multiple-wall BN nanotubes at room temperature. These results open up a new kind of synthesis method with low expense and important perspectives for use in large-quantity production. (orig.)

  19. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    Science.gov (United States)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  20. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  1. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  2. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  3. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  4. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    International Nuclear Information System (INIS)

    Majidi, R.; Ghafoori Tabrizi, K.; Jalili, S.

    2009-01-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  5. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Ghafoori Tabrizi, K., E-mail: K-TABRIZI@sbu.ac.i [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Jalili, S. [Department of Chemistry, K.N. Toosi University of Technology, Tehran 16315-1618 (Iran, Islamic Republic of)

    2009-11-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  6. Flame-photometric determination of boron in alloys with chromatographic separation

    International Nuclear Information System (INIS)

    Telegin, G.F.; Popandopulo, Yu.I.; Grazhuiene, S.S.

    1983-01-01

    A study was made on the possibility of using flame-photometric method for boron determination in iron base alloys. The method of extraction chromatography was used for boron separation from iron. It is possible to reliably determine boron in Fesub(x)Bsub(100-x) alloys only at a concentration ratio of iron to boron <=0.2. The technique for determination of boron in Fesub(x)Bsub(100-x) alloys was developed on the base of the conducted investigation

  7. Flame-photometric determination of boron in alloys with chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, G.F.; Popandopulo, Yu.I.; Grazhuiene, S.S. (AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela)

    1983-01-01

    A study was made on the possibility of using flame-photometric method for boron determination in iron base alloys. The method of extraction chromatography was used for boron separation from iron. It is possible to reliably determine boron in Fesub(x)Bsub(100-x) alloys only at a concentration ratio of iron to boron <=0.2. The technique for determination of boron in Fesub(x)Bsub(100-x) alloys was developed on the base of the conducted investigation.

  8. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  9. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    International Nuclear Information System (INIS)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I—V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. PERSPECTIVES OF NANOPOWDERS APPLICATION FOR MANUFACTURING OF MODIFYING ALLOYING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. Kalinichenko

    2015-01-01

    Full Text Available Application of nanomaterials for grain refining of metals and its allac is of great interest as it aimis achieveto higher physicalmechanical properties in finished parts. Analysis shows that to gain high effectiveness of nanoparticles it is important to provide proper input of these particles into alloying alloy. The aim of present research is study of initial nanoparticles structure on the base of titanium, boron, yttrium and carbon nanotubes as well as development of method to manufacture alloying alloys containing nanoparticles.Investigations of nanopowders phase compositions on the base of titanium, boron and yttrium have shown that active elements such as boron carbide, titanium carbide and nitride, yttrium oxide are base compounds of these nanopowders. Powder particles are formed by primary structural elements having mainly plate state (titanium and boron carbides and containing equiaxial inclusions with sizes of 5–200 nm. Chemical composition of specimens synthesized is uniform and contains 98.0 – 99.5% of main compound.Results of metal-protector and nanoparticles mixing have revealed that the increase of mixing duration from 2 to 6 hours assist to more uniform elements distribution through the pellet volume. Applying extrusion method specimens of alloying alloys have been produced and elements distribution in cross-section and longitudinal directions were determined.Analysis of research implemented has shown that distribution of active nanopowders in matrix is more uniform in extruded alloying alloys specimens compared to ones produced by methods of sintering or pressing of powder mixtures.

  11. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  12. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  13. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  14. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  15. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    International Nuclear Information System (INIS)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-01-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol"−"1 and − 2457.124 kcal mol"−"1 respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol"−"1 which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol"−"1) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  16. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — Conduct a systematic computational study on the physical and electro-mechanical properties of Boron Nitride Nanotubes (BNNTs) to evaluate their functional...

  17. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi; Raciti, David; Yu, Shengnan; Zhang, Lei; Deng, Lin; He, Jie; Liu, Yijing; Khashab, Niveen M.; Wang, Chao; Gong, Jinlong; Nie, Zhihong

    2016-01-01

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm

  18. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  19. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation

    International Nuclear Information System (INIS)

    Sreeranganathan, A.; Gokhale, A.; Tamirisakandala, S.

    2008-01-01

    The constitutive properties of the titanium alloy matrix in boron-modified titanium alloys are different from those of the corresponding unreinforced alloy due to the microstructural changes resulting from the addition of boron. Experimental and finite-element analyses of spherical indentation with a large penetration depth to indenter radius ratio are used to compute the local constitutive properties of the matrix alloy. The results are compared with that of the corresponding alloy without boron, processed in the same manner

  20. Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes

    International Nuclear Information System (INIS)

    Saxena, Prapti; Sanyal, Sankar P

    2006-01-01

    In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)

  1. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  2. Optimizing the hydrogen storage in boron nitride nanotubes by defect engineering

    Energy Technology Data Exchange (ETDEWEB)

    Oezdogan, Kemal; Berber, Savas [Physics Department, Gebze Institute of Technology, Cayirova Kampusu, Gebze, 41400 Kocaeli (Turkey)

    2009-06-15

    We use ab initio density functional theory calculations to study the interaction of hydrogen with vacancies in boron nitride nanotubes to optimize the hydrogen storage capacity through defect engineering. The vacancies reconstruct by forming B-B and N-N bonds across the defect site, which are not as favorable as heteronuclear B-N bonds. Our total energy and structure optimization results indicate that the hydrogen cleaves these reconstructing bonds to form more stable atomic structures. The hydrogenated defects offer smaller charge densities that allow hydrogen molecule to pass through the nanotube wall for storing hydrogen inside the nanotubes. Our optimum reaction pathway search revealed that hydrogen molecules could indeed go through a hydrogenated defect site with relatively small energy barriers compared to the pristine nanotube wall. The calculated activation energies for different diameters suggest a preferential diameter range for optimum hydrogen storage in defective boron nitride nanotubes. (author)

  3. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  4. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-01-01

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H 2 = 1/1, 100 cm 3 /min, at 620 o C under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H 2 = 1/1, total gas flow rate 100 cm 3 /min, at 620 o C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  5. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  6. Growth of vertically aligned multiwalled carbon nanotubes forests on metal alloy Ni-Nb-N with low content of catalyst

    Science.gov (United States)

    Dubkov, S.; Trifonov, A.; Shaman, Yu; Pavlov, A.; Shulyat'ev, A.; Skorik, S.; Kirilenko, E. P.; Rygalin, B.

    2016-08-01

    This research shows the possibility of carbon nanotubes (CNTs) formation on the surface of low nickel (∼ 10 at.%) Ni-Nb-N amorphous metal alloy film by CVD method at 550 °C of the gas mixture based on acetylene. The structure of CNT were studied by transmission and scanning-electron microscopy, energy-dispersive X-ray and the Raman spectroscopy.

  7. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  8. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  9. Microstructural characterization aluminium alloys from the addition of boron; Caracterizacao microestrutural de ligas de aluminio a partir da adicao de boro

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, A.G.P.; Pipano, T.F.; Mota, M.A.; Mariano, N.A.; Ramos, E.C.T. [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencias e Tecnologia

    2014-07-01

    In the electrical industry, the aluminum becomes attractive because it has excellent characteristics for transmitting electricity. The liquid aluminum has in its composition transition elements (zirconium, titanium, vanadium and chromium) that interfere negatively on the quality of the product. The addition of aluminum-boron alloys have been used to remove transition metals through the formation of borides, enabling an increase in electrical conductivity. However, no detailed reports of reactions between boron, transition metals and primary aluminum engines. However, the objective is to determine the stoichiometric composition that enables an increase in electrical conductivity of an aluminum alloy. Samples with different concentrations of boron were characterized by optical emission spectrometry, electrical conductivity and X-ray diffraction. The addition of boron in excess reduces the time in the formation of borides, and enable an increase in electrical conductivity. (author)

  10. Microstructural stability and thermomechanical processing of boron modified beta titanium alloys

    Science.gov (United States)

    Cherukuri, Balakrishna

    One of the main objectives during primary processing of titanium alloys is to reduce the prior beta grain size. Producing an ingot with smaller prior beta grain size could potentially eliminate some primary processing steps and thus reduce processing cost. Trace additions of boron have been shown to decrease the as-cast grain size in alpha + beta titanium alloys. The primary focus of this dissertation is to investigate the effect of boron on microstructural stability and thermomechanical processing in beta titanium alloys. Two metastable beta titanium alloys: Ti-15Mo-2.6Nb-3Al-0.2Si (Beta21S) and Ti-5Al-5V-5Mo-3Cr (Ti5553) with 0.1 wt% B and without boron additions were used in this investigation. Significant grain refinement of the as-cast microstructure and precipitation of TiB whiskers along the grain boundaries was observed with boron additions. Beta21S and Beta21S-0.1B alloys were annealed above the beta transus temperature for different times to investigate the effect of boron on grain size stability. The TiB precipitates were very effective in restricting the beta grain boundary mobility by Zener pinning. A model has been developed to predict the maximum grain size as a function of TiB size, orientation, and volume fraction. Good agreement was obtained between model predictions and experimental results. Beta21S alloys were solution treated and aged for different times at several temperatures below the beta transus to study the kinetics of alpha precipitation. Though the TiB phase did not provide any additional nucleation sites for alpha precipitation, the grain refinement obtained by boron additions resulted in accelerated aging. An investigation of the thermomechanical processing behavior showed different deformation mechanisms above the beta transus temperature. The non-boron containing alloys showed a non-uniform and fine recrystallized necklace structure at grain boundaries whereas uniform intragranular recrystallization was observed in boron containing

  11. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    Science.gov (United States)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  12. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    Science.gov (United States)

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  13. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  14. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  15. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  16. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  17. Synthesis of Au and Au/Cu alloy nanoparticles on multiwalled carbon nanotubes by using microwave irradiation

    International Nuclear Information System (INIS)

    Rangari, Vijaya K.; Dey, Sanchita; Jeelani, Shaik

    2010-01-01

    Gold nanoparticles and gold-copper alloy nanoparticles were synthesized by reduction of chloroauric acid (HAuCl_4.xH_2O) and co-reduction of chloroauric acid (HAuCl_4.xH_2O) and Copper(II) acetate [(CH_3COO)_2Cu.H_2O] by ethylene glycol through microwave irradiation technique. In this reaction ethylene glycol used as a solvent and also reducing agent. The cetyltrimethyl ammonium bromide (CTAB) used as surfactant. Au nanoparticles and Au-Cu nanoparticles on the surface of multiwalled carbon nanotube also produced by using same procedure. The XRD analysis confirmed the formation of Au and Au-Cu alloy nanoparticles on multiwalled carbon nanotubes(CNTs). The morphology and size of the particles were examined by the transmission electron microscopy. The EDS analysis on individual particles confirmed that the presence of two metals in a particle in case of alloy nanoparticle. The results presented here show that a variety of well defined metal and metal alloy nanoparticles can be produced by using the microwave polyol process with in a short period of time. (author)

  18. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  19. Simulation of STM technique for electron transport through boron-nitride nanotubes

    International Nuclear Information System (INIS)

    Ganji, M.D.; Mohammadi-nejad, A.

    2008-01-01

    We report first-principles calculations on the electrical transport properties of boron-nitrid nanotubes (BNNTs). We consider a single walled (5,0) boron-nitrid nanotube sandwiched between an Au(1 0 0) substrate and a monatomic Au scanning tunneling microscope (STM) tip. Lateral motion of the tip over the nanotube wall cause it to change from one conformation class to the others and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BNNT/Au nanowires are shown to be a convenient switch. Experiments with a conventional STM are proposed to test these predictions. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe systems at zero bias are analyzed, and it suggests that the variation of the coupling between the wire and the electrodes leads to switching behaviour

  20. Determination of microdistribution of boron in metals

    Energy Technology Data Exchange (ETDEWEB)

    Illic, R; Najzer, M; Rant, J [J. Stefan Institute, Ljubljana (Yugoslavia)

    1976-07-01

    A neutron induced autoradiographic technique was used for the determination of the boron microdistribution in metals. The specimens, which were in close contact with a LR 115 SSTD, were irradiated in the exposure room of the TRIGA Mark II reactor in Ljubljana. The spatial resolution of the autoradiographic image recorded by the LR 115 detector was found to be influenced mainly by the size of the reaction product tracks. The track diameter of a normally etched detector was about 7 {mu}m. An appreciable reduction of track size was achieved by pre-etching the detector foil before neutron irradiation. By this procedure it was possible to obtain a track diameter as small as 1 {mu}m and correspondingly to improve the spatial resolution of the autoradiographs of type EC 80 steel and Al Mg 3 alloy which contain 30 and 2 ppm of boron respectively. (author)

  1. A self-propagation high-temperature synthesis and annealing route to synthesis of wave-like boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin; Zhang, Laiping [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China); Gu, Yunle, E-mail: ncm@mail.wit.edu.cn [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China); Pan, Xinye; Zhao, Guowei; Zhang, Zhanhui [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China)

    2013-03-15

    Highlights: ► Large quantities of wave-like BN nanotubes were synthesized by SHS-annealing method. ► The catalytic boron-containing porous precursor was produced by self-propagation high-temperature synthesis method. ► Three growth models were proposed to explain the growth mechanism of the wave-like BN nanotubes. - Abstract: Large quantities of boron nitride (BN) nanotubes were synthesized by annealing a catalytic boron-containing porous precursor in flowing NH{sub 3} gas at 1180 °C. The porous precursor was prepared by self-propagation high-temperature synthesis (SHS) method at 800 °C using Mg, B{sub 2}O{sub 3} and amorphous boron powder (α-B) as the starting materials. The porous precursor played an important role in large quantities synthesis of BN nanotubes. The as-synthesized product was characterized by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), Raman, Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HRTEM). Characterization results indicated that the BN nanotubes displayed wave-like inner structures with diameters in the range of 50–300 nm and average lengths of more than 10 μm. The possible growth mechanism of the BN nanotubes was also discussed.

  2. On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kuzubov, Alexander A. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Kovaleva, Evgenia A., E-mail: kovaleva.evgeniya1991@mail.ru [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Tomilin, Felix N.; Mikhaleva, Natalya S.; Kuklin, Artem V. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation)

    2015-12-15

    The interaction between armchair carbon and boron nitride nanotubes (NT) with ferromagnetic transition metal (TM) surfaces, namely, Ni(111) and Co(0001), was studied by means of density functional theory. Different configurations of composite compartments mutual arrangement were considered. Partial densities of states and spin density spatial distribution of optimized structures were investigated. Influence of ferromagnetic substrate on nanotubes’ electronic properties was discussed. The values of spin polarization magnitude at the Fermi level are also presented and confirm the patterns of spin density spatial distribution. - Highlights: • Interaction of armchair nanotubes with ferromagnetic metal surfaces was investigated. • Different configurations of nanotube's location were considered. • For all nanotubes the energy difference between configurations is negligible. • Nanotubes were found to be more or less spin-polarized regarding to the configuration. • BN nanotubes demonstrate vanishing of the band gap and contact-induced conductivity.

  3. Catalytic growth of vertically aligned neutron sensitive 10Boron nitride nanotubes

    International Nuclear Information System (INIS)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Khan, Ghulamullah; Ramay, Shahid M.; Mahmood, Asif; Amin, Muhammad; Muhammad, Nawshad

    2016-01-01

    10 Boron nitride nanotubes ( 10 BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned 10 BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned 10 BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned 10 BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of 10 BNNT. HR-TEM shows tubular morphology of the synthesized 10 BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal 10 Boron nitride ( 10 h-BN) nature of the synthesized 10 BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm −1 ) that corresponds to E 2g mode of vibration in 10 h-BN

  4. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  5. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  6. Compatibility of heat resistant alloys with boron carbide, 5

    International Nuclear Information System (INIS)

    Baba, Shinichi; Kurasawa, Toshimasa; Endow, Taichi; Someya, Hiroyuki; Tanaka, Isao.

    1986-08-01

    This paper includes an experimental result of out-of-pile compatibility and capsule design for irradiation test in Japan Materials Testing Reactor (JMTR). The compatibility between sheath material and neutron absorber materials for control rod devices (CRD) was examined for potential use in a very high temperature reactor (VHTR) which is under development at JAERI. The purpose of the compatibility tests are preliminary evaluation of safety prior to irradiation tests. Preliminary compatibility evaluation was concerned with three items as follows : 1) Lithium effects on the penetrating reaction of Incoloy 800H alloy in contact with a mixture of boronated graphite and lithium hydroxide powders, 2) Short term tensile properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite and fracture mode analysis, 3) Reaction behavior of both alloys under transient power conditions of a VHTR. It was clear that the reaction rate constant of the Incoloy 800H alloy was accelerated by doping lithium hydroxide into the boron carbide and graphite powder. The mechanical properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite were decreased. Ultimate tensile strength and tensile ductilities at temperatures over 850 deg C were reduced, but there was no change in the proof (yield) stress. Both alloys exhibited a brittle intergranular fracture mode during transient power conditions of a VHTR and also exhibited severe penetration. Irradiation capsules for compatibility test were designed to simulate three irradiation conditions of VHTR: 1) steady state for VHTR, 2) Transient power condition, 3) Service limited life of CRD. Capsule irradiation experiments have been carried out satisfactorily and thus confirm the validity of the capsule design procedure. (author)

  7. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  8. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  9. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  10. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  11. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Cast and hipped gamma titanium aluminum alloys modified by chromium, boron, and tantalum

    International Nuclear Information System (INIS)

    Huang, Shyhchin.

    1993-01-01

    A cast body is described of a chromium, boron, and tantalum modified titanium aluminum alloy, said alloy consisting essentially of titanium, aluminum, chromium, boron, and tantalum in the following approximate atomic ratio: Ti-Al 45-50 Cr 1-3 Ta 1-8 B 0.1-0.3 , and said alloy having been prepared by casting the alloy to form said cast body and by HIPping said body

  13. In vitro biocompatibility of titanium after plasma surface alloying with boron

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Mariusz, E-mail: markacz@ump.edu.pl [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Miklaszewski, Andrzej [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Karolina [Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan (Poland)

    2016-12-01

    Recently, the effect of different sizes of precursor powders during surface plasma alloying modification on the properties of titanium surface was studied. In this work we show in vitro test results of the titanium (α-Ti) after plasma surface alloying with boron (B). Ti-B nanopowders with 2 and 10 wt% B were deposited onto microcrystalline Ti substrate. The in vitro cytocompatibility of these biomaterials was evaluated and compared with a conventional microcrystalline Ti. During the studies, established cell line of human gingival fibroblasts and osteoblasts were cultured in the presence of tested materials, and its survival rate and proliferation activity were examined. For this purpose, MTT assay, flow cytometric and fluorescent microscopic evaluation were made. Biocompatibility tests carried out indicate that the Ti after plasma surface alloying with B could be a possible candidate for dental implants and other medicinal applications. Plasma alloying is a promising method for improving the properties of titanium, thus increasing the field of its applications. - Highlights: • this is first article carried out on the titanium after plasma surface alloying with different contents of boron; • microcrystalline titanium modified with boron changes the physicochemical features of conventional material; • Ti modified by boron is proper in terms of effects on survival and proliferative activity of cells of dental alveoli; • precursors with different content of boron in different ways influence the intensity and stability of cell growth;.

  14. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.

    Science.gov (United States)

    Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-05-23

    With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.

  15. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  16. Synthesis of boron nitride nanotubes with SiC nanowire as template

    International Nuclear Information System (INIS)

    Zhong, B.; Song, L.; Huang, X.X.; Wen, G.W.; Xia, L.

    2011-01-01

    Highlights: → Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. → SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. → A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  17. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  18. single-walled boron nitride nanotube for use as biosensor or in

    Indian Academy of Sciences (India)

    Vitamin C; vitamin B3; density functional theory; boron nitride nanotube (BNNT). 1. Introduction ... and disadvantages of functionalizations of BNNTs for increasing their ... a protein that gives structure to bones, cartilage, muscle and blood ...

  19. Strain ageing and yield plateau phenomena in γ-TiAl based alloys containing boron

    International Nuclear Information System (INIS)

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-01

    There has been considerable interest over the past few years in γ-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron (≥0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi's results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near γ-TiAl alloys

  20. Hydrogen storage alloy electrode for a metal-hydride alkaline battery; Kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Y.; Kuroda, Y.; Higashiyama, N.; Kimoto, M.; Nogami, M.; Nishio, K.; Saito, T.

    1996-07-16

    This invention aims to present a hydrogen storage alloy electrode which gives a metal-hydride alkaline battery with a high discharge characteristics at an initial stage of the charge and discharge cycle and excellent charge and discharge cycle characteristics. Thin belt-like misch metal(Mm)-nickel hydrogen storage alloy lumps with a CaCu5 type crystal structure and with dissolved boron or carbon as replaced atoms of nickel in a supersaturated state are obtained by quenching and solidification of molten Mm-Ni hydrogen storage alloy with addition of boron or carbon in 0.005 to 0.150 molar ratio to 1 mole of Mm by a single or dual role method, and annealed in an inert gas or in vacuum at a temperature of 620 to 1000{degree}C for a prescribed time to separate out a boron compound as a second phase, followed by pulverization to produce the alloy powder which is used as a hydrogen storage alloy material. The presence of the second phase promotes cracking of the alloy at an early stage of the charge and discharge cycle and suppresses generation of fine powder in the following charge and discharge cycles. 2 figs., 5 tabs.

  1. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  2. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  3. EFFECT OF CONTROLLED QUENCHING ON THE AGING OF 2024 ALUMINUM ALLOY CONTAINING BORON

    Directory of Open Access Journals (Sweden)

    N. Khatami

    2014-03-01

    Full Text Available The presence of alloying elements, sometimes in a very small amount, affects mechanical properties one of these elements is Boron. In Aluminum industries, Boron master alloy is widely used as a grain refiner In this research, the production process of Aluminum –Boron master alloy was studied at first then, it was concurrently added to 2024 Aluminum alloy. After rolling and homogenizing the resulting alloy, the optimal temperature and time of aging were determined during the precipitation hardening heat treatment by controlled quenching (T6C. Then, in order to find the effect of controlled quenching, different cycles of heat treatment including precipitation heat treatment by controlled quenching (T6C and conventional quenching (T6 were applied on the alloy at the aging temperature of 110°C. Mechanical properties of the resulting alloy were evaluated after aging at optimum temperature of 110°C by performing mechanical tests including hardness and tensile tests. The results of hardness test showed that applying the controlled quenching instead of conventional quenching in precipitation heat treatment caused reduction in the time of reaching the maximum hardness and also increase in hardness rate due to the generated thermo-elastic stresses rather than hydrostatic stresses and increased atomic diffusion coefficient as well. Tensile test results demonstrated that, due to the presence of boride particles in the microstructure of the present alloy, the ultimate tensile strength in the specimens containing Boron additive increased by 3.40% in comparison with the specimens without such an additive and elongation (percentage of relative length increase which approximately increased by 38.80% due to the role of Boron in the increase of alloy ductility

  4. Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si

    Energy Technology Data Exchange (ETDEWEB)

    Imayev, V.M., E-mail: vimayev@mail.ru; Gaisin, R.A.; Imayev, R.M.

    2015-08-12

    The effects of boron additions in an amount of 0.1–2 wt%, thermomechanical processing and heat treatment on microstructure and mechanical properties of a two-phase titanium alloy Ti–6.5Al–3.3Mo–0.3Si alloy have been investigated. Depending on the boron amount, the materials under study were divided into two groups: (1) boron modified alloys containing ~0.1 wt% of boron and (2) discontinuously reinforced metal matrix Ti–TiB based composites containing 1.5–2 wt% of boron. Boron additions led to formation of TiB whiskers, which were predominantly located along boundaries of prior β-grains and α-colonies resulting in refined as-cast microstructure. Multiple 3D forging at T=650–700 °C applied for the boron modified alloys resulted in formation of ultrafine-grained microstructure and intensive breaking of TiB whiskers. Tensile properties of the Ti–6.5Al–3.3Mo–0.3Si–0.2 wt% B alloy after multiple 3D forging followed by β-heat treatment were found to be appreciably higher than those of the alloy free of boron after the same processing route that was ascribed to better controlling the β-grain size during β heat treatment. The composite materials were subjected to multiple isothermal 2D forging at T=950 °C that provided effective alignment of TiB whiskers while retaining their high aspect ratio. The hot forged composites demonstrated appreciably higher strength, creep resistance in comparison with those of the base alloy without drastic reduction in ductility. The effect of TiB whiskers orientation and morphology on the tensile properties of the composite materials is discussed.

