WorldWideScience

Sample records for metal working

  1. Metal working and dislocation structures

    DEFF Research Database (Denmark)

    Hansen, Niels

    2007-01-01

    Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer...... and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals...

  2. Metal Working and Welding Operations.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  3. Ab initio work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have used a recently developed self-consistent Green’s-function technique based on tight-binding linear-muffin-tin-orbital theory to calculate the work function for the close-packed surfaces of 37 elemental metals. The results agree with the limited experimental data obtained from single...... crystals to within 15%, and they explain the smooth behavior of the polycrystalline data as a function of atomic number....

  4. Work function of elemental metals and its face dependence ...

    African Journals Online (AJOL)

    The calculated work functions for the flat surface of the metals were in perfect agreement with experimental values for metals in the low-density limit and the agreement with experimental values decreased towards the high-density limit. The calculated work functions for the body centred cubic metals were in good agreement ...

  5. 30 CFR 56.16013 - Working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials Storage...

  6. 30 CFR 57.16013 - Working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Materials...

  7. Bulk-plasmon contribution to the work function of metals

    International Nuclear Information System (INIS)

    Gutierrez, F A; DIaz-Valdes, J; Jouin, H

    2007-01-01

    By consideration of the Koopmans theorem expression for the work function of a metal, we find that the total height of the surface barrier potential equals the value of the bulk-plasmon energy of pure metals. As a consequence a simple formula for the work function is obtained which shows better agreement with the experimental data than the most complete existent theories

  8. Metallic muscles and beyond : nanofoams at work

    NARCIS (Netherlands)

    Detsi, Eric; Tolbert, Sarah H.; Punzhin, S.; De Hosson, Jeff Th. M.

    In this contribution for the Golden Jubilee issue commemorating the 50th anniversary of the Journal of Materials Science, we will discuss the challenges and opportunities of nanoporous metals and their composites as novel energy conversion materials. In particular, we will concentrate on

  9. Orientation dependence of the work function for metal nanocrystals

    Science.gov (United States)

    Gao, Lingyuan; Souto-Casares, Jaime; Chelikowsky, James R.; Demkov, Alexander A.

    2017-12-01

    Work function values measured at different surfaces of a metal are usually different. This raises an interesting question: What is the work function of a nano-size crystal, where differently oriented facets can be adjacent? Work functions of metallic nanocrystals are also of significant practical interest, especially in catalytic applications. Using real space pseudopotentials constructed within density functional theory, we compute the local work function of large aluminum and gold nanocrystals. We investigate how the local work function follows the change of the surface plane orientation around multifaceted nanocrystals, and we establish the importance of the orbital character near the Fermi level in determining work function differences between facets.

  10. Reduced work function of graphene by metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Legesse, Merid; Mellouhi, Fedwa El; Bentria, El Tayeb; Madjet, Mohamed E. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Kais, Sabre [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Department of Chemistry and Physics, Purdue University, West Lafayette, IN 46323 (United States); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar); Alharbi, Fahhad H., E-mail: falharbi@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2017-02-01

    Highlights: • Using DFT, the maximum reduction of graphene workfunction is investigated. This is important for many applications. • The calculations show that the adatoms prefer to relax at hollow sites. • The transfer of electrons from the adatoms to graphene shifts up the Fermi level. So, graphene becomes metallic. • For those dopants that have been used experimentally, the calculations agree with the experimental data. • We found that 8% doping by Cs reduces the work function to 2.05 eV. - Abstract: In this paper, the work function of graphene doped by different metal adatoms and at different concentrations is investigated. Density functional theory is used to maximize the reduction of the work function. In general, the work function drops significantly before reaching saturation. For example in the case of Cs doping, the work function saturates at 2.05 eV with a modest 8% doping. The adsorption of different concentrations on metal adatoms on graphene is also studied. Our calculations show that the adatoms prefer to relax at hollow sites. The transfer of electron from metallic dopants to the graphene for all the studied systems shifts the Fermi energy levels above the Dirac-point and the doped graphenes become metallic. The value of Fermi energy shifts depends on the type of metallic dopants and its concentrations. A detail analysis of the electronic structure in terms of band structure and density of states, absorption energy, and charge transfer for each adatom-graphene system is presented.

  11. On the unit rupture work of metals and alloys

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Kovalenko, V.S.; Dyatel, V.P.

    1980-01-01

    Studied is the effect of the nature of the treated material treatment regimes on their unit rupture work at laser treatment in the regime of quasistationary evaporation. It is shown that the unit rupture work changes its values depending on the treatment regimes, coincidences between experimental and calculation values of unit rupture work are not being observed, especially for refractory metals of the 6th group and for solid alloys. Established are optimum regimes for determination of stable values of unit rupture work

  12. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  13. Influence of water on the work function of certain metals

    Science.gov (United States)

    MUSUMECI, FRANCESCO; POLLACK, GERALD H.

    2012-01-01

    Experiments were carried out to explore the effect of light on Au, Pt and Cu surfaces immersed in water, in order to study the changes of work function arising from the interaction between the metallic surfaces and water. The results show an action of liquid water about three times larger than that of low-temperature ice. Theoretical calculations, present in literature, have predicted values much lower than those we measured. The substantial changes in work function measured here appear to arise from the complex structure of water in the vicinity of the metal surface. PMID:22639466

  14. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  15. Strain engineering the work function in monolayer metal dichalcogenides

    International Nuclear Information System (INIS)

    Lanzillo, Nicholas A; Simbeck, Adam J; Nayak, Saroj K

    2015-01-01

    We use first-principles density functional theory to investigate the effect of both tensile and compressive strain on the work functions of various metal dichalcogenide monolayers. We find that for all six species considered, including MoS 2 , WS 2 , SnS 2 , VS 2 , MoSe 2 and MoTe 2 , that compressive strain of up to 10% decreases the work function continuously by as much as 1.0 eV. Large enough tensile strain is also found to decrease the work function, although in some cases we observe an increase in the work function for intermediate values of tensile strain. This work function modulation is attributed to a weakening of the chalcogenide-metal bonds and an increase in total energy of each system as a function of strain. Values of strain which bring the metal atoms closer together lead to an increase in electrostatic potential energy, which in turn results in an increase in the vacuum potential level. The net effect on the work function can be explained in terms of the balance between the increases in the vacuum potential levels and Fermi energy. (paper)

  16. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  17. Metal working fluid exposure and diseases in Switzerland.

    Science.gov (United States)

    Koller, Michael F; Pletscher, Claudia; Scholz, Stefan M; Schneuwly, Philippe

    2016-07-01

    Exposure to metal working fluids (MWF) is common in machining processes worldwide and may lead to diseases of the skin and the respiratory tract. The aim of the study was to investigate exposure and diseases due to MWF in Switzerland between 2004 and 2013. We performed descriptive statistics including determination of median and 90th percentile values of MWF concentrations listed in a database of Suva. Moreover, we clustered MWF-induced occupational diseases listed in a database from the Swiss Central Office for Statistics in Accident Insurance, and performed linear regression over time to investigate temporal course of the illnesses. The 90th percentile for MWF air concentration was 8.1 mg (aerosol + vapor)/m 3 and 0.9 mg aerosol/m 3 (inhalable fraction). One thousand two hundred and eighty skin diseases and 96 respiratory diseases were observed. This is the first investigation describing exposure to and diseases due to MWF in Switzerland over a timeframe of 10 years. In general, working conditions in the companies of this investigation were acceptable. Most measured MWF concentrations were below both the Swiss and most international occupational exposure limits of 2014. The percentage of workers declared unfit for work was 17% compared to the average of other occupational diseases (12%).

  18. Carbon-supported base metal nanoparticles : Cellulose at work

    NARCIS (Netherlands)

    Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J.; Geus, John W.; Jenneskens, Leonardus W.

    2015-01-01

    Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a

  19. STRATEGI KONVERSI ENERGI DI PT. LION METAL WORKS Tbk.

    Directory of Open Access Journals (Sweden)

    Daud Sudradjad

    2011-08-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} PT Lion Metal Works is a company producing office equipment, racking system, building material, security and fireproof safe, and cold forming. The production activity has high dependence on the usage of diesel, which influences the quality of the product and the cost of total business. The price fluctuation is one of the reasons for the company to convert the usage of diesel to some energy alternatives. Gas is the best alternative to replace diesel due to some advantages such as price, installation cost, distribution issue, calorie level, and environmental issue. There are some resistances from internal organization emerge in the implementation of the conversion. The alternatives strategy has been explored to reduce the resistances considering the goal of the organization, the actors (department in the company, and the type of resistance using analytical hierarchy process method. The priority strategy is establishing a new division for handling the conversion program and installing the gas facility gradually.

  20. Working with Design: A Package for Sheet Metal

    Science.gov (United States)

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  1. Generic trend of work functions in transition-metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Yoshitake, Michiko, E-mail: yoshitake.michiko@nims.go.jp [MANA Nanoelectronics Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003 (Japan)

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1−y}N{sub y} (transition metal carbonitrides), and TM{sub 1−z}TM′{sub z}C (alloy carbides)

  2. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    International Nuclear Information System (INIS)

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  3. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  4. Lubricating-cooling liquid for cold working of metals

    Energy Technology Data Exchange (ETDEWEB)

    Bokhanov, D.F.; Bykovskaya, Ye.Ye.; Chuprinina, A.I.; Gubanova, V.A.; Pigulskiy, A.A.; Stepanyants, S.A.

    1979-09-25

    A lubricating-cooling liquid with adequate adhesion to metals, good antioxidant and high antiwear properties with a wide range of application in metal processing consists of petroleum oil as the base and (in percent) 1.5-3.0 percent dibutyl ester of trichlormethylphosphine acid, 0.5-1.0 tributylphosphate, 20-25 SENZh products obtained by successive esterification, condensation and sulfurization of a mixture of synthetic fatty acids of fraction C10-C20, synthetic alcohols of fraction C10-C18 and polyfunctional oxygen containing compounds, and 3-5 percent odorizing additive (coriander oil). The functions of all components are examined and the stage-by-stage technology of producing the SENZh product with complex chemical composition is described.

  5. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  6. Effect of the metal work function on the electrical properties of carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Ko, Dae Young; Kil, Joon Pyo; Lee, Jung Wha; Park, Wan Jun

    2012-01-01

    A nearly perfect semiconducting single-walled carbon nanotube random network thin film transistor array was fabricated, and its reproducible transport properties were investigated. The effects of the metal work function for both the source and the drain on the electrical properties of the transistors were systematically investigated. Three different metal electrodes, Al, Ti, and Pd, were employed. As the metal work function increased, p-type behavior became dominant, and the field effect hole mobility dramatically increased. Also, the Schottky barrier of the Ti-nanotube contact was invariant to the molecular adsorption of species in air.

  7. Characterization of inorganic wastes from metal working industries

    International Nuclear Information System (INIS)

    Gomez, A.; Viguri, J.R.; Andres, A.; Irabien, A.; Guise, L.; Magalhaes, J.; Castro, F.

    1999-01-01

    The paper present the results obtained in the characterisation of metalworking wastes, with the sampling of wastes and characterisation data interpretation subjects as the main studied steps. The results of this work allow to establish the environmental impact assessment of the inorganic wastes from a wide range of metalworking processes in order to determine the optimum options to their management (treatment and/or reuses)

  8. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  9. Work function anisotropy and surface stability of half-metallic CrO(2)

    NARCIS (Netherlands)

    Attema, J. J.; Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    Insight in the interplay between work function and stability is important for many areas of physics. In this paper, we calculate the anisotropy in the work function and the surface stability of CrO(2), a prototype half-metal, and find an anisotropy of 3.8 eV. An earlier model for the relation

  10. Anisotropy of electron work function and reticular compacting of friable faces of metallic crystals

    International Nuclear Information System (INIS)

    Vladimirov, A.F.

    1999-01-01

    The review and statistical estimate of experimental data on work functions for BCC-, FCC- and HCP - metals (W, Mo, Ta, Nb, Cr, V, Ni, Y) as well as the earlier developed quantum-mechanical statistical model of double electrical layer formation at metal surface and the calculation of an electron work function dipole constituent serve as a basis for the development of a semi-empirical theory of electron work function anisotropy. A coefficient of reticular compacting of friable crystal faces is introduced and statistically estimated. A coefficient of crystal emission anisotropy is also introduced and estimated both theoretically and empirically. The theory permits calculating work functions for all crystal faces and a volumetric constituent of the work function from the measured value of electron work function for a single face [ru

  11. Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids

    Science.gov (United States)

    Giangregorio, M. M.; Jiao, W.; Bianco, G. V.; Capezzuto, P.; Brown, A. S.; Bruno, G.; Losurdo, M.

    2015-07-01

    Graphene/metal heterojunctions are ubiquitous in graphene-based devices and, therefore, have attracted increasing interest of researchers. Indeed, the literature on the field reports apparently contradictory results about the effect of a metal on graphene doping. Here, we elucidate the effect of metal nanostructuring and oxidation on the metal work function (WF) and, consequently, on the charge transfer and doping of graphene/metal hybrids. We show that nanostructuring and oxidation of metals provide a valid support to frame WF and doping variation in metal/graphene hybrids. Chemical vapour-deposited monolayer graphene has been transferred onto a variety of metal surfaces, including d-metals, such as Ag, Au, and Cu, and sp-metals, such as Al and Ga, configured as thin films or nanoparticle (NP) ensembles of various average sizes. The metal-induced charge transfer and the doping of graphene have been investigated using Kelvin probe force microscopy (KPFM), and corroborated by Raman spectroscopy and plasmonic ellipsometric spectroscopy. We show that when the appropriate WF of the metal is considered, without any assumption, taking into account WF variations by nanostructure and/or oxidation, a linear relationship between the metal WF and the doping of graphene is found. Specifically, for all metals, nanostructuring lowers the metal WF. In addition, using gold as an example, a critical metal nanoparticle size is found at which the direction of charge transfer, and consequently graphene doping, is inverted.

  12. A NEW TREND IN MAGNETIC-PULSE METAL WORKING ASSOCIATED WITH THIN-WALLED SHEET METAL ATTRACTION. HISTORY AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    A.V. Gnatov

    2013-04-01

    Full Text Available Within the scope of this article, a summary is presented on the main world achievements of the new trend in magnetic-pulse metal working associated with attraction of specified sheet metal sections in vehicle production and repair. The importance of the new trend has been justified, its basic sources disclosed. Alternative straightening methods for damaged sheet metals are given.

  13. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Channel length decreases and becomes crucial in deep-submicrometre technologies. In this work, we study the effect of short channel and the influences of quantum mechanical on nanoscale DG-MOSFETs. As CMOS technology continues to scale, metal gate electrodes need to be intro- duced to overcome the deleterious ...

  14. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Further- more, quantum effects on the performance of DG-MOSFETs are addressed and discussed. We also study the influence of metal gate work function on the performance of nanoscale MOSFETs. We use a self-consistent Poisson–Schrödinger solver in two dimensions over the entire device. A good agreement with ...

  15. Doping of graphite by an alkaline-earth metal to reduce the work function

    NARCIS (Netherlands)

    Baturin, AS; Nikolski, KN; Knyazev, AI; Tchesov, RG; Sheshin, EP

    2004-01-01

    A technique for reducing the work function of a field-emission graphite cathode by doping it by an alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface is proposed. Field-emission tests show that the operating voltage of the doped cathode is

  16. Work functions of self-assembled monolayers on metal surfaces by first-principles calculations

    NARCIS (Netherlands)

    Rusu, P.C.; Brocks, G.

    2006-01-01

    Using first-principles calculations we show that the work function of noble metals can be decreased or increased by up to 2 eV upon the adsorption of self-assembled monolayers of organic molecules. We identify the contributions to these changes for several (fluorinated) thiolate molecules adsorbed

  17. Optimum design of the metal bellows on the SolidWorks platform

    Directory of Open Access Journals (Sweden)

    Mikhail V. Chugunov

    2017-06-01

    Full Text Available Introduction: The metal bellows are widely used in various technical systems as the sensitive, compensating and separating elements. A variety of possible constructive solutions using bellows causes a broad range of standard sizes specified in GOST. In this regard the problem of the metal bellows design, which in the present case resolves itself to the choice of the bellow corresponding to the set specifications optimum, is important. Thus, the purpose of the research is the development of technique and software for the optimum design automation of the considered class structures. Materials and Methods: SolidWorks is the world leader in the area of CAD/CAE computer aided design-engineering system and possesses not only a developed standard functionality, but also opportunities of extension of this functionality by the user. In this article SolidWorks is used as a platform for the development of Add-In application to create automatically the metal bellow 3D model for the given parameters from the database corresponding to the given specifications. At the same time access to SolidWorks simulation functionality, through the analysis of SolidWorks Simulation, and to the appropriate database is provided by COM technology. For the solution of the optimization problem, the functionality of the Add-In-application developed by authors of this article is used. A development environment is MS Visual Studio C ++ (2015. The basis for work is object-oriented programming with API SolidWorks use. Results: The technique of optimum design of the metal bellows is developed. The software represents the SolidWorks application for practical use creating the project solution in the form of 3D models (parts and assemblies corresponding to the given specifications. Discussion and Conclusions: The developed technique and software reduce considerably time for the development of the project for structures of the considered class.

  18. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    International Nuclear Information System (INIS)

    Chen Lin; Wu Wen-Bin; Liu Pin-Yang; Xiao Yun-Qing; Li Guo-Peng; Liu Yi-Ran; Jiang Hao-Yu; Guo Yan-Ling; Chen Xi-Meng

    2016-01-01

    For Li + and Na + ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li + and Na + ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. (paper)

  19. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding, cutting, or working with molten metal. 57.15007 Section 57.15007 Mineral Resources MINE SAFETY AND HEALTH... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment...

  20. Relation between morphology and work function of metals deposited on organic substrates

    Science.gov (United States)

    Kampen, T. U.; Das, A.; Park, S.; Hoyer, W.; Zahn, D. R. T.

    2004-07-01

    Ultraviolet photoemission spectroscopy (UPS) is employed to determine the work function of silver and indium films grown on two perylene derivatives, dimethylen-3, 4, 9, 10-perylenetetracarboxyiimide (DiMe-PTCDI) and 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA). The PTCDA and DiMe-PTCDI substrates were prepared as thick organic layers on sulphur passivated GaAs(0 0 1), where the molecular planes of PTCDA and DiMe-PTCDI are parallel and tilted with respect to the substrate surface, respectively. The crystalline structure of the evaporated metal layers is investigated using X-ray diffraction (XRD) and is found to be strongly dependent on the underlying organic substrate. Correspondingly, work functions are found to be different by more than 200 meV in agreement with the crystalline orientation of the metal films.

  1. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields, or goggles shall...

  2. Realization of N-Type Semiconducting of Phosphorene through Surface Metal Doping and Work Function Study

    Directory of Open Access Journals (Sweden)

    Haocheng Sun

    2018-01-01

    Full Text Available Phosphorene becomes an important member of the layered nanomaterials since its discovery for the fabrication of nanodevices. In the experiments, pristine phosphorene shows p-type semiconducting with no exception. To reach its full capability, n-type semiconducting is a necessity. Here, we report the electronic structure engineering of phosphorene by surface metal atom doping. Five metal elements, Cu, Ag, Au, Li, and Na, have been considered which could form stable adsorption on phosphorene. These elements show patterns in their electron configuration with one valence electron in their outermost s-orbital. Among three group 11 elements, Cu can induce n-type degenerate semiconducting, while Ag and Au can only introduce localized impurity states. The distinct ability of Cu, compared to Ag and Au, is mainly attributed to the electronegativity. Cu has smaller electronegativity and thus denotes its electron to phosphorene, upshifting the Fermi level towards conduction band, resulting in n-type semiconducting. Ag and Au have larger electronegativity and hardly transfer electrons to phosphorene. Parallel studies of Li and Na doping support these findings. In addition, Cu doping effectively regulates the work function of phosphorene, which gradually decreases upon increasing Cu concentration. It is also interesting that Au can hardly change the work function of phosphorene.

  3. Interim LCA comparison of metal working fluids with and without Chlorinated paraffins

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Christensen, Frans Møller

    2002-01-01

    The present report constitutes deliverable D 19 and D 23 of the OMNIITOX project and is the life cycle assessment part of the ECB case study (work package 5). The objectives of the case study have been to deliver empirical knowledge for the feasibility study carried out as part of WP5 and to deli......The present report constitutes deliverable D 19 and D 23 of the OMNIITOX project and is the life cycle assessment part of the ECB case study (work package 5). The objectives of the case study have been to deliver empirical knowledge for the feasibility study carried out as part of WP5...... and to deliver data and inspiration to other work packages (WP 7, 8 and 9). Specifically for this part of the case study (life cycle assessment part), the aims have been to apply LCA for comparing the use of different alternative substances in a specific application and to make a basis for comparison with the EU...... risk assessment approach for assessing the same substances. In the other part of the case study (Deliverable 9; Christensen & Olsen, 2002), the results of the Risk Assessments are summarised. In the original problem definition focus were on the use of SCCP and as an alternative MCCP in metal working...

  4. Modulation of the work function of fullerenes C60 and C70 by alkali-metal adsorption: A theoretical study

    International Nuclear Information System (INIS)

    Liang, Hong; Xu, Shunfu; Liu, Weihui; Sun, Yueqiang; Liu, Xiangfa; Zheng, Xinqing; Li, Sen; Zhang, Qiang; Zhu, Ziliang; Zhang, Xiaochun; Dong, Chengguo; Li, Chun; Yuan, Guang; Mimura, Hitenori

    2013-01-01

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C 60 and C 70 was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C 60 and C 70 decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C 60 and C 70 . The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C 60 and C 70 .

  5. The [Y/Mg] clock works for evolved solar metallicity stars

    Science.gov (United States)

    Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.

    2017-08-01

    Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  6. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    Science.gov (United States)

    Chen, Lin; Wu, Wen-Bin; Liu, Pin-Yang; Xiao, Yun-Qing; Li, Guo-Peng; Liu, Yi-Ran; Jiang, Hao-Yu; Guo, Yan-Ling; Chen, Xi-Meng

    2016-08-01

    For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students’ Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).

  7. Exceptional CO2 working capacity in a heterodiamine-grafted metal-organic framework.

    Science.gov (United States)

    Lee, Woo Ram; Jo, Hyuna; Yang, Li-Ming; Lee, Hanyeong; Ryu, Dae Won; Lim, Kwang Soo; Song, Jeong Hwa; Min, Da Young; Han, Sang Soo; Seo, Jeong Gil; Park, Yong Ki; Moon, Dohyun; Hong, Chang Seop

    2015-07-15

    An amine-functionalized metal-organic framework (MOF), dmen-Mg 2 (dobpdc) (dmen = N , N -dimethylethylenediamine), which contains a heterodiamine with both primary and tertiary amines, was prepared via a post-synthetic method. This material exhibits a significant selectivity factor for CO 2 over N 2 that is commensurate with top-performing MOFs. It is remarkable that the solid is fully regenerated under vacuum or flowing Ar at low desorption temperatures, and following this can take up CO 2 at more than 13 wt%. An exceptionally high working capacity is achieved at low regeneration temperatures and after exposure to humid conditions, which are important parameters for a real post-combustion CO 2 capture process.

  8. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.

    Science.gov (United States)

    Fan, J; Qiao, J W; Wang, Z H; Rao, W; Kang, G Z

    2017-05-12

    The present study demonstrates that Ti-based metallic glass matrix composites (MGMCs) with a normal composition of Ti 43 Zr 32 Ni 6 Ta 5 Be 14 containing ductile dendrites dispersed in the glass matrix has been developed, and deformation mechanisms about the tensile property have been investigated by focusing on twinning-induced plasticity (TWIP) effect. The Ti-based MGMC has excellent tensile properties and pronounced tensile work-hardening capacity, with a yield strength of 1100 MPa and homogeneous elongation of 4%. The distinguished strain hardening is ascribed to the formation of deformation twinning within the dendrites. Twinning generated in the dendrites works as an obstacle for the rapid propagation of shear bands, and then, the localized necking is avoided, which ensures the ductility of such kinds of composites. Besides, a finite-element model (FEM) has been established to explain the TWIP effect which brings out a work-hardening behavior in the present MGMC instead of a localized strain concentration. According to the plasticity theory of traditional crystal materials and some new alloys, TWIP effect is mainly controlled by stacking fault energy (SFE), which has been analyzed intensively in the present MGMC.