  5. The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys

    International Nuclear Information System (INIS)

    Okita, T.; Sekimura, N.; Garner, F.

    2007-01-01

    Full text of publication follows: Boron is often a deliberately added solute to improve the radiation resistance of austenitic structural alloys, with boron exerting its greatest influence on carbide precipitation. However, boron also a source of helium via transmutation and therefore tends to accelerate the onset of void nucleation. These conflicting contributions of boron with respect to radiation resistance are not easily separated, but are sometimes utilized to mimic fusion-relevant gas generation rates when testing in surrogate fission spectra. In an earlier study the authors demonstrated that in simple model ternary alloys that boron additions tended to homogenize swelling somewhat via increased helium generation but not to exert any significant influence on the total swelling. In these easily swelling alloys void nucleation was not significantly influenced by additional helium or by boron's chemical effect, with boron remaining primarily in solution. In the current study, Fe-15Cr-16Ni-0.25 Ti-0.05C alloys with four levels of natural boron addition (0, 100, 500, 2500 appm) were irradiated side-by-side at ∼400 deg. C in the Fast Flux Test Facility under active temperature control in the Materials Open Test Assembly. Although three sets of irradiation conditions were explored, the boron variation was the only variable operating in each data set. The bulk swelling was measured using an immersion density technique and electron microscopy was employed to determine the details of void, dislocation and precipitate microstructure. It was found that by 100 appm B the strongest and most immediate effect of boron was to reduce swelling at all irradiation conditions explored, but the boron-induced increases in overall helium content were rather small over the 0-100 appm B range. This indicates that boron's primary effect was chemical in nature, expressed via its effect on precipitation. As the boron level was progressively increased, however, there was a reversal in

  6. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  7. Boron nitride nanotubes as a reinforcement for brittle matrices

    Czech Academy of Sciences Publication Activity Database

    Tatarko, Peter; Grasso, S.; Porwal, H.; Saggar, Richa; Chlup, Zdeněk; Dlouhý, Ivo; Reece, M.J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3339-3349 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : Amorphous borosilicate glass * Boron nitride nanotubes * Composite * Toughening mechanisms * Scratch resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  8. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method

    International Nuclear Information System (INIS)

    Singhal, S. K.; Srivastava, A. K.; Gupta, Anil K.; Chen, Z. G.

    2010-01-01

    We report a new method for the synthesis of boron nitride (BN) nanotubes employing a two-step process in which some oxides have found to catalyze the growth of BN nanotubes. In the first step, a precursor containing B-N-O-Fe/Mg was prepared by ball milling a mixture of B, B 2 O 3 , Fe 2 O 3 and MgO (1:7:2:1 mass ratio) in NH 3 for 3 h. BN nanotubes (diameter: 20-100 nm) were grown in the second step from this precursor by isothermal annealing at 1,350 o C in NH 3 for about 4 h. XRD, SEM and HR-TEM studies elucidated the spindle-like morphology of these nanotubes of hexagonal crystal structure. The Raman spectrum showed the peak broadening and shifts to higher frequency. The present method showed that some oxides assisted the growth of BN nanotubes. A possible reaction mechanism on the formation of BN nanotubes in the presence of these oxides is discussed.

  9. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Lee, Kang; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    In this paper, Ti-Hf (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting, and subjected to heat treatment for 24 h at 1000 o C in an argon atmosphere. Formation of surface nanotubes was achieved by anodizing a Ti-Hf alloy in 1.0 M H 3 PO 4 electrolytes with small amounts of NaF at room temperature. Microstructures of the alloys and nanotube morphology were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The homogenized Ti-Hf alloys had a needle-like microstructure of α phase, and nanotubes formed on Ti-xHf alloys had the anatase phase after treatment that promoted crystallization. Uniform nanotubes formed for Hf contents up to 20 wt.%. Irregular nanotubes formed on the Ti-30Hf and Ti-40Hf alloys. The structure of the irregular layers on the Ti-30Hf and Ti-40Hf alloys had nanotubes of two sizes. Increasing the Hf content in Ti led to the formation of nanotubes with more narrow size. The pores in the nanotubes typically had a diameter ranging from 80-120 nm and a length of approximately 1.7 μm. It is concluded that nanotube morphology on Ti-Hf alloys can controlled by varying the amount of Hf.

  10. Catalytic growth of vertically aligned neutron sensitive {sup 10}Boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Pervaiz, E-mail: pervaizahmad@siswa.um.edu.my, E-mail: Pervaiz-pas@yahoo.com; Khandaker, Mayeen Uddin, E-mail: mu-khandaker@yahoo.com, E-mail: mu-khandaker@um.edu.my; Amin, Yusoff Mohd [University of Malaya, Department of Physics, Faculty of Science (Malaysia); Khan, Ghulamullah [University of Malaya, Department of Mechanical Engineering (Malaysia); Ramay, Shahid M. [King Saud University, Department of Physics and Astronomy, College of Science (Saudi Arabia); Mahmood, Asif [King Saud University, Department of Chemical Engineering, College of Engineering (Saudi Arabia); Amin, Muhammad [University of the Punjab, Department of Physics (Pakistan); Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (Pakistan)

    2016-01-15

    {sup 10}Boron nitride nanotubes ({sup 10}BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned {sup 10}BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned {sup 10}BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned {sup 10}BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of {sup 10}BNNT. HR-TEM shows tubular morphology of the synthesized {sup 10}BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal {sup 10}Boron nitride ({sup 10}h-BN) nature of the synthesized {sup 10}BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm{sup −1}) that corresponds to E{sub 2g} mode of vibration in {sup 10}h-BN.

  11. Low-frequency plasmons in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Lin, M.F.; Chuu, D.S.; Shung, K.W.

    1997-01-01

    A metallic carbon nanotube could exhibit a low-frequency plasmon, while a semiconducting carbon nanotube or a graphite layer could not. This plasmon is due to the free carriers in the linear subbands intersecting at the Fermi level. The low-frequency plasmon, which corresponds to the vanishing transferred angular momentum, belongs to an acoustic plasmon. For a smaller metallic nanotube, it could exist at larger transferred momenta, and its frequency is higher. Such a plasmon behaves as that in a one-dimensional electron gas (EGS). However, it is very different from the π plasmons in all carbon nanotubes. Intertube Coulomb interactions in a metallic multishell nanotube and a metallic nanotube bundle have been included. They have a strong effect on the low-frequency plasmon. The intertube coupling among coaxial nanotubes markedly modifies the acoustic plasmons in separate metallic nanotubes. When metallic carbon nanotubes are packed in the bundle form, the low-frequency plasmon would change into an optical plasmon, and behave like that in a three-dimensional EGS. Experimental measurements could be used to distinguish metallic and semiconducting carbon nanotubes. copyright 1997 The American Physical Society

  12. A study on the behavior of boron in iron-base alloys by neutron induced autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Sung; Rhee, Chang Kyu; Cho, Hae Dong; Han, Chang Hee; Lee, Chang Hee; Jung, Jung Hwan; Kim, Yi Kyung; Lee, Yong Bok

    2001-02-01

    Boron is widely utilized in steel or alloy making to improve certain properties. However, due to its lightness boron is difficult to detect or characterize its behavior even through TEM/EDS or EELS techniques. Although many companies recognize the beneficial effects of boron, the role or mechanism of the boron is not yet clearly understood. Therefore it is required to develop the autoradiography technique to elucidate the boron behavior in alloys. As the only institute operating research reactor in the country, it would be the responsibility of the institute to develop the technique and provide it to the industries. Quantitative analyses of boron in type 316 L stainless steel by neutron induced autoradiography was attempted in this study. Nine experimental reference alloys with different amount of boron were prepared and reliable chemical composition data were obtained. Autoradiographs of reference materials with three different neutron fluences ( 1.9 10{sup 13}, 1.9 10{sup 14} and 1.9 10{sup 15}/cm{sup 2} ) were obtained and a trial calibration curve of boron content vs. track density was acquired.

  13. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  14. Study of a portion of Al-Be-B system and boron effect on ABM-1 alloy properties

    International Nuclear Information System (INIS)

    Novoselova, A.V.; Molchanova, L.V.; Yatsenko, K.P.; Fridlyander, I.N.

    1989-01-01

    The phase composition of Al-Be-B system alloys, phase transformations and boron effect on magnesium-containing ABM-1 alloy properties are investigated. Depending on the composition and crystallization conditions, the following phases in the investigated alloys are determined: a beryllium-base phase, an aluminium-base phase and a phase on the base of borides. It is found that boron content growth up to 1% increases ultimate strength, which sharply decreases with the boron content rise up to 2% as a result of crystallization of coarse needle-like inclusions of beryllium boride. With the aluminium content decrease the boron amount in the alloy can be increased

  15. Water-dispersed thermo-responsive boron nitride nanotubes: synthesis and properties

    Czech Academy of Sciences Publication Activity Database

    Kalay, S.; Stetsyshyn, Y.; Lobaz, Volodymyr; Harhay, K.; Ohar, H.; Ҫulha, M.

    2016-01-01

    Roč. 27, č. 3 (2016), 035703_1-035703_8 ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA13-08336S; GA MPO(CZ) FR-TI4/625 Institutional support: RVO:61389013 Keywords : boron nitride nanotubes * thermo-responsive polymer brushes * poly(N-isopropylacrylamide) Subject RIV: CA - Inorganic Chemistry Impact factor: 3.440, year: 2016

  16. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  17. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  18. Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing

    Science.gov (United States)

    Movlarooy, Tayebeh; Fadradi, Mahboobeh Amiri

    2018-05-01

    The adsorption of CNCl gas, on the surface of boron nitride nanotubes in pure form, as well as doped with Al and Ga, based on the density functional theory (DFT) has been studied. The electron and structural properties of pristine and doped nanotubes have been investigated. By calculating the adsorption energy, the most stable positions and the equilibrium distance are obtained, and charge transferred and electronic properties have been calculated. The most stable molecule adsorption position for pure nanotube is obtained at the center of the hexagon and for doped nanotube above the impurity atom from N side.

  19. Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Suresh, M.; Srinivasan, A.; Ravi, K.R.; Pillai, U.T.S.; Pai, B.C.

    2009-01-01

    This article reports the effect of boron addition on the grain refinement efficiency and mechanical properties of AZ91 magnesium alloy. The results show that the addition of boron in the form of Al-4B master alloy, significantly refines the grain size of AZ91 alloy. This refinement is due to the presence of AlB 2 particles, which act as potential nucleants for Mg grains. Improved mechanical properties are obtained with the addition of boron due to the finer grains.

  20. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  1. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  2. Apatite formability of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Keshri, Anup K; Agarwal, Arvind; Singh, Virendra; Seal, Sudipta

    2011-01-01

    This study investigates the ability of boron nitride nanotubes (BNNTs) to induce apatite formation in a simulated body fluid environment for a period of 7, 14 and 28 days. BNNTs, when soaked in the simulated body fluid, are found to induce hydroxyapatite (HA) precipitation on their surface. The precipitation process has an initial incubation period of ∼ 4.6 days. The amount of HA precipitate increases gradually with the soaking time. High resolution TEM results indicated a hexagonal crystal structure of HA needles. No specific crystallographic orientation relationship is observed between BNNT and HA, which is due to the presence of a thin amorphous HA layer on the BNNT surface that disturbs a definite orientation relationship.

  3. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    Science.gov (United States)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  4. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology 2012/ Vol. 12, 7807?7814 First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes M. G. Mashapa 1, 2, ?, N. Chetty1, and S. Sinha Ray2, 3 1Physics Department, University...

  5. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  6. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    Science.gov (United States)

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  7. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa. Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1 stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  8. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Somayeh, E-mail: somayeh.behzad@gmail.co [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  9. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-01-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  10. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  11. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    International Nuclear Information System (INIS)

    Zheng, Meng; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C; Pugno, Nicola M

    2013-01-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip–tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip–tube collision process and the roles of the scribing velocity and the frictional interaction on the tip–tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26–4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1–15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures. (paper)

  12. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  14. Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy

    International Nuclear Information System (INIS)

    Sarkar, R.; Ghosal, P.; Muraleedharan, K.; Nandy, T.K.; Ray, K.K.

    2011-01-01

    Highlights: → Development of β Ti alloys with B and C addition for improved mechanical properties. → Detailed characterization of microstructural constituents using electron microscopy. → Microstructure-mechanical property correlation in this new class of alloys. → Strengthening mechanism in β Ti alloy in the presence of hard and non-deformable phases. - Abstract: A detailed microstructure-mechanical property correlation was carried out in beta titanium alloys (Ti-15V-3Al-3Sn-3Cr) with boron and carbon additions. The alloys were prepared by non-consumable vacuum arc melting followed by hot rolling. Microstructural characterization was carried out using an optical microscope, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and a high resolution TEM (HRTEM). Addition of boron and carbon resulted in the precipitation of TiB and TiC, respectively, and these phases acted as reinforcements. Evaluation of mechanical properties in solution treated and solution treated plus aged condition showed strengthening in the boron and carbon containing alloy with respect to the base. Strengthening in solution treated condition was attributed to a synergistic effect of grain refinement and load transfer in the presence of non-deformable phases. On the other hand, higher strength in boron and carbon containing alloys on aging was ascribed to the presence of finer aged microstructures.

  15. Templated synthesis of metal nanorods in silica nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Gao, Chuanbo

    2018-04-10

    A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent for reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.

  16. Optical absorption of zigzag single walled boron nitride nanotubes

    Science.gov (United States)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-11-01

    In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E7.5 eV. We found that in lower energies, E7.5 eV, their behaviors depend on their even or odd nanotube index. We also found that in the energy range 7nanotube diameter. We also found that increasing the tubes diameter leads to red shift for all peaks except ‘A’ peak where this peak moves to higher energies. Our results are in good agreement with the experimental results.

  17. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    Science.gov (United States)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  18. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  19. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  20. Analytical methods for the determination of boron in reactor materials programme

    International Nuclear Information System (INIS)

    Chitre, R.S.; Joshi, V.R.; Iyer, C.S.P.

    1983-01-01

    Spectrophotometric methods of determination of boron based on the complexation reaction between boric acid and protonated curcumin are briefly reviewed. Direct determination of boron in heavy water, plant leaves, copper and its alloys, and aluminium and its alloys using a modified method of Hayes and Metcalfe is described. A method for determination of boron, when its content is very low as in case of uranium metal, diuranate, uranium oxide and thorium nitrate, is also described. In this method, boron is first separated as methyl borate by distillation of the sample with methanol in acid media. The distilled ester is absorbed by hydroxide solution and boron is analysed after removal of methanol. The precision obtained is indicated. (M.G.B.)

  1. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  2. Synthesis of boron nitride nanotubes and their applications

    Directory of Open Access Journals (Sweden)

    Saban Kalay

    2015-01-01

    Full Text Available Boron nitride nanotubes (BNNTs have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed.

  3. Nanotube morphology changes for Ti-Zr alloys as Zr content increases

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    Nanotube morphology changes in Ti-Zr alloys as Zr content increases have been investigated. Ti-Zr (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting and heat treated for 24 h at 1000 o C in an argon atmosphere. TiO 2 nanotubes were formed on the Ti-Zr alloys by anodization in H 3 PO 4 containing 0.5 wt.% NaF. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Samples were embedded in epoxy resin, leaving an area of 10 mm 2 exposed to the electrolyte. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. Microstructures of the alloys were examined by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The Ti-Zr alloy microstructures observed by OM and FE-SEM changed from a lamellar structure to a needle-like structure with increasing Zr content. The microstructures also changed from β phase to increasing amounts of α phase as the Zr content increased. The number of large nanotubes formed by anodization decreased, and the number of small nanotubes increased, as the Zr content increased. The mean inner diameter ranged from approximately 150 to 200 nm with a tube-wall thickness of about 20 nm. The interspace between the nanotubes was approximately 60, 70, 100 and 130 nm for Zr contents of 10, 20, 30 and 40 wt.%, respectively.

  4. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  5. The nature of planar faults in a dilute molybdenum-boron alloy

    International Nuclear Information System (INIS)

    Chervinskii, V.I.; Kantor, M.M.; Novikov, I.I.; Sofronova, R.M.

    1982-01-01

    Planar faults on (100) planes in dilute molybdenum-boron alloys consist of a mono- or a bilayer of boron atoms. The displacement vectors are of the general type and for mono- and bilayer faults, respectively, where the component d is close to 1/6 and normal to the fault plane. The planar faults are probably an intermediate stage of MoB or Mo 2 BC growth. (author)

  6. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  7. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  8. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  9. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  10. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  11. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    Science.gov (United States)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  12. Tensile and fracture behavior of boron and carbon modified Ti-15-3 alloys in aged conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajdeepsarkar@dmrl.drdo.in [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ghosal, P.; Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2016-02-22

    This work illustrates the effect of boron and carbon addition on the mechanical behavior of a beta Ti alloy, Ti–15V–3Cr–3Al–3Sn (Ti-15-3), in differently aged conditions. The alloys were prepared by consumable vacuum arc melting followed by forging and hot rolling. These were subsequently solution treated and aged at different temperatures above 500 °C for 8 h. Standard tensile and plane strain fracture toughness tests were carried out to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. Both the boron- and the carbon-containing alloys exhibit improved strength with comparable elongation to failure values as compared to the base Ti-15-3 alloy. The presence of TiB and TiC precipitates in a matrix of fine α with β results in lower fracture toughness (K{sub IC}) in the boron- and carbon-containing alloys as compared to the base alloy. However, at higher aging temperatures K{sub IC} improves due to more tortuous crack path because of the presence of coarse α-phase. An empirical relationship has been proposed correlating K{sub IC} with the volume fraction, size and interspacing of α in these alloys.

  13. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process

    International Nuclear Information System (INIS)

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Krafcik, Karen L; Léonard, François; Kuznetsov, Oleksandr V; Billups, W Edward; Hauge, Robert H

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication. (paper)

  14. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  15. STUDY OF THE EFFECT OF PRELIMINARY PLASTIC DEFORMATION IN THE PROCESS OF DISSOLUTION DURING TEMPERING OF LOW-CARBON AND BORON-CONTAINING ALLOYS

    OpenAIRE

    M. Yu. Filonenko; S. B. Piliaieva

    2009-01-01

    In the paper the influence of preliminary deformation on disintegration of martensite in boron-containing and carbonic alloy is explored. It is shown that at the small degree of deformation (7 per cent) both in low-carbonic and boron-containing alloys the process of martensite disintegration takes place less intensively. The increase of degree of preliminary deformation in a boron-containing alloy is instrumental in more even distribution of boron-cementite particles appearing as a result of ...

  16. When double-wall carbon nanotubes can become metallic or semiconducting

    International Nuclear Information System (INIS)

    Moradian, Rostam; Azadi, Sam; Refii-tabar, Hashem

    2007-01-01

    The electronic properties of double-wall carbon nanotubes (DWCNTs) are investigated via density functional theory. The DWCNTs are separated into four categories wherein the inner-outer nanotubes are metal-metal, metal-semiconductor, semiconductor-metal and semiconductor-semiconductor single-wall nanotubes. The band structure of the DWCNTs, the local density of states of the inner and outer nanotubes, and the total density of states are calculated. We found that for the metal-metal DWCNTs, the inner and outer nanotubes remain metallic for different distances between the walls, while for the metal-semiconductor DWCNTs, decreasing the distance between the walls leads to a phase transition in which both nanotubes become metallic. In the case of semiconductor-metal DWCNTs, it is found that at some distance the inner wall becomes metallic, while the outer wall becomes a semiconductor, and if the distance is decreased, both walls become metallic. Finally, in the semiconductor-semiconductor DWCNTs, if the two walls are far from each other, then the whole DWCNT and both walls remain semiconducting. By decreasing the wall distance, first the inner, and then the outer, nanotube becomes metallic

  17. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  18. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  19. STUDY OF THE EFFECT OF PRELIMINARY PLASTIC DEFORMATION IN THE PROCESS OF DISSOLUTION DURING TEMPERING OF LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Yu. Filonenko

    2009-12-01

    Full Text Available In the paper the influence of preliminary deformation on disintegration of martensite in boron-containing and carbonic alloy is explored. It is shown that at the small degree of deformation (7 per cent both in low-carbonic and boron-containing alloys the process of martensite disintegration takes place less intensively. The increase of degree of preliminary deformation in a boron-containing alloy is instrumental in more even distribution of boron-cementite particles appearing as a result of martensite disintegration.

  20. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  1. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  2. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  3. Effects of boron on the fracture behavior and ductility of cast Ti–6Al–4V alloys

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Heatherly, L.; George, E.P.; Chen, G.; Liu, C.T.

    2015-01-01

    Minor amounts of boron additions have been found to greatly enhance the ductility of cast Ti–6Al–4V alloys, which was considered to be due to the grain-size refinement. In this paper, we report our interesting finding that the beneficial effect of boron on the ductility of the cast titanium alloys is due not only to the grain-size refinement but the enhancement of the prior-β grain-boundary cohesion by boron segregation at the grain boundaries, as evidenced by Auger electron microscopy

  4. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  5. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  6. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    NICO

    tures inside the nanotubes to increase the available surface for catalysis6 or in ... most common method to decorate CNTs by metal nanoparticles and metal oxides due .... 2.6 Characterization of Carbon Nanotubes, Metal Nano- particles and ...

  7. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  8. The electrochemistry of chromium, chromium-boron and chromium-phosphorus alloys

    International Nuclear Information System (INIS)

    Moffat, T.P.; Ruf, R.R.; Latanision, R.M.

    1987-01-01

    It is fairly well established that chromium-metalloid interactions represent the key to understanding the remarkable corrosion behavior of TM-Cr-M glasses; (Fe, Ni, Co,...)-Cr-(P, Si, C, S). The character and kinetics of passive film growth on the glasses are being studied ni order to assess the role of the film former, chromium, and the metalloids in the passivation process. A series of thin film microcrystalline chromium, Cr-B and Cr-P binary alloys have been fabricated by physical vapor deposition techniques. Vacuum melted conventionally processed chromium has also been studied. Examination of these materials in lM H/sub 2/SO/sub 4/ and lM HCl by voltammetry, potentiostatic and impedance techniques yields the following conclusion: 1. Pure chromium with a grain size varying from < 400 A to 0.5 mm exhibits no well defined differences in electrochemical behavior in lM H/sub 2/SO/sub 4/. 2. The tremendous corrosion resistance of Cr-B alloys has been confirmed. 3. The beneficial effects observed for boron alloyed with chromium may be considered surprising in view of the neutral/negative influence of alloying boron with iron, i.e. Fe/sub 80/B/sub 20/. 4. The interaction of the electrochemistry of the metalloid constituent with that of the transition base element determines the corrosion behavior. 5. Preliminary work with Cr-P alloys indicates that certain compositions exhibit promising properties - certain films were found to be intact after two days of immersion in concentrated HCl. Further work is in progress

  9. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  10. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  11. Influence of boron addition to Ti–13Zr–13Nb alloy on MG63 osteoblast cell viability and protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, P., E-mail: m.pallab@gmail.com [School of Mechanical Science, Indian Institute of Technology, Bhubaneswar (India); Singh, S.B. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Dhara, S. [School Medical Science and Technology, Indian Institute of Technology, Kharagpur (India); Chakraborty, M. [School of Mechanical Science, Indian Institute of Technology, Bhubaneswar (India)

    2015-01-01

    Cell proliferation, cell morphology and protein adsorption on near β-type Ti–13Zr–13Nb (TZN) alloy and Ti–13Zr–13Nb–0.5B (TZNB) composite have been investigated and compared to evaluate the effect of boron addition which has been added to the Ti alloy to improve their poor tribological properties by forming in situ TiB precipitates. MG63 cell proliferation on substrates with different chemistry but the same topography was compared. The MTT assay test showed that the cell viability on the TZN alloy was higher than the boron containing TZNB composite after 36 h of incubation and the difference was pronounced after 7 days. However, both the materials showed substantially higher cell attachment than the control (polystyrene). For the same period of incubation in fetal bovine serum (FBS), the amount of protein adsorbed on the surface of boron free TZN samples was higher than that in the case of boron containing TZNB composite. The presence of boron in the TZN alloy influenced protein adsorption and cell response and they are lower in TZNB than in TZN as a result of the associated difference in chemical characteristics. - Highlights: • The influence of boron addition on biocompatibility of Ti–13Zr–13Nb • Boron forms in situ TiB in TZN matrix and decreases cell proliferation on TZN surfaces. • Protein adsorption is lower in TZNB than in TZN. • Compared to TZNB composite, TZN alloy is more suitable for bone grafting applications.

  12. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz; Filip, Vladimir; Joska, Ludek

    2015-11-15

    Graphical abstract: - Highlights: • The nanostructured surface on Ti–36Nb–6Ta alloy was prepared by anodic oxidation. • The nanotubes properties were modified by electrochemical process parameters. • The composition and mechanical properties of the anodized surface were investigated. • The adhesive strength of the nanostructures was over 30 MPa. - Abstract: The nanostructuring of titanium and its alloys surfaces is used inter alia for increasing the medical implants osseointegration. Many papers about this topic were published. However, in most cases there were no informations about nanostructures adhesion to the surface, which is crucial from the application point of view. The aim of this study was to prepare nanostructures on titanium beta alloy and optimized its adhesion to the alloy surface. Nanotubes were formed by anodic polarization in electrolyte containing fluoride ions. The composition of the nanotubes was described by X-ray photoelectron spectroscopy. Nanostructures adhesion was tested by pull-of method. The nanotubes on the Ti–36Nb–6Ta beta alloy surface were prepared by anodization. The nanostructures properties were modified by electrochemical process parameters. The adhesion of the nanotubes prepared in this work was satisfactory for implantological applications.

  13. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  14. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  15. Studies on the Production of NdFeB Alloy by Calciothermic Reduction of Neodymium Oxide

    International Nuclear Information System (INIS)

    Charoensri, Apisara

    2003-06-01

    Neodymium-Iron-Boron (NdFeB) is a class of permanent magnets having the highest energy product (BH max ). It has been used in various electronic devices of small size and light weight. This research is to study the preparation of Neodymium-Iron-Boron alloy by calciothermic reduction of neodymium oxide mixed with iron and iron-boron. The reduction process essentially involves the compaction of the charge mixture with calcium metal and then heating at 900-1200οC in argon atmosphere. The results show that charge blend compaction, temperature and time of reaction are important parameters of the process. It is found that at proper conditions, magnetic phase structure of Neodymium-Iron-Boron alloy can be prepared satisfactory although the alloy produced from the reduction contains higher impurities of oxygen and calcium than the alloy produced from the conventional method using Nd metal

  16. Adhesion and size dependent friction anisotropy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Chiu, Hsiang-Chih; Riedo, Elisa; Dogan, Sedat; Volkmann, Mirjam; Klinke, Christian

    2012-01-01

    The frictional properties of individual multiwalled boron nitride nanotubes (BN-NTs) synthesized by chemical vapour deposition (CVD) and deposited on a silicon substrate are investigated using an atomic force microscope tip sliding along (longitudinal sliding) and across (transverse sliding) the tube’s principal axis. Because of the tube’s transverse deformations during the tip sliding, a larger friction coefficient is found for the transverse sliding as compared to the longitudinal sliding. Here, we show that the friction anisotropy in BN-NTs, defined as the ratio between transverse and longitudinal friction forces per unit area, increases with the nanotube–substrate contact area, estimated to be proportional to (L NT R NT ) 1/2 , where L NT and R NT are the length and the radius of the nanotube, respectively. Larger contact area denotes stronger surface adhesion, resulting in a longitudinal friction coefficient closer to the value expected in the absence of transverse deformations. Compared to carbon nanotubes (C-NTs), BN-NTs display a friction coefficient in each sliding direction with intermediate values between CVD and arc discharge C-NTs. CVD BN-NTs with improved tribological properties and higher oxidation temperature might be a better candidate than CVD C-NTs for applications in extreme environments. (paper)

  17. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy

    International Nuclear Information System (INIS)

    Manjunatha, B.; Niranjan, H.B.; Satyanarayana, K.G.

    2015-01-01

    Metal Matrix Composites (MMC) considered as one of the ‘advanced materials’ have evoked growing interest during the last three decades due to their high performance and applications in strategic sectors. These composites exhibit unique and attractive properties over the monolithic alloys, but suffer from low ductility, which makes them not so attractive for some of the applications where high toughness is one of the design criteria. This limitation of MMCs has been overcome by resorting to various treatments such as mechanical and thermal loading. Considering very limited reports available on Al alloy reinforced with boron carbide (B 4 C) particles, this paper presents (i) preparation of Al-6061 alloy reinforced with 1.5–10 wt% B 4 C, (ii) subjecting them to mechanical and thermal treatments and (iii) characterization of all the above samples. Specific ultimate tensile strength and hardness of all the composites were higher than those of matrix. Also, these values increased with increasing amount of particles, with composites containing 8 wt% B 4 C showing the maximum values in all the three conditions. These observations are supported by the uniform distribution of particles in the matrix as observed in their microstructure

  18. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices

    International Nuclear Information System (INIS)

    Ryu, Hyeyeon; Kaelblein, Daniel; Ante, Frederik; Zschieschang, Ute; Kern, Klaus; Klauk, Hagen; Weitz, R Thomas; Schmidt, Oliver G

    2010-01-01

    Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.

  19. Effect of boron addition on the magnetic properties of the Fe-Nd-Al alloys prepared by suction casting

    International Nuclear Information System (INIS)

    Bai, Q.; Xu, H.; Tan, X.H.; Zhang, S.Y.

    2007-01-01

    The microstructure and magnetic properties of the Fe-Nd-Al alloys prepared by suction casting with boron addition have been investigated. The increasing boron content in the Fe-Nd-Al alloys significantly increases the intrinsic coercivity ( i H c ) and decreases the proportion of the amorphous phase. The magnetization at the maximum applied field (σ ' s ) of the Fe-Nd-Al-B alloys decreases, while the coercivity increases markedly after annealing. The high intrinsic coercivity is due to the presence of the Nd 2 Fe 14 B phase

  20. Effects of boron and aging on mechanical properties and martensitic temperatures in Cu-Zn-Al shape-memory alloys

    International Nuclear Information System (INIS)

    Han, Y.S.; Kim, Y.G.

    1987-01-01

    This work is concerned with the effects of added boron (0.1 w/o) on mechanical properties and martensitic transformation temperatures (Ms) of the Cu - 14.0 Zn - 8.5. Al shape memory alloy. The composition was designed to have Ms temperature in the vicinity of 100 0 C. The influence of applying step quenching on the variation in Ms temperatures has been studied in boron-free Cu - 14.0 Zn - 8.5 Al and boron-containing Cu - 14.0 Zn 8.5 Al - 0.1 B alloys. Aging kinetics and transformation temperatures have been determined by electrical resistivity measurements

  1. Influence of boron introduction on structure and electrochemical hydrogen storage properties of Ti–V-based alloys

    International Nuclear Information System (INIS)

    Qiu, Shujun; Huang, Jianling; Chu, Hailiang; Zou, Yongjin; Xiang, Cuili; Zhang, Huanzhi; Xu, Fen; Sun, Lixian; Zhou, Huaiying

    2015-01-01

    In order to improve the properties of Ti–V-based alloys in the electrochemical system, Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 B x (x = 0–0.04) alloys were prepared and their structural and electrochemical performances had been systematically investigated in this study. XRD patterns show that they are mainly comprised of a C14 Laves phase and a body centered cubic (BCC) solid solution phase. The introduction of boron has little effect on the structure, while it remarkably influences the electrochemical performances. The cycle life of each electrode made from the studied alloy is obviously improved. For instance, the cycle retention after 200 charge–discharge cycles is more than 90%. Furthermore, high rate dischargeability (HRD) is also enhanced after boron introduction. It is also found that the charge-transfer reaction resistance R ct , the limiting current density I L, and the hydrogen diffusion coefficient D are first decreased and then increased with the increase of boron amount. Taking into consideration various factors, the introduction of boron in the alloy has an optimal value of x = 0.01. - Graphical abstract: Trace amounts of B element was introduced into Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 alloys. XRD patterns show that the introduction of B has little effect on the structure, while it remarkably influences the electrochemical performances. The cycle life and the high rate dischargeability (HRD) are obviously improved. - Highlights: • Trace amounts of B element was introduced into Ti–V-based alloys. • Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 B 0.01 has an optimal property. • At x = 0.01, C 200 /C max is 89.4% and HRD 800 is 72.5%

  2. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  3. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Masoud Darvish Ganji, Amir Mirnejad and Ali Najafi

    2010-01-01

    Full Text Available Methane adsorption onto single-wall boron nitride nanotubes (BNNTs and carbon nanotubes (CNTs was studied using the density functional theory within the generalized gradient approximation. The structural optimization of several bonding configurations for a CH4 molecule approaching the outer surface of the (8,0 BNNT and (8,0 CNT shows that the CH4 molecule is preferentially adsorbed onto the CNT with a binding energy of −2.84 kcal mol−1. A comparative study of nanotubes with different diameters (curvatures reveals that the methane adsorptive capability for the exterior surface increases for wider CNTs and decreases for wider BNNTs. The introduction of defects in the BNNT significantly enhances methane adsorption. We also examined the possibility of binding a bilayer or a single layer of methane molecules and found that methane molecules preferentially adsorb as a single layer onto either BNNTs or CNTs. However, bilayer adsorption is feasible for CNTs and defective BNNTs and requires binding energies of −3.00 and −1.44 kcal mol−1 per adsorbed CH4 molecule, respectively. Our first-principles findings indicate that BNNTs might be an unsuitable material for natural gas storage.

  4. Optimization of the boron content in FeAl (40 at. % Al) alloys

    International Nuclear Information System (INIS)

    Webb, G.; Juliet, P.; Lefort, A.

    1993-01-01

    FeAl intermetallic alloys are of interest for several high temperature applications due to excellent oxidation resistance, low density, and relatively low cost. Attempts to further increase the ductility of iron-rich FeAl have met with, at best, marginal success. Of the ductilization techniques employed, B doping appears to be a promising method for obtaining enhanced ductility and high strength in iron rich FeAl. Boron additions enhance the ductility of these alloys by increasing the grain boundary cohesive strength which reduces the tendency for intergranular fracture. The goal of the present work was to determine the optimum B concentration for increasing ambient temperature ductility. To accomplish this, a series of three iron rich FeAl alloys of similar Fe stoichiometries were doped with different levels of B (0,12, and 80 wppm). Secondary ion mass spectrometry (SIMS) was conducted on these alloys for evaluation of the B partitioning after consolidation by extrusion. Ambient temperature tensile testing and SEM fractography were then used to evaluate the effect of such additions on ambient temperature ductility in air. The results of these experiments indicate that optimum ductility is obtained from a homogeneous distribution of boron in which boride precipitation is limited

  5. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    Science.gov (United States)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  6. Covalent Surface Functionalization of Boron Nitride Nanotubes Fabricated with Diazonium Salt

    Directory of Open Access Journals (Sweden)

    Zhujun Wang

    2018-01-01

    Full Text Available The chemical inertness and poor wetting properties of boron nitride nanotubes (BNNTs hindered their applications. In this work, BNNTs have been functionalized with aniline groups by reacting with diazonium salt and the graft content of aniline component was calculated as high as 71.4 wt.%. The chemical structure, composition, and morphology of functionalized BNNTs were carefully characterized to illustrate the modification. The anilinocarbocation generated by decomposition of diazonium salt reacted not only with NH2 sites, but also with B-OH sites on the surface of BNNTs. Meanwhile, the reaction applied a hot strong acid environment, which would help to open parts of B-N bonds to produce more reactive sites and enrich the functional groups grafted on the surface of BNNTs. Consequently, the functionalized BNNTs exhibited significantly improved dispersion stability in chloroform compared with pristine BNNTs. Amino surface functionalization of BNNTs offered more possibilities for surface chemical design of boron nitride and its practical application.

  7. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  8. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  9. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  10. Nanotube phonon waveguide

    Science.gov (United States)

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  11. Pressure effects on dynamics behavior of multiwall boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Taha [Faculty of Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-01-15

    The dynamic behavior of Multiwall boron nitride nanotubes (MWBNNTs) is investigated by employing multiple elastic shells model. The influences of van der Waals interactions on layers are shown as nonlinear functions of the interlayer distance of MWBNNTs. Governing equations are solved by using the developed finite element method and by employing time history diagrams. The radial wave speed from the outermost layer to the innermost layer is computed. The effects of geometrical factors such as diameter-to-thickness ratio on dynamic behavior of MWBNNTs are determined. The magnification aspects of MWBNNTs are computed, and the effects of surrounding pressures on wave speed and magnification aspect of MWBNNTs are discussed.

  12. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.P. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Gonçalves, M.C. [State University of Campinas (Unicamp), Instituto de Química, CP 6154, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP (Brazil); Caram, R. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Bertazzoli, R., E-mail: rbertazzoli@fem.unicamp.br [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Rodrigues, C.A. [Federal University of São Paulo – Campus Diadema (UNIFESP – Campus Diadema), Departamento de Ciências Exatas e da Terra, Rua São Nicolau n° 210, 09913-030 Diadema, SP (Brazil)

    2013-11-15

    The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti–6Al, Ti–6Al–7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti{sub 6}Al{sub 7}Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti–6Al–7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti–6Al–7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb{sub 2}O{sub 5} is lower than that of TiO{sub 2}, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes

  13. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  14. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  15. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  16. Microstructural characterization of as-cast hf-b alloys

    Directory of Open Access Journals (Sweden)

    João Carlos Jânio Gigolotti

    2012-04-01

    Full Text Available An accurate knowledge of several metal-boron phase diagrams is important to evaluation of higher order systems such as metal-silicon-boron ternaries. The refinement and reassessment of phase diagram data is a continuous work, thus the reevaluation of metal-boron systems provides the possibility to confirm previous data from an investigation using higher purity materials and better analytical techniques. This work presents results of rigorous microstructural characterization of as-cast hafnium-boron alloys which are significant to assess the liquid composition associated to most of the invariant reactions of this system. Alloys were prepared by arc melting high purity hafnium (minimum 99.8% and boron (minimum 99.5% slices under argon atmosphere in water-cooled copper crucible with non consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy, using back-scattered electron image mode and X-ray diffraction. In general, a good agreement was found between our data and those from the currently accepted Hafnium-Boron phase diagram. The phases identified are αHfSS and B-RhomSS, the intermediate compounds HfB and HfB2 and the liquide L. The reactions are the eutectic L ⇔ αHfSS + HfB and L ⇔ HfB2 + B-Rhom, the peritectic L + HfB2 ⇔ HfB and the congruent formation of HfB2.

  17. The use of boron trifluoride and alkoxiboroxines as extinguishants for magnesium alloy fires

    International Nuclear Information System (INIS)

    Newman, R.N.

    1987-11-01

    The extinguishants currently available for putting out magnesium alloy fires work by covering the burning fuel and excluding both the oxygen and nitrogen from the reaction zone. It has been reported that boron trifluoride and trimethoxi-and tributoxi-boroxine may act in a more specific chemical way on the combustion reactions. In this report an investigation into the effectiveness of these compounds on magnesium alloy fires is described. (author)

  18. Adsorption of nucleic acid bases and amino acids on single-walled carbon and boron nitride nanotubes: a first-principles study.

    Science.gov (United States)

    Zheng, Jiaxin; Song, Wei; Wang, Lu; Lu, Jing; Luo, Guangfu; Zhou, Jing; Qin, Rui; Li, Hong; Gao, Zhengxiang; Lai, Lin; Li, Guangping; Mei, Wai Ning

    2009-11-01

    We study the adsorptions of nucleic acid bases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) and four amino acids phenylalanine, tyrosine, tryptophan, alanine on the single-walled carbon nanotubes (SWCNTs) and boron nitride nanotubes (SWBNNTs) by using density functional theory. We find that the aromatic content plays a critical role in the adsorption. The adsorptions of nucleic acid bases and amino acids on the (7, 7) SWBNNT are stronger than those on the (7, 7) SWCNT. Oxidative treatment of SWCNTs favors the adsorption of biomolecules on nanotubes.

  19. Core-shell composite metal catalysts incased into natural ceramic nanotubes

    International Nuclear Information System (INIS)

    Vinokurov, V; Berberov, A; Afonin, D; Borzaev, H; Ivanov, E; Gushchin, P; Lvov, Y

    2014-01-01

    The bimetallic halloysite nanotubes were prepared by the injection of halloysite- containing aerosols into the microwave plasma reactor. Nanotubes contain metal nanoparticles formed from the metal salt solution in the lumen of nanotubes and the iron oxide nanoparticles at the outer surface of nanotubes. Such halloysite composites may be sputtered onto the surface of the porous carrier forming the nanostructured catalyst, as was shown by the pure halloysite sputtering onto the model porous ceramic surface

  20. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    Science.gov (United States)

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  1. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  2. Effect of microalloying with boron on the microstructure and mechanical properties of Mg–Zn–Y–Mn alloy

    International Nuclear Information System (INIS)

    Yang, Kai; Zhang, Jinshan; Zong, Ximei; Wang, Wenxian; Xu, Chunxiang; Cheng, Weili; Nie, Kaibo

    2016-01-01

    The addition of boron to long-periodic stacking ordered (LPSO) phase-strengthened Mg–Zn–Y system alloys has been studied for the first time. The as-cast Mg 94 Zn 2.5 Y 2.5 Mn 1 alloy containing 0.003 wt% B with abundant LPSO phase and refined grains exhibited optimal mechanical performance with ultimate tensile strength and elongation of 252.5 MPa and 11.0%, respectively. - Highlights: • The effect of a trace amount of boron (B) on the formation of long-periodic stacking ordered (LPSO) phase was investigated. • Adding small amounts of B to the Mg–Zn–Y–Mn alloy can highly increase the volume fraction of LPSO phase. • The as-cast Mg–Zn–Y–Mn–B alloy has high strength (UTS=252.5 MPa) and good ductility (elongation=11.0%) in low Y/Zn ratio.

  3. Role of contact bonding on electronic transport in metal-carbon nanotube-metal systems

    International Nuclear Information System (INIS)

    Deretzis, I; La Magna, A

    2006-01-01

    We have investigated the effects of the interfacial bond arrangement on the electronic transport features of metal-nanotube-metal systems. The transport properties of finite, defect-free armchair and zigzag single-walled carbon nanotubes attached to Au(111) metallic contacts have been calculated by means of the non-equilibrium Green functional formalism with the tight-binding and the extended Hueckel Hamiltonians. Our calculations show that the electrode material is not the only factor which rules contact transparency. Indeed, for the same electrode, but changing nanotube helicities, we have observed an overall complex behaviour of the transmission spectra due to band mixing and interference. A comparison of the two models shows that the tight-binding approach fails to give a satisfactory representation of the transmission function when a more accurate description of the C-C and Au-C chemical bonds has to be considered. We have furthermore examined the effect of interface geometry variance on conduction and found that the contact-nanotube distance has a significant impact, while the contact-nanotube symmetry plays a marginal, yet evident role

  4. Dielectric track detectors and their applications in boron studies

    International Nuclear Information System (INIS)

    Mysak, F.; Krejci, M.

    1982-01-01

    Examples are presented of the applications of autoradiography using plastic films in the study of the distribution of boron in metal materials and its translocation owing to diffusion annealing. Alpha radiation is induced in the material by thermal neutrons while the reaction 10 B(n,α) 7 Li is used. Diffusion processes were studied in the transition zone between the base material and the overlay in hard alloy surfacing. The metallographically treated samples were placed on cellulose nitrate films and irradiated in a reactor. Autoradiograms showed that up to an annealing temperature of 800 degC there was no notable diffusion. Only at 900 degC migration occurred of boron from the transition zone to the base material. Also studied was the distribution of boron in soldered joints of nickel heat resisting alloys. The joints were subjected to homogenization annealing and the gradual disintegration was monitored of boride phases in dependence on the temperature and duration of annealing. Inside the joint boron practically disappeared and it finally appeared in the base material outside of the initial interface. (M.D.)

  5. Boron-Based Nanostructures, Stability, Functionality and Synthetic Routes

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I. [Rice Univ., Houston, TX (United States); Ajayan, Pulickel M. [Rice Univ., Houston, TX (United States)

    2017-08-04

    Boron (B) is one of the most intriguing elements not only because of its position between metals and nonmetals in periodic table but also because of its ability to form an enormous number of allotropes. Apart from several bulk three-dimensional (3D) phases, boron can form 0D clusters, 1D nanotubes and nanowires, and 2D layers. In particular, boron sheets of monoatomic thickness have raised interest as a potential new 2D-material and as a (conceptual) precursor, for example, so-called α-sheets, from which other boron structures - fullerene cages and tubes - might be constructed. In fact, a number of planar B clusters up to tens of atoms, found in experiments, appear as seeds for extended sheets. In this project we developed theoretical methods to guide synthesis, have successfully identified the material substrates (Ag, Au, Cu) to producing the pure boron layers, and further even predicted what atomistic structures should be expected. These guidelines have successfully led to discoveries in several labs and now have grown into an active line of research worldwide.

  6. Continuum theory for nanotube piezoelectricity.

    Science.gov (United States)

    Michalski, P J; Sai, Na; Mele, E J

    2005-09-09

    We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

  7. Tensile properties of a dual-axial forged Ti–Fe–Cu alloy containing boron

    Energy Technology Data Exchange (ETDEWEB)

    Zadorozhnyy, V.Yu., E-mail: zadorozhnyyvlad@gmail.com [National University of Science and Technology “MISIS”, Leninsky prospect, 4, Moscow 119049 (Russian Federation); Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Shchetinin, I.V.; Chirikov, N.V. [National University of Science and Technology “MISIS”, Leninsky prospect, 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2014-09-22

    In the present work we introduce a micro/nano-structured α+β Ti-based low-alloy produced by the tilt-casting method and subjected to subsequent thermo-mechanical treatment. After hot dual-axial forging at 900 °C, subsequent heating at 700 °C and water quenching a Ti{sub 94}Fe{sub 3}Cu{sub 3}+1000 ppm of boron alloy, containing inexpensive alloying elements, showed an ultimate tensile strength value of about 950 MPa and percentage elongation of about 5.2%. It is shown that the intensive forging treatment and subsequent heat treatment are leading to significantly improved mechanical properties of such an alloy compared to the as-cast state.

  8. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M X; Gan, Z Y; Liu, S [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, X H, E-mail: chimish@163.com [Division of MOEMS, Wuhan National Lab for Optoelectronics, Wuhan 430074 (China)

    2011-08-26

    Vertically aligned carbon nanotube (VACNT) turf is proposed for use as an electrical and thermal contact material. For these applications, one route for circumventing the high temperatures required for VACNT growth using chemical vapor deposition (CVD) is used to grow firstly VACNTs on one substrate and then transfer them to other substrates. In this work, a nano thermocompression bonding technique between VACNTs and a metallized substrate is developed to allow dry mechanical transfer of the VACNTs. Unlike the diffusion bonding between two bulk materials, nano metal clusters have a high surface energy and the atoms are very active to form alloy with the contacted bulk metal material even at much lower temperatures, so nano thermocompression bonding can decrease the bonding temperature (150 deg. C) and pressure (1 MPa) and greatly shorten the bonding time from hours to 20 min. A debonding experiment shows that the bonding strength between VACNTs and the metallized layer is so high that a break is less likely to occur at the bonding interface.

  9. Metal-ceramic alloys in dentistry: a review.

    Science.gov (United States)

    Roberts, Howard W; Berzins, David W; Moore, B Keith; Charlton, David G

    2009-02-01

    The purpose of this article is to review basic information about the alloys used for fabricating metal-ceramic restorations in dentistry. Their compositions, properties, advantages, and disadvantages are presented and compared. In addition to reviewing traditional noble-metal and base-metal metal-ceramic alloys, titanium and gold composite alloys are also discussed. A broad search of the published literature was performed using Medline to identify pertinent current articles on metal-ceramic alloys as well as articles providing a historical background about the development of these alloys. Textbooks, the internet, and manufacturers' literature were also used to supplement this information. The review discusses traditional as well as more recently-developed alloys and technologies used in dentistry for fabricating metal-ceramic restorations. Clear advantages and disadvantages for these alloy types are provided and discussed as well as the role that compositional variations have on the alloys' performance. This information should enable clinicians and technicians to easily identify the important physical properties of each type and their primary clinical indications. A number of alloys and metals are available for metal-ceramic use in dentistry. Each has its advantages and disadvantages, primarily based on its specific composition. Continuing research and development are resulting in the production of new technologies and products, giving clinicians even more choices in designing and fabricating metal-ceramic restorations.