  9. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.

    Science.gov (United States)

    Suriyasena Liyanage, Luckshitha; Xu, Xiaoqing; Pitner, Greg; Bao, Zhenan; Wong, H-S Philip

    2014-01-01

    Single-wall carbon nanotubes (SWCNTs) have great potential to become the channel material for future high-speed transistor technology. However, as-made carbon nanotube field effect transistors (CNFETs) are p-type in ambient, and a consistent and reproducible n-type carbon nanotube (CNT) doping technique has yet to be realized. In addition, for very large scale integration (VLSI) of CNT transistors, it is imperative to use a solid-state method that can be applied on the wafer scale. Herein we present a novel, VLSI-compatible doping technique to fabricate n-type CNT transistors using low work-function metal oxides as gate dielectrics. Using this technique we demonstrate wafer-scale, aligned CNT transistors with yttrium oxide (Y2Ox) gate dielectrics that exhibit n-type behavior with Ion/Ioff of 10(6) and inverse subthreshold slope of 95 mV/dec. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses confirm that slow (∼1 Å/s) evaporation of yttrium on the CNTs can form a smooth surface that provides excellent wetting to CNTs. Further analysis of the yttrium oxide gate dielectric using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques revealed that partially oxidized elemental yttrium content increases underneath the surface where it acts as a reducing agent on nanotubes by donating electrons that gives rise to n-type doping in CNTs. We further confirm the mechanism for this technique with other low work-function metals such as lanthanum (La), erbium (Er), and scandium (Sc) which also provide similar CNT NFET behavior after transistor fabrication. This study paves the way to exploiting a wide range of materials for an effective n-type carbon nanotube transistor for a complementary (p- and n-type) transistor technology.

  10. Mesoporous Metal-Organic Frameworks with Exceptionally High Working Capacities for Adsorption Heat Transformation.

    Science.gov (United States)

    Mo, Zong-Wen; Zhou, Hao-Long; Zhou, Dong-Dong; Lin, Rui-Biao; Liao, Pei-Qin; He, Chun-Ting; Zhang, Wei-Xiong; Chen, Xiao-Ming; Zhang, Jie-Peng

    2018-01-01

    Pore size is one of the most important parameters of adsorbents, and mesoporous materials have received intense attention for large guests. Here, a series of mesoporous coordination polymers underlying a new framework prototype for fast expansion of pore size is reported and the profound effect of pore size on adsorption heat transformation is demonstrated. Three isostructural honeycomb-like frameworks are designed and synthesized by combining ditopic linear metal oxalate chains and triangular tris-pyridine ligands. Changing the ligand bridging length from 5.5 to 8.6 and 9.9 Å gives rise to effective pore diameter from 20 to 33 and 37 Å, surface area from 2096 to 2630 and 2749 m 2 g -1 , and pore volume from 1.19 to 1.93 and 2.36 cm 3 g -1 , respectively. By virtue of the unique and tunable isotherm shape of mesopores, exceptionally large working capacity up to 1.19 g g -1 or 0.38 g cm -3 for adsorption heat transformation can be achieved using R-134a (1,1,1,2-tetrafluroethane) as a working fluid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  12. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-03-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  13. Work-related problems in metal handling tasks in Bangladesh: obstacles to the development of safety and health measures.

    Science.gov (United States)

    Ahasan, M R; Mohiuddin, G; Väyrynen, S; Ironkannas, H; Quddus, R

    1999-02-01

    Many manual labourers in Bangladesh are involved with metal-handling tasks that are both physically demanding and stressful. The metal workers have been significantly exposed to prolonged hammering and cutting activities in excessive noise and with awkward body postures. Moreover, stressors from heat and humidity, welding fumes and metal dusts often cause excess strain, and are reflected in a deterioration of their physical work performance. Indeed, physical work is the economic source in many developing countries for the support of worker's family and relatives. Unfortunately, there are many obstacles and a lack of efficient steps to restore ergonomics principles as well as occupational safety and health measures. Thus, in this paper, tasks, and jobs are classified and analysed from the results of an ergonomics survey from 343 subjects (293 adults men, age 20-40 years; 17 women, 19-32 years) and 33 child workers (14-17 years). Four types of metal working sites from two districts in Bangladesh were surveyed using questionnaires and interviews. The results showed that a significant number of workers experienced a high prevalence of work-related problems. The main aim was to identify stressful task that are related to musculoskeletal and psychosocial symptoms. Moreover, the findings reveal the possibility of why ergonomics measures are unsuccessful; and if they could have an immediate effect on the safety and health of metal workers in Bangladesh.

  14. Work Function Tuning in Sub-20nm Titanium Nitride (TiN) Metal Gate: Mechanism and Engineering

    KAUST Repository

    Hasan, Mehdi

    2011-07-01

    Scaling of transistors (the building blocks of modern information age) provides faster computation at the expense of excessive power dissipation. Thus to address these challenges, high-k/metal gate stack has been introduced in commercially available microprocessors from 2007. Since then titanium nitride (TiN) metal gate’s work function (Wf) tunability with its thickness (thickness increases, work function increases) is a well known phenomenon. Many hypotheses have been made over the years which include but not limited to: trap charge and metal gate nucleation, nitrogen concentration, microstructure agglomeration and global stress, metal oxide formation, and interfacial oxide thickness. However, clear contradictions exist in these assumptions. Also, nearly all these reports skipped a comprehensive approach to explain this complex paradigm. Therefore, in this work we first show a comprehensive physical investigation using transmission electron microcopy/electron energy loss spectroscopy (TEM/EELS), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) to show replacement of oxygen by nitrogen in the metal/dielectric interface, formation of TiONx, reduction of Ti/N concentration and grain size increment happen with TiN thickness increment and thus may increase the work function. Then, using these finding, we experimentally show 100meV of work function modulation in 10nm TiN Metal-oxide-semiconductor capacitor by using low temperature oxygen annealing. A low thermal budget flow (replicating gate-last) shows similar work function boost up. Also, a work function modulation of 250meV has been possible using oxygen annealing and applying no thermal budget. On the other hand, etch-back of TiN layer can decrease the work function. Thus this study quantifies role of various factors in TiN work function tuning; it also reproduces the thickness varied TiN work function modulation in single thickness TiN thus reducing the

  15. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  16. The influence of metal and alloy dental works on the quality of magnetic resonance imaging of the head and neck

    Czech Academy of Sciences Publication Activity Database

    Linetskiy, I.; Hubálková, H.; Starčuk jr., Zenon; Mazánek, J.

    2006-01-01

    Roč. 14, č. 2 (2006), s. 201-208 ISSN 1027-3204 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * image artefact * metallic dental work Subject RIV: FS - Medical Facilities ; Equipment

  17. Metal Work: Making an Adjustable C-Clamp. Kit No. 23. Instructor's Manual [and] Student Learning Activity Manual.

    Science.gov (United States)

    White, Jim

    An instructor's manual and student activity guide on making an adjustable C-clamp are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (metal work). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…

  18. A new method for determining extra time by considering ergonomic loads in the garment and metal working industries

    OpenAIRE

    Verhovnik, Vekoslav; Polajnar, Andrej

    2017-01-01

    The changing labour conditions in the garment and metal-working industries have led to the necessity of determining new extra times to establish the time standard. In this paper, a method of measuring stress and strain imposed upon the operator in new working conditions by determining the additional production coefficient is presented. The method gives criteria and grades to assess stress at the workplace. Physical stress (dynamic and static), thermal and visual stress, discomfort caused by n...

  19. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  20. The degradation of metal vessels properties working under pressure during a long term use

    Directory of Open Access Journals (Sweden)

    А. В. Білосточний

    2017-06-01

    Full Text Available Mechanical properties and metal structure of all-metal gas tanks made of medium-carbon steel after different periods of service have been studied. It has been observed that the duration of the service does not significantly influence on the strength of the metal tanks, but it leads to some reduction of plasticity and toughness decrease. It has been observed that toughness degradation appears after 25-30 years of tanks exploitation. At testing of the Menazhe and Sharp specimen it was also found out that temperature dependence of metal tanks toughness varies with the service life. It has been noted that the metal microstructure does not change under continuous operation. Therefore the decrease in properties after long-term use of the cylinders was caused by the metal substructure. Exploration of the mechanism and kinetics of the substructure changes requires special studies. On the strength of these data the need to improve the existing methods of periodic inspection (as a function of service time of all-metal steel cylinders, as well as setting limits of the life-span of these vessels has been shown

  1. CONTROL OF METAL SURFACES MACHINED IN ACCORDANCE WITH THE DIAMOND NANOMACHINING TECHNOLOGY BASED ON THE ELECTRON WORK FUNCTION

    Directory of Open Access Journals (Sweden)

    G. V. Sharonov

    2015-01-01

    Full Text Available Dimensional machining technology is based on the use of integrated geometric parameters of machined surfaces. Technological impact of a pick results in oxidation processes and changes in physic-chemical parameters of surface. Control of only geometric parameters is insufficient to describe characteristics of machining and formation of ultra-smooth surfaces. The electron work function is therefore used. The aim of the work was to study electrophysical states of optic surfaces of non-ferrous metals and alloys in relation to geometric and physic-chemical parameters according to the distribution of the electron work function over the surface. We conducted the study on experimental metal samples made of copper and aluminum alloy, machined in accordance with the diamond nanomachining technology. The diamond nanomachining technology would be capable of ensuring the roughness of non-ferrous metals and alloys machined at the level of Ra ≤ 0,005 µm. Modernized Kelvin probe was used as the registration technique of the changes of the electron work function over the surface. Dependence between the electron work function value, as well as its alteration and the physicchemical and geometric parameters of a surface has been determined. It has been shown that the diamond nanomachining technology makes it possible to obtain electro-physically uniform optical surfaces on copper and aluminum alloy with the minimal range of the distribution of the electric potential over the surface. 

  2. FINAL TAILINGS OF METAL-WORKING PRODUCTION. Part 3. PHYSICO-MECHANICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    O. M. Djakonov

    2011-01-01

    Full Text Available The indices of adhesion and friability of metal-containing tailings, their water absorbency and wettability and also abrasive characteristics of tailings with the purpose of prevention of contacting surfaces wear are studied.

  3. Insulator-to-metal transition in vanadium sesquioxide: does the Mott criterion work in this case?

    Science.gov (United States)

    Pergament, Alexander; Stefanovich, Genrikh

    2012-03-01

    It is shown that the Mott criterion expressed by the simple relation a B(n c)1/3 ≈ 0.25 turns out to be quite successful in describing metal-insulator phase transitions not only in heavily doped semiconductors, but also in transition metal oxides such as VO2 and V2O3. It is found in this article that, in the case of a high-temperature transition 'paramagnetic insulator - paramagnetic metal' in vanadium sesquioxide, a B(n c)1/3 = 0.254. Difficulties connected with the analogous description of a low-temperature transition ('paramagnetic metal - antiferromagnetic insulator') in V2O3 are discussed.

  4. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan

    Science.gov (United States)

    Al-Khashman, Omar. A.

    Karak Industrial Estate (KIE) was investigated for its heavy metals content. Samples of dust, street dust and soil were analyzed for their content of Fe, Cu, Zn, Ni and Pb after digestion with nitric acid. The results of the analysis were used to determine major sources and magnitude of heavy metals pollution. The ranges of heavy metal concentrations in the investigated area were 58.8-94.8, 1.8-84.9, 15.4-136.9, 1.7-6.5 and 2.1-314.1 mg kg -1 dry soil for Fe, Cu, Zn, Ni and Pb, respectively. The concentrations of heavy metals in soils are greater on the surface but decreased in the lower part as a result of the basic nature of this soil. There are two possible sources of heavy metals (Zn, Cu, Ni and Pb) anthropogenic and industrial activities from the work place in KIE. Significant contribution from industrial sources at KIE was evident at nearby places.

  5. Hypersensitivity pneumonitis due to metal working fluids: Sporadic or under reported?

    Science.gov (United States)

    Gupta, Amit; Rosenman, Kenneth D

    2006-06-01

    Occupational exposure to metal working fluids (MWF) is common with over 1.2 million workers in the United States involved in machine finishing, machine tooling, and other metalworking operations. MWF is a known cause of hypersensitivity pneumonitis (HP). Recent reports of outbreaks of hypersensitivity HP secondary to exposure to MWF are reported. Cases were identified through the Occupational Disease surveillance system in the State of Michigan and from referrals for evaluation to the Division of Occupational and Environmental Medicine at Michigan State University (MSU). Each patient underwent a clinical examination including an occupational history, lung function studies, radiographic imaging, and in some cases lung biopsies. Following the diagnosis of definite HP, an industrial hygiene investigation was carried out, which included a plant walk-through, and review of the "Injury and Illness" log. Air monitoring and microbial sampling results were reviewed. As part of Michigan's mandatory surveillance system for occupational illnesses, seven cases of suspected HP were identified in 2003-2004 from three facilities manufacturing automobile parts in Michigan. Each plant used semi-synthetic MWFs, and conducted a MWF management program including biocide additions. Two facilities had recently changed the MWF before the cases arose. Growth of mycobacteria was found in these two MWFs. Breathing zone samples for particulates of two employees in plant A (two cases) ranged from 0.48 to 0.56 mg/m3. In plant B (four cases), two employees' sampling results ranged from 0.10 to 0.14 mg/m3. No air sampling data were available from plant C. Hypersensitivity pneumonitis due to exposure to MWFs is under-recognized by health care providers, and current surveillance systems are inadequate to provide a true estimate of its occurrence. HP arose from environments with exposures well below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for MWF, and

  6. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  7. New theory of effective work functions at metal/high-k dielectric interfaces : application to metal/high-k HfO2 and la2O 3 dielectric interfaces

    OpenAIRE

    Shiraishi, Kenji; Nakayama, Takashi; Akasaka, Yasushi; Miyazaki, Seiichi; Nakaoka, Takashi; Ohmori, Kenji; Ahmet, Parhat; Torii, Kazuyoshi; Watanabe, Heiji; Chikyow, Toyohiro; Nara, Yasuo; Iwai, Hiroshi; Yamada, Keisaku

    2006-01-01

    We have constructed a universal theory of the work functions at metal/high-k HfO2 and La2O3 dielectric interfaces by introducing a new concept of generalized charge neutrality levels. Our theory systematically reproduces the experimentally observed work functions of various gate metals on Hf-based high-k dielectrics, including the hitherto unpredictable behaviors of the work functions of p-metals. Our new concept provides effective guiding principles to achieving near-bandedge work functions ...

  8. Work of adhesion in laser-induced delamination along polymer-metal interfaces

    NARCIS (Netherlands)

    Fedorov, A.; van Tijum, R.; Vellinga, W. P.; de Hosson, Jeff

    2007-01-01

    Laser-induced delamination is a recent technique aimed at characterizing adhesive strength of thin polymer coatings on metal substrates. A laser pulse is used to create a blister that initiates further delamination of the film under pressure. To process the experimental data a simple elastic model

  9. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com [T.F. Gorbachev Kuzbass State Technical University, Vesennjaja str 28, Kemerovo, 650000 Russian Federation (Russian Federation)

    2016-01-15

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.

  10. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    International Nuclear Information System (INIS)

    Ababkov, Nikolai; Smirnov, Alexander

    2016-01-01

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector

  11. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  12. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime

    DEFF Research Database (Denmark)

    Xiao, Binggang; Qin, Kang; Xiao, Sanshui

    2015-01-01

    A metal-loaded graphene surface plasmon waveguide composed of a thin silica layer sandwiched between a graphene layer and a metal stripe is proposed and the waveguiding properties in the THz regime are numerically investigated. The results show that the fundamental mode of the proposed waveguide...... is tightly confined in the middle silica layer with an acceptable propagation loss. Compared with most other graphene waveguides proposed in the literature, the realization of this waveguide does not need to pattern or deform the graphene layer, thus retaining the superior properties of bulk graphene...... material. The tight modal confinement and the ease of fabrication suggest the high potential use of this waveguide in high-density THz photonic integration....

  13. Photoemission from Low Work Function Coated Metal Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, Kevin; Moody, Nathan A

    2005-01-01

    The development of rugged and/or self rejuvenating photocathodes with high quantum efficiency (QE) using the longest wavelength drive laser is of paramount importance for RF photo-injectors for high power FELs and accelerators. We report on our program to develop advanced photocathodes and to develop and validate models of photoemission from coated metals to analyze experimental data,* provide emission models usable by beam simulation codes,** and project performance. The model accounts for the effects of laser heating, thermal evolution, surface conditions, laser parameters, and material characteristics, and predicts current distribution and QE. The photoemission and QE from metals and dispenser photocathodes is evaluated: the later introduces complications such as coverage non-uniformity and field enhancement. The performance of the models is compared to our experimental results for dispenser photocathodes and cesiated surfaces (e.g., tungsten, silver, etc.) in which the time-dependent models are shown to a...

  14. Experimental determination of the temperature dependence of metallic work functions at low temperatures. Progress report

    International Nuclear Information System (INIS)

    Pipes, P.B.

    1977-01-01

    Progress made under ERDA Contract No. EY-76-S-02-2314.002 is described. Efforts to gain theoretical insight into the temperature dependence of the contact potential of Nb near the superconducting transition have only been qualitatively successful. Preliminary measurements of adsorbed 4 He gas on the temperature dependence of the contact potentials of metals were performed and compared with a previously developed theory

  15. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  16. City of Chicago Combined Work Plan and Summary Report for Loewenthal Metals

    Science.gov (United States)

    Summary of the work performed by the City’s Department of Fleet and Facility Management on behalf of the Chicago Department of Transportation (CDOT) to address elevated levels of lead in City right of way..

  17. Work hardening and mechanical equation of state in some metals in monotonic loading

    International Nuclear Information System (INIS)

    Wire, G.L.; Ellis, F.V.; Li, C.Y.

    The work hardening coefficients of Type 316 stainless steel, niobium, and 1100 aluminum alloy are measured in tensile tests. It is demonstrated experimentally that in the measured stress, plastic strain rate, and temperature range the work hardening coefficient depends only on stress and plastic strain rate. The significance of the experimental results is discussed in terms of the concept of the mechanical equation of state for plastic deformation. 13 figures

  18. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  19. Bioremediation of metals and radionuclides: What it is and How itWorks

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

  20. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  1. Pragmatic approach to the clinical work-up of patients with putative allergic disease to metallic orthopaedic implants before and after surgery

    DEFF Research Database (Denmark)

    Thyssen, J P; Menné, T; Schalock, P C

    2011-01-01

    on in the work-up of patients with putative allergic complications following surgery. Few studies have investigated whether subjects with metal contact allergy have increased risk of developing complications following orthopaedic implant insertion. Metal allergy might in a minority increase the risk...... testing prior to surgery unless the patient has already had implant surgery with complications suspected to be allergic or has a history of clinical metal intolerance of sufficient magnitude to be of concern to the patient or a health provider. The clinical work-up of a patient suspected of having......Allergic complications following insertion of metallic orthopaedic implants include allergic dermatitis reactions but also extracutaneous complications. As metal-allergic patients and/or surgeons may ask dermatologists and allergologists for advice prior to planned orthopaedic implant surgery...

  2. Unexpected current lowering by a low work-funkction metal contact: Mg/SI-GaAs

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Dubecký, M.; Hubík, Pavel; Kindl, Dobroslav; Gombia, E.; Baldini, M.; Nečas, V.

    2013-01-01

    Roč. 82, APR (2013), s. 72-76 ISSN 0038-1101 Institutional support: RVO:68378271 Keywords : Schottky barrier * low-bias transport * semi-insulating GaAs * low work-function * high resistence * low leakage current * blocking contact Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.514, year: 2013

  3. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. The primary aim of these CRPs has been to help enhance the research and development capabilities in the Member States, particularly among developing countries; to identify the sources of various environmental contaminants and evaluate their fate; and to provide for the basis of improved health among human populations by the use of nuclear and related analytical techniques. The CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Refining and Metal Working Industries using nuclear and related analytical techniques focused on improving the competence for research on workplace monitoring in a variety of industrial environments. The personal monitoring of the APM (airborne particulate matter) of the exposed workforce was carried out for the first time by many participants. Nuclear and related analytical techniques, including the application of proton micro-beam, were used to generate the trace element concentration profiles in various biomarkers tissues of the exposed workers. The quality assurance/quality control (QA/QC) aspects related to the CRP were addressed through intercomparison analyses of APM on filter paper samples and freeze dried human urine samples to generate validated data. These data have helped to generate correlations between the occupational exposure measured and the magnitude of the biological response. Such new information is essential to evolve procedures to considerably reduce/eliminate the pollutants in the workplace environment and to make informed decisions on the evolution of standards in working environments aimed at preserving the health of workers. The purpose of this TECDOC is to provide an overview of the activities performed under the CRP by the participants. The overall achievements

  4. Transformation of chlorinated paraffins to olefins during metal work and thermal exposure - Deconvolution of mass spectra and kinetics.

    Science.gov (United States)

    Schinkel, Lena; Lehner, Sandro; Knobloch, Marco; Lienemann, Peter; Bogdal, Christian; McNeill, Kristopher; Heeb, Norbert V

    2018-03-01

    Chlorinated paraffins (CPs) are high production volume chemicals widely used as additives in metal working fluids. Thereby, CPs are exposed to hot metal surfaces which may induce degradation processes. We hypothesized that the elimination of hydrochloric acid would transform CPs into chlorinated olefins (COs). Mass spectrometry is widely used to detect CPs, mostly in the selected ion monitoring mode (SIM) evaluating 2-3 ions at mass resolutions R drilling indeed induced HCl-losses. CO proportions in exposed mixtures of chlorotridecanes increased. Thermal exposure of chlorotridecanes at 160, 180, 200 and 220 °C also induced dehydrohalogenation reactions and CO proportions also increased. Deconvolution of respective mass spectra is needed to study the CP transformation kinetics without bias from CO interferences. Apparent first-order rate constants (k app ) increased up to 0.17, 0.29 and 0.46 h -1 for penta-, hexa- and heptachloro-tridecanes exposed at 220 °C. Respective half-life times (τ 1/2 ) decreased from 4.0 to 2.4 and 1.5 h. Thus, higher chlorinated paraffins degrade faster than lower chlorinated ones. In conclusion, exposure of CPs during metal drilling and thermal treatment induced HCl losses and CO formation. It is expected that CPs and COs are co-released from such processes. Full-scan mass spectra and subsequent deconvolution of interfered signals is a promising approach to tackle the CP/CO problem, in case of insufficient mass resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals

    Directory of Open Access Journals (Sweden)

    Matlakowska Renata

    1999-01-01

    Full Text Available In this paper, we present our method for the measurement of contact angles on the surface of minerals during the bioleaching process because the standard deviation obtained in our measurements achieved unexpectedly low error. Construction of a goniometer connected with a specially prepared computer program allowed us to repeat measurements several times over a short time course, yielding excellent results. After defining points on the outline of the image of a drop and its baseline as well of the first approximation of the outline of the drop, an iterative process is initiated that is aimed at fitting the model of the drop and baseline. In turn, after defining the medium for which measurements were made, the work of adhesion is determined according to Young-Dupré equation. Calculations were made with the use of two methods named the L-M and L-Q methods.

  6. Photosynthetic and Ultrastructure Parameters of Maize Plants are Affected During the Phyto-Rhizoremediation Process of Degraded Metal Working Fluids.

    Science.gov (United States)

    Grijalbo, Lucía; Gutierrez Mañero, Francisco Javier; Fernandez-Pascual, Mercedes; Lucas, Jose Antonio

    2015-01-01

    A phyto-rhizoremediation system using corn and esparto fiber as rooting support to remediate degraded metal working fluids (dMWFs) has been developed in the present study. In order to improve the process, plants were inoculated at the root level with bacteria either individually, and with a consortium of strains. All strains used were able to grow with MWFs. The results show that this system significantly lowers the Chemical Oxygen Demand below legal limits within 5 days. However, results were only improved with the bacterial consortium. Despite the effectiveness of the phyto-rhizoremediation process, plants are damaged at the photosynthetic level according to the photosynthetic parameters measured, as well as at the ultrastructure of the vascular cylinder and the Bundle Sheath Cells. Interestingly, the bacterial inoculation protects against this damage. Therefore, it seems that that the inoculation with bacteria can protect the plants against these harmful effects.

  7. Technical Meeting on Passive Shutdown Systems for Liquid Metal-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2015-01-01

    A major focus of the design of modern fast reactor systems is on inherent and passive safety. Specific systems to improve reactor safety performance during accidental transients have been developed in nearly all fast reactor programs, and a large number of proposed systems have reached various stages of maturity. This Technical Meeting on Passive Shutdown Systems for Fast Reactors, which was recommended by the Technical Working Group on Fast Reactors (TWG-FR), addressed Member States’ expressed need for information exchange on projects and programs in the field, as well as for the identification of priorities based on the analysis of technology gaps to be covered through R&D activities. This meeting was limited to shutdown systems only, and did not include other passive features such as natural circulation decay heat removal systems etc.; however the meeting catered to passive shutdown safety devices applicable to all types of fast neutron systems. It was agreed to initiate a new study and produce a Nuclear Energy Series (NES) Technical Report to collect information about the existing operational systems as well as innovative concepts under development. This will be a useful source for member states interested in gaining technical expertise to develop passive shutdown systems as well as to highlight the importance and development in this area

  8. Methodology of simulation of underground working in metal mines. Application to a uranium deposit in Australia

    International Nuclear Information System (INIS)

    Deraisme, J.; de Fouquet, C.; Fraisse, H.

    1983-01-01

    For the Ben Lomond (Northern Queensland Australia) underground uranium mining project, studies were carried out to compare the feasibility of different mining methods according to their cost per ton and selectivity, i.e. cut and fill, sublevel stopping and both mixed. First, a geostatistical orebody model was built. The ore grade variability of this model results from the drillhole structural analysis. Working on two dimensional vertical cross sections, the usual hand drawing stope reserve estimate obtained with computer assisted design for each of the three different mining methods is compared with the results obtained with automatic algorithms allocated to the characteristics of each mining method. These algorithms use mathematical morphology to reproduce the geometrical constraints connected with each mining method and/or dynamic programmation. These techniques lead to fully automatic of optimal economical stope design. Comparison is positive: automatic stopes designs are in agreement with hand made drawings, but they can be defined faster through interactive questionning of the computer, and the total maximum profit obtained is a least as high as the best profit found through hand designed projects [fr

  9. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    Energy Technology Data Exchange (ETDEWEB)

    Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

    2014-06-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  10. Health interventions for the metal working industry: which is the most cost-effective? A study from a developing country.

    Science.gov (United States)

    Salinas, A M; Villarreal, E; Nuñez, G M; Garza, M E; Briones, H; Navarro, O

    2002-05-01

    This study ranked the cost-effectiveness of health interventions in the metal working industry in a developing country. Data were based on 82 034 workers of the Northern region of Mexico. Effectiveness was measured through 'healthy life years' (HeaLYs) gained. Costs were estimated per worker according to type and appropriate inputs from selected health interventions. 'Hand' was the anatomical region that yielded the most gain of HeaLYs and amputation was the injury that yielded the most gain of HeaLYs. The most effective health intervention corresponded to training, followed by medical care, education, helmets, safety shoes, lumbar supports, safety goggles, gloves and safety aprons. In dollar terms, education presented the best cost-effectiveness ratio (US$637) and safety aprons presented the worst cost-effectiveness ratio (US$1 147 770). Training proved to be a very expensive intervention, but presented the best effectiveness outcome and the second best cost-effectiveness ratio (US$2084). Cost-effectiveness analyses in developing countries are critical. Corporations might not have the same funds and technology as those in developed countries or multinational companies.

  11. Assessment of nickel and cobalt release from 200 unused hand-held work tools for sale in Denmark — Sources of occupational metal contact dermatitis?

    DEFF Research Database (Denmark)

    Thyssen, Jacob P.; Jensen, Peter; Lidén, Carola

    2011-01-01

    IntroductionNickel and cobalt allergy remain frequent in dermatitis patients. It is important to determine possible nickel and cobalt exposures at work as these may offer important information to regulators and physicians who perform patch testing. Clinical relevance of metal exposure is usually...... assessed by the treating physician via the medical history and by presentation of allergic contact dermatitis. ObjectivesTo screen unused non-powered hand-held work tools for nickel and cobalt release by using colorimetric spot tests. Materials & methodsA random selection of 200 non-powered hand-held work...... tools for sale in 2 retailers of home improvement and construction products were analyzed qualitatively for metal release using the colorimetric nickel and cobalt spot tests. ResultsNickel release was identified from 5% of 200 work tools using the dimethylglyoxime (DMG) test. In 8 of 10, positive...

  12. Assessment of nickel and cobalt release from 200 unused hand-held work tools for sale in Denmark - Sources of occupational metal contact dermatitis?

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Jensen, Peter; Lidén, Carola

    2011-01-01

    Nickel and cobalt allergy remain frequent in dermatitis patients. It is important to determine possible nickel and cobalt exposures at work as these may offer important information to regulators and physicians who perform patch testing. Clinical relevance of metal exposure is usually assessed...

  13. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  14. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  15. Change in working characteristics of the steam turbine metal with operating time of more than 330000 hours

    Science.gov (United States)

    Gladshteyn, V. I.; Troitskiy, A. I.

    2017-01-01

    Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It's chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.

  16. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  17. Bearing Change to Metal-On-Polyethylene for Ceramic Bearing Fracture in Total Hip Arthroplasty; Does It Work?

    Science.gov (United States)

    Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong

    2016-01-01

    We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A model for construction of efficiency and stability maps of hot working processes in polycrystalline metallic materials using the Garofalo's equation

    International Nuclear Information System (INIS)

    Rieiro, I.; Fernandez, A.; Martinez, A.; Casi, M.

    1998-01-01

    Has been developed a fast and easy method for to evaluate the efficiency of the process and some or possible stabilities situations in the hot working process for the polycrystalline metallic materials (p.m.m.), by the obtained dates in the Garofalo's equation resolution for the steady state creep and for wide ranges of the work variables, stress, strain rate and temperature. These method use the fitting parameters obtained for the equation mentioned and of their physical meaning. Has been developed the numerical treatment from our previously developed software for the analysis of creep and we can obtained the efficiency energetic maps for the creep and the more generally advises areas for the hot working. Further more has been obtained maps for parameters of great physical significance; f.e. the effective activation energy for different areas of the materials hot working, and in addition has been developed a method for obtained the values of {n P L} for the different ranges of power-law application, when has been obtained the value of { n G } in the Garofalo's equation. (Author) 13 refs

  19. Atomic structure and work function of the metal-film systems: lithium-(011) face of tungsten or molybdenum

    International Nuclear Information System (INIS)

    Kanash, O.V.; Fedorus, A.G.

    1984-01-01

    The atomic structure and phase transitions in lithium films and also the variation of the work function under lithium adsorption on the (011) face of W or Mo are studied by the low electron diffraction and contact potential difference methods in a wide range of submonolayer coverage. In the low coverage range (theta 5/9), identical sets of anisotropic structures are formed on both substrates which are specific for localized adsorption. In the coverage range between 1/4 for W (011) or 1/6 for Mo (011) and 5/9 (for both substrates) the film grows by virtue of two consecutive first order phase transitions. In the remaining theta region the film compression proceeds continuously. A model of mixing of cells of various sizes is used to explain the continuity of the compression process. At low coverage the film atomic structure corresponds to a predominant effect of dipole-dipole interaction betWeen the adatoms, whereas at high coverage it corresponds to an indirect interaction. The temperature stability of the films at different theta is studied. The effect of the film structure on the work function and surface diffusion is discussed

  20. Progress in liquid metal fast reactor technology. Proceedings of the 28th meeting of the International Working Group on Fast Reactors

    International Nuclear Information System (INIS)

    1996-04-01

    The key objectives and activities of Member State liquid metal fast reactor (LMFR) programmes are: Demonstration of effective designs; demonstration of system safety; demonstration of economic competitiveness with other power generation systems. The International Working Group on Fast Reactors (IWGFR) at its 1995 meeting observed that while some countries (as a result of static or falling power demand) are reducing the research and development programmes or delaying the commercial deployment of fast reactors, other countries are planning to introduce these reactors and are embarking on their own development programmes. In these circumstances the international exchange of information and experience is of increasing importance. These proceedings contain updated information from long standing members of the IWGFR and new information on the status of LMFR research and development from new members of the Group: Brazil, China, Republic of Kazakhstan and the Republic of Korea. Refs, figs, tabs

  1. Metal working oils. Cutting oils, rolling oils, quenching oils, rust preventive oils; Kinzoku kakoyu. Sessakuyu, atsuenyu, yakiireyu, boseiyu

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, S. [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-04-01

    With the demand against complicating working techniques for a background, foundations of the consideration for each of the lubricants in future are outlined. 1. Cutting oils: From the standpoint of speeding up and fireproofing, share of water-soluble type has come up to 30-40%. In this type, emulsifying dispersants and preservatives are combined. 2. Rolling oils: According to thinning of the standard thickness of steel plates, pressure of contacting surfaces has come up to 300 kg/mm{sup 2}(max.) and slip speed has increased too. In stainless steel plates, in order to get rid of the heat-streak (baking streak originated from wearing-out of oil film) shifting from neat oil to emulsion type is required. 3. Quenching oils: Following two systems are recent tendencies, the mineral oil system having excellent thermostability or the water system containing polyalkylneglycol etc., but the latter is expected from the viewpoint of fireproofing. 4. Rust preventive oils: As this oils do not aim at the rust prevention for long term, degreasing property is required. 20 refs., 5 figs., 1 tab.

  2. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  3. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  4. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  5. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  6. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  7. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo......M hip implant. A Danish surveillance programme has been initiated addressing these problems....

  8. Standardization of Work Measurement. Volume 7, Bench Work Occupations

    National Research Council Canada - National Science Library

    1975-01-01

    ..., sew, assemble, inspect, repair, test, and similarly work relatively small objects and materials, such as metal products, electronic components, electrical appliances, instruments, footwear, and garments...

  9. A Rh III-N-heterocyclic carbene complex from metal-metal singly ...

    Indian Academy of Sciences (India)

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory ... to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  10. Micro metal forming

    CERN Document Server

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  11. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  12. Metalworking. A Bilingual Text = Trabajo en Metal. Un Texto Bilingue.

    Science.gov (United States)

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in metal working in a two-column, English-Spanish format. Following an introduction to metal working and a lesson on safety, the booklet contains 17 units organized in 2 parts. Part 1, bench metal work, covers metals, processes, and tools; cutting; filling; drilling; grinding; bending and shaping; threading;…

  13. Metal lagging

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1974-01-01

    The metal lagging described is characterized by the fact that it is formed of closed sacks composed of an elastic metal mass, compressed in an outer envelope made of a fine mesh metal fabric. The metal mass is composed of stainless steel wool stuffed into the envelope. This lagging is particularly intended for the thermal protection of the end slab of LMFBR type reactors [fr

  14. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  15. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when po...

  16. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  17. Metallization of some simple systems

    International Nuclear Information System (INIS)

    Ross, M.; McMahan, A.K.

    1981-01-01

    We discuss the metallization of Xe, Ar, He, I 2 , H 2 , and N 2 in terms of some recent theoretical work and shock-wave experiments. New shock-wave data on liquid hydrogen and deuterium leads to a predicted pressure above 3 Mbar for the appearance of a monatomic metal phase. We expect CsI to become metallic near 0.8 Mbar

  18. VLSI metallization

    CERN Document Server

    Einspruch, Norman G; Gildenblat, Gennady Sh

    1987-01-01

    VLSI Electronics Microstructure Science, Volume 15: VLSI Metallization discusses the various issues and problems related to VLSI metallization. It details the available solutions and presents emerging trends.This volume is comprised of 10 chapters. The two introductory chapters, Chapter 1 and 2 serve as general references for the electrical and metallurgical properties of thin conducting films. Subsequent chapters review the various aspects of VLSI metallization. The order of presentation has been chosen to follow the common processing sequence. In Chapter 3, some relevant metal deposition tec

  19. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    Science.gov (United States)

    2010-07-01

    ... Machine Tool Accessories & Measuring Devices Machine Tools, Metal Cutting Types Machine Tools, Metal... Prefabricated Metal Buildings & Components Screw Machine Products Sheet Metal Work Special Dies & Tools, Die... Diag. & Insp. Cntrs.) Automotive Equipment Automotive Glass Replacement Shops Automotive Repairs Shops...

  20. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  1. Metal forming and lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  2. Heavy metal

    African Journals Online (AJOL)

    of spawning, resistance to diseases and social acceptability (Pillay, 1993). This study aimed at determining the carbohydrate reserves and heavy metal accumulation of the Nile tilapia, Oreochromis miloticus after treatment with heavy metals such as lead, copper and zinc. 2. Materials and Methods. Test organism: Nile tilapia ...

  3. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  4. Metals 2000

    Energy Technology Data Exchange (ETDEWEB)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  5. Metal carbides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the viewpoint of general crystal chemistry principles and on the base of modern data the structural chemistry of metal carbides is presented. The classification deviding metal carbides into 4 groups depending on chemical and physical properties is presented. The features of the crystal structure of carbides of alkali alkaline earth, transition, 4 f- and 5f-elements and their effect on physical and chemical properties are considered

  6. Functional memory metals

    International Nuclear Information System (INIS)

    Dunne, D.P.

    2000-01-01

    The field of shape memory phenomena in metals and alloys has developed in a sporadic fashion from a scientific curiosity to a vigorously growing niche industry, over a period close to a full working lifetime. Memory metal research and development is replete with scientist and engineer 'true believers', who can finally feel content that their longstanding confidence in the potential of these unusual functional materials has not been misplaced. This paper reviews the current range of medical and non-medical systems and devices which are based on memory metals and attempts to predict trends in applications over the next decade. The market is dominated by Ni Ti alloys which have proved to exhibit the best and most reproducible properties for application in a wide range of medical and non-medical devices

  7. Três anos de acidentes do trabalho em uma metalúrgica: caminhos para seu entendimento Three years of work-related accidents in a metallurgic plant: ways to its understanding

    Directory of Open Access Journals (Sweden)

    Cláudia Giglio de Oliveira Gonçalves

    2011-02-01

    Full Text Available O objetivo deste artigo é descrever, através de estratégias metodológicas quantitativas e qualitativas, os acidentes do trabalho ocorridos em três anos numa indústria metalúrgica do interior de São Paulo para compreender suas possíveis causas. Trata-se de um estudo de casos de uma indústria; foram estudados 336 acidentes em três anos, utilizando-se três procedimentos: análise dos registros dos acidentes, entrevistas (166 acidentados e realização de grupos focais (111 trabalhadores. A proporção de incidência anual dos acidentes foi de 16,9%; 75 casos com afastamento superior a 15 dias; 51,2% ocorreram pela manhã, afetando caldeireiros (48,2%. Entre os entrevistados, escolaridade média de 8,8 anos e idade de 31 a 50 anos (55,4%; 64,5% já haviam sofrido outros acidentes e com maior ocorrência naqueles expostos ao ruído intenso (mais 90 dBA (53%. Nos grupos focais, identificaram-se percepções e sentimentos dos trabalhadores a respeito dos acidentes que não apareceram nas etapas anteriores. Através dos grupos focais pode-se identificar melhor os fatores que contribuem para os acidentes, como: pressões, realização de horas extras, baixos salários, condições de trabalho precárias e organização do trabalho.The objective of this study is to describe, by quantitative and qualitative methods, industrial accidents occurred during three years in a metallurgic plant in the rural area to understand the possible causes. It is a case study in a metallurgic plant where 336 accidents were studied in a 3-year period by means of three procedures: analysis of accidents' registers, interviews with 166 hurt workers, and the organization of Focal Groups (111 workers for discussion. The ratio of yearly incidence of accidents was 16.9%; 75 cases required more than 15 out-of-work days; 51.2% occurred in the morning and affected boilermakers (48.2%. Among the interviewed workers, average schooling was 8.8 years, age ranged from 31

  8. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  9. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the first research co-ordination meeting (RCM)

    International Nuclear Information System (INIS)

    1998-01-01

    The objectives of the CRP are to: (1) improve competence for research on workplace monitoring in terms of proper sampling and analytical procedures, (2) obtain relevant and reliable data on sources and levels of workplace pollution in various countries, (3) promote a better understanding of methods for the interpretation of such data including occupational heath studies, and (4) encourage closer collaboration between analytical scientists and researchers in the field of occupational health in the countries concerned. The CRP focuses on the use of nuclear and related analytical techniques for the following kinds of studies: (1) strategies and techniques for sampling of workplace airborne particulate matter and of human tissues and body fluids (hair, blood, etc.) sampling of exposed and non-exposed persons; (2) development of suitable analytical procedures for analysis of such types of samples; (3) workplace and personal monitoring of airborne particulate matter in the mining, refining and metal working industries, and the health effects of such exposure; and (4) tissue analysis of the workers exposed for biological monitoring and the health effects studies. This report includes the core and supplementary programme of the CRP; technical aspects of sampling, analysis, data processing, and quality assurance; and organizational aspects. The report includes also 10 papers contributed by the participants. Each individual contribution was indexed and provided with an abstract

  10. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  11. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  12. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  13. Electronics scrap processing at Brixlegg copper works

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenboeck, F.J.; Sauer, E.; Woebking, H.; Woerz, H.

    1985-11-01

    The valuable metals - in particular precious metals, copper, zinc, and tin - that are included in electronics scraps are recovered in the secondary copper works of Brixlegg in the form of commercial intermediate products or in the form of pure metals. The refinery line is as follows: shaft furnace, converter, anode furnace, electrolytic copper refinery and slime plants for precious metal recovery from anode slimes. (orig.).

  14. metal alkoxides

    Indian Academy of Sciences (India)

    substituent effects in the head-to-tail double insertion reactions observed ... an internal standard. The yield of diphenyl carbodii- mide was further verified by isolating it as diphenyl urea after hydrolysis. The organic fraction obtained in the catalytic metathesis .... insertion of PhNCO into metal alkoxide 1a to generate. Table 1.

  15. Metallic glasses

    NARCIS (Netherlands)

    Schaafsma, Arjen Sybren

    1981-01-01

    It is shown in section 7.1. that the influence of topological disorder on the range of magnetic interactions in ferromagnetic transition metal-metalloid (TM-M) glasses, is much less than often assumed. This is demonstrated via a study of the temperature dependence of the average iron hyperfine field

  16. WORK SIMPLIFICATION FOR PRODUCTIVITY IMPROVEMENT A ...

    African Journals Online (AJOL)

    current technological findings, the state of the art in work simplification concepts, theories, techniques and tools in general, its application and results of implementation of the techniques in the Metal. Industries like the Kaliti Metal Products Factory. PRODUCTIVITY IMPROVEMENT & WORK. SIMPLIFICATION CONCEPTS.

  17. Characterization and management of radioactive sodium and other reactor components as input data for the decommissioning of liquid metal-cooled fast reactors. A compilation of data produced of data produced by members of the IAEA technical working group on fast reactors (TWG-FR) at two consultancies and one technical committee meeting. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    A number of liquid metal cooled fast reactors (LMFRs) are in operation and, some have already been shut down; other reactors will reach the end of their design lifetime in a few years and become candidates for decommissioning. It is unfortunate that little consideration was devoted to decommissioning of reactors at the plant design and construction stage. It is with this focus that the Technical Working Group on Fast Reactors (TWGFR) recommended that the IAEA organize the exchange of information on LMFRs decommissioning technology. It was pointed out that the decommissioning of small sodium-cooled reactors has shown that there are two basic differences between thermal and fast reactors decommissioning: on the one side, the treatment and disposal of radioactive sodium coolant, and on the other side, the management of reactor components, for which the structural materials are activated in depth by fast neutrons. To this end, a Technical Committee Meeting on Sodium Removal and Disposal from LMFRs in Normal Operation and in the framework of Decommissioning (Aix-en-Provence, France, November 1997) and two Consultancies on Decommissioning of the Kazakh BN-350 LMFR (Vienna, Austria, October 1996; Obninsk, Russian Federation, February 1998) were convened by the IAEA. These Meetings brought together a group of experts from France, Russia, Kazakhstan, the UK, and the USA to exchange information on, and to review current technical knowledge and experience in the management of radioactive coolant and reactor components following closing of LMFRs, as well as their design features and operating experience relevant for decommissioning procedures. The report provides general and detailed information on activation characteristics of the primary coolant; treatment and disposal of the spent sodium; removal of the residual sodium deposits and decontamination; the activation characteristics of the reactor components and the management of the latter. The recurring theme is finding

  18. Mobility Work

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus

    2005-01-01

    of coordination necessary in cooperative work, but focuses, we argue, mainly on the temporal aspects of cooperative work. As a supplement, the concept of mobility work focuses on the spatial aspects of cooperative work. Whereas actors seek to diminish the amount of articulation work needed in collaboration......We posit the concept of Mobility Work to describe efforts of moving about people and things as part of accomplishing tasks. Mobility work can be seen as a spatial parallel to the concept of articulation work proposed by the sociologist Anselm Strauss. Articulation work describes efforts...... by constructing Standard Operation Procedures (SOPs), actors minimise mobility work by constructing Standard Operation Configurations (SOCs). We apply the concept of mobility work to the ethnography of hospital work, and argue that mobility arises because of the need to get access to people, places, knowledge and...

  19. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  20. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    by Qi et al [Zm Qi et al, Sens. Actuators B 81, 2002] before, however the sensing principle we present results in a broad detection range from gasses to solid materials and is different from the principle suggested by Qi et al with a highlylimited detection range. Metal-clad waveguide sensors......, where single cell detection isshown by use of the metal-clad waveguide sensors.......This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...

  1. Synthesis and structures of metal chalcogenide precursors

    Science.gov (United States)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  2. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria

    OpenAIRE

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and ...

  3. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  4. Metal phosphides

    International Nuclear Information System (INIS)

    Uehlls, A.

    1987-01-01

    The structure of phosphides of the most of elements: alkali, alkaline earth, rare earth, transition metals, actinides, indium, beryllium, cadmium forming the variety of formulae and types of structures, is considered. The ways of P atom combination in phosphides vary from single atoms (ions P 3- in compounds of electropositive elements) through one-, two-dimensional complexes P n up to three-dimensional (charged) grids. In all phosphides, containing the systems of bound atoms of phosphorus, certain or all from these atoms form less than three bonds P-P. The formation of one bond P-P by every atom leads to group P 2 found as P 2 4- ion in diphosphides of transition metals with the structure of the pyrite or marcasite type (RuP 2 ). LaP, SmP, ThP, UP, ZrP form structural type NaCl

  5. Separation of metal ions from aqueous solutions

    Science.gov (United States)

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  6. Metal artifact reduction method using metal streaks image subtraction

    International Nuclear Information System (INIS)

    Pua, Rizza D.; Cho, Seung Ryong

    2014-01-01

    Many studies have been dedicated for metal artifact reduction (MAR); however, the methods are successful to varying degrees depending on situations. Sinogram in-painting, filtering, iterative method are some of the major categories of MAR. Each has its own merits and weaknesses. A combination of these methods or hybrid methods have also been developed to make use of the different benefits of two techniques and minimize the unfavorable results. Our method focuses on the in-paitning approach and a hybrid MAR described by Xia et al. Although in-painting scheme is an effective technique in reducing the primary metal artifacts, a major drawback is the reintroduction of new artifacts that can be caused by an inaccurate interpolation process. Furthermore, combining the segmented metal image to the corrected nonmetal image in the final step of a conventional inpainting approach causes an issue of incorrect metal pixel values. Our proposed method begins with a sinogram in-painting approach and ends with an image-based metal artifact reduction scheme. This work provides a simple, yet effective solution for reducing metal artifacts and acquiring the original metal pixel information. The proposed method demonstrated its effectiveness in a simulation setting. The proposed method showed image quality that is comparable to the standard MAR; however, quantitatively more accurate than the standard MAR

  7. Metallic spintronic devices

    CERN Document Server

    Wang, Xiaobin

    2014-01-01

    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  8. Working Parents

    Science.gov (United States)

    ... working-parent families are no longer exceptional. The Impact of Working When both parents are occupied with ... and perform a relaxation exercise. Or during your coffee breaks, forgo coffee and doughnuts and take a ...