  10. Molecular-dynamics simulation of defect formation energy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Moon, W.H.; Hwang, H.J.

    2004-01-01

    We investigate the defect formation energy of boron nitride nanotubes (BNNTs) using molecular dynamics simulation. Although the defect with tetragon-octagon pairs (TOP) is favored in the flat BNNTs cap, BN clusters, and the growth of BNNTs, the formation energy of the TOP defect is significantly higher than that of the pentagon-heptagon pairs (PHP) defect in BNNTs. The PHP defect reduces the effect of the structural distortion caused by the TOP defect, in spite of homoelemental bonds. The instability of the TOP defect generates the structural transformation into BNNTs with no defect at about 1500 K. This mechanism shows that the TOP defect is less favored in case of BNNTs

  11. Ab initio studies of vacancies in (8,0) and (8,8) single-walled carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-09-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology Vol. 12, 7030?7036, 2012 Ab Initio Studies of Vacancies in (8,0) and (8,8) Single-Walled Carbon and Boron Nitride NanotubesAb M. G. Mashapa 1, 2, *, N. Chetty 2, and S. Sinha Ray 1, 3 1 DST...

  12. 1/f noise in metallic and semiconducting carbon nanotubes

    Science.gov (United States)

    Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel-Oakley, Jennifer; Rinzler, Andrew G.

    2006-11-01

    The charge transport and noise properties of three terminal, gated devices containing multiple single-wall metallic and semiconducting carbon nanotubes were measured at room temperature. Applying a high voltage pulsed bias at the drain terminal the metallic tubes were ablated sequentially, enabling the separation of measured conductance and 1/f noise into metallic and semiconducting nanotube contributions. The relative low frequency excess noise of the metallic tubes was observed to be two orders of magnitude lower than that of the semiconductor tubes.

  13. Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Qi-lin, E-mail: xiongql@hust.edu.cn [Department of Mechanics, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China); Tian, Xiao Geng [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-10-15

    The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length on the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.

  14. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  15. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    International Nuclear Information System (INIS)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun; Tang, Yingru; Cao, Juexian

    2015-01-01

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%, 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.

  16. High field magnetic behavior in Boron doped Fe{sub 2}VAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, Ch., E-mail: venkyphysicsiitm@gmail.com [Department of Physics, Indian Institute of Technology, Kharagpur (India); DCMP & MS, Tata Institute of Fundamental Research, Mumbai (India); Vasundhara, M., E-mail: vasu.mutta@gmail.com [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695019 (India); Srinivas, V. [Department of Physics, Indian Institute of Technology, Chennai (India); Rao, V.V. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2016-11-15

    We have investigated the magnetic behavior of Fe{sub 2}VAl{sub 1−x}B{sub x} (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the T{sub c}, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (M{sub S}) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble M{sub S} at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method. - Highlights: • Short range magnetic character has been confirmed by the critical exponents analysis. • Magnetoresistace is about −14% with non-saturating tendency even at 150 kOe for Fe{sub 2}VAl alloy. • Boron doped Fe{sub 2}VAl alloys show a weak magnetism even at T=900 K.

  17. Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Lan Chun; Srisungsitthisunti, Pornsak; Amama, Placidus B; Fisher, Timothy S; Xu Xianfan; Reifenberger, Ronald G [Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: lan0@physics.purdue.edu

    2008-03-26

    A technique of measuring contact resistance between an individual nanotube and a deposited metallic film is described. Using laser ablation to sequentially shorten the contact length between a nanotube and the evaporated metallic film, the linear resistivity of the nanotube as well as the specific contact resistivity between the nanotube and metallic film can be determined. This technique can be generally used to measure the specific contact resistance that develops between a metallic film and a variety of different nanowires and nanotubes.

  18. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  19. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    Science.gov (United States)

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  20. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  1. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  2. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  3. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu

    2011-02-22

    Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.

  4. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  5. Effect of temperature on swelling and bubble growth in metals

    International Nuclear Information System (INIS)

    Tiwari, G.P.

    1982-01-01

    The effect of temperature on the swelling of copper-boron alloys has been studied in the temperature range of 900-1040deg C. It is observed that beyond 1030deg C, swelling as well as the rate of bubble growth decrease. Similar characteristics of the bubble growth have been observed in aluminium-boron alloys also. At 590deg C, the bubble growth in aluminium-boron alloys is faster as compared to that at 640deg C. It thus appears that the swelling as well as the growth of the gas bubble are retarded at temperatures near the melting point in metals. Possible reasons for this kind of behaviour are discussed. (author)

  6. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  7. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  8. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  9. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  10. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  11. Magnetic properties and thermodynamics in a metallic nanotube

    International Nuclear Information System (INIS)

    Jiang, Wei; Li, Xiao-Xi; Guo, An-Bang; Guan, Hong-Yu; Wang, Zan; Wang, Kai

    2014-01-01

    A metallic nanotube composed of the ferromagnetic spin-3/2 inner shell and spin-1 outer shell with a ferrimagnetic interlayer coupling has been studied by using the effective-field theory with correlations (EFT). With both existence of the magnetic anisotropy and transverse field, we have studied effects of them on the magnetic properties and the thermodynamics. Some interesting phenomena have been found in the phase diagrams. At low temperature, the magnetization curves present different behaviors. Two compensation points have been found for the certain values of the system parameters in the system. The research results of metallic nanotubes may have potential applications in the fields of biomedicine and molecular devices. - Highlights: • A hexagonal metallic nanotube is composed of spin-3/2 inner layer and spin-1 outer layer. • Various types of magnetization curves depend on physical parameters and temperature. • We study the effects of physical parameters on the magnetic properties and thermodynamics

  12. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  13. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Duwez, P.; Bakos, L.; Seres, Z.; Bogancs, J.; Nazarov, V.M.

    1979-12-01

    The surface boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses was measured by neutron activation analysis on both sides of the ribbon samples. It was found that the boron concentration is always higher at the bright side of the ribbon than that at the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. Range values of alpha-particles for some characteristic compositions of metallic glasses are tabulated. A mathematical technique for the deconvolution of experimental data is described and the listing of the Fortran program is enclosed. (author)

  14. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  15. Comparative study of crystallized melt-spun iron-boron alloys by Moessbauer effect and resistivity measurements

    International Nuclear Information System (INIS)

    Arshad, M.; Siddique, M.; Anwar-ul-Islam, M.; Butt, N.M.; Ashfaq, A.; Shamim, A.

    1993-01-01

    Moessbauer study of two as-quenched, melt-spun iron-boron completely crystallized alloys, Fe/sub 72/01/B/sub 28/ and Fe/sub 88/01/B/sub 12/, indicates the presence of alpha-Fe, Fe/sub 2/B and Fe/sub 3/B. The percentage of these phases is different in the two alloys. Resistivity measurements show to phase transformation of Fe/sub 3/B and Fe/sub 2/B, respectively. (author)

  16. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  17. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing, Chongqing 401123 (China); Zhang, Jianyue [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-15

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  18. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Zhang, Jianyue; Asif, Muhammad

    2015-01-01

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  19. The fracture of boron fibre-reinforced 6061 aluminium alloy

    Science.gov (United States)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  20. Toughening effect of multi-walled boron nitride nanotubes and their influence on the sintering behaviour of 3Y-TZP zirconia ceramics

    Czech Academy of Sciences Publication Activity Database

    Tatarko, Peter; Grasso, S.; Chlup, Zdeněk; Porwal, H.; Kasiarova, M.; Dlouhý, Ivo; Reece, M.J.

    2014-01-01

    Roč. 34, č. 7 (2014), s. 1829-1843 ISSN 0955-2219 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : Zirconia * Boron nitride nanotubes * Composite * Spark plasma sintering * Toughening mechanism Subject RIV: JI - Composite Materials Impact factor: 2.947, year: 2014

  1. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  2. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  3. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    Directory of Open Access Journals (Sweden)

    Sukirno

    2009-03-01

    Full Text Available Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor heterojunction. The first one is built from CNT(10,10 as metallic carbon nanotube and CNT (17,0 as semiconductor carbon nanotube. The other one is built from CNT (5,5 as metallic carbon nanotube and CNT (8,0. All of the semiconducting carbon nanotubes are assumed to be a pyridine-like N-doped. Those two heterojunctions are different in term of their structural shape and diameter. It has been calculated their charge distribution and potential profile, which would be useful for the simulation of their electronic transport properties. The calculations are performed by using self-consistent method to solve Non-Homogeneous Poisson’s Equation with aid of Universal Density of States calculation method for Carbon Nanotubes. The calculations are done by varying the doping fraction of the semiconductor carbon nanotubes The electron tunneling transmission coefficient, for low energy region, also has been calculated by using Wentzel-Kramer-Brillouin (WKB approximation. From the calculation results, it is obtained that the charge distribution as well as the potential profile of this device is doping fraction dependent. It is also inferred that the WKB method is fail to be used to calculate whole of the electron tunneling coefficient in this system. It is expected that further calculation for electron tunneling coefficient in higher energy region as well as current-voltage characteristic of this system will become an interesting issue for this carbon nanotube based

  4. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  5. A novel theranostic nanobioconjugate. "1"2"5/"1"3"1I labeled phenylalanine conjugated boron nitride nanotubes

    International Nuclear Information System (INIS)

    Ozge Kozgus Guldu; Perihan Unak; Suna Timur

    2017-01-01

    Here we report the synthesis of boron nitride nanotubes (BNNTs) via a chemical vapor deposition method, as potential agents for boron neutron capture therapy. BNNTs were functionalized with PAMAM[G-2] dendrimer and then, conjugated with l-Phe using EDC/NHS. After that, BNNTs were radiolabeled with "1"2"5/"1"3"1I, which are commonly used for both therapy and diagnosis in clinical and pre-clinical studies. BNNTs were radiolabeled with a maximum yield with "1"2"5/"1"3"1I in compared with 4-borono-l-phenyalanine which is currently used as a commercial drug. Radiolabeling parameters were optimized with thin layer radiochromatography and high performance liquid radiochromatography. BNNTs are promising nanobioconjugates as new theranostic agents. (author)

  6. Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation

    International Nuclear Information System (INIS)

    Cui Junjia; Lei Chengxi; Xing Zhongwen; Li Chunfeng

    2012-01-01

    Highlights: ► We model microstructural evolution during hot forming using a metallo-thermo-mechanical model. ► The effect of water-cooled on temperature distribution of blank and tools was investigated. ► The effect of process parameters on microstructure and mechanical properties were investigated. ► FE results were compared to experimental results and the errors of mechanical properties were in a reasonable scope. - Abstract: As a theoretical tool predicting microstructural evolution of boron alloy, the finite element (FE) method has received considerable attention in recent years. In this work, we focus on the boron alloy under non-isothermal hot forming conditions and establish a fully coupled metallo-thermo-mechanical model taking account of cooling and oxide. Based on the proposed model, we investigate the phase transformation and predict the hardness during the hot forming process via FE simulation. In addition, according to the hardness, the tensile strength during non-isothermal forming is predicted. Supporting the feasibility of the proposed model is the experiments where BR1500HS alloy is hot-worked at various conditions that derive a promising agreement of microstructures, hardness, and tensile strength to the simulation data.

  7. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment

    Science.gov (United States)

    Wu, Dengfeng; Xu, Haoxiang; Cao, Dapeng; Fisher, Adrian; Gao, Yi; Cheng, Daojian

    2016-12-01

    In order to combine the advantages of both 0D and 1D nanostructured materials into a single catalyst, density functional theory (DFT) calculations have been used to study the PdCu alloy NP-decorated Cu nanotubes (PdCu@CuNTs). These present a significant improvement of the electrocatalytic activity of formic acid oxidation (FAO). Motivated by our theoretical work, we adopted the seed-mediated growth method to successfully synthesize the nanostructured PdCu@CuNTs. The new catalysts triple the catalytic activity for FAO, compared with commercial Pd/C. In summary, our work provides a new strategy for the DFT prediction and experimental synthesis of novel metal NP-decorated 1D nanostructures as electrocatalysts for fuel cells.

  8. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  9. Effect of boron addition to the hard magnetic bulk Nd60Fe30Al10 amorphous alloy

    International Nuclear Information System (INIS)

    Kong, H.Z.; Li, Y.; Ding, J.

    2000-01-01

    A detailed study of the effect of boron addition to crystallinity, magnetic properties and thermal properties was carried out for alloys Nd 60-x Fe 30 Al 10 B x with x=0, 1, 3 and 5 produced by copper mold chill casting and melt-spinning. The cast rods of alloys Nd 60-x Fe 30 Al 10 B x were largely amorphous. Remanence up to 0.154 T and coercivity up to 355 kA/m were observed, which were higher than those of the bulk amorphous Nd 60 Fe 30 Al 10 rod of the same diameter. A step in hysteresis loop was observed for the hard magnetic cast rod and ribbon melt-spun at a low speed of 5 m/s of the alloys with boron addition. Consistent increase in the amplitude of the step and magnetic field (H) at which the step was observed as the boron content increased. A single magnetic phase with low coercivity was observed for fully amorphous ribbon melt-spun at high speed of 30 m/s. Full crystallization due to heat treatment resulted in transition of hard magnetic amorphous phase of Nd 55 Fe 30 Al 10 B 5 cast rod to paramagnetic crystalline phases. TEM results of the as-cast rods illustrated the existence of numerous minute Nd-crystallites in amorphous matrix

  10. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  11. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    International Nuclear Information System (INIS)

    Veit, R.; Kolleck, R.; Hofmann, H.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating.In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  12. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  13. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    International Nuclear Information System (INIS)

    Mohamed, Norani Muti; Ahmad, Pervaiz; Saheed, Mohamed Shuaib Mohamed; Burhanudin, Zainal Arif

    2014-01-01

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor

  14. Electronic structure and optical properties of boron nitride nanotube bundles from first principles

    Science.gov (United States)

    Behzad, Somayeh

    2015-06-01

    The electronic and optical properties of bundled armchair and zigzag boron nitride nanotubes (BNNTs) are investigated by using density functional theory. Owing to the inter-tube coupling, the dispersions along the tube axis and in the plane perpendicular to the tube axis of BNNT bundles are significantly varied, which are characterized by the decrease of band gap, the splitting of the doubly degenerated states, the expansions of valence and conduction bands. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities.

  15. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  16. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  17. Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays

    Science.gov (United States)

    Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong

    Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.

  18. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Chen Yiming; Zeng Guoxun; Huang Huiping; Xie Zhiwei; Jie Xiaohua

    2007-01-01

    We have synthesized multi-wall carbon nanotubes by catalytic chemical vapour deposition (CCVD) method using an AB 5 hydrogen storage alloy with diameter ranging from 38 to 150 μm as a catalyst. The H 2 uptake capacity of the carbon nanotubes prepared using an AB 5 alloy as a catalyst is about 4 wt.% through to the pressure of 8 MPa at room temperature. Differential thermal analysis-thermogravimetric analysis (DTA-TGA) technique has been applied to investigate the effect of the diameters of the AB 5 alloy catalyst of micrometer magnitude and the technique conditions in the CCVD process on the thermal properties of carbon nanotubes. As the catalyst diameter increases from 38 to 150 μm, the average diameter of the prepared carbon nanotubes increases and the diameter distribution also enlarges. Electron microscope, Raman spectrum and thermal analysis all indicated that the catalyst sizes affect the diameter and the thermal properties of the carbon nanotubes. When the catalyst diameter increases, the initial weight loss temperature and the differential thermal peak temperature of the carbon nanotubes increases, which shows that the lager the diameter of the carbon nanotubes is, the higher the oxidation temperature, and the better the anti-oxidizablity. However, if the diameter of the catalyst is larger than 100 μm, the anti-oxidizablity does not rise anymore but tend to be invariableness. In the CCVD preparation process, the anti-oxidizability of the carbon nanotubes increases, when raising the ratio of the hydrogen gas in the reaction gas in our experimental range (4:1, 3:1, and 2:1, respectively)

  19. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Bakos, L.; Duwez, P.; Bogancs, J.; Nazarov, V.M.

    1980-01-01

    The boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses is measured by neutron activation analysis on both surfaces of the ribbon samples. It is found that the boron concentration is always higher on the bright side of the ribbon than that on the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. (author)

  20. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  1. Metal-doped graphene layers composed with boron nitride-graphene as an insulator: a nano-capacitor.

    Science.gov (United States)

    Monajjemi, Majid

    2014-11-01

    A model of a nanoscale dielectric capacitor composed of a few dopants has been investigated in this study. This capacitor includes metallic graphene layers which are separated by an insulating medium containing a few h-BN layers. It has been observed that the elements from group IIIA of the periodic table are more suitable as dopants for hetero-structures of the {metallic graphene/hBN/metallic graphene} capacitors compared to those from groups IA or IIA. In this study, we have specifically focused on the dielectric properties of different graphene/h-BN/graphene including their hetero-structure counterparts, i.e., Boron-graphene/h-BN/Boron-graphene, Al-graphene/h-BN/Al-graphene, Mg-graphene/h-BN/Mg-graphene, and Be-graphene/h-BN/Be-graphene stacks for monolayer form of dielectrics. Moreover, we studied the multi dielectric properties of different (h-BN)n/graphene hetero-structures of Boron-graphene/(h-BN)n/Boron-graphene.

  2. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  3. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  4. Standard practice for qualification and acceptance of boron based metallic neutron absorbers for nuclear criticality control for dry cask storage systems and transportation packaging

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice provides procedures for qualification and acceptance of neutron absorber materials used to provide criticality control by absorbing thermal neutrons in systems designed for nuclear fuel storage, transportation, or both. 1.2 This practice is limited to neutron absorber materials consisting of metal alloys, metal matrix composites (MMCs), and cermets, clad or unclad, containing the neutron absorber boron-10 (10B). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    /C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.

  6. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  7. Fabrication and characterization of composite TiO{sub 2} nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sobaszek, M. [Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk (Poland); Siuzdak, K.; Sawczak, M. [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk (Poland)

    2016-02-29

    The composite TiO{sub 2} nanotubes/boron-doped diamond electrodes were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition resulting in the improved electrochemical performance. This composite electrode can deliver high specific capacitance of 7.46 mF cm{sup −2} comparing to boron-doped diamond (BDD) deposited onto flat Ti plate (0.11 mF cm{sup −2}).The morphology and composition of composite electrode were characterized by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. According to XPS and Raman analyses, the structure of TiO{sub 2} was greatly changed during Chemical Vapor Deposition process: formation of Ti{sup 3+} sites, partial anatase to rutile transformation and titanium carbide phase formation. This effect is attributed to the simultaneous presence of activated hydrogen and carbon in the plasma leading to enhanced dehydration of NTs (nanotubes) followed by carbon bonding. The enhanced capacitive effect of TiO{sub 2} NT/BDD could be recognized as: (1) the unique synergistic morphology of NTs and BDD providing more efficient conducting pathway for the diffusion of ions and (2) partial decomposition of NTs and transformation towards to TiC and Ti{sub 2}O{sub 3} fractions. Finally, highly ordered titania nanotubes produced via simply, quick and controllable method — anodization, could act as promising substrate for conductive BDD layer deposition and further application of such composites for supercapacitor construction. - Highlights: • The TiO{sub 2} nanotube (NT)/diamond electrode delivers capacitance of 7.46 mF cm{sup −2}. • The NTs are not affected by diamond growth process and keep their pristine shape. • The BDD overlayer fully encapsulates TiO{sub 2} NTs exhibiting typical columnar growth. • The activated hydrogen and carbon in the plasma lead to enhanced dehydration of NTs. • The presence of TiC and Ti{sub 2}O{sub 3} fractions introducing additional capacitance.

  8. Amorphization and evolution of magnetic properties during mechanical alloying of Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30}: Dependence on starting boron microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, L.M.; Blázquez, J.S., E-mail: jsebas@us.es; Ipus, J.J.; Conde, A.

    2014-02-05

    Highlights: • Mechanical alloying of Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30} leads to amorphous phase with B inclusions. • Using optimized amorphous B, amorphization occurs earlier. • B is more effectively introduced in the matrix using amorphous B. • Magnetoelasic contribution to effective magnetic anisotropy is negligible. -- Abstract: Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30} composition was mechanically alloyed using three different types of boron powders in the starting mixture: crystalline β-B, commercial amorphous B and optimized amorphous B via ball milling. Using optimized amorphous B, amorphization process of the alloy is more efficient but milling to optimize amorphous B introduces some iron contamination. Boron inclusions (100–150 nm in size) remain even after long milling times. However, using amorphous boron reduces the fraction of boron distributed as inclusions to ∼40% of the total B. Thermal stability at the end of the milling process is affected by the initial boron microstructure. Coercivity is reduced a half using amorphous B instead of crystalline B in the starting mixture.

  9. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of γ double-prime precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625

  10. Investigation of LMFBR prototype 7A heaters and the metallurgy of the platinum-8 weight percent tungsten alloy

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1976-09-01

    A Liquid Metal Fast Breeder Reactor 7A prototype heater failure was analyzed. The failure was due to melting of the platinum-8 weight percent tungsten alloy (Pt-8 W) alloy winding caused by a loss of contact with the inside boron nitride insulation. An attempt to simulate a failure revealed that elemental boron forms a low-melting mixture with Pt-8 W, but a means by which boron might be present in an actual heater was not determined. A time/temperature/grain size study of various Pt-8 W alloy samples resulted in behavior which would be expected from a single-phase, solid-solution alloy. The results of the study were useful in estimating the temperatures reached at various locations along the length of two failed 7A prototype heaters

  11. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  12. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  13. The Electrochemical Stability in NaCl Solution of Nanotubes and Nanochannels Elaborated on a New Ti-20Zr-5Ta-2Ag Alloy

    Directory of Open Access Journals (Sweden)

    Claudiu Constantin Manole

    2015-01-01

    Full Text Available Nanotubular and nanochannels structures were fabricated via anodizing on a new alloy Ti-20Zr-8Ta-2Ag. A continuous coating of connected tubes/channels can be observed in the SEM micrographs forming tubular structures with diameters in hundreds of nm, as well as smaller tubes, with diameters in tens of nm. In the case of nanochannels structure, the diameters are smaller and wall thicknesses significantly thinner than in nanotubes. Wettability measurements indicate a decrease of contact angles in both cases of nanotubes and nanochannels, but the increase of hydrophilic character is more significant in the case of nanochannels. The Tafel procedure and electrochemical impedance spectroscopy tests performed in NaCl 0.9% solution indicate a better stability for the nanostructured surfaces compared to untreated alloy, the surface with nanochannels offering higher corrosion resistance. Spectral UV-VIS determination has confirmed Ag metallic presence, opening the door for applications not only in tissue engineering but for water splitting and the photoreduction of CO2 as well.

  14. Effect of boron addition on the microstructures and electrochemical properties of MmNi3.8Co0.4Mn0.6Al0.2 electrode alloys prepared by casting and rapid quenching

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Chen Meiyan; Wang Xinlin; Wang Guoqing; Lin Yufang; Qi Yan

    2004-01-01

    The rapid quenching technology was used in the preparation of the MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys. The microstructures and electrochemical performances of the as-cast and quenched alloys were analysed and measured. The effects of boron additive on the microstructures and electrochemical properties of as-cast and quenched alloy MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 were investigated. The experimental results showed that the microstructure of as-cast MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) alloy is composed of CaCu 5 -type main phase and a small amount of CeCo 4 B-type secondary phase. The abundance of the secondary phase increases with the increase of the boron content x. The secondary phase in the alloys disappears when quenching rate is larger than 22 m/s. The electrochemical measurement showed that the addition of boron slightly modifies the activation performance and dramatically enhances the cycle life of the alloys, whereas it reduces the capacities of the as-cast and quenched alloys. The influence of boron additive on the electrochemical characteristics of the as-quenched alloy is much stronger than that on the as-cast alloy. It is because boron strongly promotes the formation of the amorphous phase in the as-quenched alloy

  15. The effect of boron addition on microstructure and mechanical properties of biomedical Ti35Nb6Ta alloy

    Energy Technology Data Exchange (ETDEWEB)

    Málek, Jaroslav, E-mail: malek@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); CTU in Prague, Faculty of Mechanical Engineering, Department of Materials Engineering, Karlovo Namesti 13, 121 35 Praha 2 (Czech Republic); Hnilica, František, E-mail: hnilica@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); Veselý, Jaroslav, E-mail: vesely@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); Smola, Bohumil, E-mail: smola@met.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Březina, Vítězslav, E-mail: brezinavita@gmail.com [Masaryk University, Faculty of Medicine, Department of Stomathology, Komenského Náměstí 220/2, 662 43 Brno (Czech Republic); Kolařík, Kamil, E-mail: kamil.kolarik@email.cz [Faculty of Mechanical Engineering, University of West Bohemia, Univerzitní 22, 306 14 Plzeň (Czech Republic)

    2014-10-15

    The beta-titanium alloys are promising materials for bioapplications but their processing via melting is difficult. Coarse grains have been observed in as-cast specimens. Subsequent thermo-mechanical processing seems to be necessary in order to obtain fine-grained microstructure with better mechanical properties. The grain size can be decreased significantly by addition of small boron amount. In this work Ti–35Nb–6Ta alloy with various B additions (0, 0.05, 0.1, 0.3 and 0.5 wt.%) has been studied. Even the smallest amount of B leads to significant grain refinement in Ti–35Nb–6Ta alloy (from 1300 to about 350 μm). Slight grain refinement has been observed also after hot forging and solution treatment. TiB particles emerged in specimens due to B addition. These particles contribute to changes in mechanical properties not only in hot forged and solution treated specimens (hardness increase from 140 to 180 HV10), but also in cold swaged specimens (hardness from 230 to 250 HV10, tensile strength from 800 to 920 MPa). The hardness values can be increased up to 370 HV10 during aging at 400 °C (specimen with 0.5 wt.% B). It has been observed that specimens with low boron addition 0.05 wt.% possess no cytotoxicity. On the other hand in specimens with 0.1 wt.% B or more slight adverse effect on cytotoxicity has been observed. - Highlights: • The influence of boron on microstructure and mechanical properties has been studied. • Beta-transus temperature has been determined. • Cytotoxicity depending on boron content has been evaluated. • Possibility of final heat treatment has been determined.