  9. Glassy metals

    CERN Document Server

    Russew, Krassimir

    2016-01-01

    The topics discussed in this book focus on fundamental problems concerning the structural relaxation of amorphous metallic alloys, above all the possibility of studying it on the basis of viscous flow behavior and its relation to rheological anomalies, such as bend stress relaxation, thermal expansion, specific heat, density changes, and crystallization. Most relaxation studies deal with the relaxation changes of a single definite material property, and not with a wider spectrum of physical properties integrated into a common framework. This book shows that it is possible to describe these property changes on the basis of a more comprehensive theoretical understanding of their mechanism.

  10. Developmental Work

    DEFF Research Database (Denmark)

    Møller, Niels; Hvid, Helge; Kristensen, Tage Søndergaard

    2003-01-01

    Human Deveoplment and Working Life - Work for Welfare explores whether the development of human resources at company level can improve individuals' quality of life, companies' possibilities of development, and welfare and democracy in society. Chapter two discuss the concept "developmental work...

  11. Mechanochemical processing for metals and metal alloys

    Science.gov (United States)

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  12. Transition metal contacts to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Politou, Maria, E-mail: Maria.Politou@imec.be; De Gendt, Stefan; Heyns, Marc [KU Leuven, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt [imec, Kapeldreef 75, 3001 Leuven (Belgium); Lee, Chang Seung [SAIT, Samsung Electronics Co., Suwon 443-803 (Korea, Republic of); Sayan, Safak [imec, Kapeldreef 75, 3001 Leuven (Belgium); Intel Corporation, 2200 Mission College Blvd, Santa Clara, California 95054 (United States)

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  13. Metal filled porous carbon

    Science.gov (United States)

    Gross, Adam F [Los Angeles, CA; Vajo, John J [West Hills, CA; Cumberland, Robert W [Malibu, CA; Liu, Ping [Irvine, CA; Salguero, Tina T [Encino, CA

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  14. Work Experience and Work Involvement.

    Science.gov (United States)

    Lorence, Jon; Mortimer, Jeylan T.

    1981-01-01

    Examines the interrelations of work experience and psychological involvement in work among male college graduates over a 10-year period. Both the occupational socialization and the occupational selection hypotheses are supported by the data analysis. (Author/JOW)

  15. The metal-rich sulfides and phosphides of the early transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, H.F. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Chemistry

    1996-06-01

    Early work on the preparation of refractory metal-rich compounds of the early transition metals resulted in the understanding that metal-metal bonding results in a structural variety that plays an important role in the high-temperature chemistry of these systems. The binary metal-rich systems have been thoroughly studied at high temperatures, and the structures of most, if not all, of the refractory sulfides and phosphides are known. More recently new ternary phases have been discovered, and these have been shown to result from distributed fractional site occupation of metal atom sites in complex structures. The extent of metal-metal bonding has been quantified by Extended-Hueckel Tight-Bonding calculations using Mullikan Overlap Populations. Correlations of site occupancy with MOP based upon the DFSO model have been observed. 44 refs.

  16. Theoretical study of defect properties in metals

    International Nuclear Information System (INIS)

    Sindzingre, P.

    1987-01-01

    Several characteristic properties (formation and migration enthalpies and volumes, dipole tensors, effects on shear elastic constants) of several point defects (vacancy, divacancy, interstitial, di-interstitial) in different metals: f.c.c. metals (Al, Cu, Ag, Au), h.c.p. metals (Be, Mg, Zn, Cd, Na, Co, Ti, Zr), b.c.c. metals (Li, Na, K, Rb, Cs) have been calculated. The calculated properties are evaluated from static computations performed with pair potentials derived from pseudo-potential theory (for simple or noble metals) or deduced empirically. Results are compared with available experimental data with previous theoretical works. The first part of this work where we have studied point defects properties in f.c.c. metals lead us to suggest a more convincing interpretation of X-ray scattering and elastic relation measurements concerning interstitials in Al and Cu, and a new interpretation for X-ray scattering measurements concerning di-interstitials in Al. In the second part, devoted to h.c.p. metals we are brought to propose for each studied metal the interstitial configurations which yield the best agreement with experimental results. The third part, devoted to the study of point defects in alkalin b.c.c. metals lead us to interpret self-diffusion in these metals with the assumption of a simultaneous contribution of monovacancies, divacancies and interstitials [fr

  17. Studies of Metal-Metal Bonded Compounds in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, John [University of Wisconsin-Madison

    2018-01-19

    The focus in this grant period has been on the preparation and study of compounds containing two metals (M) and a reactive main group fragment (E) aligned in a M–M=E linear array. These structures contain multiple bonds that interconnect the M and E groups, and are structures that had been proposed, but never observed, before our work.

  18. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  19. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    Science.gov (United States)

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  20. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  1. Neurotoxicity of metals.

    Science.gov (United States)

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity. © 2015 Elsevier B.V. All rights reserved.

  2. Metals bioaccumulation mechanism in neem bark

    Science.gov (United States)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  3. SPECIATION AND DETERMINATION OF PRIORITY METALS IN ...

    African Journals Online (AJOL)

    ABSTRACT. This work was carried out to determine the concentrations, bioavailability and mobility of priority metals in sediments of Oyun River, Sango, Ilorin, Nigeria. The river sediments were sampled at six selected locations and the samples were analyzed for some certain priority metals to determine the concentration,.

  4. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  5. Drawing works

    OpenAIRE

    Healey, Michael

    2010-01-01

    Michael Healey is an excellent example of a Renaissance artist: that is, someone who doesn’t limit himself to one medium and whose work crosses over many artistic disciplines. A very well known painter and an award winning designer, his work encompasses drawing, painting and printmaking. A recent collaborative research project even involves sculpture; working with a distinguished academic colleague in Australia, Professor Mike Esson, Healey won a prestigious UK research gran...

  6. The Sounds of Metal

    DEFF Research Database (Denmark)

    Grund, Cynthia M.

    2015-01-01

    Two, I propose that this framework allows for at least a theoretical distinction between the way in which extreme metal – e.g. black metal, doom metal, funeral doom metal, death metal – relates to its sound as music and the way in which much other music may be conceived of as being constituted...

  7. Case work

    DEFF Research Database (Denmark)

    Shaw, Ian Frank

    2016-01-01

    Answers to the question just what is the ?case? partly defined the fields of sociology and social work in early 20th century Chicago. Drawing on the archives of the University of Chicago, I describe and appraise the way the ?case? figured in social work at Chicago and elsewhere. I ask...... the corresponding question of sociology. Finally, I briefly consider why not much came of social work and sociology ploughing similar territory in ways that served for a time to hallmark their identities. This analysis opens up ways of rethinking how social work and sociological research are distinctive...

  8. A Difference in Using Atomic Layer Deposition or Physical Vapour Deposition TiN as Electrode Material in Metal-Insulator-Metal and Metal-Insulator-Silicon Capacitors

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2011-01-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the

  9. Green Lubricants for Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally...

  10. Work cabinet

    International Nuclear Information System (INIS)

    Hornby, L.

    1981-01-01

    A simple work cabinet is described for handling materials such as radiopharmaceuticals. The cabinet includes a perforated working surface to which an operator can gain hand and forearm access through an aperture. Clean air is supplied through a high efficiency particulate air filter and withdrawn through the perforated surface. (U.K.)

  11. Sedentary work

    DEFF Research Database (Denmark)

    Eriksen, Dorte; Rosthøj, Susanne; Burr, Hermann

    2015-01-01

    OBJECTIVE: The aim of this study is to investigate the association between five-year changes in occupational sitting and body mass index (BMI) in working adults. METHODS: We analyzed data from The Danish Work Environment Cohort Study (2005 and 2010, n=3.482). Data on occupational sitting, weight...

  12. Paper works

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2018-01-01

    of their land and natural resources, but also of labor and territorial sovereignty. This case shows how an Andean campesino community counters such movements by a wide repertoire of legal and social actions that works simultaneously in legal and extra-legal domains. Paper works mediate claims to territorial...... history writing....

  13. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  14. Metal polish poisoning

    Science.gov (United States)

    Metal polishes are used to clean metals, including brass, copper, or silver. This article discusses the harmful effects from swallowing metal polish. This article is for information only. DO NOT use ...

  15. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  16. Technique for detecting liquid metal leaks

    International Nuclear Information System (INIS)

    Bauerle, J.E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector

  17. Colorizing metals with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz

  18. Working Mothers

    Science.gov (United States)

    ... children are harmed when their mothers work. A child’s development is influenced more by the emotional health of ... children for school, both socially and intellectually. The Importance of Quality Child Care Parents all wish for the best start ...

  19. Working hot

    International Nuclear Information System (INIS)

    Stix, G.

    1988-01-01

    The author says ''barehand'' methods, where specially trained utility workers are called in conductive suits to equalize voltage over their bodies, to maintain high-voltage transmission lines are on the rise. Utilities are building lines at higher voltages and selling more power to other utilities, making it highly inconvenient to take the lines out of service. However, some unions view the barehand work with less than enthusiasm. Touching lines energized at hundreds of thousands of volts demands flawless equipment and rigid work procedures followed to the letter. Some local unions contend that adequate safety procedures and training, and appropriate penalties for workplace negligence, should be in place before utilities may do barehand work. The author discusses some of the methods of barehand work and the equipment used, i.e. steel-mesh lineman's suit, bucket truck's boom, helicopters, and robots

  20. Mechanical and metal trades handbook

    CERN Document Server

    2012-01-01

    Englische Ausgabe des vielfach bewährten Tabellenbuchs Metall, 45. Auflage. Translation of the 45th edition of the well-known "Tabellenbuch Metall". It is well suited for shop reference, tooling, machine building, maintenance and as a general book of knowledge. It is also useful for educational purposes, especially in practical work or curricula, continuing education programs. The contents of this book include tables and formulae in eight chapters. The tables contain the most important guidelines, designs, types, dimensions and standard values for their subject areas.

  1. Electromagnetic imaging through thick metallic enclosures

    Directory of Open Access Journals (Sweden)

    Brendan J. Darrer

    2015-08-01

    Full Text Available The ability to image through metallic enclosures is an important goal of any scanning technology for security applications. Previous work demonstrated the penetrating power of electromagnetic imaging through thin metallic enclosures, thus validating the technique for security applications such as cargo screening. In this work we study the limits of electromagnetic imaging through metallic enclosures, considering the performance of the imaging for different thicknesses of the enclosure. Our results show, that our system can image a Copper disk, even when enclosed within a 20 mm thick Aluminum box. The potential for imaging through enclosures of other materials, such as Lead, Copper, and Iron, is discussed.

  2. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  3. Coal-fired open-cycle liquid-metal magnetohydrodynamic topping cycle for retrofit of steam power plants. [Two-phase working fluid composed of coal combustion products and liquid copper

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E. S.; Herman, H.; Petrick, M.; Boom, R. W.; Carlson, L.; Cohen, D.; Dubey, G.; Grammel, S. J.; Schreiner, F.; Snyder, B. K.; Zinneman, T.

    1980-12-01

    The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the new plant efficiency and the cost benefit relative to other options, i.e., continuing to burn oil, a conventional retrofit to burn coal (if possible), and an over-the-fence gasifier for boilers that cannot burn coal directly. The OC-LMMHD cycle and the existing steam plant used in the study are discussed, and a detailed description of the retrofit plant is presented. The latter includes plant drawings, description of the coupling of the OC-LMMHD topping cycle and the steam boiler, drawings and descriptions of the major components in the retrofit plant, and costs. The unique capability of the OC-LMMHD cycle to control the pollutants normally associated with burning coal is discussed. The net plant output powers and efficiencies are calculated, with allowances for the required auxiliary powers and component inefficiencies, and a plant lifetime economic analysis performed by an architect/engineer. The efficiency and cost results are compared with the values for the other options.

  4. Working rights

    Directory of Open Access Journals (Sweden)

    Babić Jovan

    2008-01-01

    Full Text Available The first part of the article focuses on 'Employment at will', a scheme in which all obligations and rights of employers and employees are subject to negotiation and explicit agreement of the parties in the working process. Free consent and almost absolute freedom to terminate the relations are features of this scheme. The second part of the article deals with the issue of the right to work and rights in the working place. As restrictions of the freedom contained in the original Employment at Will scheme, all these rights have to be justified from the moral point of view. The third part deals with due process in the workplace, especially regarding the issue of layoffs.

  5. Working Collaboratively

    DEFF Research Database (Denmark)

    Holder, Anna; Lovett, George

    2009-01-01

    Working collaboratively is arguably an essential skill in architectural practice as the complexity of contemporary projects involves multiple agents in the conception, construction and use of architecture. This has been emphasised by recent government rhetoric. Mass collaboration has been...... identified as a transformative global force of the last decade, most notably in knowledge and information publishing, communication and creation. This paper presents a structured conversation on changing understandings of collaboration, and the realities of collaborative methodology in architectural work....... Ideas of the platforms and structures necessary to support ‘creative’ collaborations are advanced and tested, and a vocabulary of key terms is developed. The conversation extends to reflect on the role of the architecture profession in supporting or enabling collaboration in architectural works....

  6. CITA works

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin; Ayres, Phil

    2015-01-01

    readers with insights into our design-led practice-based architectural research which queries how computation challenges the way we think, design and build architecture. With essays by Professor Mette Ramsgaard Thomsen (Head of CITA), and Dr. Jane Burry (Head of the Spatial Information Architecture...... Laboratory, RMIT) the work is contextualised within the field of digital architectural design practice. These essays also identify the emerging questions and maturing methods that continue to inform CITA’s research within this territory. CITA works marks the first 10 years of our research effort...... and acknowledges the institutions, practices, companies and individuals that have participated, contributed and collaborated with us along the way....

  7. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  8. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    OpenAIRE

    Sharma, Bechan; Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reduc...

  9. Demolition work

    CERN Multimedia

    2004-01-01

    Because of demolition work inside Bldg. 251, two containers will be placed on the route Démocrite. For security reasons, the part of this road in front of barrack 553 will be closed to circulation from 5 to 12 November. Thank you, in advance for your understanding. PH-SMI

  10. Construction work

    CERN Multimedia

    2004-01-01

    Construction work on building 179 will start on the 16th February 2004 and continue until November 2004. The road between buildings 179 and 158 will temporarily become a one way street from Route Democrite towards building 7. The parking places between buildings 179 and 7 will become obsolete. The ISOLDE collaboration would like to apologize for any inconveniences.

  11. Work notice

    CERN Multimedia

    TS-FM

    2005-01-01

    Please note that work to repair the water mains on Route Bloch near Gate C will be carried out between 12 and 30 September 2005. The area between Route Bakker and Gate C will be closed to traffic during this period. You are kindly requested to comply with the road signs in place. Thank you for your understanding. TS-FM Group

  12. Road works

    CERN Multimedia

    GS Department

    2010-01-01

    From Monday 11 October until Friday 29 October 2010, the flow of traffic will be disrupted by road works at the roundabout in front of Restaurant No. 2; The number of spaces available in the car park in front of Rest. No. 2 will be reduced. Thank you for your understanding during this period. GS/SEM Group

  13. Wetlands Work

    Science.gov (United States)

    Messina, Linda; Blanchard, Pamela Borne

    2004-01-01

    This article describes how a biology teacher's search for a cross-curricular project in science, math, history, and environmental science, that would help her students connect what they were learning in the classroom to their everyday life, resulted in an ongoing stewardship project. Working together with the Louisiana Sea Grant College Program…

  14. Heart Work

    Science.gov (United States)

    Madden, Sandra R.; Gonzales, Alicia C.

    2017-01-01

    It is not every day that a former student greets a teacher with, "Your course changed my life." The authors are the professor and student of the transformative course. Alicia Gonzales wanted to understand how to work with students to co-construct an environment where persistent problem solving in a technologically rich classroom was the…

  15. Voluntary work

    NARCIS (Netherlands)

    P. Dekker; J. de Hart; M. Leijenaar; Kees Niemöller; Eric M. Uslaner

    1999-01-01

    Original title: Vrijwilligerswerk vergeleken. Based on national and international research, how much do people do for others, for social organisations and for good causes? How does the Netherlands compare with its neighbouring countries in the appreciation of voluntary work, and how

  16. Metals and metal derivatives in medicine.

    Science.gov (United States)

    Colotti, Gianni; Ilari, Andrea; Boffi, Alberto; Morea, Veronica

    2013-02-01

    Several chemical elements are required by living organisms in addition to the four elements carbon, hydrogen, nitrogen and oxygen usually present in common organic molecules. Many metals (e.g. sodium, potassium, magnesium, calcium, iron, zinc, copper, manganese, chromium, molybdenum and selenium) are known to be required for normal biological functions in humans. Disorders of metal homeostasis and of metal bioavailability, or toxicity caused by metal excess, are responsible for a large number of human diseases. Metals are also extensively used in medicine as therapeutic and/or diagnostic agents. In the past 5000 years, metals such as arsenic, gold and iron have been used to treat a variety of human diseases. Nowadays, an ever-increasing number of metal-based drugs is available. These contain a broad spectrum of metals, many of which are not among those essential for humans, able to target proteins and/or DNA. This mini-review describes metal-containing compounds targeting DNA or proteins currently in use, or designed to be used, as therapeutics against cancer, arthritis, parasitic and other diseases, with a special focus on the available information, often provided by X-ray studies, about their mechanism of action at a molecular level. In addition, an overview of metal complexes used for diagnosing diseases is presented.

  17. Work and minor work contracts

    CERN Document Server

    1999-01-01

    The Work and Minor Work contracts are all of the result-oriented type. The work is specified by CERN and the contractor is given full responsibility for its performance. The contracts are thus very similar to supply contracts. The re-tendering of the existing contracts is almost complete, except for some building maintenance contracts. A new cycle of re-tendering for some activities will be launched in the next twelve months. The total estimated expenditure in the year 2000 for the contracts referred to in this document is 27 750 000 Swiss francs at 1999 prices. The Finance Committee is invited: - to approve the proposed expenditure for the extension of contracts for which the estimated amount for the year 2000 exceeds 750 000 Swiss francs, namely those under references 1, 2, 3, 5, 7, 8, 9 and 23, highlighted in Table I; - to take note that all Work and Minor Work contracts have been tendered since 1 January 1994, except the small contracts shown under references 12 and 16 in Table I; - to take note that the ...

  18. Paid work and unpaid work

    DEFF Research Database (Denmark)

    Bonke, Jens

    -questions are asked about the time spent on paid work and unpaid/household work. The advantage of the latter technique is that it can easily be integrated into surveys. Thus the American National Survey of Families and Households (NSFH) already contains two waves, and a new wave for 2001-2002, which allows......Time-use information is preferably obtained from diaries, as this method is considered more reliable than information from questionnaires. The diary-technique seems to be unique in catching the rhythm of every day life and thereby the structuring of work and leisure during a well......-defined and memorable period of time. However, there is no a priori reasoning why major differentials at least at an aggregate level should be found by using the two techniques. The purpose of this paper is to test this hypothesis by using the Danish Time Use Survey 2001, where diary information as well as survey...

  19. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  20. Working memory.

    Science.gov (United States)

    Baddeley, A

    1992-01-31

    The term working memory refers to a brain system that provides temporary storage and manipulation of the information necessary for such complex cognitive tasks as language comprehension, learning, and reasoning. This definition has evolved from the concept of a unitary short-term memory system. Working memory has been found to require the simultaneous storage and processing of information. It can be divided into the following three subcomponents: (i) the central executive, which is assumed to be an attentional-controlling system, is important in skills such as chess playing and is particularly susceptible to the effects of Alzheimer's disease; and two slave systems, namely (ii) the visuospatial sketch pad, which manipulates visual images and (iii) the phonological loop, which stores and rehearses speech-based information and is necessary for the acquisition of both native and second-language vocabulary.

  1. Works notice

    CERN Multimedia

    GS Department

    2009-01-01

    We would like to inform you that renovation work on the road lighting equipment will take place on the Meyrin site between 19 October and 18 December 2009. During this period, traffic will be disrupted on the Schrödinger, Perrin and Siegbahn roads, ie from Building 274 to Building 188. We request that you comply with the road signs and thank you for your understanding. GS-SEM Group

  2. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    Science.gov (United States)

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-02

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity.

  3. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  4. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.

  5. RESUMING WORK

    CERN Multimedia

    2003-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: - if the medical absence has been for 21 calendar days or longer - if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service Tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  6. RESUMING WORK

    CERN Multimedia

    2003-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: - if the medical absence has been for 21 calendar days or longer - if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  7. RESUMING WORK

    CERN Document Server

    2004-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: • if the medical absence has been for 21 calendar days or longer • if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  8. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  9. Work and work-related stress in pregnancy.

    Science.gov (United States)

    Katz, Vern L

    2012-09-01

    Work, in general, does not increase the risks of pregnancy complications. Work that is stressful, physically, psychologically, or both, has deleterious effects on pregnancy. Stressful work increases the risks of miscarriage, preterm labor, preterm birth, low birth weight, and preeclampsia. The greater the stress, the greater the risks of pregnancy complications. Women with a history of pregnancy complications should be counseled about reducing stressful work before pregnancy. Women with stressful jobs should be followed closely during pregnancy, and if signs of preterm labor or delayed fetal growth develop, then occupational stress should be decreased or eliminated. Some occupations expose pregnant women to teratogens such as organic solvents, heavy metals, or pesticides. A careful work history should be part of every preconception and early pregnancy visit.

  10. Thermal Conductivity of Metallic Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hin, Celine

    2018-03-10

    used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed [3]. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.

  11. Glassy metallic plastics

    Science.gov (United States)

    Li, Jianfu; Wang, Junqiang; Liu, Xiaofeng; Zhao, Kun; Zhang, Bo; Bai, Haiyang; Pan, Mingxiang; Wang, Weihua

    2010-03-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature ( T g ˜25°C to 150°C) and low Young’s modulus (˜20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  12. Metal phthalocyanine catalysts

    Science.gov (United States)

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  13. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  14. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  15. Marks of Metal Copenhell

    DEFF Research Database (Denmark)

    2015-01-01

    Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet.......Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet....

  16. Nanochemistry of metals

    International Nuclear Information System (INIS)

    Sergeev, Gleb B

    2001-01-01

    The results of studies on the nanochemistry of metals published in recent years are generalised. Primary attention is centred on the methods for the synthesis of nanoparticles and their chemical reactions. The means of stabilisation of nanoparticles which involve individual metals and incorporate atoms of several metals are considered as well as their physicochemical properties. Self-assembling processes of nanoparticles are described. The prospects of using metal nanoparticles in semiconductor devices, catalysis, biology and medicine are discussed. The bibliography includes 165 references.

  17. Biotic Strategies for Toxic Heavy Metal Decontamination.

    Science.gov (United States)

    Mishra, Rupesh K; Sharma, Vinay

    2017-01-01

    In the modern age of globalization and fast industrialization, the environmental matters are fetching more and more annoyance for human being. Patents reveal that heavy metals occur in immobilized form in sediments and as aggregates in nature. However due to the different human activities like ore mining and industrial processes, the natural biogeochemical cycles are disordered instigating amplified deposition of heavy metals in aquatic environments. The most common pollution causing heavy metals are considered to be the mercury, arsenic, lead, copper, silver, cadmium. The goal of this work is to identify the biological action of heavy metal-contaminated water and sediments which can be categorized into bioaccumulation, biosorption, oxidation/ reduction, leaching, degradation, and phytoremediation. Among the various biological methods for decontamination of heavy metals from water, biosorption is known to be the most affordable, economical and efficient option for the management of capacious water bodies encompassing low concentrations of heavy metals. However, the physicochemical properties of the aquatic bodies that would extremely affect the performances of biosorbents should be prudently measured. The precipitation is efficient in decontamination/removal of relatively high concentrations of metals in water. The bioleaching of searched sediments in regulated systems is a speedy process as compared with phytoremediation. In order to decontaminate the heavy metals from water, biological methods are very proficient and useful. These methods can be very efficient in cleaning up environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  19. Analysis of trace metals in various brands of cigarettes

    International Nuclear Information System (INIS)

    Iqbal, M.

    1996-01-01

    The present work deals with the analysis of trace metals in various brands of cigarettes belonging to four different countries. In the present research seven trace elements have been determined spectrophotometrically by the use of suitable analytical reagent of the respective metal ions. The metals which has been analysed quantitatively in forty one brand of cigarettes are aluminium, copper, chromium, nickel, iron titanium and zinc. The concentration per cigarette of these metals are in tolerable range. The concentration of above mentioned metal ions is highest in Pakistani cigarettes tobacco while the concentration of nickel is highest in American cigarettes. (author) 221 refs

  20. Transmissive metallic contact for amorphous silicon solar cells

    Science.gov (United States)

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  1. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  2. Multiple allergies to metal alloys

    Directory of Open Access Journals (Sweden)

    Mei-Eng Tu

    2011-06-01

    Conclusions: Metal alloys may induce multiple metal allergies. Patients suspected of having a metal allergy should be patch tested with an extended series of metals. We recommend adding palladium and gold, at least, to the standard series.

  3. Conducting metal oxide and metal nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  4. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  5. Electronic transport properties of carbon nanotube metal-semiconductor-metal

    Directory of Open Access Journals (Sweden)

    F Khoeini

    2008-07-01

    Full Text Available  In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.

  6. Metal Detecting in Denmark

    DEFF Research Database (Denmark)

    Dobat, A.S.

    2016-01-01

    Since the early 1980s, metal detector surveying conducted by non-professional volunteers (amateur archaeologists) has contributed significantly to archaeological research and heritage practice in Denmark. Metal detecting has always been legal in Denmark, and official stakeholders have from...... the beginning of metal detector archaeology pursued a liberal model, focusing on cooperation and inclusion rather than confrontation and criminalization. Like no other surveying method, the metal detector has contributed to increasing enormously the amount of data and sites from metal-rich periods. Virtually...... all of the spectacular and ground-breaking discoveries of the past decades are owed to metal detectors in the hands of amateur archaeologists. In order to serve as a contribution to the discussion on the upsides and downsides of liberal metal detector archaeology, this article addresses mainly three...

  7. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    Metal Borohydrides Synthesized from Metal Borides and Metal Hydrides Alexander Fogha, Sanna Sommera, Kasper T. Møllera, T. R. Jensena aCenter for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO) and Chemistry Department, Aarhus University, Langelandsgade 140, DK-8000...... Aarhus C, Denmark email: gallafogh@hotmail.com / sanna-sommer@hotmail.com Magnesium boride, MgB2, ball milled with MH (M = Li, Na, Ca) followed by hydrogenation under high hydrogen pressure, readily forms the corresponding metal borohydrides, M(BH4)x (M = Li, Na, Ca) and MgH2 according to reaction scheme...... and Ca(BH4)2, respectively [3,4]. An attempt to synthesize alkali and alkaline earth metal borohydrides from various borides by ball milling under high hydrogen pressure is presented here. MgB2, AlB2 and CaB6 have been milled with MHx (M = Li, Na, Mg, Ca) at p(H2) = 110 bar for 24 hours. All samples were...

  8. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  9. Thin Metallic Films from Solvated Metal Atoms.

    Science.gov (United States)

    1987-07-14

    research has developed over the past two decades that deals with the generation of atoms of metals (by metal evaporation, and the interaction of these...Departamento de Quimica , Universidad de Concepcion, Cassilla 3-:, c oncepcion, Chile. -I{ - ~ *~.’JS*~M 4 .~4\\ 821 19 the gold particles were negatively...flocculation were observed, as shown in table a Generally about 0.1 g In was Suspended in 100-200 nl solvent. Several approacies to characterization of

  10. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  11. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  12. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  13. Metal extrusion using hydrostatic pressures

    International Nuclear Information System (INIS)

    Sauve, Ch.

    1965-01-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [fr

  14. 76 FR 26247 - Magnesium Metal From the Russian Federation: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-05-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-821-819] Magnesium Metal From the... antidumping duty order on magnesium metal from the Russian Federation for the period of review (POR) April 1...) and Solikamsk Magnesium Works (SMW). [[Page 26248

  15. SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF

    Science.gov (United States)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin

    2018-05-01

    In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.

  16. Work team

    Directory of Open Access Journals (Sweden)

    RBE Editorial

    2016-06-01

    Full Text Available Work Team 2016 (Jan-Jul1. Editorial TeamChief-editorsBayardo Bapstista Torres, Instituto de Química (USP, BrasilEduardo Galembeck, Depto. Bioquímica, Instituto de Biologia, Universidade de Campinas (Unicamp, Brasil Co-editorsGabriel Gerber Hornink, Depto. Bioquímica, Instituto de Ciências Biomédicas, Universidade - Federal de Alfenas (Unifal-MG, BrasilVera Maria Treis Trindade, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS, Brasil Editorial BoardAdriana Cassina, Department of Biochemistry, Facultad de Medicina, Universidad de la República, UruguayAngel Herráez, Departamento de Bioquímica y Biología molecular, Universidad de Alcalá de Henares, Madrid, SpainAndré Amaral Gonçalves Bianco, Universidade Federal de São Paulo (Unifesp, BrasilDenise Vaz de Macedo, Depto. Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp, BrasilEneida de Paula, Depto. Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp, BrasilJose Antonio Martinez Oyanedel, Universidad de Concepción, ChileJosep Maria Fernández Novell, Department of Molecular Biology & Biochemistry, Universitat de Barcelona, SpainLeila Maria Beltramini, Instituto de Física de São Carlos, Universidade Estadual de São Paulo (USP, BrasilManuel João da Costa, Escola de Ciências da Saúde, Universidade do Minho, PortugalMaria Lucia Bianconi, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro (UFRJ, BrasilMaría Noel Alvarez, Department of Biochemistry, Facultad de Medicina, Universidad de la República, UruguayMiguel Ángel Medina Torres, Department of Molecular Biology & Biochemistry Faculty of Sciences University of Málaga, SpainNelma Regina Segnini Bossolan, Instituto de Física de São Carlos, Universidade de São Paulo (USP, BrasilPaulo De Avila Junior, Centro de Ciências Naturais e Humanas (CCNH Universidade Federal do ABC (UFABC

  17. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M. [Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Tang, K.; Ahn, J.; McIntyre, P. C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  18. Biomedical implications of heavy metals induced imbalances in redox systems.

    Science.gov (United States)

    Sharma, Bechan; Singh, Shweta; Siddiqi, Nikhat J

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  19. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    Directory of Open Access Journals (Sweden)

    Bechan Sharma

    2014-01-01

    Full Text Available Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity, central nervous system (neurotoxicity, DNA (genotoxicity, and kidney (nephrotoxicity in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium induced oxidative stress as well as the possible remedies of metal(s toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s. This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  20. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Liquid metal thermal-hydraulics

    International Nuclear Information System (INIS)

    Kottowski-Duemenil, H.M.

    1994-01-01

    This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of

  2. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  3. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  5. Metals and Alloys; Machine Shop Work 3: 9557.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to assist the instructor in systematically planning and presenting a variety of meaningful lessons to facilitate the necessary training for the machine shop student. The materials are designed to enable the student to learn the manipulative skills and related knowledge necessary to understand…

  6. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    Science.gov (United States)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  7. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  8. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  9. Light metal production

    Science.gov (United States)

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  10. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  11. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  12. Supported metal alloy catalysts

    Science.gov (United States)

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  13. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  14. Tritium in metals

    International Nuclear Information System (INIS)

    Schober, T.

    1990-01-01

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3 He in the samples. (orig.)

  15. Development of the Method for Preparation of Actinide Metals

    OpenAIRE

    Shiokawa, Y.; Hasegawa, K.; Takahashi, M.; Suzuki, K.

    1997-01-01

    The uranium amalgam was quantitatively prepared by electrolysis from the aqueous solution containing acetic acid and sodium acetate using mercury cathode. A bright button or brown porous one of uranium metal was obtained by thermal decomposition of the amalgam. The purity was found to be much higher than commercial grade metal of ca.99.95%. As a result of this work, the simple and easy procedure for preparation of uranium metal with high purity level on the laboratory scale has been developed.

  16. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  17. Thermal conductivity of metals

    Science.gov (United States)

    Kazem, Sayyed M.

    1990-01-01

    The objective is to familiarize students with steady and unsteady heat transfer by conduction and with the effect of thermal conductivity upon temperature distribution through a homogeneous substance. The elementary heat conduction experiment presented is designed for associate degree technology students in a simple manner to enhance their intuition and to clarify many confusing concepts such as temperature, thermal energy, thermal conductivity, heat, transient and steady flows. The equipment set is safe, small, portable (10 kg) and relatively cheap (about $1200): the electric hot plate 2 kg (4.4 lb) for $175: the 24 channel selector and Thermocouple Digital Readout (Trendicator) 4.5 kg (10 lb) for about $1000; the three metal specimens (each of 2.5 cm diameter and 11 cm length), base plate and the bucket all about 3 kg (7 lb) for about $25. The experiment may take from 60 to 70 minutes. Although the hot plate surface temperature could be set from 90 to 370 C (maximum of 750 watts) it is a good practice to work with temperatures of 180 to 200 C (about 400 watts). They may experiment in squads of 2, 3 or even 4, or the instructor may demonstrate it for the whole class.

  18. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  19. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  20. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  1. Metal weight table

    International Nuclear Information System (INIS)

    1995-03-01

    This book is comprised of two parts about metallic material weight table. the first part deals with steel on weight table of section steel and bar steel, hexagonal steel, equal angle steel, unequal angle steel, channel steel, T steel, H steel, CT steel, light gauge steel, light rail, stainless steel weight calculation, carbon steel pipe for general rescue a circular nail, zinc galvanizing and wire lope. The second part is about nonferrous metal on weight calculation for nonferrous metal nonferrous metal plates, steel pipe, brass copper bar and aluminum.

  2. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  3. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO 2 to U metal in LiCl-1wt.% Li 2 O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  4. Processing and properties of advanced metallic foams

    Science.gov (United States)

    Brothers, Alan Harold

    Since the development of the first aluminum foams in the middle of the 20th century [178], great advances have been made in the processing and fundamental understanding of metallic foams. As a result of these advances, metallic foams are now penetrating a number of applications where their unique suite of properties makes them superior to solid materials, such as lightweight structures, packaging and impact protection, and filtration and catalysis [3]. The purpose of this work is to extend the use of metallic foams in such applications by expanding their processing to include more sophisticated base alloys and architectures. The first four chapters discuss replacement of conventional crystalline metal foams with ones made from high-strength, low-melting amorphous metals, a substitution that offers potential for achieving mechanical properties superior to those of the best crystalline metal foams, without sacrificing the simplicity of processing methods made for low-melting crystalline alloys. Three different amorphous metal foams are developed in these chapters, and their structures and properties characterized. It is shown for the first time that amorphous metal foams, due to stabilization of shear bands during bending of their small strut-like features, are capable of compressive ductility comparable to that of ductile crystalline metal foams. A two-fold improvement in mechanical energy absorption relative to crystalline aluminum foams is shown experimentally to result from this stabilization. The last two chapters discuss modifications in foam processing that are designed to introduce controllable and continuous gradients in local foam density, which should improve mass efficiency by mimicking the optimized structures found in natural cellular materials [64], as well as facilitate the bonding and joining of foams with solid materials in higher-order structures. Two new processing methods are developed, one based on replication of nonuniformly-compressed polymer

  5. Use of metallic fibers in concretes

    Directory of Open Access Journals (Sweden)

    Kherbache Souad

    2014-04-01

    Full Text Available The addition of a waste (fibers in construction materials, particularly, the concretes is a technique increasingly used, for several reasons, either ecological, or economic, or to improve some properties in a fresh or hardened state. In our work we studied the behavior of the concrete and the mortar containing metallic fibers resulting from the unit BCR which is in Bordj-Menaiel in Algeria (metallic fibers resulting from the rejection at the end of the domestic operation of silvering of the tools and which is stored in plastic bags which are preserved in metal containers. Our work consists to study the behavior of the concretes and the mortars containing these fibers of cement substitution. We noted that the use of these fibers in the concretes in substitution of cement decreases its of compressive strength and flexural strength but to 10% of waste these strength remain acceptable.

  6. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    Science.gov (United States)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  7. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  8. Metal-on-Metal Hip Resurfacing Arthroplasty

    Science.gov (United States)

    Sehatzadeh, S; Kaulback, K; Levin, L

    2012-01-01

    Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the

  9. Silicon metal-semiconductor-metal photodetector

    Science.gov (United States)

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  10. Facility protecting liquid metal circuits from deformation and accident

    International Nuclear Information System (INIS)

    Klemensevic, J.; Klinga, J.; Tomes, V.

    1986-01-01

    At the suction and delivery sides of the liquid metal pump the piping is connected via membranes to a storage tank. In case the permissible working overpressure is exceeded the membranes burst which allows the outflow of liquid metal into the storage tank. The membranes are placed between valves, which allows their easy replacement. (J.B.)

  11. Levels and occupational health risk assessment of trace metals in ...

    African Journals Online (AJOL)

    The levels of trace metals (Pb, Cu, Ni and Cd) were determined in soils from a major automobile repair workshop located in Uyo, Akwa Ibom State, Nigeria. This was carried out to evaluate the potential occupational risk to operators working in and around the site. The mean of trace metal levels were: lead (14.52 mg/kg); ...

  12. Potential human health risk assessment of heavy metals intake via ...

    African Journals Online (AJOL)

    Potential human health risk assessment of heavy metals intake via consumption of some leafy vegetables obtained from four market in Lagos Metropolis, Nigeria. ... This work investigated six heavy metals (Pb, Cr, Zn, Cd, Ni and Cu) accumulation in five popular leafy vegetables: Telferia occidentalis (fluted pumpkin), ...

  13. Design and synthesis of multidentate ligands via metal promoted C ...

    Indian Academy of Sciences (India)

    Unknown

    complexes displayed large number of redox responses. A brief mention about the future projection of this work is noted. Keywords. Metal promoted reactions; aromatic ring amination; new bischelating. N,N,N-donors; transition metal chemistry. 1. Introduction. Chemical transformation1–5 of organic substrates, coordinated to ...

  14. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet, as...

  15. Effects of deformation on the energies of metals | Adeshakin ...

    African Journals Online (AJOL)

    In this work, a model for computing the correlation, binding and cohesive energy of deformed and undeformed metals was developed based on the structureless pseudopotential formalism. Based on the developed model, the correlation, binding and cohesive energy of metals were computed and studied. Also, the ...

  16. Innovative fluorescence detection technique for metals in cestode ...

    African Journals Online (AJOL)

    Recent work in the field of parasitology has drawn attention to the application of parasites as pollution-accumulation indicators, particularly cestodes. A discrepancy in metal concentrations within cestode posterior and anterior tissue has led researchers to attribute this phenomenon to metals binding to the shells of their ...

  17. Speciation and determination of priority metals in sediments of Oyun ...

    African Journals Online (AJOL)

    This work was carried out to determine the concentrations, bioavailability and mobility of priority metals in sediments of Oyun River, Sango, Ilorin, Nigeria. The river sediments were sampled at six selected locations and the samples were analyzed for some certain priority metals to determine the concentration, speciation and ...

  18. Social use of metal from the Late Chalcolithic to the Early Bronze Age in the Upper Euphrates Valley

    OpenAIRE

    Stork, Leigh A.

    2013-01-01

    Previous work on the early use of metal draws heavily upon the work of V. Gordon Childe, particularly his 1944 ‘Archaeological ages as technological stages’ article which outlined the development and social impact of metal in prehistory. Subsequent work, especially in the European paradigm, in the field of archaeometallurgy and material culture studies of metal have been oriented towards the typological definition and description of metal objects and how these typologies changed over time. Ra...

  19. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  20. Metal ion binding to iron oxides

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.; Benedetti, M.F.; Ponthieu, M.

    2006-01-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to

  1. Agronomy of metal crops used in agromining

    Science.gov (United States)

    This review of the agronomy of metal crops used in agromining/phytomining summarizes the history of the development of phytomining and the experimental work to identify the agronomic practices most important to high annual nickel yield when hypernickelophore (accumulate over 1% Ni in dry shoots). Th...

  2. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  3. MODELLING OF RESPONSES FROM ORTHOGONAL METAL ...

    African Journals Online (AJOL)

    The purpose of this research was to develop models for the prediction of responses from orthogonal metal cutting process that are responsible for the machinability ratings of this technological system. Mild steel work-piece material that is representative sample for various industrial applications was machined. The various ...

  4. Obtention of titanium and zirconium metallic

    International Nuclear Information System (INIS)

    Santos, P.R.G.; Rover, C.F.S.; Amaral, F.L.L.

    1988-01-01

    The development works of techniques and equipments for titanium and zirconium sponges obtention are mentioned. The Kroll Process used for the sponges production is described, consisting in the reduction of the metal tetracloride with magnesium in an inert atmosphere of helium or argon. (C.G.C.) [pt

  5. Welding of a metal-polymer laminate

    NARCIS (Netherlands)

    Gower, H.L.

    2007-01-01

    The purpose of this work is to investigate the weldability of a metal polymer sandwich structure. The welding of the sandwich material proceeds first by welding of the skin layer. The material selected for this research is Steelite, a sandwich structure developed by Corus, with 0.12 mm thick mild

  6. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Henan Key Laboratory of Advanced Non-ferrous Metals, Luoyang 471003, China; School of Materials Science and Engineering, Henan University of Science and Technology, ...

  7. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    between amounts of metals in the aquatic insects and the surrounding water medium,. Materials and methods indicating that most of the accumulated. Test animals metals were from the water medium. Tympanotonus fuscatus var. radula L. The significance of bioaccumulation. (Periwinkle) (Mollusca; Gastropoda, studies lies ...

  8. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  9. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  10. Marks of Metal

    DEFF Research Database (Denmark)

    2015-01-01

    Udstilling på Mediemuseet med fokus på den visuelle side af heavy metal: Logoer, pladecovers og lignende.......Udstilling på Mediemuseet med fokus på den visuelle side af heavy metal: Logoer, pladecovers og lignende....

  11. Virus templated metallic nanoparticles

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  12. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles...

  13. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  14. Metal borohydrides and derivatives

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Haarh Jepsen, Lars; Schouwink, Pascal

    2017-01-01

    review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery......A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest...... major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4 -, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we...

  15. Metals and Neurodegeneration

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  16. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  17. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  18. 11th meeting of the working group on fracture processes

    International Nuclear Information System (INIS)

    1980-01-01

    This volume contains the full text of the 29 papers read at the 11th meeting of the DVM working group on fracture processes. The first part discusses non-metallic materials (plastics, glasses, ceramics), the second part contains mostly theoretical investigations, and the third part discusses the fracture behaviour of metallic materials. (RW) [de

  19. Heavy metals in the snow pack of Semey town

    International Nuclear Information System (INIS)

    Panin, M.S.; Esenzholova, A.Zh.; Toropov, A.S.

    2008-01-01

    The data about the maintenance of heavy metals in the snow pack in various zones of Semey and biogeochemical operation factors of snow pack in Semey are presented in this work. Also the correlation connection between elements is calculated.

  20. Environmentally Benign Tribo-systems for Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Azushima, A.; Groche, P.

    2010-01-01

    The growing awareness of environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has initiated ever increasing efforts to develop new, environmentally benign tribological systems for metal forming. The present ...

  1. Annals of SAM meeting '96. National meeting on precious metals

    International Nuclear Information System (INIS)

    1996-01-01

    Works are presented at the SAM meeting '96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills

  2. Framework for Metals Risk Assessment

    Science.gov (United States)

    The Framework for Metals Risk Assessment is a science-based document that addresses the special attributes and behaviors of metals and metal compounds to be considered when assessing their human health and ecological risks.

  3. Progress of Application Researches of Porous Fiber Metals

    Directory of Open Access Journals (Sweden)

    Jianyong Wang

    2011-04-01

    Full Text Available Metal fiber porous materials with intrinsic properties of metal and functional properties of porous materials have received a great deal of attention in the fundamental research and industry applications. With developments of the preparation technologies and industrial requirements, porous fiber metals with excellent properties are developed and applied in many industry areas, e.g., sound absorption, heat transfer, energy absorption and lightweight structures. The applied research progress of the metal fiber porous materials in such application areas based on the recent work in our group was reviewed in this paper.

  4. Progress of Application Researches of Porous Fiber Metals

    Science.gov (United States)

    Xi, Zhengping; Zhu, Jilei; Tang, Huiping; Ao, Qingbo; Zhi, Hao; Wang, Jianyong; Li, Cheng

    2011-01-01

    Metal fiber porous materials with intrinsic properties of metal and functional properties of porous materials have received a great deal of attention in the fundamental research and industry applications. With developments of the preparation technologies and industrial requirements, porous fiber metals with excellent properties are developed and applied in many industry areas, e.g., sound absorption, heat transfer, energy absorption and lightweight structures. The applied research progress of the metal fiber porous materials in such application areas based on the recent work in our group was reviewed in this paper. PMID:28879952

  5. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H.U. [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  6. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  7. WINCO Metal Recycle annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, T.E. [ed.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  8. WINCO Metal Recycle annual report, FY 1993

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94

  9. Process technology - rare and refractory metals

    International Nuclear Information System (INIS)

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  10. Metals welding by using laser

    International Nuclear Information System (INIS)

    Al-Qaisy, R.A.W.

    1991-01-01

    In the present work, same welding ''conduction limited type'' under atmospheric conditions was performed using pulsed Ng:YAG laser to weld; low carbon steel (LCS), stainless steel (304) (SUS304), stainless steel (303) (SUS303), and brass. Microstructure of welded zone, heat affected zone (HAZ), and the laser energy on penetration depth and effective diameter were studied. Tensile test, micro-hardness, and surface roughness of welded and parent metals were also dealt with. Melting efficiency was worked out and an under vacuum seam welding of low carbon steel has been accomplished. Finally spot welding of aluminium tungsten, and platinium wires were employed using different layer energies. 34 tabs.; 82 figs.; 51 refs.; 1 app

  11. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  12. Method for producing metallic microparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  13. Nanoporous metal-carbon composite

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  14. 30 CFR 56.18020 - Working alone.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working alone. 56.18020 Section 56.18020 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... where hazardous conditions exist that would endanger his safety unless he can communicate with others...

  15. 30 CFR 57.18020 - Working alone.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working alone. 57.18020 Section 57.18020 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... can communicate with others, can be heard, or can be seen. Underground Only ...

  16. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    Science.gov (United States)

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  17. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  18. Metal recovery via geobiotechnology

    International Nuclear Information System (INIS)

    Hedrich, Sabrina; Schippers, Axel

    2017-01-01

    Specialized acidophilic bacteria and archaea are able to extract valuable metals such as copper, gold, cobalt, nickel, zinc, and uranium from sulfide ores. This process is known as bioleaching and its application in the mining industry as biomining. Laboratory studies also demonstrated bioleaching of oxide ores such as laterites and of mining residues such as mine tailings as well as metal recycling from waste (secondary mining). Metals being leached have to be recovered from acidic polymetallic solutions (mine and process waters) which is possible via biosorption or biomineralisation.

  19. Thermodynamics and phase transformations the selected works of Mats Hillert

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    This book is a compendium of Mat Hillert's publications. Mat Hillert is a world specialist in metal alloy at the origin of a universal computing code used to calculate the diagrams of phase. This work is in English.

  20. Physical basis of thermomechanical treatment of refractory metals

    International Nuclear Information System (INIS)

    Trefilov, V.I.; Milman, Y.V.