  16. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.

    Science.gov (United States)

    Kodali, Vamsi K; Roberts, Jenny R; Shoeb, Mohammad; Wolfarth, Michael G; Bishop, Lindsey; Eye, Tracy; Barger, Mark; Roach, Katherine A; Friend, Sherri; Schwegler-Berry, Diane; Chen, Bean T; Stefaniak, Aleksandr; Jordan, Kevin C; Whitney, Roy R; Porter, Dale W; Erdely, Aaron D

    2017-10-01

    Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1β and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute

  17. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  18. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H. (ed.); Sasaki, K.; Kalbáč, Martin; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J.

    2009-01-01

    Roč. 102, č. 12 (2009), 126804-1-126804-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic carbon nanotubes * radial breathing mode * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.328, year: 2009

  19. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    Directory of Open Access Journals (Sweden)

    Shenoy Vivek

    2011-01-01

    Full Text Available Abstract The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage.

  20. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    Science.gov (United States)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  1. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  2. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    Science.gov (United States)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  3. Phosphors containing boron and metals of Group IIIA and IIIB

    Science.gov (United States)

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  4. Structure and mechanical properties of Fe--Cr--Mo--C alloys with and without boron

    International Nuclear Information System (INIS)

    Chen, Y.L.

    1976-05-01

    Nonconventional heat treatments were designed to improve the mechanical properties of these martensitic steels. Results show that the as-quenched structures of both steels consist mainly of dislocated martensite. In the boron-free steel, there are more lath boundary retained austenite films. The boron-treated steel shows higher strengths at all tempering temperatures but with lower Charpy V-notch impact energies. Both steels show tempered martensite embrittlement when tempered at 350 0 C for 1 hour. The properties above 500 0 C tempering are significantly different in the two steels. While the boron-free steel shows a continuous increase in toughness when tempered above 500 0 C, the boron-treated steel suffers a second drop in toughness at 600 0 C tempering. Transmission electron microscopy studies show that in the 600 0 C tempered boron-treated steel large, more or less continuous cementite films precipitate at the lath boundaries, which are probably responsible for the embrittlement. The differences in mechanical properties at tempering temperatures above 500 0 C are rationalized in terms of the effect of boron-vacancy interactions on the recovery and recrystallization behavior of these steels. Boron seems to impair room temperature impact toughness at low strength levels but not at high strength levels. By simple nonconventional heat treatments of the present alloys, martensitic steels may be produced with quite good strength-toughness properties which are much superior to those of existing commercial ultra-high strength steels. It has also been shown that the as-quenched martensitic steels need not be brittle and in fact very good combinations of strength and toughness can be obtained with as-quenched martensitic steels. 56 fig., 5 tables, 75 references

  5. Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Zhicai; Ma Zhengming; Li Hulin

    2008-01-01

    We demonstrate the use of molecular monolayers to enhance the nucleation of electrocatalytically active PtNi alloy nanoparticles onto the multi-walled carbon nanotubes (MWCNTs). After the siloxane was polymerized on the nanotube surfaces, the carbon nanotubes were embedded within the polysiloxane shell with a hydrophilic amino group situated outside. Subsequent deposition of PtNi nanoparticles led to high density of 3-10 nm diameter PtNi alloy nanoparticles uniformly deposited along the length of the carbon nanotubes. The presence of MWCNTs and PtNi in the composite films was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersion X-ray spectra analysis (EDS). The electrocatalytic activity of the PtNi-modified MWCNT/polysiloxane (PtNi/Si-MWCNT) composite electrode for electro-oxidation of methanol was investigated by cyclic voltammetry (CV), and excellent electrocatalytic activity can be observed

  6. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  7. Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater

    International Nuclear Information System (INIS)

    Katkar, V.A.; Gunasekaran, G.; Rao, A.G.; Koli, P.M.

    2011-01-01

    Highlights: → Presence of boron carbide increases the corrosion rate of A6061 alloy in seawater. → Increasing the B 4 C content decreases passive layer thickness. → Passive films formed on A6061 and its B 4 C composites are n-type semiconductors. - Abstract: The effect of boron carbide (B 4 C) reinforcement on the corrosion of AA6061 alloy was studied by investigating passive films formed in seawater. The higher passive current and its potential-dependence for these composites indicated formation of porous passive film. Electrochemical impedance spectroscopy (EIS) graph suggests that the alloy surface is partly or totally active. The formed passive film is n-type semiconductor junction in nature. The difference between corrosion potential (E corr ) and potential at zero charge (PZC) suggests that the chloride ions responsible for film breakdown exist within the passive film. A suitable mechanism is proposed for the passive film breakdown.

  8. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  9. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  10. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  11. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  12. Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Chen, G.; Liu, C.T.

    2015-01-01

    Highlights: • Proper boron additions and heat-treatments improve the ductility of Ti64 alloys. • Coarse TiB precipitates embrittle the Ti64 alloys causing ductility loss. • Modified Ti64 forged alloys with high strength and high ductility are developed. - Abstract: The effects of boron additions on the microstructure and mechanical properties of forged Ti–6Al–4V alloys in different heat-treatment conditions have been characterized by both experimental studies and thermodynamic calculations. The results indicate a combination of proper post-forging treatments and B additions are helpful for control of the prior-β grain size and the volume fraction of α phase, thereby tuning the ductility of the forged Ti–6Al–4V alloys. However, the B-containing alloys exhibit a significant drop in ductility if the solutionizing temperature is too high, and this embrittlement is mainly due to the coarsening of brittle TiB borides. The mechanism in this case is due to the cleavage fracture of TiB rather than its debonding with the matrix, as indicated by the observation of the aligned TiB borides on the matching areas of both halves of the fracture surfaces. Thus, the TiB size and orientation, the prior-β grain size, and the volume fraction of the α phase all play important roles in controlling the mechanical properties of the forged Ti–6Al–4V alloys. The current findings shed light on the composition–microstructure–ductility relationship in the forged Ti–6Al–4V alloys

  13. Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luan, J.H.; Jiao, Z.B. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China); Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China)

    2015-03-05

    Highlights: • Proper boron additions and heat-treatments improve the ductility of Ti64 alloys. • Coarse TiB precipitates embrittle the Ti64 alloys causing ductility loss. • Modified Ti64 forged alloys with high strength and high ductility are developed. - Abstract: The effects of boron additions on the microstructure and mechanical properties of forged Ti–6Al–4V alloys in different heat-treatment conditions have been characterized by both experimental studies and thermodynamic calculations. The results indicate a combination of proper post-forging treatments and B additions are helpful for control of the prior-β grain size and the volume fraction of α phase, thereby tuning the ductility of the forged Ti–6Al–4V alloys. However, the B-containing alloys exhibit a significant drop in ductility if the solutionizing temperature is too high, and this embrittlement is mainly due to the coarsening of brittle TiB borides. The mechanism in this case is due to the cleavage fracture of TiB rather than its debonding with the matrix, as indicated by the observation of the aligned TiB borides on the matching areas of both halves of the fracture surfaces. Thus, the TiB size and orientation, the prior-β grain size, and the volume fraction of the α phase all play important roles in controlling the mechanical properties of the forged Ti–6Al–4V alloys. The current findings shed light on the composition–microstructure–ductility relationship in the forged Ti–6Al–4V alloys.

  14. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  15. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    The powder patterns of the as-prepared and acid treated MWCNTs are shown by the XRD spectra. The TEM results show the microstructure of the multi-walled carbon nanotubes well decorated with metal nanoparticles (Cu, Fe, Ni) and metal oxides (CuO, Fe2O3, NiO), while the SEM show the surface morphology.

  16. Non-radiative recombination process in BGaAs/GaAs alloys: Two layer photothermal deflection model

    Energy Technology Data Exchange (ETDEWEB)

    Ilahi, S., E-mail: ilehi_soufiene@yahoo.fr [Université de Carthage, Unité de Recherche de caractérisation photothermique et modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), 8000 Merazka, Nabeul (Tunisia); Baira, M.; Saidi, F. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir. Avenue de l’Environnement, Monastir 5019 (Tunisia); Yacoubi, N. [Université de Carthage, Unité de Recherche de caractérisation photothermique et modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), 8000 Merazka, Nabeul (Tunisia); Auvray, L. [Laboratoire Multimateriaux et Interfaces, Université Claude Bernard Lyon I, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Maaref, H. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir. Avenue de l’Environnement, Monastir 5019 (Tunisia)

    2013-12-25

    Highlights: •We have developed a two layer photothermal deflection model. •We have determined the electronic properties of BGaAs/GaAs alloys. •We have studied the boron effect in the electronic parameters. -- Abstract: Photo-thermal deflection technique PTD is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.

  17. Ammonia nanotubes and their interactions with coinage metals

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Afshan, E-mail: amohajeri@shirazu.ac.ir; Bozorgizadeh, Tahereh

    2014-09-30

    Highlights: • The possibility of building ammonia nanotubes (ANTs) is explored. • Six ANTs formed by the stacks of 4- and 5-membered ammonia rings have been studied. • The interactions between the ANTs and coinage metals are investigated. • The nature of nitrogen–metal bonds is unveiled by quantum chemical approaches. - Abstract: The hydrogen bond networks of finite ammonia molecules are considered to explore the possibility of building ammonia nanotubes (ANTs). Six ANTs formed by the stacks of 4- and 5-membered ammonia rings have been studied. The calculated stabilization energies indicate considerable stability for ANTs. In the second part, the interactions between the constructed ANTs and coinage metals (M = Cu, Ag, and Au) are investigated with a focus on the nature of nitrogen…metal bonds. The changes in binding energies from copper to gold reveal that the three metals have almost similar tendency for the interaction with ANTs and the interaction strength is governed by the structure of ANT. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the quantum chemical analyses. The N…M bonds are found to have partially covalent and partially electrostatic nature.

  18. Near-ideal strength in metal nanotubes revealed by atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingfei; Xiao, Fei [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Deng, Chuang, E-mail: dengc@ad.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, The University of Manitoba, 15Gillson Street, Winnipeg, Manitoba R3T 5V6 (Canada)

    2013-12-02

    Here we report extraordinary mechanical properties revealed by atomistic simulations in metal nanotubes with hollow interior that have been long overlooked. Particularly, the yield strength in [1 1 1] Au nanotubes is found to be up to 60% higher than the corresponding solid Au nanowire, which approaches the theoretical ideal strength in Au. Furthermore, a remarkable transition from sharp to smooth yielding is observed in Au nanotubes with decreasing wall thickness. The ultrahigh tensile strength in [1 1 1] Au nanotube might originate from the repulsive image force exerted by the interior surface against dislocation nucleation from the outer surface.

  19. The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Pérez-Bustamante, R.; Pérez-Bustamante, F.; Maldonado-Orozco, M.C.; Martínez-Sánchez, R.

    2017-01-01

    Although carbon nanotubes/aluminum (CNT/Al) composites are promising materials in the production of structural components, their mechanical behavior under overaging conditions has not been considered. In this paper the effect of CNTs on the microstructural and mechanical behavior of a 2024 aluminum alloy (Al2024) synthesized by mechanical alloying (MA) and powder metallurgy routes is discussed, as well as the effect of aging heat treatments at different temperatures and aging times. The mechanical behavior of composites was screened by hardness measurements as function of aging time. After 96 h of aging time, composites showed mechanical stability in their hardness performance. Images from transmission electron microscopy showed that the mechanical stability of composites was due to a homogeneous dispersion of CNTs in the aluminum matrix and a subsequent alteration in the kinetics of precipitation is due to their presence in the aluminum matrix. Even though strengthening precipitation took place during aging, this was not the main strengthening mechanism observed in composites. - Highlights: • Dispersion of carbon nanotubes during mechanical alloying • Microstructural evolution observed by HRTEM. • Mechanical performance evaluated through micro-hardness test. • Increased mechanical performance at high working temperatures • Acceleration of kinetics of precipitation due to CNTs, and milling conditions

  20. The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Bustamante, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No.120, C.P. 31109 Chihuahua, Chih. (Mexico); Pérez-Bustamante, F. [Universidad Autónoma de Chihuahua (UACH), Facultad de Ciencias Químicas, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125 Chihuahua, Chih. (Mexico); Maldonado-Orozco, M.C. [Universidad Autónoma de Chihuahua (UACH), Facultad de Ingeniería, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No.120, C.P. 31109 Chihuahua, Chih. (Mexico)

    2017-04-15

    Although carbon nanotubes/aluminum (CNT/Al) composites are promising materials in the production of structural components, their mechanical behavior under overaging conditions has not been considered. In this paper the effect of CNTs on the microstructural and mechanical behavior of a 2024 aluminum alloy (Al2024) synthesized by mechanical alloying (MA) and powder metallurgy routes is discussed, as well as the effect of aging heat treatments at different temperatures and aging times. The mechanical behavior of composites was screened by hardness measurements as function of aging time. After 96 h of aging time, composites showed mechanical stability in their hardness performance. Images from transmission electron microscopy showed that the mechanical stability of composites was due to a homogeneous dispersion of CNTs in the aluminum matrix and a subsequent alteration in the kinetics of precipitation is due to their presence in the aluminum matrix. Even though strengthening precipitation took place during aging, this was not the main strengthening mechanism observed in composites. - Highlights: • Dispersion of carbon nanotubes during mechanical alloying • Microstructural evolution observed by HRTEM. • Mechanical performance evaluated through micro-hardness test. • Increased mechanical performance at high working temperatures • Acceleration of kinetics of precipitation due to CNTs, and milling conditions.

  1. Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study

    Science.gov (United States)

    Shayan, Kolsoom; Nowroozi, Alireza

    2018-01-01

    The electronic structure and properties of the armchair boron nitride nanotubes (BNNTs) interacted with the 5-FU drug, as an anticancer drug, are studied at the B3LYP/6-31G(d,p) level of theory. D3-Corrections were carried out for the treatment of intermolecular interactions in the hybrid complexes and encapsulated nanotubes, exactly. Results have shown that the encapsulation and adsorption of 5-FU molecule on the studied BNNTs surface are favorable processes, with a few exceptions. Also, it is found that the encapsulated nanotubes are stable than the hybrid complexes. Furthermore, we estimated the strengths of the intermolecular bonds of the benchmark systems by energetic, geometric, topological and molecular orbital descriptors. Some analyses have been made to explore any changes in the binding characteristics of the drug molecule after its attachment to the nanotubes. According to the NBO results, the charge transfer phenomenon is observed from the bonding or nonbonding orbitals of drug to the antibonding orbitals of BNNTs. Moreover, HOMO-LUMO analysis indicated that, after the adsorption process, the HOMO value slightly increased, while the LUMO value in these systems significantly reduced in the both of Drug@BNNTs groups. So, the energy gaps between HOMO and LUMO (Eg) are reduced, which emphasis on the greater intermolecular bond strength. Finally, the stability and reactivity of the Drug@BNNTs complexes have been examined from the magnitudes of the chemical reactivity descriptors such as chemical potential, global hardness, and electrophilicity index. As a consequence, BNNTs can be considered as a drug delivery vehicle for the transportation of 5-FU as anticancer drug within the biological systems.

  2. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.

    Science.gov (United States)

    Dickey, Michael D; Weiss, Emily A; Smythe, Elizabeth J; Chiechi, Ryan C; Capasso, Federico; Whitesides, George M

    2008-04-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.

  3. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  4. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  5. Defect accumulation behaviour in hcp metals and alloys

    International Nuclear Information System (INIS)

    Woo, C.H.

    2000-01-01

    The effects of displacement damage on the physical and mechanical properties of metals and alloys, caused by the bombardment of energetic particles, have been investigated for several decades. Besides the obvious technical and industrial implications, an important motive of such investigations is to understand the factors that differentiate the response of different metals under different irradiation conditions. Recently, much interest is shown in the possible effects of the crystal lattice structure on variations in the damage accumulation behaviour of metals and alloys. In this paper we focus on the case of metals and alloys that crystallize in the hexagonal close pack (hcp) structure, and describe recent understanding of the damage production, accumulation and its consequences in these metals

  6. Physisorbed o-carborane onto lyso-phosphatidylcholine-functionalized, single-walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron

    International Nuclear Information System (INIS)

    Yannopoulos, S N; Bouropoulos, N; Zouganelis, G D; Nurmohamed, S; Smith, J R; Fatouros, D G; Tsibouklis, J; Calabrese, G

    2010-01-01

    A combination of data from ICP-MS, Raman spectroscopy, UV-vis spectrometry, atomic force microscopy, ζ-potential measurements and gel electorphoresis studies has shown that o-carborane may be immobilized on stable aqueous dispersions of lyso-phosphatidylcholine-functionalized single-walled carbon nanotubes, which in turn indicates the potential of such structures for deployment as carrier vehicles in boron neutron capture therapy.

  7. Gamma rays shielding parameters for white metal alloys

    Science.gov (United States)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  8. Characterization of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F. [Institute of Materials Engineering, National Taiwan Ocean University, No. 2, Beining Road, Keelung (China); Lin, H.M. [Department of Materials Engineering, Tatung University, No.40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei 104 Taiwan (China); Lee, P.Y.

    2008-11-15

    This study explored the feasibility of preparing CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} bulk metallic glass (BMG) composites though powder metallurgy route. The CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites were obtained by consolidating the 8h mechanically alloyed composite powders by vacuum hot pressing process. A significant increase in hardness (9.34 GPa) and fracture strength (1937 MPa) was achieved for the Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites containing 12 vol. % CNT. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  9. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  10. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  11. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  12. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  13. Neutron radiography applied to qualitative and quantitative non-destructive testing of metals and alloys

    International Nuclear Information System (INIS)

    Laporte, A.; Bayon, G.; Thierry, D.

    1981-01-01

    The radiation-material interaction between X-rays, gamma rays and neutrons is compared. The different possibilities of image detection are enumerated. The industrial testing installations associated with the Triton experimental reactor of the Fontenay-aux-Roses Nuclear Research Centre is described. A high performance testing unit is presented -the use of an intense flux of cold neutrons in a special building designed for neutrons radiographic testing- which will enter service in the second half of 1980, in association with the Orphee basic physics reactor of the Saclay Nuclear Research Centre. Concrete examples of manufacturing control on metal parts are given such as: testing of bonds between two metals of comparable density, testing of the homogeneity of high density alloys, testing of the homogeneity of low density alloys, testing of materials with high neutron contrast. Neutron radiographic testing not only achieves qualitative but also quantitative analysis of the films, on two levels, dimensional measurement and homogeneity and/or concentration measurement, by densitometry. Testing methods used for complete quantitative analysis of boronated aluminium plates used in the nuclear industry are examined. Perspectives concerning routine tests, by dealing with fundamental aspects of standardization and the knowledge of the phenomena involved in this testing technique are given [fr

  14. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    Science.gov (United States)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  15. X-ray photoelectron spectroscopy study of the functionalization of carbon metal-containing nanotubes with phosphorus atoms

    International Nuclear Information System (INIS)

    Shabanova, I.N.; Terebova, N.S.

    2013-01-01

    Highlights: •Carbon metal-containing nanotubes (Me–Cu, Ni, Fe) were functionalized with chemical groups containing different concentrations of phosphorous. •The C1s and Me3s spectra were measured by the X-ray photoelectron spectroscopy method. •The values of the atomic magnetic moment of the carbon metal-containing nanotubes were determined. -- Abstract: In the present paper, carbon metal-containing (Me: Cu, Ni, Fe) nanotubes functionalized with phosphorus atoms (ammonium polyphosphate) were studied by X-ray photoelectron spectroscopy (XPS) on an X-ray electron magnetic spectrometer. It is found that the functionalization leads to the change of the metal atomic magnetic moment, i.e. the value of the atomic magnetic moment in the functionalized carbon metal-containing (Cu, Ni, Fe) nanotubes increases and is higher than that in pristine nanotubes. It is shown that the covalent bond of Me and P atoms is formed. This leads to an increase in the activity of the nanostructure surface which is necessary for the modification of materials

  16. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    Science.gov (United States)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  17. Simple and accurate model for voltage-dependent resistance of metallic carbon nanotube interconnects: An ab initio study

    International Nuclear Information System (INIS)

    Yamacli, Serhan; Avci, Mutlu

    2009-01-01

    In this work, development of a voltage dependent resistance model for metallic carbon nanotubes is aimed. Firstly, the resistance of metallic carbon nanotube interconnects are obtained from ab initio simulations and then the voltage dependence of the resistance is modeled through regression. Self-consistent non-equilibrium Green's function formalism combined with density functional theory is used for calculating the voltage dependent resistance of metallic carbon nanotubes. It is shown that voltage dependent resistances of carbon nanotubes can be accurately modeled as a polynomial function which enables rapid integration of carbon nanotube interconnect models into electronic design automation tools.

  18. Effect of heat-treatment on the hardness and mechanical properties of Boron Alloyed Steel

    Directory of Open Access Journals (Sweden)

    bin Khiyon Mohammad Raffik

    2017-01-01

    Full Text Available In an automotive industry, hot stamped, die quenched structural components have been widely used to provide extra protection against crash intrusion. Boron alloyed steel exhibit limited ductility, but it also promotes improvement in impact performance. This study analyzed the effect of cooling rate on the hardness and energy absorption. Self-quenched specimens were heated to 850°C and cooled in air of room temperature, water at room temperature and cold water. Vickers hardness test and tensile test was then carried out to analyze the effect of different quenching rate. Self-quenched specimens were compared to the properties of the die-quenched specimens obtained from commercial automobile body. Result shows that boron steel with the highest cooling rate has the highest value of hardness but low in strength.

  19. Possibility of surface carburization of refractory metals of electric spark alloying

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Isaeva, L.P.; Timofeeva, I.I.; Tsyban', V.A.

    1981-01-01

    The paper is concerned with a study in the alloying layer formation under electric spark alloying of refractory (Ti, Zr, Nb, Mo, W, Co, Fe) metals with graphite in argon and in air using the EhFI-46A installation. It is shown that in electric spark alloying with graphite there appear certain specific conditions for the alloying layer formation manifested in the cathode mass decrease during treatment. In this case an alloying layer consisting of carbides, oxides of the corresponding metals and material of the base is formed on the metal surface. The best carburization conditions in the process of electric spark alloying are realized for group 4 metals when treating them in ''soft'' regime, specific time of alloying being 1-3 min/sm 2 and for group 5 and 6 metals - in ''rigid'' regime of treatment and specific time of alloying 3-5 min/cm 2 [ru

  20. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de, E-mail: sousaem@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Lab. de Materiais Nanoestruturados para Bioaplicacoes; Cardoso, Valbert Nascimento, E-mail: cardosov@farmacia.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia

    2011-07-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with {sup 99m}Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  1. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    International Nuclear Information System (INIS)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de; Cardoso, Valbert Nascimento

    2011-01-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with 99m Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  2. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  3. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  4. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  5. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  6. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  7. Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Choi, Hyoung Joon; Ihm, Jisoon; Yoon, Young-Gui; Louie, Steven G.