    1989-01-01

    The conditions are considered of hot, warm and cold metal working as well as the peculiarities of structure formation in each temperature range. Only by warm deformation a misoriented cellular dislocation structure is formed, and the conditions for thermomechanical treatment (TMT) of refractory materials are here the best. The classification has been proposed of refractory metal alloys into three groups depending on structural factors determining the mechanical properties. The concepts of the homological recrystallization temperature t hr = T/T r are considered, where T is the temperature of deformation or annealing, K, T r is the recrystallization temperature, K. The peculiarities are disscussed of the formation of substructure and mechanical properties of refractory metals by various working regimes. The phenomenon of inheriting of crystallographic texture of the matrix metal into welded joint is described as well as the relationships between the matrix metal structure and mechanical properties of welded joints in molybdenum alloys. 17 refs., 12 figs., 2 tabs. (Author)

  1. Fundamentals of metal oxide catalysis

    Science.gov (United States)

    Nair, Hari

    The properties of metal oxide catalysts and hence, catalytic activity are highly dependent on the composition and structure of these oxides. This dissertation has 3 parts -- all directed towards understanding relationships between structure, composition and activity in metal oxide catalysts. The first part of this dissertation focuses on supported metal oxide catalysts of tungsten, vanadium and molybdenum. Mechanisms are proposed for ethanol oxidative dehydrogenation which is used to probe the acidity and reducibility of these oxide catalysts. These studies are then used to develop a novel method to quantify active redox sites and determine the nature of the active site on these catalysts -- our results show that the intrinsic redox turn-over frequency is independent of the nature of the metal oxide and its loading and that the actual rate obtained over an oxide is only a function of the number of removable oxygen atoms linking the metal to the support. The extension of Ultraviolet-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) to the study of active oxide domains in binary oxide catalysts is demonstrated for distinguishing between interacting and non-interacting domains in binary MoO x-WOx catalysts on alumina. We show also how the rigorous analysis of pre-edge features, absorption white-line intensity and the full width at half maximum of the white-line in X-ray Absorption Spectra provide determinants for metal atom coordination and domain size in supported metal oxide catalysts. The second part of this work looks at effects of structure variations on the activity of polyoxometalate catalysts that are promising for the production of Methacrylic Acid from Isobutane. The use of these catalysts is limited by structural changes that impact their performance -- an "activation" period is required before the catalysts become active for methacrylic acid production and structural changes also lead to degradation of the catalyst, which are also seen during thermal

  2. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  3. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  4. Metals in aerosols of the Mexico City

    International Nuclear Information System (INIS)

    Reyes L, J.

    1998-01-01

    The general purpose and scope of this work was to have a data base that includes enough information about the heavy metals which are disseminated in the atmospheric air in Mexico City, like it is what refers to its elements, its concentration and its particle size. For this were collected samples through collectors types: of the filters unit and the cascade impactor. Through the PIXE analysis for filters and films it was identified the presence of 20 elements in the majority of samples studied of the four seasons during the years 1993-1994. The metals were classified in two groups: those of natural origin and those of anthropogenic origin. (Author)

  5. STELLAR PARAMETERS AND METALLICITIES OF STARS HOSTING JOVIAN AND NEPTUNIAN MASS PLANETS: A POSSIBLE DEPENDENCE OF PLANETARY MASS ON METALLICITY

    International Nuclear Information System (INIS)

    Ghezzi, L.; Cunha, K.; De Araujo, F. X.; De la Reza, R.; Smith, V. V.; Schuler, S. C.

    2010-01-01

    The metal content of planet-hosting stars is an important ingredient that may affect the formation and evolution of planetary systems. Accurate stellar abundances require the determinations of reliable physical parameters, namely, the effective temperature, surface gravity, microturbulent velocity, and metallicity. This work presents the homogeneous derivation of such parameters for a large sample of stars hosting planets (N = 117), as well as a control sample of disk stars not known to harbor giant, closely orbiting planets (N = 145). Stellar parameters and iron abundances are derived from an automated analysis technique developed for this work. As previously found in the literature, the results in this study indicate that the metallicity distribution of planet-hosting stars is more metal rich by ∼0.15 dex when compared to the control sample stars. A segregation of the sample according to planet mass indicates that the metallicity distribution of stars hosting only Neptunian-mass planets (with no Jovian-mass planets) tends to be more metal poor in comparison with that obtained for stars hosting a closely orbiting Jovian planet. The significance of this difference in metallicity arises from a homogeneous analysis of samples of FGK dwarfs which do not include the cooler and more problematic M dwarfs. This result would indicate that there is a possible link between planet mass and metallicity such that metallicity plays a role in setting the mass of the most massive planet. Further confirmation, however, must await larger samples.

  6. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  7. Injury experience in metallic mineral mining, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  8. Injury experience in metallic mineral mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  9. Trace Metal Requirements and Interactions in Symbiodinium kawagutii

    Science.gov (United States)

    Rodriguez, Irene B.; Ho, Tung-Yuan

    2018-01-01

    Photosynthetic organisms need trace metals for various biological processes and different groups of microalgae have distinctive obligate necessities due to their respective biochemical requirements and ecological niches. We have previously shown that the dinoflagellate Symbiodinium kawagutii requires high concentrations of bioavailable Fe to achieve optimum growth. Here, we further explored the trace metal requirements of S. kawagutii with intensive focus on the effect of individual metal and its interaction with other divalent metals. We found that low Zn availability significantly decreases growth rates and results in elevated intracellular Mn, Co, Ni, and Fe quotas in the dinoflagellate. The results highlight the complex interaction among trace metals in S. kawagutii and suggest either metal replacement strategy to counter low Zn availability or enhanced uptake of other metals by non-specific divalent metal transporters. In this work, we also examined the Fe requirement of S. kawagutii using continuous cultures. We validated that 500 pM of Fe′ was sufficient to support maximum cell density during steady state growth period either at 26 or 28°C. This study shows that growth of S. kawagutii was limited by metal availability in the following order, Fe > Zn > Mn > Cu > Ni > Co. The fundamental information obtained for the free-living Symbiodinium shall provide insights into how trace metal availability, either from ambient seawater or hosts, affects growth and proliferation of symbiotic dinoflagellates and the interaction between symbiont and their hosts. PMID:29467748

  10. Metal Catalysts Recycling and Heterogeneous/Homogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2015-05-01

    Full Text Available Heterogeneous metal catalysts rather than homogeneous ones are recommended for industrial applications after considering their performance in activity, separation, and recycling [1]. The recycling of metal catalysts is important from economic and environmental points of view. When supported and bulk metal catalysts are used in liquid-phase organic reactions, there is a possibility that active metal species are leaching away into the liquid phases [2,3]. The metal leaching would make it difficult for the catalysts to maintain their desired initial performance for repeated batch reactions and during continuous ones. The metal leaching would also cause some undesired contamination of products by the metal species dissolved in the reaction mixture, and the separation of the metal contaminants would be required to purify the products. Therefore, various novel methods have been proposed so far to immobilize/stabilize the active metal species and to separate/collect/reuse the dissolved metal species [4]. In addition, knowledge on the heterogeneous and homogeneous natures of organic reactions using heterogeneous catalysts is important to discuss their reaction mechanisms and catalytically working active species. [...

  11. Trace Metal Requirements and Interactions inSymbiodinium kawagutii.

    Science.gov (United States)

    Rodriguez, Irene B; Ho, Tung-Yuan

    2018-01-01

    Photosynthetic organisms need trace metals for various biological processes and different groups of microalgae have distinctive obligate necessities due to their respective biochemical requirements and ecological niches. We have previously shown that the dinoflagellate Symbiodinium kawagutii requires high concentrations of bioavailable Fe to achieve optimum growth. Here, we further explored the trace metal requirements of S. kawagutii with intensive focus on the effect of individual metal and its interaction with other divalent metals. We found that low Zn availability significantly decreases growth rates and results in elevated intracellular Mn, Co, Ni, and Fe quotas in the dinoflagellate. The results highlight the complex interaction among trace metals in S. kawagutii and suggest either metal replacement strategy to counter low Zn availability or enhanced uptake of other metals by non-specific divalent metal transporters. In this work, we also examined the Fe requirement of S. kawagutii using continuous cultures. We validated that 500 pM of Fe' was sufficient to support maximum cell density during steady state growth period either at 26 or 28°C. This study shows that growth of S. kawagutii was limited by metal availability in the following order, Fe > Zn > Mn > Cu > Ni > Co. The fundamental information obtained for the free-living Symbiodinium shall provide insights into how trace metal availability, either from ambient seawater or hosts, affects growth and proliferation of symbiotic dinoflagellates and the interaction between symbiont and their hosts.

  12. Trace Metal Requirements and Interactions in Symbiodinium kawagutii

    Directory of Open Access Journals (Sweden)

    Irene B. Rodriguez

    2018-02-01

    Full Text Available Photosynthetic organisms need trace metals for various biological processes and different groups of microalgae have distinctive obligate necessities due to their respective biochemical requirements and ecological niches. We have previously shown that the dinoflagellate Symbiodinium kawagutii requires high concentrations of bioavailable Fe to achieve optimum growth. Here, we further explored the trace metal requirements of S. kawagutii with intensive focus on the effect of individual metal and its interaction with other divalent metals. We found that low Zn availability significantly decreases growth rates and results in elevated intracellular Mn, Co, Ni, and Fe quotas in the dinoflagellate. The results highlight the complex interaction among trace metals in S. kawagutii and suggest either metal replacement strategy to counter low Zn availability or enhanced uptake of other metals by non-specific divalent metal transporters. In this work, we also examined the Fe requirement of S. kawagutii using continuous cultures. We validated that 500 pM of Fe′ was sufficient to support maximum cell density during steady state growth period either at 26 or 28°C. This study shows that growth of S. kawagutii was limited by metal availability in the following order, Fe > Zn > Mn > Cu > Ni > Co. The fundamental information obtained for the free-living Symbiodinium shall provide insights into how trace metal availability, either from ambient seawater or hosts, affects growth and proliferation of symbiotic dinoflagellates and the interaction between symbiont and their hosts.

  13. Application of Fe-based metallic glasses in wastewater treatment

    International Nuclear Information System (INIS)

    Lin Bao; Bian Xiufang; Wang Pan; Luo Guanping

    2012-01-01

    Highlights: ► We found the Fe-based metallic glasses have potential application in wastewater treatment. ► The corrosion on the surface of Fe-based metallic glasses is related to the application. ► We set a new theory to explain the process of degredation organic metters with Fe-based metallic glasses. - Abstract: This work pioneered the use of the Fe 78 Si 9 B 13 metallic glass ribbons in wastewater treatment. Fe 78 Si 9 B 13 metallic glass was employed to remediate wastewater contaminated with a mixture of organic dyes. The removal rate of chemical oxygen demand (COD) with Fe 78 Si 9 B 13 metallic glass and metallic Fe 0 was up to 23 ± 0.93% in 30 min and 21 ± 0.67% with in 45 min, respectively. The dosage of Fe-based metallic glass was only 1/25 of that of metallic Fe 0 to obtain equivalent effects. The mechanism of wastewater treatment through Fe-based metallic glasses is discussed.

  14. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  15. Triple Point Topological Metals

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2016-07-01

    Full Text Available Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.

  16. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  17. Ferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  18. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  19. Quasicrystalline metallic adlayers

    Indian Academy of Sciences (India)

    ugc

    Quasicrystalline metallic adlayers. S. R. Barman. UGC-DAE Consortium for Scientific Research, Indore. 23rd Mid-year Meeting of the Indian Academy of Sciences,. July 13-14, 2012,. Indian Institute of Science, Bangalore.

  20. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  1. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available of hydrogen in metals processing and treatment identified, and mechanisms for hydrogen entry into a ferritic surface are discussed. The differences between hydrogen attack of ferritic steels and copper alloys are contrasted, and an unusual case study...

  2. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Administrator

    -known Hall–Petch relationship predicts that the strength or hardness of conventional metal alloys increases with decreasing grain sizes. However, the rela- tionship fails when the grain size is down to nanometers as many experimental results ...

  3. Directional Emission from Metal-Dielectric-Metal Structures: Effect of Mixed Metal Layers, Dye Location and Dielectric Thickness.

    Science.gov (United States)

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R

    2015-02-12

    Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage.

  4. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  5. PRODUCTION OF HAFNIUM METAL

    Science.gov (United States)

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  6. Metal-Semiconductor Contacts

    Science.gov (United States)

    Pugh, D. I.

    Metal-semiconductor contacts display a range of electrical characteristics from strongly rectifying to ohmic, each having its own applications. The rectifying properties of metal points on metallic sulphides were used extensively as detectors in early radio experiments, while during the second world war the rectifying point contact diode became important as a frequency detector and low level microwave radar detector [1]. Since 1945 the development of metal semiconductor contacts has been stimulated by the intense activity in the field of semiconductor physics and has remained vital in the ohmic connection of semiconductor devices with the outside world. The developments in surface science and the increased use of Schottky barriers in microelectronics has lead to much research with the aim of obtaining a full understanding of the physics of barrier formation and of current transport across the metal-semiconductor interface. Large gain spin electronic devices are possible with appropriate designs by incorporating ferromagnetic layers with semiconductors such as silicon [2]. This inevitably leads to metal-semiconductor contacts, and the impact of such junctions on the device must be considered. In this section we aim to look simply at the physical models that can be used to understand the electrical properties that can arise from these contacts, and then briefly discuss how deviations of these models can occur in practical junctions.

  7. Metals in fungal virulence.

    Science.gov (United States)

    Gerwien, Franziska; Skrahina, Volha; Kasper, Lydia; Hube, Bernhard; Brunke, Sascha

    2018-01-01

    Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies. © FEMS 2017.

  8. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven

    2017-04-01

    We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic

  9. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  10. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  11. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    is the second and main part of the project. The main challenges in developing metal oxide sensors are proper choice of the material, sensor location and fabrication technique due to lifetime and cross sensitivity issues in harsh environment where the problems like de-bonding or some kind of diffusion......SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  12. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  13. Toxic metals and autophagy.

    Science.gov (United States)

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  14. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  15. Characterization of a New Family of Metal Transporters; FINAL

    International Nuclear Information System (INIS)

    Mary Lou Geurinot; David Eide

    2002-01-01

    Metal ions are critical nutrients, yet overaccumulation of these same metals can also be toxic. To maintain appropriate intracellular levels, cells require specific metal uptake systems that are subject to precise homeostatic regulation. The long-range goal of our research is to define the molecular mechanism(s) and regulation of metal ion uptake in eukaryotic cells. Integrating genetic, molecular biological and biochemical approaches, we have examined these processes in the yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana. Both are proven model systems for studying fundamental cellular processes. Our work has focused on the ZIP family of metal transporters which we identified; this family has representatives in bacteria, fungi, plants and animals. IRT, one of the founding members of the ZIP family, is an essential cation transporter that is expressed in the epidermal cells of iron deficient plant roots and is responsible for uptake of iron from the soil. We now know that there are 15 ZIP genes in the Arabidopsis and the similarities among their encoded gene products. The ZIP family members display different substrate specificities for metals and different tissue distributions in Arabidopsis. Moreover, the family members respond differentially to metal deficiencies. For example, IRT1, ZIP6 and ZIP9 mRNA are expressed mainly in the roots of iron deficient plants whereas ZIP4 responds to both iron and zinc deficiency. Work in both yeast and Arabidopsis has addressed substrate specificity as well as how these transporters are regulated in response to metal availability

  16. Characterization of a New Family of Metal Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Mary Lou Geurinot; David Eide

    2002-04-29

    Metal ions are critical nutrients, yet overaccumulation of these same metals can also be toxic. To maintain appropriate intracellular levels, cells require specific metal uptake systems that are subject to precise homeostatic regulation. The long-range goal of our research is to define the molecular mechanism(s) and regulation of metal ion uptake in eukaryotic cells. Integrating genetic, molecular biological and biochemical approaches, we have examined these processes in the yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana. Both are proven model systems for studying fundamental cellular processes. Our work has focused on the ZIP family of metal transporters which we identified; this family has representatives in bacteria, fungi, plants and animals. IRT, one of the founding members of the ZIP family, is an essential cation transporter that is expressed in the epidermal cells of iron deficient plant roots and is responsible for uptake of iron from the soil. We now know that there are 15 ZIP genes in the Arabidopsis and the similarities among their encoded gene products. The ZIP family members display different substrate specificities for metals and different tissue distributions in Arabidopsis. Moreover, the family members respond differentially to metal deficiencies. For example, IRT1, ZIP6 and ZIP9 mRNA are expressed mainly in the roots of iron deficient plants whereas ZIP4 responds to both iron and zinc deficiency. Work in both yeast and Arabidopsis has addressed substrate specificity as well as how these transporters are regulated in response to metal availability

  17. [Transition metal mediated transformations of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A.

    1992-01-01

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of [alpha]-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  18. Metallization of large silicon wafers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R A

    1979-01-01

    A metallization scheme has been developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300/sup 0/C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed. Palladium is deposited with an immersion palladium solution and an electroless palladium solution, and nickel is deposited with an electroless nickel solution. Solder is applied with a molten solder dip. Extensive development work has been performed to achieve an effective immersion palladium solution formulation, leading to reproducible formation of the palladium silicide contact layer. This metallization system has been repeatedly demonstrated to be extremely effective. Current-voltage characteristic curve fill factors of 78% are easily achieved. This has been done while maintaining metal contact adhesion at such a strength as to fail by fracturing silicon upon perpendicular pull testing rather than be delaminating the metal system. Process specifications and procedures have been prepared.

  19. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  20. Effects of metal-inlay thickness in polyethylene cups with metal-on-metal bearings.

    NARCIS (Netherlands)

    Verdonschot, N.J.J.; Vena, P.; Stolk, J.; Huiskes, R.

    2002-01-01

    A way to prevent polyethylene wear in total hip replacements is to use metal-on-metal bearings. The cup design of these bearings may be a metal inlay in a polyethylene cup. However, these metal inlays are relatively thin and may deform on loading. The purpose of the current study was to determine

  1. Self-reported neurological clinical manifestations of metal toxicity in metal-on-metal hip arthroplasty

    NARCIS (Netherlands)

    van Lingen, Christiaan P.; Ettema, Harmen B.; Van Der Straeten, Catherine; Kollen, Bouwdewijn J.; Verheyen, Cees C. P. M.

    2014-01-01

    Adverse reactions to metal particle debris have been increasingly reported as a complication following large head metal-on-metal (MoM) hip arthroplasty. Elevated metal ion levels are a cause for concern. The aim of this study is to evaluate whether exposure to cobalt is associated with patient

  2. MIDAS: an effective tool for work management

    International Nuclear Information System (INIS)

    Ball, D.L.; Billings, M.P.; McCargar, S.B.; Talbot, M.D.; Topping, C.F.

    1985-01-01

    The computerized Master Information Data Acquisition System (MIDAS) is used to control work at facilities that support the Liquid Metal Reactor (LMR) program on the Hanford Site at Richland, Washington. Functions of this software system are to: track authorized maintenance activities, enhance operational safety, track schedule, manpower, and material constraints during work preparation, provide a management tool for quality measurement techniques, and provide an overall repository for technical and safety-related information on components at the Hanford Site 400 Area facilities. This paper describes MIDAS and how it is used as a work management tool. 1 fig

  3. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  4. Microstructure modeling in weld metal

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.

    1995-01-01

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model's comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds

  5. Dissimilar metals joint evaluation

    Science.gov (United States)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  6. Metals in edible seaweed.

    Science.gov (United States)

    Rubio, C; Napoleone, G; Luis-González, G; Gutiérrez, A J; González-Weller, D; Hardisson, A; Revert, C

    2017-04-01

    The concentration levels of 20 metals were analyzed by ICP-OES in edible seaweed (Chondrus, Eisenia, Gelidium, Himanthalia, Laminaria, Palmaria, Porphyra, Undaria), from two origins (Asia vs EU) according to their cultivation practices (conventional vs organic). Red seaweed showed higher concentrations of trace and toxic elements. Porphyra may be used as a potential bioindicator for metals. Significant differences were found between the Asian vs European mean contents. The mean Cd level from the conventional cultivation (0.28 mg/kg) was two points higher than the organic cultivation (0.13 mg/kg). A daily consumption of seaweed (4 g/day) contributes to the dietary intake of metals, mainly Mg and Cr. The average intakes of Al, Cd and Pb were 0.064, 0.001 and 0.0003 mg/day, respectively. Based on obtained results, this study suggests that exposure to the toxic metals analyzed (Al, Cd and Pb) through seaweed consumption does not raise serious health concerns, but other toxic metals should be monitored. Copyright © 2017. Published by Elsevier Ltd.

  7. Ultralight metal foams.

    Science.gov (United States)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-08

    Ultralight (battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  8. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Gonzalez, C.F. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo Superior de Investigaciones Cientificas - CSIC - Universidad de Oviedo - UO - Principado de Asturias - PA, Parque Tecnologico de Asturias, 33428 Llanera (Spain); Agouram, S. [Department of Applied Physics and Electromagnetism, Universitat de Valencia, 46100 Burjassot (Spain); Torrecillas, R. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo Superior de Investigaciones Cientificas - CSIC - Universidad de Oviedo -UO - Principado de Asturias- PA, Parque Tecnologico de Asturias, 33428 Llanera (Spain); Moya, J.S. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Lopez-Esteban, S., E-mail: s.lopez@cinn.es [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo Superior de Investigaciones Cientificas - CSIC - Universidad de Oviedo - UO - Principado de Asturias - PA, Parque Tecnologico de Asturias, 33428 Llanera (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A cryogenic route has been used to obtain ceramic/metal nanostructured powders. Black-Right-Pointing-Pointer The powders present good homogeneity and dispersion of metal. Black-Right-Pointing-Pointer The metal nanoparticle size distributions are centred in 17-35 nm. Black-Right-Pointing-Pointer Both phases, ceramic and metal, present a high degree of crystallinity. Black-Right-Pointing-Pointer Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  9. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    International Nuclear Information System (INIS)

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  10. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  11. LEVELING METAL COATINGS

    Science.gov (United States)

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  12. Metal fuel safety performance

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.; Tentner, A.M.

    1988-01-01

    The current development of breeder reactor systems has lead to the renewed interest in metal fuels as the driver material. Modeling efforts were begun to provide a mechanistic description of the metal fuel during anticipated and hypothetical transients within the context of the SAS4A accident analysis code system. Through validation exercises using experimental results of metal fuel TREAT tests, confidence is being developed on the nature and accuracy of the modeling and implementation. Prefailure characterization, transient pin response, margins to failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are considered. Transient time scales ranging from milliseconds to many hours can be studied with all the reactivity feedbacks evaluated

  13. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  14. Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Wickman, Björn; Seger, Brian

    2014-01-01

    Functionalization of transition metal oxides using metallic nanoparticles is an interesting route towards efficient photoelectrochemical hydrogen production via water splitting. Although an enhanced photocurrent in photoanodes upon functionalization with metallic nanostructures has been observed...... errors, for both sensitized and reference samples. Also, this work demonstrates that the sensitized samples were stable for at least 16 hours photocurrent testing. The concepts shown in this work are generally applicable to any situation in which a semiconductor has its water splitting performance...

  15. Meaningful work, work engagement and organisational commitment

    Directory of Open Access Journals (Sweden)

    Madelyn Geldenhuys

    2014-03-01

    Research purpose: The aim of the study was to investigate the relationships amongst psychological meaningfulness, work engagement and organisational commitment and to test for a possible mediation effect of work engagement on the relationship between psychological meaningfulness and organisational commitment. Motivation for the study: Managers have to rethink ways of improving productivity and performance at work, due to the diverse, and in some instances escalating, needs of employees (e.g. financial support to uphold their interest in and enjoyment of working. Research approach, design and method: A quantitative approach was employed to gather the data for the study, utilising a cross-sectional survey design. The sample (n = 415 consisted of working employees from various companies and positions in Gauteng, South Africa. Main findings: The results confirmed a positive relationship between psychological meaningfulness, work engagement and organisational commitment. Further, psychological meaningfulness predicts work engagement, whilst psychological meaningfulness and work engagement predict organisational commitment. Practical/managerial implications: Employers identifying their employees’ commitment patterns and mapping out strategies for enhancing those that are relevant to organisational goals will yield positive work outcomes (e.g. employees who are creative, seek growth or challenges for themselves. Contribution/value-add: This study contributes to the literature through highlighting the impact that meaningful work has on sustaining employee commitment to the organisation.