    1999-01-01

    The quantum conductance of a metallic carbon nanotube with one end immersed in a jellium metal is studied. We find that the incident π * -band electrons, having a very high angular momentum with respect to the tube axis, go through the tube without being scattered by the free electrons in surrounding metal and contribute a quantum unit (2e 2 /h) to the conductance. On the other hand, the incident π-band electrons, with the p z atomic orbitals in phase along the tube circumference, experience strong resonant back-scattering because the low-angular-momentum states at the Fermi level have a dominantly metallic character in the nanotube-jellium metal coexistence region. These results provide a possible explanation for the experimentally observed conductance of one quantum unit instead of two for nanotubes with one end dipped into liquid metal such as mercury. (c) 1999 The American Physical Society

  8. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  9. Successive determinations of metals and boron in metal borides by chelatometric and alkalimetric titrations

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Higashi, Iwami; Atoda, Tetzuzo

    1976-01-01

    Based on the investigation of chemical reactivities of metal borides and of the metal chelate effects on the alkalimetric titration of boron, a method of successive determinations of metals and boron of Mn-, Fe-, Cu- and Al-borides has been developed. The procedure is as follows: (1) Mn-, Fe- and Cu-borides: Dissolve 10 to 30 mg of a sample in a mixture of 3 ml of 3N HNO 3 , 3 ml of 3N H 2 SO 4 and 0.3 ml of 10% H 2 O 2 by heating in a quartz flask equipped with a reflux condenser. Cool the solution obtained, add 0.02M CyDTA solution in excess and neutralize to pH 3 with 2N NaOH solution. Boil the solution for several minutes to ensure the formation of the metal chelate. After cooling, adjust the pH exactly to 6.7 with 0.5 M NaHCO 3 solution, and then determine the metal concentration by back-titrating the excess CyDTA with 0.01M ZnSO 4 solution using MTB as an indicator. After the titration is over, make the solution to pH 3 with 2N H 2 SO 4 and boil for several minutes to expel CO 2 . Cool the solution, adjust the pH exactly to 7.0 with 0.1N CO 2 -free NaOH solution and add 5 g of mannite and ten drops of 0.1% phenolphthalein solution. Finally, titrate the mannite-boric acid complex with 0.05N NaOH solution until the pink tinge is observed (pH 8.2). (2) Al-boride: Fuse 10 to 30 mg of a sample with a mixture of 1.5 g of Na 2 CO 3 and 0.3 g of KNO 3 in a nickel crucible. Digest the melt with water and filter off the residue (nickel oxide). Add 0.01 M EDTA solution in excess to the filterate and make it to pH 3 with 2N H 2 SO 4 . Analytical Results obtained by the present method agree well with those by other methods. The present method takes only 40 minutes, whereas several hours are required to determine metal and boron by other methods. (auth.)

  10. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  11. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    Science.gov (United States)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  12. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko

    2013-01-01

    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  13. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  14. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  15. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  16. The fabrication of short metallic nanotubes by templated electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chienwen, Huang; Hao Yaowu, E-mail: yhao@uta.ed [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX 76051 (United States)

    2009-11-04

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  17. The fabrication of short metallic nanotubes by templated electrodeposition

    International Nuclear Information System (INIS)

    Huang Chienwen; Hao Yaowu

    2009-01-01

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  18. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  19. Shift of the gap energy and thermal conductivity in BGaAs/GaAs alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ilahi, S., E-mail: ilehi_soufiene@yahoo.fr [Unité de Recherche de Caractérisation Photothermique, Institut Préparatoire aux Etudes d' Ingénieurs de Nabeul (IPEIN), Université de Carthage (Tunisia); Saidi, F.; Hamila, R. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir, Avenue de l' Environnement, Monastir 5019 (Tunisia); Yacoubi, N. [Unité de Recherche de Caractérisation Photothermique, Institut Préparatoire aux Etudes d' Ingénieurs de Nabeul (IPEIN), Université de Carthage (Tunisia); Maaref, H. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir, Avenue de l' Environnement, Monastir 5019 (Tunisia); Auvray, L. [Laboratoire Multimateriaux et Interfaces, Université Claude Bernard Lyon I, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-07-15

    Optical and thermal properties of BGaAs/GaAs alloys grown by metal organic chemical vapor deposition (MOCVD) have been studied using both photothermal deflection spectroscopy (PDS) and photoluminescence spectroscopy (PL). It is found that gap energy decrease when increasing the boron composition. Then, the difference between the measured values of gap energies from PDS and PL is linked to the band tails above the conduction band formed by boron clustering in this structure. Indeed, a decrease in thermal conductivity with increasing the boron composition have been also shown and discussed.

  20. Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2016-01-01

    Graphical abstract: Structural properties and stability characteristics of single- and double-walled boron-nitride nanotubes functionalized with Flavin mononucleotide (FMN) in aqueous environment are investigated employing molecular dynamics simulations. - Highlights: • Structural and buckling analysis of boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN). • Gyration radius increases linearly as the weight percentage of FMN increases. • Presence of water molecules results in more expansion of FMN around BNNTs. • Critical buckling force of functionalized BNNTs is higher than that of pure BNNTs. • The critical strain of functionalized BNNTs is found to be lower than that of pure ones. - Abstract: The non-cytotoxic properties of Boron-nitride nanotubes (BNNTs) and the ability of stable interaction with biomolecules make them so promising for biological applications. In this research, molecular dynamics (MD) simulations are performed to investigate the structural properties and stability characteristics of single- and double-walled BNNTs under physical adsorption of Flavin mononucleotide (FMN) in vacuum and aqueous environments. According to the simulation results, gyration radius increases by rising the weight percentage of FMN. Also, the results demonstrate that critical buckling force of functionalized BNNTs increases in vacuum. Moreover, it is observed that by increasing the weight percentage of FMN, critical force of functionalized BNNTs rises. By contrast, critical strain reduces by functionalization of BNNTs in vacuum. Considering the aqueous environment, it is observed that gyration radius and critical buckling force of functionalized BNNTs increase more considerably than those of functionalized BNNTs in vacuum, whereas the critical strains approximately remain unchanged.

  1. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations.

    Science.gov (United States)

    García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio

    2018-06-07

    Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.

  2. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    Science.gov (United States)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  3. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    Science.gov (United States)

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  4. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  5. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  6. Fabrication and mechanical properties of aluminum composite reinforced with functionalized carbon nanotubes

    Science.gov (United States)

    Alavijeh, Elham Zamani; Kokhaei, Saeed; Dehghani, Kamran

    2018-01-01

    Composite aluminum alloy (5000 series) and multi-walled carbon nanotubes (MWCNTs) were made using mechanical alloying, cold press and sintering. The quality of interactions between Al powders and CNTs in the metal matrix composite has a significant effect on mechanical properties. Motivated from the properties of functionalized CNTs, the current study use this material rather than the raw type, because of its reactivity. Besides, a poly-vinyl-alcohol pre-mixing is done, the aim of which is to enhance mixing process. The functionalized carbon nanotubes ware made by chemically method through refluxing with nitric acid. By this method functional groups have been created on CNTs surfaces. 1% and 3% functionalized carbon nanotubes were manufactured using the aforementioned method. To provide unbiased comparisons, 1% and 3% with raw CNTs and pure aluminum is produced with same manner. The numerical experiments affirm the superiority of the functionalized carbon nano-tubes in terms of the relative density and hardness of nanocomposites. As a final activity, the Fourier transformation infrared spectroscopy and field emission scanning electron microscopy techniques were used to characterize the carbon nanotubes and the powders.

  7. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  8. Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe–B alloys

    International Nuclear Information System (INIS)

    He, Lin; Liu, Ying; Li, Jun; Li, Binghong

    2012-01-01

    Highlights: ► The content of B is 1.8 wt.% in the high boron Fe–B alloys. ► Hot-rolling improves the mechanical properties, especially the elongation. ► The Ti content affects the microstructure and mechanical properties. ► Eutectic boride can be eliminated when the atomic ratio of Ti/B is no less than 0.5. ► Alloy exhibits balanced mechanical properties when the atomic ratio of Ti/B is 0.5. -- Abstract: High boron Fe–B alloys (1.8 wt.% B) with different titanium contents are fabricated by Vacuum Induction Melting (VIM) technique. The integrated mechanical properties of the as-cast alloys are poor, especially the ductility. In this investigation, hot-rolling technology is used to improve the microstructure and mechanical properties. The microstructure analysis shows that hot rolling can reduce the size and improve the distribution of the reinforcements. The mechanical properties testing indicates that the yield strength is unchanged basically, but the tensile strength and elongation are improved greatly by hot rolling, especially the elongation. The content of titanium also has great effects on the microstructures and mechanical properties of the hot-rolled alloys. For the hot-rolled alloys, with the titanium content increasing, the ultimate tensile strength and yield strength first decrease slightly and then increase. The elongation and impact toughness are improved significantly. In particular, when the atomic ratio of Ti to B is 0.5, the reinforcements are almost entirely TiB 2 and uniformly distributed in the Fe-matrix. The ternary Fe–B–Ti alloy exhibits balanced mechanical properties: yield strength, ultimate tensile strength, elongation and impact toughness are 334 MPa, 602 MPa, 16.2% and 213 kJ/m 2 , respectively.

  9. Some observations on the physical metallurgy of nickel alloy weld metals

    International Nuclear Information System (INIS)

    Skillern, C.G.; Lingenfelter, A.C.

    1982-01-01

    Numerous nickel alloys play critical roles in various energy-related applications. Successful use of these alloys is almost always dependent on the availability of acceptable welding methods and welding products. An understanding of the physical metallurgy of these alloys and their weld metals and the interaction of weld metal and base metal is essential to take full advantage of the useful properties of the alloys. To illustrate this point, this paper presents data for two materials: INCONEL alloy 718 and INCONEL Welding Electrode 132. 8 figures, 9 tables

  10. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  11. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  12. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  13. Metallization and superconductivity in a multizone doped semiconductor: boron-doped diamond

    International Nuclear Information System (INIS)

    Loktev, V.M.; Pogorelov, Yu.G.

    2005-01-01

    Within the framework of Anderson's s - d hybride model, metallization of a semiconductor at collectivization of impurity states is discussed. Taking in mind the description of boron-doped diamond CB x , the model is generalized for the case of the multiband initial spectrum and cluster acceptor states, due to the pairs of the nearest neighbor impurities ('impurity dumbbells'). The parameters of the calculated band of collective impurity states are compared to those observed in metallized and superconducting CB x

  14. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  15. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Herrero Latorre, C.; Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.

    2012-01-01

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  16. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  17. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  18. Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL-4V Alloy Based on Orthogonal Experimental Design

    Directory of Open Access Journals (Sweden)

    Jia Yunhai

    2018-01-01

    Full Text Available Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.

  19. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  20. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  1. Effect of doping with Al/B on the sensitivity of a metallic carbon nanotube to CO2

    International Nuclear Information System (INIS)

    Merlano, Aura; Pérez, F. R.; Salazar, Ángel; Garay, Andrés

    2017-01-01

    In this work the effect of doping with aluminum (Al) and boron (B) an armchair (6,6) carbon nanotube on its sensibility to carbon dioxide (CO 2 ) for possible application in sensors of this gas was studied. Using first-principles calculations within the framework of the density functional theory (DFT), adsorption energies were obtained in the cases when the molecule is initially perpendicular to the surface of the nanotube, near the dopant atom, and located above a carbon atom of the nanotube, above a C-C bond, or directly above the center of a hexagon. It was found that doping with Al does not improve the adsorption of the molecule compared to the pristine nanotube. However, doping with B slightly favors the adsorption for some of the considered positions. The results suggest that B doping might be an acceptable option in the design and construction of nano devices for CO 2 detection. (paper)

  2. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou

    2017-10-17

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga–Luttinger liquid parameter and density–density interaction are extrapolated from the first-principles excitation energies. We show that the density–density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga–Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

  3. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  4. Effects of axial magnetic field on the electronic and optical properties of boron nitride nanotube

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2011-07-01

    The splitting of band structure and absorption spectrum, for boron nitride nanotubes (BNNTs) under axial magnetic field, is studied using the tight binding approximation. It is found that the band splitting ( ΔE) at the Γ point is linearly proportional to the magnetic field ( Φ/Φ0). Our results indicate that the splitting rate νii, of the two first bands nearest to the Fermi level, is a linear function of n -2 for all (n,0) zigzag BNNTs. By investigation of the dependence of band structure and absorption spectrum to the magnetic field, we found that absorption splitting is equal to band splitting and the splitting rate of band structure can be used to determine the splitting rate of the absorption spectrum.

  5. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    Science.gov (United States)

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  6. Processing of Refractory Metal Alloys for JOYO Irradiations

    International Nuclear Information System (INIS)

    RF Luther; ME Petrichek

    2006-01-01

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang

  7. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  8. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  9. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  10. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  11. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  12. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1967-07-15

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 4 x 10{sup 19} n/cm{sup 2} (thermal) and also 9.0 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 6 x 10{sup 19} n/cm{sup 2} (thermal). Material from three laboratory melts, in which the boron consisted of {sup 10}B, {sup 11}B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the {sup 10}B-alloyed material was changed more and the {sup 11}B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the {sup 10}B containing material compared to 5 kg/mm in the {sup 11}B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the {sup 10}B-alloyed material, 40 deg C in the {sup 11}B-alloyed material and 80 deg C in the material containing natural boron.

  13. Ga-doped and antisite double defects enhance the sensitivity of boron nitride nanotubes towards Soman and Chlorosoman

    Energy Technology Data Exchange (ETDEWEB)

    Javan, Masoud Bezi [Physics Department, Faculty of Sciences, Golestan University, Gorgan (Iran, Islamic Republic of); Soltani, Alireza, E-mail: Alireza.soltani46@yahoo.com [Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan (Iran, Islamic Republic of); Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Ghasemi, A.S. [Department Chemistry, Payame Noor University, P.O. Box, 19395-3697, Tehran (Iran, Islamic Republic of); Lemeski, E.Tazikeh [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Gholami, Niloofar [Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Balakheyli, Hanzaleh [Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan (Iran, Islamic Republic of)

    2017-07-31

    Highlights: • Adsorptions of soman and chlorosoman over the BN nanotubes were investigated. • Adsorption energy of soman and chlorosoman on BGaNNT nanotube is more stable than B-BNNT. • BGaNNT can used to remove the toxic agents containing soman and chlorosoman molecules. • B-BNNT can detect the toxic agents containing soman and chlorosoman molecules. - Abstract: Adsorption of Soman and Chlorosoman over the outer surface of boron nitride nanotube (BNNT) was studied using density functional theory (DFT) calculations to consider its sensitivity toward mentioned nerve agents. Then, we studied the sensitivity of Ga-doped BNNT and double-antisite defective BNNT (d-BNNT) effects towards adsorbed molecule resulting in eye-catching sensitivity of defected adsorbents representing strong chemical adsorption on the Ga-doped BNNT, while they are mainly physisorbed on the pure BNNT with negligible electronic properties. Density of states (DOSs) was analyzed for further understanding of electronic properties of the applied configurations. Charges were moved from BNNT to the single molecules while in case of Ga-doped and d-BNNT; the charges were transferred from single molecules to the defected adsorbents. These along with outcomes of quantum molecular descriptors, difference in energy gap (E{sub g}), and dipole moments clearly reveal that the d-BNNT is a promising sensor material for the detection of these nerve agents.

  14. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  15. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  16. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO 2 anatase, TiO 2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I corr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO 2 , HA, and Ca 5 (PO 4 ) 2 SiO 4 . • Polarization resistance of the coating was increased by Si substitution in HA

  17. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  18. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  19. Application of pulsed plasma streams for materials alloying and coatings modification

    International Nuclear Information System (INIS)

    Byrka, O.V.; Bandura, A.N.; Chebotarev, V.V.; Sadowski, M.J.; Langner, J.

    2002-01-01

    Results of pulsed plasma streams processing of material surfaces with previously deposited FeB and TiAlN coatings are presented. Under the plasma treatment intensive mixing the materials of coating with the material of substrate was achieved.In the first case this provided boronizing of the modified layer with aim of corrosion properties improvement,in the second case-formation of intermediate mixed layer for subsequent deposition of the hard alloyed coatings. Materials alloying with pulsed metal-gas plasma is discussed also

  20. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires

    International Nuclear Information System (INIS)

    Carreño-Fuentes, Liliana; Palomares, Laura A; Ramírez, Octavio T; Ascencio, Jorge A; Medina, Ariosto; Aguila, Sergio

    2013-01-01

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials. (paper)

  1. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    Science.gov (United States)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  2. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  3. Formation of metal clusters in halloysite clay nanotubes

    Science.gov (United States)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-12-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  4. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    Science.gov (United States)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  5. Photometric method to determining boron microamounts in the form of β-diketonate complex in steel and alloys bsed on nickel

    International Nuclear Information System (INIS)

    Ishchenko, A.V.; Stashkova, N.V.; Timoteus, Kh.R.; Fedorova, S.F.

    1988-01-01

    A sensitive technique of determining boron microamounts in steels and alloys based on nickel, doped with chromium, tungsten, molybdenum, titanium and vanadium is developed. After boron preextraction by β-diol chloroform solutions its determination is carried out directly in organic phase in acidic and sulfuric acids by β-diketone class reagent: 4,4'-dihydroxydibensoylmethane (I) or 4,4'-dimethoxydibenzoylmethane. Molar light-absorption coefficient for reagent I at formation of boroxalate complex is 8.48x10 4 , at of complexing in presence of sulfuric acid -10.63x10 4 , of acetic acid-17.27x10 4

  6. The thermodynamics of latent fingerprint corrosion of metal elements and alloys.

    Science.gov (United States)

    Bond, John W

    2008-11-01

    Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.

  7. Boron nitride nanotubes radiolabeled with ⁹⁹mTc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice.

    Science.gov (United States)

    Soares, Daniel Crístian Ferreira; Ferreira, Tiago Hilário; Ferreira, Carolina de Aguiar; Cardoso, Valbert Nascimento; de Sousa, Edésia Martins Barros

    2012-02-28

    In the present study, boron nitride nanotubes (BNNTs) were synthesized from an innovative process and functionalized with a glycol chitosan polymer in CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) laboratories. As a means of studying their in vivo biodistribution behavior, these nanotubes were radiolabeled with (99m)Tc and injected in mice. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy (PCS), while their zeta potential was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by scanning electron microscopy (SEM). The functionalization in the nanotubes was evaluated by thermogravimetry analysis (TGA) and Fourier transformer infrared spectroscopy. The results showed that BNNTs were obtained and functionalized successfully, reaching a mean size and dispersity deemed adequate for in vivo studies. The BNNTs were also evaluated by ex vivo biodistribution studies and scintigraphic imaging in healthy mice. The results showed that nanostructures, after 24h, having accumulated in the liver, spleen and gut, and eliminated via renal excretion. The findings from this study reveal a potential application of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Electronic transport properties of carbon nanotube metal-semiconductor-metal

    Directory of Open Access Journals (Sweden)

    F Khoeini

    2008-07-01

    Full Text Available  In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.

  9. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-01-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary

  10. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  11. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  12. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  13. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus

    International Nuclear Information System (INIS)

    Rath, N.P.; Fehlner, T.P.

    1988-01-01

    A first-order, parameterized model for calculating 11 B chemical shifts in metal-rich ferraboranes and a correlation of chemical shift with boron Mulliken populations from Fenske-Hall calculations are presented. These correlations are qualitatively different from those reported earlier for boranes and suggest that direct iron-boron interactions lead to large deshielding due to substantial increases in multiple-bond contributions to the shielding tensor. Relaxation rates have been measured for [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 0-2) and correlated with electric field gradients at the boron nucleus estimated from Fenske-Hall calculations. These results demonstrate that formation of the boride, [Fe 4 (CO) 12 B] 3- , by deprotonation is accompanied by the development of large asymmetries in the electronic charge distribution around the boron nucleus. Finally, 7 Li NMR is used to probe the nature of the anions [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 1-3), and observed line shapes suggest close association of Li + with the trianion. 28 references, 3 figures, 4 tables

  14. Observation of Electronic Raman Scattering in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H.; Berciaud, S.; Kalbáč, Martin; Saito, R.; Heinz, T. F.; Dresselhaus, M. S.; Kong, J.

    2011-01-01

    Roč. 107, č. 15 (2011), s. 157401 ISSN 0031-9007 R&D Projects: GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * electronic Raman scattering * metallic carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.370, year: 2011

  15. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  16. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  17. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  18. Modeling nanoscale gas sensors under realistic conditions: Computational screening of metal-doped carbon nanotubes

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Mowbray, Duncan; Thygesen, Kristian Sommer

    2010-01-01

    We use computational screening to systematically investigate the use of transition-metal-doped carbon nanotubes for chemical-gas sensing. For a set of relevant target molecules (CO, NH3, and H2S) and the main components of air (N2, O2, and H2O), we calculate the binding energy and change in condu......We use computational screening to systematically investigate the use of transition-metal-doped carbon nanotubes for chemical-gas sensing. For a set of relevant target molecules (CO, NH3, and H2S) and the main components of air (N2, O2, and H2O), we calculate the binding energy and change...... the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions....

  19. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  20. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  1. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization.

    Science.gov (United States)

    Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin

    2012-09-21

    Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.

  2. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  3. Wear properties of Ti-13Zr-13Nb (wt.%) near β titanium alloy containing 0.5 wt.% boron in dry condition, Hank's solution and bovine serum

    International Nuclear Information System (INIS)

    Majumdar, P.; Singh, S.B.; Chakraborty, M.

    2010-01-01

    The effect of heat treatment on the microstructure, hardness and sliding wear behaviour of Ti-13Zr-13Nb (wt.%) containing 0.5 wt.% B (TZNB) has been studied and compared with that of Ti-13Zr-13Nb (wt.%) (TZN) alloy. The wear properties were tested in dry condition and in simulated body fluid (Hank's solution and bovine serum) to understand the effect of different medium on wear behaviour of the TZNB alloy. Depending on the heat treatment condition the microstructure of the alloy consisted of α/martensite and TiB in β matrix. In general, the hardness of all the heat treated samples varied in a narrow range and in most of the cases addition of boron to the TZN alloy decreased the hardness. Almost all cases, no significant variation of the wear rate in dry condition with heat treatment was observed. Compared with the wear rate in dry condition, the wear rate in Hank's solution of the all the TZNB samples increased substantially. Moreover, the wear was found to be most severe in bovine serum. Addition of boron to TZN alloy did not result in any improvement in the wear resistance in all the media studied.

  4. Improved ductility of Ni3Si by microalloying with boron or carbon

    International Nuclear Information System (INIS)

    Taub, A.I.; Briant, C.L.

    1989-01-01

    The effects of boron and carbon additions on the tendency for intergranular fracture in trinickel silicide intermetallics are reported. Melt spinning of Ni 77 Si 23 alloyed with 0.1 at. pct boron results in full bend ductility and complete transgranular fracture compared with brittle intergranular fracture for the unmodified compound. Alloying with 0.1 at. pct carbon also produced full bend ductility but a mixed mode failure (30 pct transgranular). For both carbon and boron additions, reducing the Ni concentration of the base compound results in a greater percentage of intergranular fracture. For Ni 77 Si 23 , the solubility limit is between 0.1 and 0.2 t. pct boron. For compounds with silicon concentrations of 23.5 and 24.0 at. pct, the solubility limit is less than 0.1 at. pct boron. Boron additions above the solubility limit result in Ni 3 B precipitates which degrade the bend ductility and increase the percentage of intergranular fracture. Alloying with carbon above the solubility limit ( 77 Si 23 , increasing the carbon concentration from 0.1 to 1.0 at. pct resulted in no change in the ductility. Auger examination of the grain boundary composition showed strong segregation of both boron and carbon. Enrichment in silicon concentration was also observed

  5. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  6. Symmetry Properties of Single-Walled BC2N Nanotubes

    Directory of Open Access Journals (Sweden)

    Lin Jianyi

    2009-01-01

    Full Text Available Abstract The symmetry properties of the single-walled BC2N nanotubes were investigated. All the BC2N nanotubes possess nonsymmorphic line groups. In contrast with the carbon and boron nitride nanotubes, armchair and zigzag BC2N nanotubes belong to different line groups, depending on the index n (even or odd and the vector chosen. The number of Raman- active phonon modes is almost twice that of the infrared-active phonon modes for all kinds of BC2N nanotubes.