  16. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    Ali Sani

    Full Text Available Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn, Lead (Pb and Nickel (Ni; in blood samples, there were higher concentrations of Manganese (Mn, Lead (Pb, Chromium (Cr and Nickel (Ni. Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk. Keywords: Heavy metals, Welders, Biomonitoring, Blood, Urine

  17. Heavy Metal Pumps in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  18. Metal Hypersensitivity in Orthodontic Patients

    Directory of Open Access Journals (Sweden)

    Sandhya Maheshwari Sanjeev K

    2015-06-01

    Full Text Available Orthodontic treatment of individuals with metal hypersensitivity is a matter of concern for the orthodontist. Orthodontic appliances contain metals like Nickel, Cobalt and Chromium etc. Metals may cause allergic reactions and are known as allergens. Reaction to these metals is due to biodegradation of metals in the oral cavity. This may lead to the formation of corrosion products and their exposure to the patient. Nickel is the most common metal to cause hypersensitivity reaction. Chromium ranks second among the metals, known to trigger allergic reactions. The adverse biological reactions to these metals may include hypersensitivity, dermatitis and asthma. In addition, a significant carcinogenic and mutagenic potential has been demonstrated. The orthodontist must be familiar with the best possible alternative treatment modalities to provide the safest, most effective care possible in these cases. The present article focuses on the issue of metal hypersensitivity and its management in orthodontic

  19. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bidar, G. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Garcon, G. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Pruvot, C. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Dewaele, D. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Cazier, F. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Douay, F. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Shirali, P. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France)]. E-mail: pirouz.shirali@univ-littoral.fr

    2007-06-15

    The use of a vegetation cover for the management of heavy metal contaminated soils needs prior investigations on the plant species the best sustainable. In this work, behaviors of Trifolium repens and Lolium perenne, growing in a metal-polluted field located near a closed lead smelter, were investigated through Cd, Pb and Zn-plant metal concentrations and their phytotoxicity. In these plant species, metals were preferentially accumulated in roots than in shoots, as follow: Cd > Zn > Pb. Plant exposure to such metals induced oxidative stress in the considered organs as revealed by the variations in malondialdehyde levels and superoxide dismutase activities. These oxidative changes were closely related to metal levels, plant species and organs. Accordingly, L. perenne seemed to be more affected by metal-induced oxidative stress than T. repens. Taken together, these findings allow us to conclude that both the plant species could be suitable for the phytomanagement of metal-polluted soils. - Usefulness of Trifolium repens and Lolium perenne for the phytomanagement of heavy metal-contaminated soils.

  20. Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectra.

    Science.gov (United States)

    Hoffman, Adam S; Fang, Chia-Yu; Gates, Bruce C

    2016-10-06

    Determining and controlling the uniformity of isolated metal sites on surfaces of supports are central goals in investigations of single-site catalysts because well-defined species provide opportunities for fundamental understanding of the surface sites. CO is a useful probe of surface metal sites, often reacting with them to form metal carbonyls, the infrared spectra of which provide insights into the nature of the sites and the metal-support interface. Metals bonded to various support surface sites give broad bands in the spectra, and when narrow bands are observed, they indicate a high degree of uniformity of the metal sites. Much recent work on single-site catalysts has been done with supports that are inherently nonuniform, giving supported metal species that are therefore nonuniform. Herein we summarize values of ν CO data characterizing supported iridium gem-dicarbonyls, showing that the most nearly uniform of them are those supported on zeolites and the least uniform are those supported on metal oxides. Guided by ν CO data of supported iridium gem-dicarbonyls, we have determined new, general synthesis methods to maximize the degree of uniformity of iridium species on zeolites and on MgO. We report results for a zeolite HY-supported iridium gem-dicarbonyl with full width at half-maximum values of only 4.6 and 5.2 cm -1 characterizing the symmetric and asymmetric CO stretches and implying that this is the most nearly uniform supported single-site metal catalyst.

  1. Solidification and Immobilization of Heavy metals in Soil using with nano-metallic Ca/CaO Dispersion Mixture

    Directory of Open Access Journals (Sweden)

    Mallampati S. R.

    2013-04-01

    Full Text Available In the present work, the use of nano-metallic calcium (Ca and calcium oxide (CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb in soil was investigated. With simple grinding, 85-90% of heavy metals immobilization could be achieved, while it could be enhanced to 98-100% by grinding with the addition of nano-metallic Ca/CaO dispersion mixture. By SEM-EDS elemental maps as well as semi-quantitative analysis observed that the amount of As, Cd, Cr and Pb measurable on soil particle surface decreases after nano-metallic Ca/CaO treatment. The leachable heavy metals concentrations were reduced, to the concentration lower than the Japan soil elution standard regulatory threshold, i. e., < 0.01 mg/l for As, Cd and Pb and 0.05mg/l for Cr. Whereas, the effect of soil moisture and pH on heavy metals immobilization was not much influenced. The results suggest that nano-metallic Ca/CaO mixture is suitable to be used for the gentle immobilization of heavy metals contaminated soil at normal moisture conditions.

  2. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  3. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  4. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  5. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  6. Metallic coating of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  7. Analysis of metal samples

    International Nuclear Information System (INIS)

    Ramirez T, J.J.; Lopez M, J.; Sandoval J, A.R.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    An elemental analysis, metallographic and of phases was realized in order to determine the oxidation states of Fe contained in three metallic pieces: block, plate and cylinder of unknown material. Results are presented from the elemental analysis which was carried out in the Tandem Accelerator of ININ by Proton induced X-ray emission (PIXE). The phase analysis was carried out by X-ray diffraction which allowed to know the type of alloy or alloys formed. The combined application of nuclear techniques with metallographic techniques allows the integral characterization of industrial metals. (Author)

  8. Development of a finite element model for comparing metal and composite fuselage section drop testing

    NARCIS (Netherlands)

    Gransden, D.I.; Alderliesten, R.C.

    2017-01-01

    Part of the work of AircraftFire, a project investigating the effects of fire and crash on aircraft survivability, is presented. This work compares the effect of changing the material model from metallic to composite on the impact damage and floor acceleration characteristics. First, the metallic

  9. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  10. Knowledge work and work-related stress

    DEFF Research Database (Denmark)

    Ipsen, Christine

    2006-01-01

    as good and stimulating, but has on the other hand sides to it which can cause frustration and stress. The implication of organisational characteristics of the knowledge-intensive companies studied is a transfer of the responsibility for ones own working-life. Consequently, issues are dealt......Work-related stress is an increasing problem in Europe. Earlier studies have stated that knowledge-work comprises working conditions which reflect a good psychosocial environment. Recent Danish studies, however, point at stress being an increasing problem in knowledge-intensive companies....... These companies employ highly educated and com-petent people who apply their personal knowledge to generate new knowledge in close relationship with both custom-ers and colleagues. The employees are self-managed and work in networks and decentralised structures around pro-jects. Their working life is described...

  11. Metals interaction in the process of torch mass transfer

    International Nuclear Information System (INIS)

    Khaldeev, V.N.; Pashko, O.V.; Belova, V.P.; Sevryugina, N.D.; Vasil'eva, A.I.

    2000-01-01

    The billet material components interaction with the work surface material of the electrode-tool under the action of a torch jet which is formed in the process of electro-erosion treatment is investigated. It is established that metallic film arises on a surface of the electrode-tool under certain conditions in the process of electro-erosion forming is identical with the composition of the worked material. Components of the metal alloy worked diffuse into the tool material with formation of a particular compounds [ru

  12. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  13. Instrumental color control for metallic coatings

    Science.gov (United States)

    Chou, W.; Han, Bing; Cui, Guihua; Rigg, Bryan; Luo, Ming R.

    2002-06-01

    This paper describes work investigating a suitable color quality control method for metallic coatings. A set of psychological experiments was carried out based upon 50 pairs of samples. The results were used to test the performance of various color difference formulae. Different techniques were developed by optimising the weights and/or the lightness parametric factors of colour differences calculated from the four measuring angles. The results show that the new techniques give a significant improvement compared to conventional techniques.

  14. Polution of the environment by heavy metals

    International Nuclear Information System (INIS)

    Houtman, J.P.W.

    1980-01-01

    An overview is given of the problems caused by pollution of the environment by heavy metals and the important role played by nuclear examination methods such as activation analysis and particle induced X-ray emission. A number of examples taken from work initiated by the interuniversitair Reactor Instituut, demonstrate that this research should be continued and extended, particularly in relation to the expected increase in the use of coal for energy generation in electricity centres. (C.F.)

  15. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  16. FFTF metal fuel pin fabrication

    International Nuclear Information System (INIS)

    Dittmer, J.O.; Benecke, M.W.; Feigenbutz, L.V.

    1989-01-01

    A major new initiative to develop, irradiate, and qualify a binary uranium/zirconium metal-fuel system in the Fast Flux Test Facility (FFTF) has been implemented by the Westinghouse Hanford Company for the US Department of Energy. Metal-fuel test assemblies have been designed and fabricated, and are now being irradiated in FFTF to provide the data needed to support the potential use of binary metal fuels in FFTF and other liquid-metal reactors. These development efforts support licensing activities for metal-fuel use in near-term advanced liquid-metal reactors

  17. Commodity profiles for selected metals

    International Nuclear Information System (INIS)

    Svoboda, O.; Wilson, B.M.

    1985-01-01

    This report describes the basic characteristics of 35 metals and gives the prices and production of these metals for the period 1979 to 1983/4. The description of each metal includes the ore grades and reserves, the major minerals in which the metal occurs, and the discovery, selected physical properties, sources, uses, substitutes, and effects on the environment of the metal. Graphs showing price and production cover the period 1950 to 1984, and possible future developments in these areas are forecast for each metal until the year 2000

  18. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    earth metal catalyst. We found that pyridinebisoxazolines (Pybox) worked well: they served as excellent ligands for calcium compounds in 1,4-addition reactions and Mannich reactions. Moreover, they were successful in 1,4-additions in concert with enantioselective protonation, affording the desired products in good to high enantioselectivities. Our results demonstrate that alkaline earth metals are very useful and attractive catalysts in organic synthesis. Moreover, their ubiquity in the environment is a distinct advantage over rare metals for large-scale processes, and their minimal toxicity is beneficial in both handling and disposal.

  19. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  20. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  1. Band structure engineered layered metals for low-loss plasmonics

    Science.gov (United States)

    Gjerding, Morten N.; Pandey, Mohnish; Thygesen, Kristian S.

    2017-04-01

    Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics.

  2. Microorganisms as potential corrosion inhibitors of metallic materials

    Directory of Open Access Journals (Sweden)

    Tasić Žaklina Z.

    2016-01-01

    Full Text Available Corrosion presents the destruction of materials through chemical or electrochemical interactions with their environment. Interactions between the metal surface and bacterial cells or products of their metabolic activities can lead to microbially-influenced corrosion. Also, it is known that certain microorganisms can contribute to corrosion inhibition. In accordance to that, the literature dealing with the application of different microorganisms as a potentialy corrosion inhibitors of metals is investigated. Different bacterial strains as a corrosion inhibitor of a metalic materials are examined. Further, the role of extracellular polymeric substances in corrosion behavior of metals is emphasized. Based on the data presented in this work, it can be said that inhibition efficiency depends on microorganism as well as type of metal. Also, it is presented that some bacterial species can be used as a good corrosion inhibitor instead of toxic organic compounds.

  3. Metals in Metal Salts: A Copper Mirror Demonstration

    Science.gov (United States)

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  4. Metal-on-metal bearings a clinical practicum

    CERN Document Server

    Jones, Lynne C; Greenwald, A Seth

    2014-01-01

    This book addresses the background and significance of factors potentially influencing clinical and biological outcomes of metal-on-metal hip implants. Includes discussion of reported complications including pseudotumors and other lymphocytic-based responses.

  5. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  6. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  7. All-optical bit magnitude comparator device using metal-insulator-metal plasmonic waveguide

    Science.gov (United States)

    Kumar, Santosh; Singh, Lokendra; Chen, Nan-Kuang

    2017-12-01

    A plasmonic metal-insulator-metal (MIM) waveguide has great success in confining the surface plasmon up to a deep subwavelength scale. The structure of a nonlinear Mach-Zehnder interferometer (MZI) using a plasmonic MIM waveguide has been analyzed. A one-bit magnitude comparator has been designed using an MZI and two linear control waveguides. The device works on the Kerr effect inside the plasmonics waveguide. The mathematical description of the device is explained. The simulation of the device is done using MATLAB® and the finite-difference time-domain (FDTD) method.

  8. Metals in aerosols of the Mexico City; Metales en aerosoles de la Ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reyes L, J. [Instituto Nacional de Investigaciones Nucleares, Salazar, Estado de Mexico C.P. 52045 (Mexico)

    1998-07-01

    The general purpose and scope of this work was to have a data base that includes enough information about the heavy metals which are disseminated in the atmospheric air in Mexico City, like it is what refers to its elements, its concentration and its particle size. For this were collected samples through collectors types: of the filters unit and the cascade impactor. Through the PIXE analysis for filters and films it was identified the presence of 20 elements in the majority of samples studied of the four seasons during the years 1993-1994. The metals were classified in two groups: those of natural origin and those of anthropogenic origin. (Author)

  9. Metal separation from multi metallic solutions by grape stalks

    OpenAIRE

    Stevens, Bas

    2016-01-01

    With the rapid development of various industries such as mine and metallurgy, wastewaters containing metals are directly or indirectly discharged into the environment. One of the most dangerous effluents discharged are Acid Mine Drainage (AMD), the outflows of acidic waters from metal mines. This water needs to be treated so it can be reused and the metal ions in this polluted water can be recuperated. The metals that occur in the polluted water are difficult to eliminate. To e...

  10. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  11. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    within and below cloud scavenging, whereby the wet aerosol particles are collected by falling raindrops. In occult deposition, wetted particles (fog and mist) are deposited by impaction or turbulent transfer [3]. A high proportion of atmospheric heavy metals entering aquatic systems is in small particulate « IJlm) or soluble ...

  12. Metal cleaner poisoning

    Science.gov (United States)

    ... do so by poison control or a health care provider. If the chemical is on the skin or in the eyes, flush with lots of water for at least 15 minutes. If the person swallowed the metal cleaner, give them water or milk right away, unless a provider tells you not ...

  13. Wings of Stretched Metal

    Science.gov (United States)

    Nelken, Miranda

    2010-01-01

    This article presents a lesson that allows students to make bird ornaments using a metal tooling as it can be textured, cut, and colored. In this lesson, students choose a bird and sketch it on a piece of paper. Once the sketches are complete, students copy their pictures on a second piece of paper by taping the sketch over a sheet of blank paper…

  14. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  15. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...

  16. Flexible metal bellows

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    A set of flexible metal bellows being fatigue-tested by repeated offset motion. Such bellows assemblies were used in the SPS vacuum system at places where , for instance, beam stoppers and collimators had to be moved frequently in and out of the beam path.

  17. Metal Organic Framework

    Indian Academy of Sciences (India)

    IAS Admin

    X-ray crystallography is the most comprehensive character- ization tool to gain a molecular level understanding of a range of crystalline materials. One of the recent areas in which research with the aid of crystallography has exploded, is the metal organic frameworks (MOFs). These are porous crystal- line solids with ...

  18. Memories in Metal

    Science.gov (United States)

    Knepper, Claire A.

    2008-01-01

    In this article, the author shares a classroom project that she introduced to her students. The project involved decorating photographs with some metal materials. The project was inspired by "The Frame," a painting by the artist Frida Kahlo. This project aims to make students think critically and connect art to their lives.

  19. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    This paper presents a new formula for calculating the hardness of metallic crystals, resulted from the research on the critical grain size with stable dislocations. The formula is = 6 /[(1 – )], where is the hardness, the coefficient, the shear modulus, the Poisson's ratio, a function of the radius of an atom () ...

  20. Complex metal hydrides

    DEFF Research Database (Denmark)

    Ley, Morten Brix

    2014-01-01

    og batterier de to mest lovende energibærere til mobile applikationer. Komplekse metalhydrider er blevet undersøgt i vid udstrækning over de sidste tyve år, siden de gravimetrisk og volumetrisk kan indeholde store mængder brint. Derfor er metal borhydrider velegnet til faststofopbevaring af brint...

  1. Monolithic metal oxide transistors.

    Science.gov (United States)

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics.

  2. Pile on the metal

    Science.gov (United States)

    Lee, Dung-Hai

    2008-09-01

    Discovering superconductivity above room temperature is a dream for modern science and technology. Now, theorists propose that for certain types of superconductors, contact with a metal layer could greatly increase the transition temperatures of these materials—in some cases by as much as an order of magnitude.

  3. Metal Organic Frameworks (MOFs)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Molecule Matters - Metal Organic Frameworks (MOFs). R Sarvanakumar S Sankararaman. Feature Article Volume 12 Issue 11 November 2007 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  5. Darkfield illumination improves microscopic detection of metals in Timm's stained tissue

    DEFF Research Database (Denmark)

    Baatrup, E; Frederickson, C J

    1989-01-01

    Deposits of trace or toxic metals can be quickly identified by light microscopical surveys of tissue sections stained for metals by variants of Timm's silver enhancement method. The present work shows that the small, isolated silver grains that label isolated deposits of metal in tissue are undet...... are undetectable in brightfield light microscopy but are easily detected in darkfield microscopy. Darkfield illumination is therefore recommended for improving the detection of trace or toxic metals in tissue. Udgivelsesdato: 1989-Aug......Deposits of trace or toxic metals can be quickly identified by light microscopical surveys of tissue sections stained for metals by variants of Timm's silver enhancement method. The present work shows that the small, isolated silver grains that label isolated deposits of metal in tissue...

  6. How Lungs Work

    Science.gov (United States)

    ... Health and Diseases > How Lungs Work How Lungs Work The Respiratory System Your lungs are part of ... Parts of the Respiratory System and How They Work Airways SINUSES are hollow spaces in the bones ...

  7. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  8. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  9. Immunoglobulin classes, metal binding proteins, and trace metals in ...

    African Journals Online (AJOL)

    , IgA and IgM), metal binding proteins (Transferrin, Caeruloplasmin, Alpha-2- Macroglobulin and Haptoglobin) and nutritionally essential trace metals/heavy metals (Zn, Fe, Se, Cu, Mg, Cd and Pb) in Nigerian cassava processors using single ...

  10. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  11. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  12. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  13. New Approach for Fractioning Metal Compounds Studies in Soils

    Science.gov (United States)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    -silicate minerals. The amount of the applied metals fixed in the lattices of the silicate minerals is insignificant. Hence, all the soil components participate in the loose and firm fixation of the metals. The leading role in mobilization-immobilization of natural metal compounds in the ordinary chernozem belongs to carbonates and silicate minerals. For exogenic metal compounds, this role belongs to the soil organic matter and Fe-Mn oxides and hydroxides. The obtained data are important for ecology because they enable us to predict the transformation of soil components responsible for metal fixation and the possibility of their secondary mobilization. The danger of metal mobilization is more probable for metal compounds with organic substances that are particularly active in the loose binding of the introduced metals. This work was supported by the Ministry of Science of the Russian Federation, project no. 5.885.2014/K, the Russian Foundation for Basic Research, projects no. № 14-05-00586_a.

  14. Low work function of the Ca2N surface

    NARCIS (Netherlands)

    Uijttewaal, M.A.; de Wijs, G. A.; Groot, R.A. de

    2004-01-01

    Polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. First-principles calculations demonstrate that the work function of the (1000) surface of the compound Ca2N is half an eV lower than that of the elemental metal

  15. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  16. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  17. Extraterrestrial Metals Processing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces iron, silicon, and light metals from Mars, Moon, or asteroid resources in support of advanced human...

  18. Adsorption of Metallic Ions onto Chitosan : Equilibrium and Kinetic Studies

    OpenAIRE

    Benavente, Martha

    2008-01-01

    Equilibrium isotherms and the adsorption kinetics of heavy metals onto chitosan were studied experimentally. Chitosan, a biopolymer produced from crustacean shells, has applications in various areas, particularly in drinking water and wastewater treatment due to its ability to remove metallic ions from solutions. The adsorption capacity of chitosan depends on a number of parameters: deacetylation degree, molecular weight, particle size and crystallinity. The purpose of this work was to study ...

  19. Large Lateral Photovoltaic Effect in Metal-(Oxide-Semiconductor Structures

    Directory of Open Access Journals (Sweden)

    Chongqi Yu

    2010-11-01

    Full Text Available The lateral photovoltaic effect (LPE can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures.

  20. Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures.

    Science.gov (United States)

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures.

  1. Preparation and Purification of natural uranium metal by Iodine method

    International Nuclear Information System (INIS)

    Taies, J.A.

    2008-01-01

    In this work ,glass-metal apparatus was designed and manufactured which used for preparing a high purity uranium.The reaction is simply take place between iodine vapour and uranium metal at 500C in closed system to form uranium tetra iodide which is decomposed on hot wire at high temperature around 1100C.Also another apparatus was made from Glass and used for preparing a high purity of UI 4 more than 99.9%purity

  2. Characterization of Metal Powders Used for Additive Manufacturing

    OpenAIRE

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standar...

  3. Clustered field evaporation of metallic glasses in atom probe tomography.

    Science.gov (United States)

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Manufacturing of metal supported BSCF membranes by spark plasma sintering

    OpenAIRE

    Laptev, Alexander; Bram, Martin; Zivcec, Maria; Baumann, Stefan; Jarligo, Maria Ophelia; Sebold, Doris; Pfaff, Ewald; Broeckmann, Christoph

    2013-01-01

    Spark plasma sintering (SPS), also known as field assisted sintering technique (FAST), is a relatively new method for rapid consolidation of metallic or ceramic powders. In the present work, its suitability for the manufacturing of metal supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) based membrane by co-sintering of functional ceramic BSCF layer and porous metallic support has been investigated. The BSCF based membranes are highly attractive for oxygen separation from air due to mixed ionic and e...

  5. Abstract: Body Work

    DEFF Research Database (Denmark)

    Otto, Lene

    2012-01-01

    social and age groups are regarded? In what ways has different practices limited or extended its involvement in the body? Has work been organized hierarchically in relation to the degree of direct body work? What happened when body work became mediated by machines and technology? Has body work as forms......This panel will explore the usefulness of the term ‘body work’ in cultural history. Body work is understood as work focusing on the bodies of others as component in a range of occupations in health and social care, as well as in unpaid work in the family. How can the notion of body work inform...... cultural history of health and illness whether through a micro-social focus on the intercorporeal aspects of work in health and social care, or through clarifying our understanding of the times and spaces of work, or through highlighting the relationship between mundane body work and global processes...

  6. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  7. Blackletter logotypes and metal music

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2016-01-01

    Text and band logos based on blackletter scripts are a common sight in visual metal music culture such as on album covers. This article develops a framework for analysing the affinity between blackletter script and metal music. The analytical framework includes five themes: genre tradition....... These insights provide an answer to the question why blackletter scripts have become part of the visual repertoire of metal music and why so many famous metal band logotypes are based on blackletter....

  8. Birch's Law for fluid metals

    International Nuclear Information System (INIS)

    Shaner, J.W.; Hixson, R.S.; Winkler, M.A.; Boness, D.A.; Brown, J.M.

    1987-01-01

    By comparing acoustic velocities in fluid metals over a very wide range of densities we have established Birch's Law as an approximate representation over the entire liquid range. For a given liquid metal the acoustic velocity is close to linear in density, with a slope determined by the atomic weight. The measurements include isobaric expansion to less than half normal density, ultrasonics on molten metals at 1 atmosphere, and shock melted metals to greater than twice normal density

  9. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  10. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  11. Metal allergy and second-generation metal-on-metal arthroplasties.