  7. Metals and Alloys Material Stabilization Process Plan

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.; BURK, R.A.

    2000-05-18

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration.

  8. Metals and Alloys Material Stabilization Process Plan

    International Nuclear Information System (INIS)

    RISENMAY, H.R.; BURK, R.A.

    2000-01-01

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration

  9. Effect of the metal work function on the electrical properties of carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Ko, Dae Young; Kil, Joon Pyo; Lee, Jung Wha; Park, Wan Jun

    2012-01-01

    A nearly perfect semiconducting single-walled carbon nanotube random network thin film transistor array was fabricated, and its reproducible transport properties were investigated. The effects of the metal work function for both the source and the drain on the electrical properties of the transistors were systematically investigated. Three different metal electrodes, Al, Ti, and Pd, were employed. As the metal work function increased, p-type behavior became dominant, and the field effect hole mobility dramatically increased. Also, the Schottky barrier of the Ti-nanotube contact was invariant to the molecular adsorption of species in air.

  10. Mechanisms of diffusional phase transformations in metals and alloys

    CERN Document Server

    Aaronson, Hubert I; Lee, Jong K

    2010-01-01

    Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, and these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it doc

  11. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    1999-01-01

    Fracture surfaces of ductile failure of two types bulk amorphous metallic alloys were studied using quantitative and qualitative fractographic analysis. The observed fractographic behaviour of ductile failure in comparison with the ductile failure of amorphous alloy ribbons shows signs of the same

  12. Many-Body Potentials For Binary Immiscible liquid Metal Alloys

    International Nuclear Information System (INIS)

    Karaguelle, H.

    2004-01-01

    The modified analytic embedded atom method (MAEAM) type many- body potentials have been constructed for three binary liquid immiscible alloy systems: Al-Pb, Ag-Ni, Ag- Cu. The MAEAM potential functions are fitted to both solid and liquid state properties for only liquid pure metals which consist the immiscible alloy. In order to test the reliability of the constructed MAEAM effective potentials, partial structure factors and pair distribution functions of these binary liquid metal alloys have been calculated using the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquids. A good agreement with the available experimental data for structure has

  13. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes

    NARCIS (Netherlands)

    Maijenburg, A.W.; Maas, M.G.; Rodijk, E.J.B.; Ahmed, W.; Kooij, Ernst S.; Carlen, Edwin; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of

  14. Tuning Electronic Structures of BN and C Double-Wall Hetero-Nanotubes

    Directory of Open Access Journals (Sweden)

    Xueran Liu

    2015-01-01

    Full Text Available First principle calculations based on density functional theory with the generalized gradient approximation were carried out to investigate the energetic and electronic properties of carbon and boron nitride double-wall hetero-nanotubes (C/BN-DWHNTs with different chirality and size, including an armchair (n, n carbon nanotube (CNT enclosed in (m, m boron nitride nanotube (BNNT and a zigzag (n, 0 CNT enclosed in (m, 0 BNNT. The electronic structure of these DWHNTs under a transverse electric field was also investigated. The ability to tune the band gap with changing the intertube distance (di and imposing an external electric field (F of zigzag DWHNTs provides the possibility for future electronic and electrooptic nanodevice applications.

  15. Metal-filled carbon nanotubes as a novel class of photothermal nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Rossella, Francesco; Bellani, Vittorio [Dipartimento di Fisica ' ' A. Volta' ' and CNISM, Universita degli Studi di Pavia, Via Bassi 6, 27100 Pavia (Italy); Soldano, Caterina [Dipartimento di Chimica e Fisica, Universita degli Studi di Brescia, Via Valotti 9, 25121 Brescia (Italy); Tommasini, Matteo [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' ' G. Natta' ' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-05-08

    Metal-filled carbon nanotubes represent a novel class of photothermal nanomaterials: when illuminated by visible light they exhibit a strong enhancement of the temperature at the metal sites, due to the enhanced plasmonic light absorption at the metal surface, which behaves as a heat radiator. Potential applications include nanomedicine, heat-assisted magnetic recording, and light-activated thermal gradient-driven devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  17. Production of titanium alloys with uniform distribution of heat resisting metals

    International Nuclear Information System (INIS)

    Reznichenko, V.A.; Goncharenko, T.V.; Khalimov, F.B.; Vojtechova, E.A.

    1976-01-01

    Consideration is given to the process of the formation of a titanium sponge alloyed with niobium or tantalum, in the joint metallic reduction of titanium, niobium and tantanum chlorides. A percentage composition of the phases observed and the structure of the alloyed sponge have been studied. It is shown that after one remelting operation of the alloyed sponge the alloys of titanium with niobium and tantalum have a uniform component distribution. At the stage of chloride reduction there appear solid solutions based on titanium and an alloying component. The stage of vacuum separation of the reaction mass is associated with a mutual dissolution of the primary phases and the formation of the solid solutions of the alloyed titanium sponge, which, by their composition, are close to the desired alloy composition. The principal features of the formation of a titanium sponge alloyed with niobium and tantalum are in a perfect agreemet with those typical of Ti-Mo and Ti-W sponges, therefore it can be assumed that these features will be also common to the other cases of the metallic reduction of titanium and refractory metals chlorides

  18. Production of titanium alloys with uniform distribution of heat resisting metals

    Energy Technology Data Exchange (ETDEWEB)

    Reznichenko, V A; Goncharenko, T V; Khalimov, F B; Voitechova, E A

    1976-01-01

    Consideration is given to the process of the formation of a titanium sponge alloyed with niobium or tantalum, in the joint metallic reduction of titanium, niobium and tantanum chlorides. A percentage composition of the phases observed and the structure of the alloyed sponge have been studied. It is shown that after one remelting operation of the alloyed sponge the alloys of titanium with niobium and tantalum have a uniform component distribution. At the stage of chloride reduction there appear solid solutions based on titanium and an alloying component. The stage of vacuum separation of the reaction mass is associated with a mutual dissolution of the primary phases and the formation of the solid solutions of the alloyed titanium sponge, which, by their composition, are close to the desired alloy composition. The principal features of the formation of a titanium sponge alloyed with niobium and tantalum are in a perfect agreemet with those typical of Ti-Mo and Ti-W sponges, therefore it can be assumed that these features will be also common to the other cases of the metallic reduction of titanium and refractory metals chlorides.

  19. Laser processing of metals and alloys

    International Nuclear Information System (INIS)

    Goswami, G.L.; Kumar, Dilip; Roy, P.R.

    1988-01-01

    Laser, due to its high degree of coherence can produce powder density in the range of 10 3 -10 11 W/mm 2 . This high power density of the laser beam enables it to be utilized for many industrial applications, e.g. welding, cutting, drilling, surface treatment, etc. Laser processing of materials has many advantages, e.g. good quality product at high processing speed, least heat affected zone, minimum distortion, etc. In addition, the same laser system can be utilized for different applications, a very cost effective factor for any industry. Therefore laser has been adopted for processing of different materials for a wide range of applications and is now replacing conventional materials processing techniques on commercial merits with several economic and metallurgical advantages. Applications of laser to process materials of different thicknesses varying from 0.1 mm to 100 mm have demonstrat ed its capability as an important manufacturing tool for engineering industries. While lasers have most widely been utilized in welding, cutting and drilling they have also found applications in surface treatment of metals and alloys, e.g. transfor mation hardening and annealing. More recently, there has been significant amount of research being undertaken in laser glazing, laser surface alloying and laser cladding for obtaining improved surface properties. This report reviews the stat us of laser processing of metals and alloys emphasising its metallurgical aspects a nd deals with the different laser processes like welding, cutting, drilling and surface treatment highlighting the types and choice of laser and its interaction with metals and alloys and the applications of these processes. (author). 93 refs., 32 figs., 7 tables

  20. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... at high electrical potentials encountered occasionally in fuel cells. Other nanostructures of carbon are being investigated as alternatives to carbon black as they have several beneficial properties. Multi-walled carbon nanotubes (MW-CNT) are an example of one type of these promising materials. Like...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...

  1. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2018-05-01

    Full Text Available In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE characteristics with respective turn on (1 μA/cm2 and threshold (1 mA/cm2 field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm2 was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm2 for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.

  2. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  3. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  4. The effect of boron additions on irradiation-induced order changes in Ni3Al intermetallic compounds

    International Nuclear Information System (INIS)

    Njah, N.; Gilbon, D.; Dimitrov, O.

    1995-01-01

    The effects of boron additions (0.1 wt%) on the kinetics of atomic order changes in a Ni 76 Al 24 intermetallic compound, under 1 MeV electron irradiation, were investigated at temperatures of 293 K and 410 K and displacement rates of 0.09 x 10 -3 to 4.7 x 10 -3 dpa.s -1 . In these irradiation conditions, a state of residual order was obtained for long irradiation times, characterized by a steady state order parameter S∞; it corresponds to a competition between two opposite features: irradiation disordering and thermal reordering enhanced by irradiation. Boron additions did not affect the efficiency of irradiation-induced disordering: the disordering cross-section (or, equivalently, the number of replacements per displacement var-epsilon) were comparable with and without a boron addition. By contrast, the S∞ values at 293 K were much lower in the alloy containing boron. Since boron does not change the disordering rate, the large difference between the values obtained in undoped and in boron-doped alloys shows that the reordering rate is strongly reduced by the presence of boron. Thus, boron modifies the mobility of the defects responsible for the irradiation-enhanced diffusion. The data on dislocation-loop size and the reordering kinetics suggest that vacancies are trapped by boron at low temperatures and immobilized, probably by the formation of a boron-vacancy complex. The effect becomes weaker at higher displacement rates and higher temperatures, probably due to the boron-vacancy complexes becoming unstable. It is proposed that two different reordering mechanisms may be operative at 293 K, according to the presence of boron: reordering is promoted by vacancy migration in the Ni 76 Al 24 alloy, whereas in the Ni 76 Al 24 (0.1 wt%B) alloy, it is promoted by the migration of split-interstitials or/and of low-mobility vacancy-boron complexes

  5. Corrosion behavior of metals and alloys in marine-industrial environment

    Directory of Open Access Journals (Sweden)

    Mariappan Natesan, Subbiah Selvaraj, Tharmakkannu Manickam and Gopalachari Venkatachari

    2008-01-01

    Full Text Available This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn, were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  6. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Tomiczek B.

    2015-06-01

    Full Text Available The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obtain this goal, composite powders with fine microstructures were fabricated using high-energy mechanical alloying, cold compacting and hot extrusion techniques. The obtained composite powders of aluminium alloy reinforced with 5, 10 and 15 wt% of halloysite nanotubes were characterized with SEM, TEM and XRD analysis. It has been proven that the use of mechanical alloying leads to a high degree of deformation, which, coupled with a decreased grain size below 100 nm and the dispersion of the refined reinforcing particles–reinforces the material very well.

  7. Proofs of cluster formation and transitions in liquid metals and alloys

    International Nuclear Information System (INIS)

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  8. Study through potentiodynamic techniques of the corrosion resistance of different aluminium base MMC's with boron additions

    International Nuclear Information System (INIS)

    Abenojar, J.; Bautista, A.; Guzman, S.; Velasco, F.; Martinez, M.A.

    2009-01-01

    This paper compares a wrought aluminium with a PM aluminium and PM aluminium alloys with boron-base additions, containing boron carbide and Fe/B (obtained by mechanical alloying during 36 hours from a Fe-B 50% mixture by weight). The effect of sintering temperature for the Fe/B containing material and the effect of mechanical alloying for the boron carbide containing aluminium alloy on the corrosion resistance of those materials have been studied. Their behaviour is followed through cyclic anodic polarization curves in chloride media. In the Al+20%Fe/B composite, low sintering temperatures (650- 950 deg C) exert a negative effect. However, when the material was sintered at high temperature (1000-1100 deg C) its behaviour was very similar to the PM pure aluminium. The effect of mechanical alloying studied in aluminium with boron carbide was also important in corrosion resistance, finding a lower corrosion rate in the mechanically alloyed material. (author)

  9. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Okauchi, Hironori; Saida, Kazuyoshi; Nishimoto, Kazutoshi

    2011-01-01

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  10. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  11. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Augustyns, Valerie; De Lemos Lima, Tiago Abel; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro; Da Costa Pereira, Lino Miguel

    2016-01-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+-type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+-type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+-type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insi...

  12. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  13. BxCyNz Nanotube Development and Characterization

    Data.gov (United States)

    National Aeronautics and Space Administration — Boron Nitride Nanotubes (BNNTs) exhibit great promise for primary structure as well as thermal and radiation protection for future space exploration missions. They...

  14. The evaluation of the use of metal alloy fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    Lancaster, D.

    1992-01-01

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ''advanced reactors,'' it became clear that reactor design optimization has been under emphasized. Current ''advanced reactors'' are severely constrained. The AP-600 required the use of a fuel design from the 1970's. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing

  15. Critically designing today’s melt processed bulk magnesium alloys using boron rich nanoparticles

    International Nuclear Information System (INIS)

    Paramsothy, Muralidharan; Gupta, Manoj

    2015-01-01

    Highlights: • B 4 C nanoparticles increased the tensile ductility of Mg–Al alloy to about 25%. • SiB 6 nanoparticles increased the tensile ductility of Mg–Zn alloy to about 23%. • ZrB 2 nanoparticles increased the tensile strength of Mg–RE alloy to above 400 MPa. • Hypothetically, 5–10% cold working could significantly increase tensile strength. • Hypothetically, 5–10% cold working could maintain tensile ductility above 10%. - Abstract: In this work, boron rich nanoparticles (B 4 C, SiB 6 and ZrB 2 ) were added to bulk melt processed Mg–Al, Mg–Zn and Mg–RE (Rare Earth) series contemporary magnesium alloys, respectively. The most obvious positive effect when adding B 4 C nanoparticles to the Mg–Al alloy was the significant increase in tensile ductility (to about 25%). Here, there was no significant change in grain size or crystallographic texture due to nanoparticle addition. However, it was observed that stacking faults formed more easily in the magnesium matrix due to nanoparticle addition. Also, it was observed that coarser nanoparticles broke down high strain zones (HSZs) during tensile deformation. The addition of SiB 6 to Mg–Zn alloy also resulted in similar significant increase in tensile ductility (to about 23%). Tensile deformation induced alignment of more rounded and spherical nanoparticles was observed. Stacking faults forming more easily in the alloy matrix was also observed. However, the formation of nanograins (nanoscale recrystallization) during room temperature tensile deformation was observed in this system. This implied that nanograin rotation during deformation was also responsible for the observed enhanced tensile ductility. When ZrB 2 was added to Mg–RE alloy, the tensile strength was significantly enhanced (yield strength >400 MPa) after thermal ageing. Here, the ZrB 2 nanoparticles induced the formation of thermal ageing resistant long period stacking/ordered (LPSO) nanograins and nanolayers in the Mg

  16. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  17. Effect of aluminium concentration and boron dopant on environmental embrittlement in FeAl aluminides

    International Nuclear Information System (INIS)

    Liu, C.T.; George, E.P.

    1991-01-01

    This paper reports on the room-temperature tensile properties of FeAl aluminides determined as functions of aluminum concentration (35 to 43 at. % Al), test environment, and surface (oil) coating. The two lower aluminum alloys containing 35 and 36.5% Al are prone to severe environmental embrittlement, while the two higher aluminum alloys with 40 and 43% Al are much less sensitive to change in test environment and surface coating. The reason for the different behavior is that the grain boundaries are intrinsically weak in the higher aluminum alloys, and these weak boundaries dominate the low ductility and brittle fracture behavior of the 40 and 43% Al alloys. When boron is added to the 40% Al alloy as a grain-boundary strengthener, the environmental effect becomes prominent. In this case, the tensile ductility of the boron-doped alloy, just like that of the lower aluminum alloys, can be dramatically improved by control of test environment (e.g. dry oxygen vs air). Strong segregation of boron to the grain boundaries, with a segregation factor of 43, was revealed by Auger analyses

  18. Early stage crystallization kinetics in metallic glass-forming alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.

    2014-01-01

    Highlights: • Heterogeneous nucleation may precede the homogeneous one in an alloy. • High kinetic constants and the nucleation rate at the initial stage. • Metallic glasses have heterogeneous nucleation sites which saturate later. -- Abstract: The crystallization kinetics and structural changes of a few metallic glassy alloys were monitored using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Microstructural observations were used to estimate the nucleation and growth rates. A clear comparison of the differences in the crystallization kinetics in the metallic glassy samples is observed at the early and later crystallization stages

  19. Surface studies of liquid metals and alloys

    International Nuclear Information System (INIS)

    Bastasz, Robert

    2003-01-01

    Liquid metals and alloys have been proposed for use in nuclear fusion reactors to serve as replaceable plasma-facing surfaces that remove particles and heat from reacting plasmas. Several materials are being considered for this purpose including lithium, gallium, and tin as well as some of the alloys made from these elements. In order to better understand the properties of liquid surfaces, the technique of low-energy ion scattering was used to examine the surface composition of several of these materials in vacuum as a function of temperature. Oxygen is found to rapidly segregate to the surface of several metallic liquids. The segregation process can be interpreted using a simple thermodynamic model based on Gibbs theory. In the case of an alloy of Sn and Li, Li also segregates to the liquid surface. This provides a means to produce a surface enriched in Li, which is more plasma compatible than Sn, without the need to handle large quantities of liquid Li. (author)

  20. Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg–2.0Zn alloy

    International Nuclear Information System (INIS)

    Zeng, Xiao-shu; Liu, Yong; Huang, Qiu-yu; Zeng, Gang; Zhou, Guo-hua

    2013-01-01

    The effects of carbon nanotubes (CNTs) on the microstructure and mechanical properties of wrought Mg alloys with of 2.0 wt% of Zn content (Mg–2.0Zn) are investigated by the optical microscope (OM), transmission electron microscope (TEM), scanning electron microscope (SEM) and uniaxial tensile test. Different contents of CNTs are added separately in the as-cast ingots and as-extruded samples. The results showed that CNTs could greatly refine the microstructure of both as-cast alloy and as-extruded alloy. The tensile strength, yield strength, elongation and elasticity modulus of the alloy with CNTs were improved to different extents. Remarkably, the increase of elongation reached approximately 80%. The fracture surface of the alloy with CNTs mainly consisted of dimples with toughness rupture modes. Therefore, it suggests that CNTs could enhance the plasticity of wrought Mg–2.0Zn alloy without the reduction of strength

  1. Molybdenum-A Key Component of Metal Alloys

    Science.gov (United States)

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  2. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  3. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  4. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  5. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  6. Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Ding, Yingchun; Chen, Jie; Du, Youwei; Tang, Nujiang

    2017-06-07

    The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B 4 CN 3 and B 3 CN 4 ) on a h-BN monolayer from the viewpoints of lattice match and lattice mismatch models using density functional calculations. It is found that both B 4 CN 3 and B 3 CN 4 monolayers can be stably adsorbed on the h-BN monolayer due to the van der Waals interactions. Intriguingly, we demonstrate that the bipolar magnetic semiconductor (BMS) behavior of the B 4 CN 3 layer and the spin gapless semiconductor (SGS) property of the B 3 CN 4 layer can be well preserved in the B 4 CN 3 /BN and B 3 CN 4 /BN heterobilayers, respectively. The magnetic moments and spintronic properties of the two systems originate mainly from the 2p z electrons of the carbon atoms in the B 4 CN 3 and B 3 CN 4 layers. Furthermore, the BMS behavior of the B 4 CN 3 /BN bilayer is very robust while the electronic property of the B 3 CN 4 /BN bilayer is sensitive to interlayer couplings. These theoretical results are helpful both in understanding the interlayer coupling between B 4 CN 3 or B 3 CN 4 and h-BN monolayers and in providing a possibility of fabricating 2D composite B 4 CN 3 /BN and B 3 CN 4 /BN metal-free spintronic materials theoretically.

  7. Multiscale model of metal alloy oxidation at grain boundaries

    International Nuclear Information System (INIS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr 2 O 3 . This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl 2 O 4 . Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr 2 O 3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl 2 O 4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional

  8. EPR investigation into the structure of boron-containing quartz glasses

    International Nuclear Information System (INIS)

    Amosov, A.V.; Bushmarin, D.B.; Prokhorova, T.I.; Yudin, D.M.

    1975-01-01

    Certain properties of boron-containing quartz glasses and the nature of occurrence of boron in the glass lattice are studied as functions of the method of alloying. The formation of three types of borate structural nodes (BO 4 , BO 3 and BO 4 -BO 3 ) in the lattice of quartz glasses is established. Alloying by boron oxide up to 3% (weight) increases the crystallization stability of quartz glasses, lowers down tsub(g) from 1220 to 950 deg C and does not affect the coefficient of thermal expansion. Low symmetry of borate structural nodes, following from the analysis of EPR spectra, confirms the literature data concerning the low symmetry of glass-forming polyhedrons in a quartz glass

  9. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  10. Relaxation processes during amorphous metal alloys heating

    International Nuclear Information System (INIS)

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  11. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    . Aluminum promoted b phase formation and modified the grain structure from dendritic to equiaxed. Lead or bismuth reduces the size of grains, but not change the morphology of the structure in Cu-Zn alloys. The grain size of the Cu-Zn-alloy can be reduced from 3000 mm to 300 mm after the addition of aluminum and lead. Similar effects were observed in EnviroBrass III after the addition of aluminum and bismuth. Boron refined the structure of yellow brasses in the presence of iron. At least 50 ppm of iron and 3 ppm of boron are necessary to cause grain refinement in these alloys. Precipitation of iron from the melt is identified as the cause of grain refinement. Boron initiates the precipitation of iron which could not be explained at this time. On the other hand zirconium causes some reduction in grain size in all four alloys investigated. The critical limit for the zirconium was found to be around 100 ppm below which not much refinement could be observed. The mechanism of grain refinement in the presence of zirconium could not be explained. Grain refinement by boron and iron can remain over a long period of time, at least for 72 hours of holding or after remelting few times. It is necessary to have the iron and boron contents above the critical limits mentioned earlier. On the other hand, refinement by zirconium is lost quite rapidly, some times within one hour of holding, mostly due to the loss of zirconium, most probably by oxidation, from the melt. In all the cases it is possible to revive the refinement by adding more of the appropriate refining element. Cooling curve analysis (thermal analysis) can be used successfully to predict the grain refinement in yellow brasses. The precipitation of iron in the liquid metal causes the metal to solidify without undercooling. Absence of this reaction, as indicated by the time-temperature (t-T) and its first derivative (dt/dT) curves, proved to be an indicator of refinement. The viability of the technique as an on-line quality

  12. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  13. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  14. Kinetic Study on Channelling of Protons in Metallic Carbon Nanotubes

    International Nuclear Information System (INIS)

    Dan, Zhao; Yuan-Hong, Song; You-Nian, Wang

    2008-01-01

    Based on the kinetic model and the dielectric response theory, a theoretical model is put forward to describe the transport of protons along nanotube axes. With the introduction of electron band structure for different nanotubes like zigzag and armchair nanotubes of metallic properties, the collective excitation of electrons on the cylinders induced by the incident ions is studied, showing several distinct peaks in the curves of the energy loss function. Furthermore, the stopping power and the self-energy are calculated as functions of ion velocities, especially taking into account the influence of damping coefficients. It is conceivable from the results that, in the kinetic formulation, plasmon excitation plays a major role in the stopping. And as the damping increases, the peaks of the stopping power shift to the lower velocities, with the broadening of the plasmon resonance. (condensed matter: structure, mechanical and thermal properties)

  15. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  16. Elementary characterization of Ti metal alloys used in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Deniak, Valeriy [Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR (Brazil); Camargo, Liliane [Universidade Paranaense, Umuarama, PR (Brazil); Assis, J.T, E-mail: cata-montenegro@bol.com.br, E-mail: spaschuk@gmail.com, E-mail: denyak@gmail.com, E-mail: lili_camargo2@hotmail.com, E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)

    2017-07-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  17. Elementary characterization of Ti metal alloys used in implant dentistry

    International Nuclear Information System (INIS)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi; Deniak, Valeriy; Camargo, Liliane; Assis, J.T

    2017-01-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  18. Photoionization of image states around metallic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Segui, Silvina; Arista, Nestor R; Gervasoni, Juana L [Centro Atomico Bariloche (CNEA) 8400, Rio Negro (Argentina); Bocan, Gisela A, E-mail: segui@cab.cnea.gov.a, E-mail: gbocan@iafe.uba.a, E-mail: arista@cab.cnea.gov.a, E-mail: gervason@cab.cnea.gov.a [Institute de AstronomIa y Fisica del Espacio, CC 67, Sue 28, 1428, Ciudad Universitaria, Buenos Aires (Argentina)

    2009-11-01

    In this work we study a theoretical approach to the ionization of electrons bound in an image state around a metallic nanotube by the impact of photons. In a close analogy to the already studied case of ionization by electron impact [1], we calculate and analyze photoionization cross sections of tubular image states [2] within a first Born approximation. We consider various situations, including different energies and polarizations of the incident photon, ejection directions of the outgoing electron, and angular momenta of the image state.

  19. Effect of grain size on yield strength of Ni3Al and other alloys

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    This paper analyzes the effect of grain size on yield stress of ordered Ni 3 Al and Zr 3 Al, and mild steels that show Lueders band propagation after yielding, using the Hall--Petch relation, σ/sub y/ = σ 0 +k/sub y/ d -1 /sup // 2 , and the new relation proposed by Schulson et al., σ/sub y/ = σ 0 +kd/sup -(//sup p//sup +1)/2/ [Schulson et al., Acta Metall. 33, 1587 (1985)]. The major emphasis is placed on the analysis of Ni 3 Al data obtained from published and new results, with a careful consideration of the alloy stoichiometry effect. All data, except for binary stoichiometric Ni 3 Al prepared by powder extrusion, fit the Hall--Petch relation, whereas the data from boron-doped Ni 3 Al and mild steels do not follow the Schulson relation. However, no conclusion can be made simply from the curve fitting using either relation. The results are also discussed in terms of Lueders strain and alloy preparation methods. On the basis of the Hall--Petch analysis, the small slope k/sub y/ is obtained only for hypostoichiometric Ni 3 Al with boron, which would be related to a stronger segregation of boron in nickel-rich Ni 3 Al. In addition, the potency for the solid solution strengthening effect of boron is found to be much higher for stoichiometric Ni 3 Al than for hypostoichiometric alloys

  20. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    Unknown

    junction nanotubes by the pyrolysis of appropriate organic precursors. ... By making use of carbon nanotubes, nanowires of metals, metal ..... The use of activated carbon in place of ..... required for the complete removal of the carbon template.

  1. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  2. TEM of nanostructured metals and alloys

    International Nuclear Information System (INIS)

    Karnthaler, H.P.; Waitz, T.; Rentenberger, C.; Mingler, B.

    2004-01-01

    Nanostructuring has been used to improve the mechanical properties of bulk metals and alloys. Transmission electron microscopy (TEM) including atomic resolution is therefore appropriate to study these nanostructures; four examples are given as follows. (1) The early stages of precipitation at RT were investigated in an Al-Mg-Si alloy. By high resolution TEM it is shown that the precipitates lie on (0 0 1) planes having an ordered structure. (2) In Co alloys the fronts of martensitic phase transformations were analysed showing that the transformation strains are very small thus causing no surface relief. (3) Re-ordering and recrystallization were studied by in situ TEM of an Ni 3 Al alloy being nanocrystalline after severe plastic deformation. (4) In NiTi severe plastic deformation is leading to the formation of amorphous shear bands. From the TEM analysis it is concluded that the amorphization is caused by plastic shear instability starting in the shear bands

  3. Preparation of rare earth and other metal alloys containing aluminum and silicon

    International Nuclear Information System (INIS)

    Mitchell, A.; Goldsmith, J.R.; Gray, M.

    1981-01-01

    A method is provided for making alloys of aluminum and silicon with a third metal which may be a rare earth or a member of groups 4b, 5b, or 6b of the periodic table. The flux system CaF 2 -CaO-Al 2 O 3 is used as a solvent to provide a reactive medium for the alloy-forming reactions. Aluminum is supplied as a reducing agent, and silicon is added as a sink for the alloying metal. The resulting alloy may be used in steels. (L.L.)

  4. Development of casting investment preventing blackening of noble metal alloys Part 2. Application of developed investment for type 4 gold alloy.

    Science.gov (United States)

    Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo

    2003-09-01

    The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.

  5. Thermal Aging Effects on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jun Hyuk; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Dissimilar metal weld (DMW), consists of Alloy 600, Alloy 182, and A508 Gr.3, is now being widely used as the reactor pressure vessel penetration nozzle and the steam generator tubing material for pressurized water reactors (PWR) because of its mechanical property, thermal expansion coefficient, and corrosion resistance. The heat affected zone (HAZ) on Alloy 600 which is formed by welding process is critical to crack. According to G.A. Young et al. crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions [3]. And according to Z.P. Lu et al. CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. To predict the life time of components, there is a model which can calculate the effective degradation years (EDYs) of the material as a function of operating temperature. This study was conducted to investigate how thermal aging affects the hardness of dissimilar metal weld from the fusion boundary to Alloy 600 base metal and the residual strain at Alloy 600 heat affected zone. Following conclusions can be drawn from this study. The hardness, measured by Vickers hardness tester, peaked near the fusion boundary between Alloy 182 and Alloy 600, and it decreases as the picked point goes to Alloy 600 base metal. Even though the formation of precipitate such as Cr carbide, thermal aging doesn't affect the value and the tendency of hardness because of reduced residual stress. According to kernel average misorientation mapping, residual strain decreases when the material thermally aged. And finally, in 30 years simulated specimen, the high residual strain almost disappears. Therefore, the influence of residual strain on primary water stress corrosion cracking can be diminished when the material undergoes thermal aging.

  6. On the resistivity of metal-tellurium alloys for low concentrations of tellurium

    International Nuclear Information System (INIS)

    Gorecki, J.

    1982-04-01

    The resistivity and thermoelectric power of metal-tellurium liquid alloys have been discussed for the case of small tellurium concentration. Nearly free electron model of conduction band has been used. The rapid increase of resistivity in transition metal-tellurium alloys has been predicted. (author)

  7. Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Abadir, G B; Walus, K; Pulfrey, D L

    2010-01-01

    We study the interaction between short semi-metallic carbon nanotubes and different amino acids using molecular dynamics and ab initio (density functional theory/non-equilibrium Green's function) simulations. We identify two different mechanisms of nanotube conductance change upon adsorption of amino acids: one due to the change of the coordinates of the nanotube arising from van der Waals forces of interaction with the adsorbed amino acid; and one due to electrostatic interactions, which appear only in the case of charged amino acids. We also find that the transport mechanism and the changes in the conductance of the tube upon amino acid adsorption are bias dependent.

  8. New applications and novel processing of refractory metal alloys

    International Nuclear Information System (INIS)

    Briant, C.L.

    2001-01-01

    Refractory metals have often been limited in their application because of their propensity to oxidize and to undergo a loos of yield strength at elevated temperatures. However, recent developments in both processing and alloy composition have opened the possibility that these materials might be used in structural applications that were not considered possible in the past. At the same time, the use of refractory metals in the electronics industry is growing, particularly with the use of tantalum as a diffusion barrier for copper metallization. Finally, the application of grain boundary engineering to the problem of intergranular fracture in these materials may allow processes to be developed that will produce alloys with a greater resistance to fracture. (author)

  9. Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications

    Directory of Open Access Journals (Sweden)

    Sarah C. Motshekga

    2012-01-01

    Full Text Available The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of carbon nanotubes and metal/oxides is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. The synthesis of these composites is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors. These techniques based on thermal heating can be time consuming and often lack control of particle size and morphology. Hence, there is interest in microwave technology recently, where using microwaves represents an alternative way of power input into chemical reactions through dielectric heating. This paper covers the synthesis and applications of carbon-nanotube-coated metal/oxides nanoparticles prepared by a microwave-assisted method. The reviewed studies show that the microwave-assisted synthesis of the composites allows processes to be completed within a shorter reaction time with uniform and well-dispersed nanoparticle formation.

  10. A vanadium alloy for the application in a liquid metal blanket of a fusion reactor

    Science.gov (United States)

    Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.

    1988-07-01

    The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.

  11. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  12. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    Science.gov (United States)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  13. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    identified as the primary factor that accelerates dross formation specifically in the transition from two phases to three phase growth. Limiting magnesium oxidation on the surface of molten aluminum therefore becomes the key to minimizing melt loss, and technology was developed to prevent magnesium oxidation on the aluminum surface. This resulted in a lot of the work being focused on the control of Mg oxidation. Two potential molten metal covering agents that could inhibit dross formation during melting and holding consisting of boric acid and boron nitride were identified. The latter was discounted by industry as it resulted in Boron pick up by the melt beyond that allowed by specifications during plant trials. The understanding of the kinetics of dross formation by the industry partners helped them understand how temperature, alloy chemistry and furnace atmosphere (burner controls--e.g. excess air) effected dross formation. This enables them to introduce in their plant process changes that reduced unnecessary holding at high temperatures, control burner configurations, reduce door openings to avoid ingress of air and optimize charge mixes to ensure rapid melting and avoid excess oxidation.

  14. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  15. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  16. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    International Nuclear Information System (INIS)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit; Niven, John F.; Johnson, Michel B.; Ashrafi, Behnam; White, Mary Anne

    2016-01-01

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m -1 K -1 ) and lower-density as-synthesized sheets (∝0.75 W m -1 K -1 ), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m -1 K -1 , for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m -1 K -1 , more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions

    International Nuclear Information System (INIS)

    Bermingham, M.J.; Kent, D.; Zhan, H.; StJohn, D.H.; Dargusch, M.S.

    2015-01-01

    This study demonstrates that trace boron addition to Ti–6Al–4V coupons produced by additive layer manufacturing is an effective way to eliminate the deleterious anisotropic microstructures often encountered with this manufacturing technique. Trace boron additions (up to 0.13 wt.%) to this alloy eliminate grain boundary-α and colony-α, and instead produce a homogeneous α-microstructure consisting of fine equiaxed α-grains in both as-deposited and heat treated coupons. Prior-β grains remain columnar with boron addition but become narrower due to the wider solidification range and growth restricting effect of the boron solute. Compared to unmodified Ti–6Al–4V alloy, Ti–6Al–4V modified with trace boron additions showed up to 40% improvement in plasticity with no loss in strength under uniaxial compression at room temperature. Boron additions were found to inhibit twinning transmission that causes sudden large load drops during deformation of the unmodified Ti–6Al–4V alloy in the heat treated condition

  18. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  19. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  20. Atmospheric corrosion of metals in tropics and subtropic. 2. Corrosion resistance of different metals and alloys

    International Nuclear Information System (INIS)

    Strekalov, P.V.

    1993-01-01

    Data from 169 sources concerning corrosion of different metals, alloys and means of protection, obtained for a 30-year period (up to 1987) in different continent including Europe (Bulgaria, Spain, Italy, France, USSR); America (USA, Panama, Cuba, Venezuela, Brasil, Argentine); Africa (Nigeria, SAR); Australia, New Zeland, Papua-Newguinea, Philippines, are systemized. Actual results of full-scal atmospheric testings of iron, zinc, copper, cadmium, aluminium, tin, lead, carbon, low-alloys. Stainless steels, cast irons, halvanic coatings, copper, aluminium, nickel, titanium, magnesium alloys are presented. Data on the fracture rate can be used for creating the data base in banks on atmospheric resistance of metal materials

  1. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  2. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  3. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  4. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  5. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  6. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  7. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  8. Grain refinement of cast titanium alloys via trace boron addition

    International Nuclear Information System (INIS)

    Tamirisakandala, S.; Bhat, R.B.; Tiley, J.S.; Miracle, D.B.

    2005-01-01

    The grain size of as-cast Ti-6Al-4V is reduced by about an order of magnitude from 1700 to 200 μm with an addition of 0.1 wt.% boron. A much weaker dependence of reduction in grain size is obtained for boron additions from >0.1% to 1.0%. Similar trends were observed in boron-modified as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si

  9. Finite-element solidification modelling of metals and binary alloys

    International Nuclear Information System (INIS)

    Mathew, P.M.

    1986-12-01

    In the Canadian Nuclear Fuel Waste Management Program, cast metals and alloys are being evaluated for their ability to support a metallic fuel waste container shell under disposal vault conditions and to determine their performance as an additional barrier to radionuclide release. These materials would be cast to fill residual free space inside the container and allowed to solidify without major voids. To model their solidification characteristics following casting, a finite-element model, FAXMOD-3, was adopted. Input parameters were modified to account for the latent heat of fusion of the metals and alloys considered. This report describes the development of the solidification model and its theoretical verification. To model the solidification of pure metals and alloys that melt at a distinct temperature, the latent heat of fusion was incorporated as a double-ramp function in the specific heat-temperature relationship, within an interval of +- 1 K around the solidification temperature. Comparison of calculated results for lead, tin and lead-tin eutectic melts, unidirectionally cooled with and without superheat, showed good agreement with an alternative technique called the integral profile method. To model the solidification of alloys that melt over a temperature interval, the fraction of solid in the solid-liquid region, as calculated from the Scheil equation, was used to determine the fraction of latent heat to be liberated over a temperature interval within the solid-liquid zone. Comparison of calculated results for unidirectionally cooled aluminum-4 wt.% copper melt, with and without superheat, showed good agreement with alternative finite-difference techniques

  10. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Grush, M.; Callcott, T.A. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  11. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-01-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called open-quotes super diamond,close quotes and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods

  12. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  13. Mechanical properties of a co-extruded Metallic Glass/Alloy (MeGA) rod-Effect of the metallic glass volume fraction

    International Nuclear Information System (INIS)

    Gravier, S.; Blandin, J.J.; Suery, M.

    2010-01-01

    A Metallic Glass/Alloy (MeGA) rod with a core in zirconium-based bulk metallic glass and a sleeve in aluminium alloy has been successfully elaborated by co-extrusion. SEM observations of the cross-section of the rod show that the interface between the glass and the alloy is defect-free. Compression tests are carried out at room temperature on the MeGA rods containing various glass volume fractions. The yield stress is well described by the rule of mixtures which combines the strength of the glass and that of the alloy, suggesting isostrain behaviour as could be expected. During compression, a good mechanical bonding is observed in the MeGA-rod even after the first fracture of the metallic glass. Finally, push-out tests are performed to evaluate the bonding quality between the two materials. Large values of the shear strength are measured which confirms that co-extrusion leads to good bonding between the glass and the aluminium alloy.

  14. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  15. Theoretical study on the combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Guo; Huang, Yuanhe

    2012-01-01

    Highlights: ► The combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes are investigated. ► The band structures and related electronic properties are calculated by using crystal orbital method. ► The carrier mobility and mean free path are evaluated under the deformation potential theory. -- Abstract: The combined systems of peanut-shaped carbon nanotubes encapsulated in both semiconducting and metallic single-walled carbon nanotubes are investigated by using self-consistent field crystal orbital method based on the density functional theory. The investigation indicates that the interaction between the two constituents is mainly contributed by the π orbitals. The encapsulation does not change the semiconducting or metallic nature of the single-walled carbon nanotubes, but significantly changes the band dispersion and decreases the frontier band width of the metallic one. The carrier mobility and mean free path of the metallic single-walled carbon nanotube increase greatly after the encapsulation. The calculated mobilities have the order of 10 3 cm 2 V −1 s −1 for both of the semiconducting and metallic double-walled carbon nanotubes.

  16. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    Science.gov (United States)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  17. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    Directory of Open Access Journals (Sweden)

    Bao Lin

    2014-10-01

    Full Text Available Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30 and white gold (Au50Ag50 foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM. Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested.

  18. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Yoke Khin

    2013-03-14

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy's Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los

  19. Oxidation Behavior of Simudated Metallic U-Nb Alloys in Air

    International Nuclear Information System (INIS)

    Lee, Eun Pyo; Ju, June Sik; You, Gil Sung; Cho, Il Je; Kook, Dong Hak; Kim, Ho Dong

    2004-01-01

    In order to enhance an oxidation resistance of the pure uranium metal under air condition, a small quantity of niobium(Nb) which is known to mitigate metal oxidation is added into uranium metal as an alloying element. A simulated metallic uranium alloy, U-Nb has been fabricated and then oxidized in the range of 200 to under the environment of the pure oxygen gas. The oxidized quantity in terms of the weight gain (wt%) has been measured with the help of a thermogravimetric analyzer. The results show that the oxidation resistance of the U-Nb alloy is considerably enhanced in comparison with that of the pure uranium metal. It is revealed that the oxidation resistance of the former with the niobium content of 1, 2, 3, and 4 wt% is : 1) 1.61, 7.78, 11.76 and 20.14 times at the temperature of 200 .deg. C; 2) 1.45, 5.98, 10.08 and 11.15 times at 250 .deg. C; and 3) 1.33, 4.82, 8.87 and 6.84 times at 300 .deg. C higher than that of the latter, respectively. Besides, it is shown that the activation energy attributable to the oxidation is 17.13-21.92 kcal/mol.

  20. Photometric and emission-spectrometric determination of boron in steels

    International Nuclear Information System (INIS)

    Thierig, D.

    1982-01-01

    A method for the photometric determination of boron in unalloyed and alloyed steels is described, in which Curcumine is used as reagent. A separation of boron is not necessary. Limit of detection: 0.0003% B. The decomposition of boron nitride in the steel is achieved by heating the whole sample in fuming sulphuric acid/phosphoric acid. For the emission spectrometric investigation of solid steel samples and for the spectrochemical analysis of solutions with plasma excitation working parameters are given and possibilities of interferences are demonstrated. (orig.) [de

  1. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  2. A comparison of tokamak operation with metallic getters (Ti, Cr, Be) and boronization

    International Nuclear Information System (INIS)

    Winter, J.

    1990-07-01

    In addition to discharge cleaning techniques, gettering of tokamaks has been used since 1975 as a powerful tool for controlling the impurity influx into fusion plasmas. High-Z metals like Ti and Cr, evaporated onto the walls of the fusion devices, have first been used. After the introduction of carbon as low Z plasma facing material for the large tokamaks new scenarios were developed, optimizing the low-Z aspect of wall materials. These are the boronization technique and the evaporation of Be in conjunction with the use of Be limiters. A review of the different getter techniques and of the observed results will be given, focussing on the comparison of the tokamak performance achieved with boronization and the use of beryllium. It is shown that in all cases of gettering the most important mechanism for the improved machine performance is the control of the oxygen impurity influx. Very similar results are found for the impurity control potential. The added benefit of boronization and Be gettering arises from the low Z of the materials. Both scenarios essentially lead to the same machine performance. Both render themselves as an option for future devices. (orig.)

  3. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  4. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  5. Overlay metallic-cermet alloy coating systems

    International Nuclear Information System (INIS)

    Gedwill, M.A.; Glasgow, T.K.; Levine, S.R.

    1982-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures

  6. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  7. Boron effect on the microstructure of 9% Cr ferritic–martensitic steels

    International Nuclear Information System (INIS)

    Klimenkov, M.; Materna-Morris, E.; Möslang, A.

    2015-01-01

    Highlights: • Detailed TEM characterization of BN, M 23 C 6 , VN and TaC precipitates in B-alloyed EUROFER97. • Determination of B content influence on density and composition of M 23 C 6 and MX precipitates and herewith on microstructure. • α-Al 2 O 3 –BN–TaC–VN precipitation sequence of different phases during cooling was proposed. • Decreasing of thermal stability of microstructure with boron content was measured. - Abstract: The microstructure of reduces-activation 9Cr–WTaV steel alloyed with 83 and 1160 wt. ppm 10 B was detailed analysed using transmission electron microscopy. The influence of boron content on the precipitation behaviour of M 23 C 6 and MX (VN and TaC) phases and, hence, on the formation process of steel’s grain and lath structure was studied. VN precipitates, which play an important role in the stabilisation of the lath structure, exhibit most sensitive reaction on presence of boron. Their spatial density significantly reduces in the alloy with 83 ppm boron. In the steel with 1160 wt. ppm boron, no formation of VN was detected, whereas TaC particles precipitate at the lath and grain boundaries. These changes in the structure stabilisation mechanism lead to an increasing lath width and a decreasing thermal stability of laths and grains. Analytical investigations of several BN particles reveal their complex multi-phase structure and allow conclusions to be drawn with respect to their precipitation sequence

  8. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  9. Development of various welding techniques for refractory and reactive metals and alloys

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.

    2016-01-01

    Nuclear Fuel Complex (NFC), Hyderabad, India with its excellent manufacturing facilities, produces nuclear fuel and structural components for nuclear reactors. NFC has taken up the challenging job of production of various critical components made out of refractory and reactive metals and alloys for nuclear and aerospace applications as an indigenization import substitute program. Refractory metals are prime candidates for many high temperature aerospace components because of refractory metal's high melting points and inherent creep resistance. The use of refractory metals is often limited because of their poor room temperature properties, inadequate oxidation resistance at elevated temperatures, difficulties associated with joining or welding etc. These advanced materials demand stringent requirement with respect to chemistry, dimensional tolerances, mechanical and metallurgical properties. This paper discusses in detail various welding techniques adopted in NFC for refractory and reactive metals and alloys such as Nb, Zr, Ti, Ta, Zircaloy, Titanium-half alloy etc. to manufacture various components and assemblies required for nuclear and aerospace applications

  10. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  11. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  12. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  13. Metal-nanotube composites as radiation resistant materials

    International Nuclear Information System (INIS)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel; Duin, Adri C. T. van; So, Kang Pyo; Li, Ju; Bringa, Eduardo M.

    2016-01-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  14. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  15. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-11-01

    Full Text Available Xingwang Liu,1 Ang Tian,2 Junhua You,3 Hangzhou Zhang,4 Lin Wu,5 Xizhuang Bai,1 Zeming Lei,1 Xiaoguo Shi,2 Xiangxin Xue,2 Hanning Wang4 1Department of Orthopedics, The People’s Hospital of China Medical University, 2Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University, 3School of Materials Science and Engineering, Shenyang University of Technology, 4Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, 5Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, People’s Republic of China Purpose: To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti–Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag were generated with nanotubular coverings (TiAg-NT. Methods: Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus (S. aureus, as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. Results: All of the TiAg-NT samples, particularly the nanotube-coated Ti–Ag alloy with 2 wt% Ag (Ti2%Ag-NT, could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its

  16. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  17. The effects of phosphorus and boron on the behavior of a titanium-stabilized austenitic stainless steel developed for fast reactor service

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Johnson, G.D.; Puigh, R.J.; Garner, F.A.; Maziasz, P.J.; Yang, W.J.S.; Abraham, N.

    1988-08-01

    Austenitic stainless steels are used for core component materials in liquid metal cooled reactors (LMRs). To extend the lifetime of LMR fuel assemblies, considerable effort was expended by the US breeder materials program to find ways to minimize radiation-induced dimensional changes (swelling and creep) and to maximize the creep rupture strength. After various elements were shown to strongly affect swelling and creep behavior, compositional modifications to a commercial grade austenitic stainless steel (AISI 316) produced an alloy with significant improvement in swelling resistance over the standard 300 series alloys. Changes were primarily in the concentrations of chromium, nickel, silicon and titanium, ASTM specification A771-83 was approved in 1983 for the new alloy, designated UNS S38660. Substantial improvement can be produced in the creep rupture behavior of this alloy. Elements such as phosphorus and boron, typically present in trace quantities, have a significant influence on the creep strength of austenitic stainless steels. Several heats of alloy S38660 were made that systematically varied the phosphorus and boron contents. Uniaxial creep tests were conducted at 704/degree/C (1300/degree/F) to evaluate the effects of these elements on the creep rate and the rupture life. The results of these tests were used to guide the production of reactor grade fuel pin cladding for further evaluations. Pressurized tube specimens were tested in the laboratory and also in a fast reactor. Results of these investigations have shown that the elements phosphorus and boron, present in minute but controlled amounts, increase both the in- reactor and ex-reactor rupture life and reduce both in-reactor swelling and creep rate. Microstructural evaluations were also conducted to help ascertain the mechanisms by which the improved properties were obtained. 41 refs., 28 figs., 3 tabs

  18. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  19. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  20. Charge transfer in chromium-transition metal alloys

    International Nuclear Information System (INIS)

    Kulakowski, K.; Maksymowicz, A.

    1984-07-01

    The average T-matrix approximation is applied for calculations of charge transfer of 3d-electrons in transition metal alloys. The role of concentration, long-range and short-range atomic order is investigated. The results are in reasonable agreement with experimental data. (author)