    Science.gov (United States)

    Cousen, Philippa J; Gawkrodger, David J

    2012-02-01

    There are concerns about the induction of metal allergy with second-generation metal-on-metal prostheses, and the role that this may play in the development of complications such as 'pseudotumours' or failure of the implant. In this review, we attempt to set out the current knowledge on this subject. From a review of the literature, it is apparent that the first-generation metal-on-metal replacement hips did cause metal sensitization, and that joint failure was associated with this, although it is still not clear which one led to the other. Highly engineered second-generation metal-on-metal arthroplasties used in joint resurfacings are now increasingly employed. Several studies have recently shown an association between metal sensitization and peri-implant hypersensitivity reactions and implant loosening and failure, although the overall risk appears to be low. The pragmatic approach adopted by most contact dermatologists for patients known to be allergic to nickel, cobalt or chromium and who require joint replacement is to recommend prostheses made of titanium-based alloys. Patch testing continues to be a useful tool as laboratory investigations for metal hypersensitivity continue to emerge. The development of guidelines on the management of patients receiving metal-on-metal arthroplasties suspected of being metal-allergic is desirable. © 2011 John Wiley & Sons A/S.

  12. Neurotoxicity of Metal Mixtures.

    Science.gov (United States)

    Andrade, V M; Aschner, M; Marreilha Dos Santos, A P

    2017-01-01

    Metals are the oldest toxins known to humans. Metals differ from other toxic substances in that they are neither created nor destroyed by humans (Casarett and Doull's, Toxicology: the basic science of poisons, 8th edn. McGraw-Hill, London, 2013). Metals are of great importance in our daily life and their frequent use makes their omnipresence and a constant source of human exposure. Metals such as arsenic [As], lead [Pb], mercury [Hg], aluminum [Al] and cadmium [Cd] do not have any specific role in an organism and can be toxic even at low levels. The Substance Priority List of Agency for Toxic Substances and Disease Registry (ATSDR) ranked substances based on a combination of their frequency, toxicity, and potential for human exposure. In this list, As, Pb, Hg, and Cd occupy the first, second, third, and seventh positions, respectively (ATSDR, Priority list of hazardous substances. U.S. Department of Health and Human Services, Public Health Service, Atlanta, 2016). Besides existing individually, these metals are also (or mainly) found as mixtures in various parts of the ecosystem (Cobbina SJ, Chen Y, Zhou Z, Wub X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wua X, Yang L, Chemosphere 132:79-86, 2015). Interactions among components of a mixture may change toxicokinetics and toxicodynamics (Spurgeon DJ, Jones OAH, Dorne J-L, Svendsen C, Swain S, Stürzenbaum SR, Sci Total Environ 408:3725-3734, 2010) and may result in greater (synergistic) toxicity (Lister LJ, Svendsen C, Wright J, Hooper HL, Spurgeon DJ, Environ Int 37:663-670, 2011). This is particularly worrisome when the components of the mixture individually attack the same organs. On the other hand, metals such as manganese [Mn], iron [Fe], copper [Cu], and zinc [Zn] are essential metals, and their presence in the body below or above homeostatic levels can also lead to disease states (Annangi B, Bonassi S, Marcos R, Hernández A, Mutat Res 770(Pt A):140-161, 2016). Pb, As, Cd, and Hg can induce Fe, Cu, and Zn

  13. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils. Copyright © 2017 American Society for Microbiology.

  14. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  16. Typology of Options for Metal Recycling: Australia’s Perspective

    Directory of Open Access Journals (Sweden)

    Artem Golev

    2015-12-01

    Full Text Available While Australia has traditionally relied on obtaining metals from primary sources (namely mined natural resources, there is significant potential to recover metals from end-of-life-products and industrial waste. Although any metals recycling value chain requires a feasible technology at its core, many other non-technical factors are key links in the chain, which can compromise the overall viability to recycle a commodity and/or product. The “Wealth from Waste” Cluster project funded by the Commonwealth Scientific Industrial Research Organisation (CSIRO Flagship Collaboration Fund and partner universities is focusing on identifying viable options to “mine” metals contained in discarded urban infrastructure, manufactured products and consumer goods. A key aspect of this research is to understand the critical non-technical barriers and system opportunities to enhance rates of metals recycling in Australia. Work to date has estimated the mass and current worth of metals in above ground resources. Using these outcomes as a basis, a typology for different options for (metal reuse and recycling has been developed to classify the common features, which is presented in this article. In addition, the authors investigate the barriers and enablers in the recycling value chain, and propose a set of requirements for a feasible pathway to close the material loop for metals in Australia.

  17. Role of configuration management in improving quality of metal products

    International Nuclear Information System (INIS)

    Ali, U.; Kalsoom, T.

    2007-01-01

    The Configuration Management (CM) is an imperative discipline which helps in producing quality metal products for the customers. CM implements a graded approach to Configuration Items whose failure poses human as well as product losses. Effective CM provides information to Project Management, Quality Control, and Quality Assurance in identifying schedules and processes related to metal component production. The CM is a supportive function, mostly working side by side with Quality Assurance and Quality Control in the development / production of metal parts. The CM provides tools and guidelines for managing a product while Quality Assurance verifies and validates the same outside the scope of Configuration Audits. Configuration Management raises productivity of metal product, makes-available design reuse, reduces service and support costs, enhances visibility and eliminates rework on metal products. The elements of CM i.e. Identification, Control, Status Accounting and Audits playa vital role to enhance the quality of metal products. Only established CM System can make it possible to swing initial development criteria to final user friendly metal products. The challenges of today in our metal industry are to design and develop state-of-the-art products, for which, CM ideas given in this paper, will help to achieve all the set goals. (author)

  18. Fabrication of metallic glass structures

    Science.gov (United States)

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  19. Bygningsmaterialer - Metallære

    DEFF Research Database (Denmark)

    Nielsen, Anders

    Textbook on basic metallurgy for civil engineering students on their first courses. The basic properties and corrosion properties of metals are treated in common. Steel and the heat treatments of steel, light metals and other metals used in the civil engineering are described....

  20. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  1. METHOD OF PURIFYING URANIUM METAL

    Science.gov (United States)

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  2. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  3. Metallicity inhomogeneities in local star-forming galaxies as sign of recent metal-poor gas accretion

    OpenAIRE

    Almeida, J. Sanchez; Morales-Luis, A. B.; Munoz-Tunon, C.; Elmegreen, D. M.; Elmegreen, B. G.; Mendez-Abreu, J.

    2014-01-01

    This work was partly funded by the Spanish Ministry for Science, project AYA 2010-21887-C04-04. J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≃0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity d...

  4. Predicting Sustainable Work Behavior

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft

    2013-01-01

    Sustainable work behavior is an important issue for operations managers – it has implications for most outcomes of OM. This research explores the antecedents of sustainable work behavior. It revisits and extends the sociotechnical model developed by Brown et al. (2000) on predicting safe behavior...... condition influence their sustainable work behavior. A new definition of sustainable work behavior is proposed....

  5. Patterns of work injuries

    DEFF Research Database (Denmark)

    Lander, Flemming; Nielsen, Kent Jacob; Rasmussen, Kurt Arend

    2014-01-01

    To compare work injuries treated in an emergency department (ED) and injuries reported to the Danish Working Environment Authority (DWEA).......To compare work injuries treated in an emergency department (ED) and injuries reported to the Danish Working Environment Authority (DWEA)....

  6. Mixing and settling in continuous metal production

    International Nuclear Information System (INIS)

    Richter, H.J.; Laaspere, J.T.; Fitzpatrick, J.M.

    1993-01-01

    Modern metallurgical processes produce metal from ore in a single converter operated in horizontal mode to permit staging of bath and oxygen potential by utilizing bottom-blowing of oxygen and fuel. The submerged injectors must create sufficient turbulence to provide excellent gas-liquid contact in order to maximize heat and mass transfer in the bath, but this turbulence must be selectively localized so as to provide adequate phase separation zones of metal and slag between the active turbulent zones. It is important to know the behavior of gas and liquids in the bubble plume, the nature and paths of liquids and entrainment into the plume, and separation phenomena including travel and behavior in the settling zones. Such knowledge is of fundamental value in designing reactors for continuous direct metal making. In this work the mixing caused by submerged injection of gas into a bath simulating a converter and subsequent phase separation of two immiscible liquids representing slag and metal respectively, are being studied experimentally and analytically. First results of experiments and of the numerical analysis are presented

  7. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  8. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  9. Ultralight porous metals. From fundamentals to applications

    International Nuclear Information System (INIS)

    Lu, T.

    2002-01-01

    Over the past few years a number of low cost metallic foams for application as the core of sandwich panels and net shaped parts have been produced. The main aim is to develop lightweight structures which are stiff, strong, absorb large amount of energy and are cheap, for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious scrutiny for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to give a design capability. This work aims at reviewing recent progress and present some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams. (author)

  10. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  11. Anomalous quantum diffusion and the topological metal

    Science.gov (United States)

    Tian, Chushun

    2012-09-01

    Electron wave scattering off disorders provides a key to many fascinating transport phenomena recently observed in topological insulators. Here, we present a nonperturbative diagrammatic theory of this subject. Surprisingly, quantum superdiffusion is found on the surface of three-dimensional strong topological insulators regardless of disorder strength (but not vanishing), where the diffusion coefficient grows in time logarithmically. Such a transport anomaly serves as a main characteristic of the novel quantum metal, the so-called “topological metal,” and indicates that it is a hybridization of Ohmic and perfect metals. It washes out the Anderson transition occurring in two-dimensional normal metals with disordered spin-orbit coupling, and leads to a logarithmic divergence of the conductance in the sample size instead. Therefore, the present work provides an analytical proof of the transport anomaly discovered numerically [Nomura, Koshino, and Ryu, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.146806 99, 146806 (2007); Bardarson , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.106801 99, 106801 (2007)].

  12. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  13. CTOs at work

    CERN Document Server

    Donaldson, Scott; Donaldson, Gary

    2012-01-01

    Scott Donaldson, Stanley Siegel and Gary Donaldson interview many of the world's most influential chief technology officers in CTOs at Work, offering a brand-new companion volume to the highly acclaimed elite At Work books including Coders at Work, CIOS at Work and Venture Capitalists at Work. As the words "at work" suggest, the authors focus on how their interviewees tackle the day-to-day work of the CTO while revealing much more: how they got there, how they manage and allocate projects, and how they interact with business units and ensure that their companies take advantage of technologies,

  14. Abstract: Body Work

    DEFF Research Database (Denmark)

    Otto, Lene

    2012-01-01

    This panel will explore the usefulness of the term ‘body work’ in cultural history. Body work is understood as work focusing on the bodies of others as component in a range of occupations in health and social care, as well as in unpaid work in the family. How can the notion of body work inform...... cultural history of health and illness whether through a micro-social focus on the intercorporeal aspects of work in health and social care, or through clarifying our understanding of the times and spaces of work, or through highlighting the relationship between mundane body work and global processes....... The British sociologist Julia Twigg has introduced and explored the term `bodywork', most recently in Body Work in Health and Social Care - Critical Themes, New Agendas (2011). She extends the term body work from applying to the work that individuals undertake on their own bodies, often as part of regimens...

  15. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  16. Some Issues in Liquid Metals Research

    Directory of Open Access Journals (Sweden)

    Maria José Caturla

    2015-11-01

    Full Text Available The ten articles [1–10] included in this Special Issue on “Liquid Metals” do not intend to comprehensively cover this extensive field, but, rather, to highlight recent discoveries that have greatly broadened the scope of technological applications of these materials. Improvements in understanding the physics of liquid metals are, to a large extent, due to the powerful theoretical tools in the hands of scientists, either semi-empirical [1,5,6] or ab initio (molecular dynamics, see [7]. Surface tension and wetting at metal/ceramic interfaces is an everlasting field of fundamental research with important technological implications. The review of [2] is broad enough, as the work carried out at Grenoble covers almost all interesting matters in the field. Some issues of interest in geophysics and astrophysics are discussed in [3]. The recently discovered liquid–liquid transition in several metals is dealt with in [4]. The fifth contribution [5] discusses the role of icosahedral superclusters in crystallization. In [6], thermodynamic calculations are carried out to identify the regions of the ternary phase diagram of Al-Cu-Y, where the formation of amorphous alloys is most probable. Experimental data and ab initio calculations are presented in [7] to show that an optimal microstructure is obtained if Mg is added to the Al-Si melt before than the modifier AlP alloy. Shock-induced melting of metals by means of laser driven compression is discussed in [8]. With respect to recent discoveries, one of the most outstanding developments is that of gallium alloys that are liquid at room temperature [9], and that, due to the oxide layer that readily cover their surface, maintain some “stiffness”. This has opened the possibility of 3D printing with liquid metals. The last article in this Special Issue [10] describes nano-liquid metals, a suspension of liquid metal and its alloy containing nanometer-sized particles. A room-temperature nano-liquid metal

  17. Ab Initio Studies of Metal Hexaboride Materials

    Science.gov (United States)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron

  18. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... constrained cemented prosthesis. 888.3640 Section 888.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a device...

  19. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.

    2017-07-27

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  20. Non-Destructive Testing Methods: A Comparative Complitation Work

    OpenAIRE

    KARA, Okan; ERDAL, Hasan; ÇELİK, Hasan Hüseyin

    2017-01-01

    In thisstudy, nondestructive testing methods, which sustain safe material usage areanalyzed by doing defect analysis of material. Method that is used innondestructive testing process, need to be applicable on testing material interms of working conditions. For instance; eddy currents method can testnonferrous metals while it cannot test ferromagnetic metals because of workingconditions. Considering these conditions, defective material parts areidentified by examining chosen testing method and...

  1. Characterization and Quantification of Hexavalent Chromium and Other Toxic Metals in the Air of Communities Surrounding Metal Processing Facilities

    Science.gov (United States)

    Pikelnaya, O.; Polidori, A.; Low, J.

    2017-12-01

    Hexavalent chromium [Cr(VI)] and other toxic metals are often emitted during metal forging, cutting, grinding and plating operations. In the South Coast Air Basin (SCAB) many of such operations are conducted by relatively small facilities intertwined within residential communities in the cities of Paramount, Compton, Long Beach and Anaheim. In response to the city of Paramount community members' complaints of "metallic" odors, the South Coast Air Quality Management District (SCAQMD) initiated a local air sampling study for toxic metals, which found elevated Cr(VI) and nickel levels in the community downwind of selected metal processing facilities. SCAQMD worked with these facilities to reduce the emissions from their metal grinding operations, which resulted in substantial reduced nickel levels, but did not reduce Cr(VI) levels. In order to fully understand the source(s) of these emissions, SCAQMD has been deploying portable samplers for Cr(VI) monitoring throughout the city of Paramount since October 2016. During this presentation we will discuss the results of more than a year of Cr(VI) analyses of samplers collected throughout the City of Paramount, as well as data from a continuous metal monitor deployed at one of the sites. We will also discuss options and challenges for expanding of Cr(VI) monitoring to other communities in the SCAB that are adjacent to metal forging and grinding operations; and explore emerging new technologies to address such monitoring challenges.

  2. Unhappy expatriates at work

    DEFF Research Database (Denmark)

    Selmer, Jan; Lauring, Jakob

    2014-01-01

    While some expatriates could feel deeply unhappy trying to deal with the challenges of living and working abroad, few rigorous academic studies have presented evidence of the association between unhappiness among expatriates and their work outcomes. That is surprising since unhappiness could well...... with work adjustment, work performance, work effectiveness, and job satisfaction as well as a strong positive relationship with time to proficiency. These results are discussed in detail and their implications are drawn....

  3. Live to Work or Love to Work: Work Craving and Work Engagement

    OpenAIRE

    Wojdylo, Kamila; Baumann, Nicola; Fischbach, Lis; Engeser, Stefan

    2014-01-01

    OBJECTIVE: According to the theory of work craving, a workaholic has a craving for self-worth compensatory incentives and an expectation of relief from negative affect experienced through neurotic perfectionism and an obsessive-compulsive style of working. Research has shown that workaholism and work engagement should be considered as two distinct work styles with different health consequences. However, the mechanisms underlying the adoption of these work styles have been neglected. The prese...

  4. Electrodynamics of Metallic Superconductors

    Directory of Open Access Journals (Sweden)

    M. Dressel

    2013-01-01

    Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.

  5. Antibacterial Metallic Touch Surfaces

    Directory of Open Access Journals (Sweden)

    Victor M. Villapún

    2016-08-01

    Full Text Available Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field.

  6. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Live to work or love to work: work craving and work engagement.

    Science.gov (United States)

    Wojdylo, Kamila; Baumann, Nicola; Fischbach, Lis; Engeser, Stefan

    2014-01-01

    According to the theory of work craving, a workaholic has a craving for self-worth compensatory incentives and an expectation of relief from negative affect experienced through neurotic perfectionism and an obsessive-compulsive style of working. Research has shown that workaholism and work engagement should be considered as two distinct work styles with different health consequences. However, the mechanisms underlying the adoption of these work styles have been neglected. The present study proposes that work craving and work engagement are differentially associated with self-regulatory competencies and health. In particular, we expected that the working styles mediate the relationships between emotional self-regulation and health. In the cross-sectional study, 469 teachers from German schools completed online administered questionnaires. By means of structural equation modeling, we tested two indirect paths: a) from self-relaxation deficits via work craving to poor health and b) from self-motivation competencies via work engagement to good health. As expected, we found evidence that a) the negative relationship of self-relaxation deficits on health was partially mediated by work craving and b) the positive relationship of self-motivation competencies on health was partially mediated by work engagement. The present study emphasizes the importance of self-regulation competencies for healthy or unhealthy work styles. Whereas work craving was associated with a low ability to down-regulate negative emotions and poor health, work engagement was associated with a high ability to up-regulate positive emotions and good health.

  8. Understanding metals pollutions

    International Nuclear Information System (INIS)

    Bril, H.; Bollinger, J.C.

    2006-01-01

    Either from natural or anthropic origin, be it normal or accidental (Tchernobyl), metallic elements are found everywhere in our environment. After a presentation of their repartition and mobility in water, sediments or soils, the mechanisms allowing their dispersion or their concentration are shown. Finally, transfers between environmental compartments are presented, before evoking the case of polluted sites: diagnostic, remediation and long-time management. (authors)

  9. Therapy of metal poisoning

    International Nuclear Information System (INIS)

    Lindenbaum, A.

    1975-01-01

    The following studies were conducted: physical character of lead acetate and other toxic metal compounds as related to tissue distribution, toxicity, and therapeutic removal; interactions of monomeric plutonium with specific components of mouse liver and skeleton; metabolism and therapeutic decorporation of plutonium in mice and dogs; comparative studies of tissue distribution of plutonium isotopes; and microdistribution of monomeric and polymeric plutonium in beagle liver and bone

  10. Ultralight metallic microlattices.

    Science.gov (United States)

    Schaedler, T A; Jacobsen, A J; Torrents, A; Sorensen, A E; Lian, J; Greer, J R; Valdevit, L; Carter, W B

    2011-11-18

    Ultralight (nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.

  11. European Metals Conference

    CERN Document Server

    Vereecken, Jean

    1991-01-01

    This volume contains the papers that will be presented at 'EMC '91 '-the European Metals Conference-to be held in Brussels, Belgium, from 15 to 20 September 1991, and organized by Benelux Metallurgie, GDMB (Gesellschaft Deutscher Metallhutten­ und Bergleute) and IMM (the Institution of Mining and Metallurgy). 'EMC '91' is the first of an intended major series organized at the European level with the aim of bringing together all those who are involved with the extraction and processing of non-ferrous metals-European metallurgists and their international colleagues-to provide them with the opportunity to exchange views on the state and evolution of their industry. The programme covers all the different aspects of the metallurgy of non-ferrous metals from mining to fabricated products. Particular attention is being paid to the European non -ferrous industry with respect to changes in demand, the technology used, pressures on the environment and the competitive position of manufacturers. The contributions of the...

  12. PREFACE: Half Metallic Ferromagnets

    Science.gov (United States)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  13. Electron energies in metals

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, G.D. (Oak Ridge National Lab., TN (United States) Tennessee Univ., Knoxville, TN (United States). Dept. of Physics and Astronomy)

    1991-07-10

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m{sub e}. This should be compared to the band mass found from optical conductivity m*/m{sub e} = 1.01 {plus minus} 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs.

  14. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria.

    Science.gov (United States)

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn), Lead (Pb) and Nickel (Ni); in blood samples, there were higher concentrations of Manganese (Mn), Lead (Pb), Chromium (Cr) and Nickel (Ni). Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk.

  15. Addressing aquatic hazard classification for metals, metal compounds and alloys in marine systems.

    Science.gov (United States)

    Huntsman-Mapila, P; Skeaff, J M; Pawlak, M; Beaudoin, R

    2016-08-15

    New International Maritime Organization regulations require shippers to classify all solid bulk cargo to indicate whether they are Harmful to the Marine Environment (HME). The objective of this work was to adapt the freshwater Transformation/Dissolution Protocol (T/DP) to marine water to provide a method to determine, when compared with marine Ecotoxicity Reference Values (ERVs), whether a metal-bearing substance is HME. The substances examined were: Cu2O powder; Ni metal powder; Co3O4 powder; and a Ni-Co-Fe alloy, as wire cuttings, which were the same substances examined in the freshwater T/D validation study and afforded comparisons of the reactivity, or measure of the rate and extent of metal release from the metal-bearing substances in freshwater versus marine conditions. The marine T/D method is suitable for conducting examinations of metal-bearing substances with a wide range of reactivities, from the relatively reactive Cu2O powder and the alloy to the Co3O4 powder, which was the least reactive. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Carbothermic reduction of refractory metals

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.D.

    1976-01-01

    The reduction of stable refractory metal oxides by carbon is generally unacceptable since the product is usually contaminated with carbides. The carbide formation may be avoided by selecting a solvent metal to dissolve the reactive metal as it is produced and reduce its chemical activity below that required for carbide formation. This approach has been successfully applied to the oxides of Si, Zr, Ti, Al, Mg, and U. In the case where a volatile suboxide, a carbonyl reaction, or a volatile metal occur, the use of the solvent metal appears satisfactory to limit the loss of material at low pressures. In several solute--solvent systems, vacuum evaporation is used to strip the solvent metal from the alloy to give the pure metal

  17. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... the supersaturated alloy, into a diverse carbide network. Finally, the foils turn into metal dust accompanied by a thinning and disappearance of the foils. Investigations of TEM samples, prepared by means of FIB, on the carbide network revealed a lamellar structure with carbides and austenite. Finally, the mutual...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting...

  18. Reduction of Metal Oxide to Metal using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  19. Corrosion protective coating for metallic materials

    Science.gov (United States)

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  20. Heavy metals exposures among Mexican farmworkers in eastern North Carolina

    International Nuclear Information System (INIS)

    Quandt, Sara A.; Jones, Bradley T.; Talton, Jennifer W.; Whalley, Lara E.; Galvan, Leonardo; Vallejos, Quirina M.; Grzywacz, Joseph G.; Chen, Haiying; Pharr, Kathryn E.; Isom, Scott; Arcury, Thomas A.

    2010-01-01

    Background: Immigrant farmworkers are a population at risk for numerous environmental and occupational exposures. The metals arsenic, lead, mercury, and cadmium are known neurotoxins to which workers can be exposed both in the US and in their country of origin. Because farmworkers are exposed to neurotoxic pesticides, they may be at risk for adverse health effects from the combined exposure. Objectives: To examine the relationship between exposure to metals, as measured in urine, with personal and work-related characteristics of Mexican migrant and seasonal farmworkers in the US. Methods: We analyzed data on metals found in urine of 258 farmworkers recruited from 44 camps in eastern North Carolina in 2007. Geometric means and 95% confidence intervals (CI) were used to compare data with data from the National Health and Nutrition Examination Survey (NHANES). We used multivariate regression models fitted for each metal to estimate the association of creatinine-corrected urinary metals and worker characteristics related to environmental and occupational exposures. Results: Geometric mean urinary metals concentrations (μg/g creatinine) exceeded NHANES reference values for arsenic (13.23 [CI 11.11, 15.35] vs. 8.55 [CI 7.23, 9.86]) and lead (1.26 [CI 1.08, 1.43] vs. 0.63 [CI 0.60, 0.66]). Age, being from the central region of Mexico, and pack years of cigarette smoking were significant predictors of metals exposure; being a current smoker and years worked in US agriculture were not. Conclusions: This first study to examine indicators of worker body burdens of metals shows that workers have body burdens related to exposures other than work in the US. Further research should address their risk for adverse health outcomes due to combined exposures to neurotoxins in pesticides.